analytical techniques, lecture...

55
- - GC-MS Commonly done on low resolution (1 dalton) quadrupole instruments in the selected ion ( mass) mode. e.g. Hewlett-Packard MSD, VG Trio and MD-800 Finnigan INCOS-60 Shimadzu MD 800, Finnigan INCOS 60, Shimadzu QP-500 etc. C Can be done at hi igh resoluti ion; accurate mass

Upload: others

Post on 19-Oct-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

  • - -

    GC-MS

    Commonly done on low resolution (1 dalton) quadrupole instruments in the selected ion ((mass)) mode. e.g. Hewlett-Packard MSD, VG Trio and

    MD-800 Finnigan INCOS-60 ShimadzuMD 800, Finnigan INCOS 60, Shimadzu QP-500 etc. CCan be done at hiigh resolutiion; accurate mass

  • What has to be right for successful GC-MS?

    Everyy sin ggle time yyou tryy!!

    •GC working with correct column in good condition, right gas flows, autosampler working, correct conditions of injection, temp program hot interface no leaks no bleed clean injector clean program, hot interface, no leaks, no bleed, clean injector, clean syringe, clean wash solvents, correct vials and septa ……...

    •Good vacuum clean source right source temp and ionising •Good vacuum, clean source, right source temp and ionising conditions, appropriate peak resolution & tune, correct slits, correct gain setting, low instrument noise ……..

    • DS interface (noise, threshold) set correctly, correct experiment for the job, instrument in calibration, file structure correct, adequate storage space, no bugs before starting sequence ………

    •Samples correctly ordered in sampler, blanks & external standards included, data archived , QUAN set up correctly ….

    •Interpretive skill ….

  • -

    -

    Components of the Mass Spectrometer (1)

    •Vacuum System •any collisions of an ion with a gas molecules in its path destroys it --> no MS

    •System to convert intact molecules to ions -System to convert intact molecules to ions

    THE ION SOURCE

    •electron impact (EI), chemical ionisation (volatiles) • electrospray or sputtering (non-volatiles eg proteins, DNA)

    •Mass Analyser - To filter by mass (and KE) Mass Analyser To filter by mass (and KE) •Ion Detector and ion current amplifier •Dispp ylay mechanisms and Data Acqquisition Syystem

  • Components of the Mass Spectrometer (2)

    •Mass Analyser - To filter by mass (and KE) •si lingle magnett or quaddrupolle -->>

    Ion Detector and ion current amplifier

    •Display mechanisms and Data Acquisition SystemDisplay mechanisms and Data Acquisition System

  • Formation of the mass sppectrum •Compound ionises in source •Molecular ions fragments as a result of

    excess energy impparted by the ionisingggy y electrons (standard energy 70eV) ••Ions pushed from source with repellerIons pushed from source with repeller •Accelerated by high voltage •Ions separated by mass analyser •IIons counttedd andd recorddedd

  • Calibration and leak checkingCalibration and leak checking

    P fl k (PFK) i t f•Perfluorokerosene (PFK) - a mixture of fluoroalkanes with ions to > 900 dalton 69, 100, 119, 219, 231 …….. •Hepptacosafluorotributyylamine - a singgle

    compound MW 614 with 69, 119, 219 ...

    •Background spectrum should look like air;Background spectrum should look like air;

    •17,18,28-32 and 40 Da •AArgon usefful to ddetect l t leakksl t t

  • Characteristic ion series

    Sili bl ili t ) 207 281•Silicone bleed ( d (silicon iisotopes) 207, 281, 355 • Alkanes 57, 71, 85, 99, 113 ...

    ••Alkenes 55 69 83 97 111Alkenes 55, 69, 83, 97, 111 …

    •Cyclohexanes 83, 97, 111 •Terpanes 123, 149, 191, 205, 217, 231 •Monoaromatics 77 91 105 119 133•Monoaromatics 77, 91, 105, 119, 133 …..

  • o sat o e e a d st uctu e dete e d ee

    Appearance of the Mass Sppectrumpp

    •Average spectrum has 250 bits of informationg p •Molecular ion and its isotopic abundances •Ionisation energy and structure determine degreegy eg of fragmentation; 70 eV is standard •Fraggment abundances reflect to relative stabilities of the fragment ions - most abundant are the most stable

  • Interppretation of the mass sppectrum

    •Identify molecular ion •Assess isotope abundances for:

    A elements H and F A+1 elements C, N A+2 elements Si S Cl BrA+2 elements Si, S, Cl, Br

    •Determine # rings and double bonds Acyclic saturated hydrocarbons CnH2n+2 •Identifyy ‘characteristic’ ions and low mass series

  • Interppretation of the mass sppectrum

    •Identify molecular ion –Molecular Ion corresponds to the loss of one electron from the intact molecule –Molecular ion is an ‘odd electron’ ion –Odd electron ions are generally present and have an even mass unless an odd number of nitrogens

  • Identify:Identify:

    1947 sats Molecular Ion? 100 64

    Isotopic features?

    Ion series?

    256

    128128

    160

    96

    192192

    66

    9857 71 85

    0 m/z

    50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300

    %

  • Nuclidic Masses and Abundances

    Element Mass Isotope Abundance

    carbon 12.00000 13 0034 13.0034

    98.9 1 11.1

    hydrogen 1.007825 2 0140 2.0140

    99.985 0 015 0.015

    nitrogen 14.00307 15.000115.0001

    99.63 0.370.37

    oxygen 15.9949 17.9992

    99.8 0.2

    fluorine 18.9984 100

    lfsulfur 31 9720 31.9720 32.9715 33.9679

    94 8 94.8 0.8 4.4

  • = 412

    100 %

    80

    60

    40

    20

    0

    100 %

    80

    60

    40

    20

    0

    A7NO12A#3-1007 Identify 55

    Molecular ion69

    Odd electron ions; A+1 or A+2?

    60 80 100 120 140 160 180 200 220 240 260 280 300 m/z

    55 x10.00

    60 80 100 120 140 160 180 200 220 240 260 280 300 m/z

    83

    low mass series97

    #carbons#carbons

    111

    rings & double bonds

    125

    69

    83

    97

    111 154

    168168

    266

    266

    125 182 196 238

  • 1947 sats

    57100 57

    71

    85

    55

    99

    11383

    127

    141 240155 169 18367 197 211

    0 m/z

    50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300

    %%

  • 68 sats

    100 57 71

    85

    55

    113 12769

    99

    9797

    183

    197141

    155

    1696753 81 253 267 282179 211 225

    0 m/z

    5050 60 70 80 9090 100 110 120 130 140 150150 160 170 180 190 190 200 210 220 230 240 250 260 270 280 290 30060 70 80 100 110 120 130 140 160 170 180 200 210 220 230 240 250 260 270 280 290 300

    %

  • 68 sats

    100 57 71

    85

    55 113

    69 99 183

    127

    97 141 155

    6753 81 169 197 225 239 253 268

    0 m/z

    50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300

    %%

  • 1947 sats

    5757100

    71

    85

    55

    99

    69

    113

    83 127

    141 254155 169 183 19767 211 225

    0 m/z

    50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300

    %

  • 1947 sats

    100 57

    71

    85

    281

    69 99

    83 113

    97 127

    141 155 169 183 197 211 225 25367 295

    0 m/z

    5050 60 70 80 9090 100 110 120 130 140 150 150 160 170 170 180 190 200 210 220 230 240 250 260 270 280 290 30060 70 80 100 110 120 130 140 160 180 190 200 210 220 230 240 250 260 270 280 290 300

    %

  • 1947 sats

    100 57

    55

    97

    71

    69

    83

    81

    67 111

    99

    125

    53 79 139 153 168 183 207 224 25291 105 239

    0

    65 119 197131

    m/z

    5050 60 70 80 9090 100 110 120 130 140 150 150 160 170 170 180 190 200 210 220 230 240 250 260 270 280 290 30060 70 80 100 110 120 130 140 160 180 190 200 210 220 230 240 250 260 270 280 290 300

    %

  • Standard Interpretation ProcedureStandard Interpretation Procedure • Verify masses (calibration); determine elemental

    iti & i + t ticompositions & rings+unsaturations • Mark odd electron ions and verify molecular ion • Study appearance of spectrum molecular stability Study appearance of spectrum, molecular stability,

    labile bonds • Identify low mass ion series • Identify neutral fragments, logical mass losses • Postulate structures of low mass ions • P t l t id tit t t i t f t libPostulate identity; test against ref. spectrum or library;

    rationalize fragmentation pattern

    ©McLafferty: Interpretation of Mass Spectra

  • ==

    αβ-Hopane a fossil hydrocarbon

    369

    Structure

    MW 412 191

    369

    MW 412

    191 %100

    Mass spectrum

    412 149

    123 109

    95 81

    68

    50 100 150 200 250 300 350 400 450 500

    412 397

    206177

    163137 123

    369

  • ==

    CC HOPANEHOPANECC HOPANEHOPANECC3030 HOPANEHOPANECC3030 HOPANEHOPANE369

    Structure

    MW 412 191

    369

    MW 412

    191 %100

    Mass spectrum

    412 149

    123 109

    95 81

    68

    50 100 150 200 250 300 350 400 450 500

    412 397

    206177

    163137 123

    369

  • TriterpanesTriterpanes -- 191 Da191 Da C30 ��

    GippslandGippslandC29 ��

    C31 �� S

    Ts Tm S R C32 �� C33 ��

    NW ShelfNW ShelfC29Ts

    Dia

    Middle EastMiddle East30-nor

  • AGSO Standard 221 Da

    File A6MA15C:4

    SIM-GCMS: 221.221

    Da

    Scale Factor: 4 9 Scale Factor: 4.9

    100

    90

    80

    70

    60

    50

    40

    30

    20

    10

    D44

    Int.

    Std

    .

    %

    50:00 55:00 1:00:00 1:05:00 1:10:00 1:15:00 TIME (min.)

    0

  • d.

    AGSO Standard 234 Da

    File A6MA15C:4 SIM-GCMS: 234.232 Da S l F t 5 4Scale Factor: 5.4

    100 %

    90

    80

    70

    60

    50

    D3

    Rec

    . Std

    30

    40

    20

    10

    0

    50:00 55:00 1:00:00 1:05:00 1:10:00 1:15:00 TIME (min.)

  • File A6MA15C:4 SIM-GCMS: 217.196 Da Scale Factor: 4.9

    0S 20R

    %100

    ααα

    20S

    Bi

    cad

    TC29

    βα

    20

    +C27

    αββ

    C29

    αββ

    20R

    29

    αββ

    20S

    0S

    β 20

    S

    R 0R0S α 20

    R

    C28 +

    B

    4S +

    R

    20R

    C27

    βα

    20S

    C2

    αββ

    20R

    C28

    αββ

    20

    + B

    icad

    T1

    C27

    αββ

    C29

    βα

    20R

    C29

    ααα

    20S

    C29

    ααα

    20

    C27

    ααα

    2

    C27

    ααα

    0R +

    RC

    28 β

    α 20

    S, 2

    4

    α 20

    R, 2

    4S +

    R

    C27

    βα

    20SBic

    ad W

    C28

    α

    C28

    ααα

    20

    Bic

    ad R

    C

    C28

    βα

    C30

    βα

    2

    αα 2

    0RC

    30 α

    α

    AGSO Standard 217 Da

    90

    80

    7070

    60

    50

    40

    30

    20

    10

    0 48:00 50:00 52:00 54:00 56:00 58:00 1:00:00

    TIME (min.)

  • C28

    βα

    C28

    βα

    C28

    αββ

    C28

    + Bi

    cad

    C27

    C29C27

    C28

    ααα

    C27C

    27

    C30

    βα

    ααα

    20RC29

    C29

    βα

    C29C27

    C C

    C30

    α

    AGSO Standard: steranes SIM vs. MRM SIM-GCMS: 217 Da

    MRM-GCMS: 400 -> 217 Da

    MRM-GCMS: 386 -> 217 Da

    MRM-GCMS: 372 -> 217 Da

    βα 2

    0S

    βα 2

    0R

    20S

    , 24S

    ++R

    20R

    , 24S

    + RR

    ααα

    20S

    C29

    βαα

    20S

    +C27

    ααββ

    20R

    αβ

    β 20

    S

    ααα

    20R

    20R

    C28

    ααα

    20S

    + Bi

    cad

    T 20

    Rαβ

    β 20

    S

    T1

    20R

    + B

    icaad

    R

    ααα

    20S

    C29

    αββ

    200R

    αββ

    20S

    ααα

    20R

    20S

    Bica

    d W

  • File A6MA15C:4 SIM-GCMS: 218.203 Da S l F t 4 1Scale Factor: 4.1

    AGSO Standard 218 Da

    αββ

    20R

    S C29

    αββ

    20R

    9 αβ

    β 20

    S

    100 %%

    80

    90

    100

    C29

    0S

    C27

    C27

    αββ

    20S

    C

    60

    70

    C28

    αββ

    2

    8 αβ

    β 20

    R

    30

    40

    50 C28

    10

    20

    0

    48:00 50:00 52:00 54:00 56:00 58:00 1:00:00

    TIME (min.)

  • File A6MA15C:4 SIM-GCMS: 191.179 Da S l F t 6 4Scale Factor: 6.4

    100 % C24Tet

    90

    80

    70

    60

    50

    40

    30

    20

    10

    0

    AGSO Standard 191 Da

    C23Tri C19Tri

    23

    C20Tri C21Tri C24Tr

    i

    + S

    )

    S)

    C22Tri

    C 25

    Tri (

    R +

    C 26

    Tri(R

    + S

    26:00 28:00 30:00 32:00 34:00 36:00 38:00 40:00 42:00 44:00 46:00 48:00 50:00

    TIME (min.)

  • File A6MA15C:4

    SIM-GCMS: 191.179

    Da

    S l F t 25 1Scale Factor: 25.1

    100%

    90

    80

    70

    60

    50

    40

    30

    20

    10

    0

    AGSO Standard 191 Da

    C29H

    C30H

    Compounds 1, 2 and 4 are Oleanoid Triterpanes (see Murray et al. (1997), Geochim. Cosmochim. Acta, in press. Tx is Taraxastane

    O or

    C30

    HC29

    Ts

    α

    Ts Tm

    C31H S

    C31H R

    C32H28H

    DiaC29

    H+4

    d T

    γ

    30 C

    28H

    C30

    H β

    α30

    -no

    C29

    H β

    α

    C31

    H β

    α

    C32H S

    C32H R C33H

    S C33H R

    C34HSC34HR C35HS C35HR

    29,3

    0 C

    2 C

    29 D

    ia

    C30

    H D

    25-n

    or C

    Bic

    ad

    Bicad W

    1,2

    + 28

    ,3

    Tx

    50:00 55:00 1:00:00 1:05:00 1:10:00 1:15:00

    TIME (min.)

  • File A6MA15C:4 SIM-GCMS: 369.352 Da S l F t 10 3 Scale Factor: 10.3

    Bicad T

    AGSO Standard 369 Da

    %

    90

    100

    W = cis-cis-trans Bicadinane T = trans-trans-trans Bicadinane

    70

    80 T1,R = isomers of T

    50

    60

    Bicad W

    30

    40

    Bicad T1

    10

    20 Bicad T1

    Bicad R

    0

    50:00 55:00 1:00:00 1:05:00 1:10:00 1:15:00

    TIME (min.)

  • File A6MA15C:4

    SIM-GCMS: 123.117

    Da

    S l F t 100Scale Factor: 100

    100

    90

    80

    70

    60

    50

    40

    30

    20

    10

    0

    8 β(H) H i8 β(H)-Homoddrimane

    AGSO Standard 123 Da

    %

    10:00 14:00 18:00 22:00 26:00 30:00 34:00 38:00

    TIME (min.)

  • File A6MA15C:4 SIM-GCMS: 205.194 Da S l F t 10 3 Scale Factor: 10.3

    AGSO Standard 205 Da

    %

    90

    100

    2MeH

    70

    80 C31

    2

    50

    60

    H

    30

    40

    C31

    3M

    eH

    10

    20

    0

    56:00 58:00 1:00:00 1:02:00 1:04:00 1:06:00

    TIME (min.)

  • File A6MA15C:4 SIM-GCMS: 231.212 Da S l F t 2 5

    AGSO Standard 231 Da

    %

    90

    100 Scale Factor: 2.5 Bicad T

    70

    80

    Bicad W

    50

    60

    αα 4

    Me2

    0R

    30

    40

    C31

    αα

    10

    20

    0 48:00 50:00 52:00 54:00 56:00 58:00 1:00:00

    TIME (min.)

  • GCGC MSMS MSMSGCGC--MSMS--MSMSTrue GC-MS-MS reqquires an instrument with at least two, independently controllable mass selection reggions.

    Various configurations possible, e.g. Triple Sector Quadruple “HybridSector Quadruple,“Hybrid” magnet/quadrupole etc. e.g. Autospec-Q, Finnagin MAT 95Q etFinnagin MAT 95Q etc.

    Very high sensitivity and selectivity very powerful for biomarker work.

  • C28

    βα

    C28

    βα

    C28

    αββ

    C28

    + Bi

    cad

    C27

    C29C27

    C28

    ααα

    C27C

    27

    C30

    βα

    ααα

    20RC29

    C29

    βα

    C29C27

    C C

    C30

    α

    AGSO Standard: steranes SIM vs. MRM SIM-GCMS: 217 Da

    MRM-GCMS: 400 -> 217 Da

    MRM-GCMS: 386 -> 217 Da

    MRM-GCMS: 372 -> 217 Da

    βα 2

    0S

    βα 2

    0R

    20S

    , 24S

    ++R

    20R

    , 24S

    + RR

    ααα

    20S

    C29

    βαα

    20S

    +C27

    ααββ

    20R

    αβ

    β 20

    S

    ααα

    20R

    20R

    C28

    ααα

    20S

    + Bi

    cad

    T 20

    Rαβ

    β 20

    S

    T1

    20R

    + B

    icaad

    R

    ααα

    20S

    C29

    αββ

    200R

    αββ

    20S

    ααα

    20R

    20S

    Bica

    d W

  • eco d o b o a e o ecu a we t

    MRMMRM GCGC MSMSMRMMRM--GCGC--MSMSMetastable Reaction Monitoring GC-MSMetastable Reaction Monitoring GC MS Monitoring of ion reactions (e.g. Molecular-Daughter) by selecting metastable ions in thDaughter) by selecting metastable ions in the first field free region.

    Not “true” GCMSMS but allows selective recordingg of biomarker molecular weigght groups (e.g. only C30 steranes cf. all steranes at once)).

  • MRMMRM GCGC MS (2)MS (2)MRMMRM--GCGC--MS (2)MS (2)Metastable Reaction Monitoring GC MSMetastable Reaction Monitoring GC-MS

    Higher selectivity and sensitivitHigher selectivity and sensitivity.

    Can be done on double focussing highCan be done on double focussing, high resolution instruments such as VG 70E etc but parent ions can only be selected at lobut parent ions can only be selected at low resolution - some interference or “cross talk” between tracebetween traces.

  • %100

    e

    C28 389 → 234 Da M th d t d d

    AGSO Standard

    80

    90

    H)-c

    hole

    stan

    389 → 234 Da 8.6

    Method recovery standard

    60

    70

    3-C

    D3 -

    5α-(

    H

    30

    40

    50

    10

    20

    30

    0

    10

    48:00 50:00 52:00 54:00 56:00 58:00 1:00:00

  • C27372 → 217 Da372 → 217 Da18.3

    %

    90

    100

    27 β

    α 20

    S AGSO Standard

    70

    80

    90

    C2

    0R

    50

    60

    C27

    βα 2

    ααα

    20R

    β 20

    Sαβ

    β 20

    R

    20S

    30

    40 C27

    α

    C27

    αββ

    C27

    C

    27 α

    αα 2

    10

    20

    48:00 50:00 52:00 54:00 56:00 58:00 1:00:00 0

  • C28386 → 217 Da5.2

    AGSO St d d %

    90

    100

    βα 2

    0S

    28 α

    ββ 2

    0S

    0R

    {

    AGSO Standard

    70

    80

    90 C

    28 β

    0R

    C2

    C28

    αββ

    20

    C28

    βα

    20R

    50

    60

    70

    C28

    ααα

    2

    α 20

    S

    C

    {

    30

    40

    50

    C28

    ααα

    10

    20

    30

    48:00 50:00 52:00 54:00 56:00 58:00 1:00:00 0

  • AGSO %

    90

    100

    0R C29

    404 → 221 Da GCMS Internal Standard

    AGSO Standard

    70

    80

    90

    gmas

    tane

    20404 → 221 Da

    13.4

    50

    60

    70

    D 4 -

    ααα-

    sti

    30

    40

    50

    10

    20

    0 48:00 50:00 52:00 54:00 56:00 58:00 1:00:00

  • AGSO Standard %

    90

    100

    βα 2

    0SC29 400 → 217 Da

    70

    80

    90

    C29

    β

    βα 2

    0R

    C29

    αββ

    20S

    ββ

    20R

    S

    400 → 217 Da 13.4

    50

    60

    70

    C29

    β

    C29

    ααα

    20R

    C

    C29

    α

    C29

    ααα

    20S

    30

    40

    CC

    10

    20

    48:00 50:00 52:00 54:00 56:00 58:00 1:00:00 0

  • R+S

    )C

    30αβ

    β20

    (RC

    AGSO Standard

    %

    90

    100

    20S

    C30

    βα

    20S

    C30

    βα

    20R

    C30 414 → 217 Da 0 9

    AGSO Standard

    70

    80

    90

    30 α

    αα 2

    0R

    C30

    ααα

    C C0.9

    50

    60

    70 C

    30

    40

    50

    10

    20

    30

    48:00 50:00 52:00 54:00 56:00 58:00 1:00:00 0

  • R S+ SAGSO Standard

    %

    90

    100

    30 2

    α M

    e 20

    R

    4α M

    e ββ

    20S

    β M

    e ββ

    20R

    +

    C30 414 → 231 Da 2 2

    70

    80

    90

    + D

    ino

    C3 +

    20S

    Me

    20R

    e 20

    S C

    30 3

    β2.2

    50

    60

    70

    4α M

    e 20

    R +

    C30

    Me

    2 C

    30 4

    α ββ

    20S C

    30 3

    βMe

    30

    40 C30

    4

    3β M

    e 20

    R

    C30

    2αM

    e 2

    10

    20 C30

    48:00 50:00 52:00 54:00 56:00 58:00 1:00:00 0

  • %

    90

    100 C31 426 → 205 Da

    AGSO Standard

    70

    80

    90

    2α M

    e

    426 → 205 Da 4.7

    50

    60

    70

    C31

    2

    1 3β

    Me

    30

    40

    50

    C31

    10

    20

    56:00 58:00 1:00:00 1:02:00 1:04:00 1:06:00 0

  • File:A6MA16 #1-986 Acq:17-MAR-1996 00:09:04 GC EI+ MRM Autospec-UltimaQ Sample Text:AGSOSTD 1/2A File Text:Ultra-1, 50m, H2@20psi

    E MRM OZOILS STD S:6 F:2

    Exp:MRM_OZOILS_STD

    Bicad T

    48:00 50:00 52:00 54:00 56:00 58:00 1:00:00

    %

    90

    100 C30 412 → 369 Da AGSO Standard

    70

    80

    90 100

    50

    60

    70

    30

    40

    50

    RT1

    10

    20

    30

    Bic

    ad R

    Bicad W B

    icad

    0

    File:A6MA16

  • AGSO Standard Ts

    100 %

    90 C27 370 191 D Tm + Bic T1 370 → 191 Da 23.2

    ic T

    )

    Bi

    C27

    17β

    (H)

    90

    80

    7070

    60

    5050

    40

    3030

    20

    1010

    0

    48:00 50:00 52:00 54:00 56:00 58:00 1:00:00

  • AGSO Standard

    %

    90

    100 C28 384 → 191 Da

    70

    80

    90 384 → 191 Da 7.6

    50

    60

    70 29,30 C28H

    30

    40

    50

    C28

    H

    10

    20

    30

    28,3

    0 C

    48:00 50:00 52:00 54:00 56:00 58:00 1:00:00 0

  • AGSO Standard %

    90

    100 C29 H

    C29 398 → 191 Da

    AGSO Standard

    70

    80

    H398 → 191 Da 40.2

    50

    60

    30

    40

    C29Ts

    10

    20

    29

    C29

    Dia

    C29H βα

    29 D

    iane

    o

    48:00 50:00 52:00 54:00 56:00 58:00 1:00:00 0

    C2

  • C30H 100 %

    90

    80

    70

    60

    50

    40

    30

    20

    10

    0 56:00 58:00 1:00:00 1:02:00 1:04:00 1:06:00

    C30 412 → 191 Da

    AGSO Standard

    412 → 191 Da 35.4

    Compounds 1 - 6 are Oleanoid Triterpanes (see Murray et al. (1997), Geochim. Cosmochim. Acta, in press. Tx is Taraxastane

    ia

    30 C30H

    Oleanoid triterpanes

    C30

    H D

    i

    C30H βα

    O 30-nor C30H

    γ1 2 3 2

    4 6

    Tx 3 Tx

  • 426 → 191 Da

    80

    70

    60

    50

    40

    30

    20

    10

    0 56:00 58:00 1:00:00 1:02:00 1:04:00 1:06:00

    %

    90

    100 C31HS

    C31 426 → 191 Da

    AGSO Standard

    C31HR15.9

    C31

    Dia

    SC

    31 D

    ia R

  • Note: This trace is from run A6FE24:5

    using MRM-OZOILS 50

    90

    80

    7070

    60

    5050

    40

    30

    20

    10

    0 45:00 50:00 55:00 1:00:00 1:05:00

    AGSO Standard %

    90

    100 C34HS

    C34 468 → 191 Da

    using MRM OZOILS_50 AGSO Standard

    468 → 191 Da

    C34HR

  • -Note: This trace is from run A6FE24:5

    using MRM-OZOILS 50 AGSO St d d %

    90

    100 C35 482 → 191 Da

    C35HS using MRM OZOILS_50 AGSO Standard

    70

    80

    482 → 191 Da

    50

    60 C35HR

    30

    40

    10

    20

    0 45:00 50:00 55:00 1:00:00 1:05:00

  • MIT OpenCourseWarehttp://ocw.mit.edu

    12.458 Molecular Biogeochemistry Fall 2009

    For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

    http://ocw.mit.eduhttp://ocw.mit.edu/terms

    /ColorImageDict > /JPEG2000ColorACSImageDict > /JPEG2000ColorImageDict > /AntiAliasGrayImages false /CropGrayImages true /GrayImageMinResolution 150 /GrayImageMinResolutionPolicy /OK /DownsampleGrayImages true /GrayImageDownsampleType /Bicubic /GrayImageResolution 150 /GrayImageDepth -1 /GrayImageMinDownsampleDepth 2 /GrayImageDownsampleThreshold 1.50000 /EncodeGrayImages true /GrayImageFilter /DCTEncode /AutoFilterGrayImages true /GrayImageAutoFilterStrategy /JPEG /GrayACSImageDict > /GrayImageDict > /JPEG2000GrayACSImageDict > /JPEG2000GrayImageDict > /AntiAliasMonoImages false /CropMonoImages true /MonoImageMinResolution 1200 /MonoImageMinResolutionPolicy /OK /DownsampleMonoImages true /MonoImageDownsampleType /Bicubic /MonoImageResolution 300 /MonoImageDepth -1 /MonoImageDownsampleThreshold 1.50000 /EncodeMonoImages true /MonoImageFilter /CCITTFaxEncode /MonoImageDict > /AllowPSXObjects true /CheckCompliance [ /None ] /PDFX1aCheck false /PDFX3Check false /PDFXCompliantPDFOnly false /PDFXNoTrimBoxError true /PDFXTrimBoxToMediaBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXSetBleedBoxToMediaBox true /PDFXBleedBoxToTrimBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXOutputIntentProfile (None) /PDFXOutputConditionIdentifier () /PDFXOutputCondition () /PDFXRegistryName (http://www.color.org) /PDFXTrapped /False

    /Description >>> setdistillerparams> setpagedevice