analytical techniques mineral major- and trace · pdf filemineral major- and trace-element...

13
GSA DATA REPOSITORY 2011332 Tappe et al. (2011) 1 ANALYTICAL TECHNIQUES Mineral major- and trace-element compositions (University of Alberta) Garnet and clinopyroxene major-element compositions were obtained using a JEOL JXA 8900 electron microprobe at the University of Alberta, Canada. Operating voltage was 20 kV with a beam current of 20 nA and a beam diameter between 2 and 10 μm. Counting time was set to 30 seconds on the peak. International standards of natural materials were used for calibration and all data were reduced with a CITZAF procedure. Trace-element compositions were obtained by laser ablation ICP-MS, using a New Wave Research Nd:YAG UP213 laser system coupled to a Perkin Elmer Elan 6000 Quadrupole ICP-MS instrument. Laser spot size employed was 160 μm and each ablation was conducted for 50 seconds subsequent to 20 seconds of background counting with a fluence of ~15 J/cm 2 . Several spots per mineral grain were analyzed and averages of at least 5 representative grains were used to determine the garnet and clinopyroxene trace-element compositions for each eclogite xenolith. CaO wt.% abundances determined by electron microprobe analysis were used as the internal standard. Elemental abundances were calculated using the GLITTER ® laser ablation software (van Achterbergh et al., 2001). The NIST SRM 612 glass standard was analyzed at the start and finish of each session, and the analytical precision for most elements is typically better than 10% (2-sigma level). Further details on the technique employed here can be found in Schmidberger et al. (2007). For normalization of the mineral trace element patterns, we use the Primitive Mantle and C1-chondrite values of Palme and O'Neill (2003). Clinopyroxene Pb isotope compositions (University of Alberta) Clinopyroxene Pb isotope compositions were determined in-situ using the same laser system described above but coupled to a NuPlasma multicollector-ICP-MS. Clinopyroxene grains were ablated from thin sections using a 160 μm laser spot size in raster mode along 320 × 320 μm patterns. The extremely low Pb concentrations of < 1 ppm necessitated collection of Pb isotope data by using the three ion counters of the MC-ICP-MS instrument. This collector configuration array does not allow for simultaneous acquisition of the 208 Pb ion signal and, thus, we only report the 206 Pb/ 204 Pb and 207 Pb/ 204 Pb ratios. The simultaneous measurement of 205 Tl/ 203 Tl ratios for the NIST SRM 997 isotope standard, introduced via solution mode using a DSN-100 desolvating nebuliser, was conducted in order to monitor and correct the instrumental mass bias. The NIST SRM 614 standard glass (~4 ppm Pb) was analyzed repeatedly for its Pb isotope composition during each analytical session, and the measured average 206 Pb/ 204 Pb and 207 Pb/ 204 Pb ratios deviated from the accepted value by <0.1% (external precision of better than 0.25%) (Woodhead and Hergt, 2001; Baker et al., 2004). The laser ablation procedure employed here for Pb isotope data collection is similar to that described in Simonetti et al. (2005). We also determined the Pb isotope composition of a bulk-rock powder from the host Nunatak-1390 kimberlite by TIMS. The chemical separation procedure and analytical details of the TIMS measurements are reported in Tappe et al. (2008).

Upload: truongkhanh

Post on 24-Feb-2018

218 views

Category:

Documents


1 download

TRANSCRIPT

GSA DATA REPOSITORY 2011332 Tappe et al. (2011)

1

ANALYTICAL TECHNIQUES

Mineral major- and trace-element compositions (University of Alberta)

Garnet and clinopyroxene major-element compositions were obtained using a JEOL JXA 8900 electron microprobe at the University of Alberta, Canada. Operating voltage was 20 kV with a beam current of 20 nA and a beam diameter between 2 and 10 µm. Counting time was set to 30 seconds on the peak. International standards of natural materials were used for calibration and all data were reduced with a CITZAF procedure.

Trace-element compositions were obtained by laser ablation ICP-MS, using a New Wave Research Nd:YAG UP213 laser system coupled to a Perkin Elmer Elan 6000 Quadrupole ICP-MS instrument. Laser spot size employed was 160 µm and each ablation was conducted for 50 seconds subsequent to 20 seconds of background counting with a fluence of ~15 J/cm2. Several spots per mineral grain were analyzed and averages of at least 5 representative grains were used to determine the garnet and clinopyroxene trace-element compositions for each eclogite xenolith. CaO wt.% abundances determined by electron microprobe analysis were used as the internal standard. Elemental abundances were calculated using the GLITTER® laser ablation software (van Achterbergh et al., 2001). The NIST SRM 612 glass standard was analyzed at the start and finish of each session, and the analytical precision for most elements is typically better than 10% (2-sigma level). Further details on the technique employed here can be found in Schmidberger et al. (2007). For normalization of the mineral trace element patterns, we use the Primitive Mantle and C1-chondrite values of Palme and O'Neill (2003).

Clinopyroxene Pb isotope compositions (University of Alberta)

Clinopyroxene Pb isotope compositions were determined in-situ using the same laser system described above but coupled to a NuPlasma multicollector-ICP-MS. Clinopyroxene grains were ablated from thin sections using a 160 µm laser spot size in raster mode along 320 × 320 µm patterns. The extremely low Pb concentrations of < 1 ppm necessitated collection of Pb isotope data by using the three ion counters of the MC-ICP-MS instrument.

This collector configuration array does not allow for simultaneous acquisition of the 208Pb ion signal and, thus, we only report the 206Pb/204Pb and 207Pb/204Pb ratios. The simultaneous measurement of 205Tl/203Tl ratios for the NIST SRM 997 isotope standard, introduced via solution mode using a DSN-100 desolvating nebuliser, was conducted in order to monitor and correct the instrumental mass bias. The NIST SRM 614 standard glass (~4 ppm Pb) was analyzed repeatedly for its Pb isotope composition during each analytical session, and the measured average 206Pb/204Pb and 207Pb/204Pb ratios deviated from the accepted value by <0.1% (external precision of better than 0.25%) (Woodhead and Hergt, 2001; Baker et al., 2004). The laser ablation procedure employed here for Pb isotope data collection is similar to that described in Simonetti et al. (2005). We also determined the Pb isotope composition of a bulk-rock powder from the host Nunatak-1390 kimberlite by TIMS. The chemical separation procedure and analytical details of the TIMS measurements are reported in Tappe et al. (2008).

GSA DATA REPOSITORY 2011xxx Tappe et al. (2011)

2

Previous studies on the Pb isotope systematics in eclogites have shown that clinopyroxene typically hosts >90% of the bulk eclogite Pb and therefore clinopyroxene Pb isotopic analysis is representative of the bulk system (Kramers, 1979; Jacob and Foley, 1999; Schmidberger et al., 2007). Moreover, chemical diffusion experiments demonstrate that coarse-grained clinopyroxene is closed to U and Pb diffusional exchange above 1000°C, and is therefore fairly retentive of the Pb isotopic information at prevailing cratonic mantle conditions (Cherniak, 1998, , 2001).

Garnet oxygen isotope compositions (University of New Mexico)

Oxygen isotope analyses of garnet mineral separates were conducted by laser-fluorination at the University of New Mexico, following the procedure of Sharp (1990). Fresh, inclusion and crack-free garnet grains (multi-grain fractions of 1-2 mg) were loaded into a Ni block and dried in an oven. The garnet samples were reacted with BrF5 and heated with a Merchantek 25 W CO2 laser. The O2 gas samples were purified over liquid nitrogen and KCl traps, and then measured on-line in a Finnigan MAT Delta XL mass spectrometer using a dual-inlet mode. Measurement of standards at the beginning, middle, and end of each analytical session was

performed to ensure data accuracy. The standards utilized were UWG-2 (18O = 5.8‰; Valley

et al., 1995) and Gee Whiz quartz (18O = 12.5‰; Larson and Sharp, 2005) and values of

18O = 5.7±0.1‰ and 12.6±0.1‰, respectively, were obtained during the analytical sessions.

PETROGENETIC MODELING

Reconstructed whole-rock eclogite compositions

Reconstruction of whole-rock compositions is a standard technique in mantle xenolith studies, employed when rock fragments are too small for bulk chemical analysis and/or have been subjected to infiltration by the host magma (Shervais et al., 1988; Barth et al., 2001; Pearson and Nowell, 2002; Jacob, 2004). We calculated major- and trace-element whole-rock compositions for the Nunatak-1390 eclogites using garnet and clinopyroxene compositions in equal modal abundances (see Fig.DR1). The reconstructed whole-rock compositions listed in Table 1 are accompanied by our estimates of the uncertainty that is potentially introduced due to inaccurate knowledge of the exact mineral modes. Based on these error estimates we concur with Jacob and Foley (1999) that choice of the correct garnet/cpx ratio is more critical for the major-elements compared to the rather limited variability of the reconstructed trace-element concentrations. In awareness of these possible sources of error, we display the reconstructed whole-rock compositions at symbol sizes that are much larger than our error estimates (Figs.3, 4).

Calculation of eclogite equilibrium temperatures

Equilibration temperatures were calculated using the Fe2+-Mg exchange between garnet and clinopyroxene at an assumed pressure of 50 kbar. A number of geothermometer calibrations exist and generally yield comparable temperature estimates, within a 50°C range (e.g., Ellis and Green, 1979 versus Krogh-Ravna, 2000). In this paper, we report equilibration temperatures for the Nunatak-1390 eclogites based on the updated Krogh-Ravna (2000)

GSA DATA REPOSITORY 2011xxx Tappe et al. (2011)

3

formulation, since it was derived from a much wider compositional (e.g., garnet mg-numbers: 3.5-89) and P-T range (10-60 kbar; 600-1740°C) than any of the previous calibration. Our calculated Krogh-Ravna (2000) eclogite equilibration temperatures agree within ±10°C with the Ai (1994) geothermometer, which is generally considered most accurate for Mg-rich eclogites (cf., Jacob, 2004). In our calculations all Fe is assigned as Fe2+, which yields minimum temperature estimates.

FIGURES FOR DATA REPOSITORY

Figure DR1: Scanned image of pristine high-MgO eclogite 488585A from Nunatak-1390, West Greenland. Field-of-view is ~5 cm. Note the equal proportion of interlocking garnet (red) and clinopyroxene (green), which appear to be in textural equilibrium. Note further the various laser ablation pits from both the trace element analyses (round spots) and Pb isotope analyses (raster patterns in clinopyroxene).

GSA DATA REPOSITORY 2011xxx Tappe et al. (2011)

4

Figure DR2: Normalized REE distribution of calculated whole-rock eclogites from Nunatak-1390 using a 50/50 garnet/clinopyroxene mode. Chondrite values after Palme and O'Neill (2003). The batch melting model (shown in 5% increments) uses Late Archean Ivisaartoq pillow basalt 485420 (Polat et al., 2008) as a starting composition and the REE partition coefficients between eclogitic minerals and tonalitic melt at 1.8 GPa (Barth et al., 2002). The average Late Archean TTG gneiss from the Fiskefjord area, central NAC (Steenfelt et al., 2005) is shown for comparison demonstrating a complementary relationship to the refractory eclogites. Note the overlap between modeled eclogite residues and refractory Nunatak eclogites, suggesting at least 20-to-40% melt extraction.

GSA DATA REPOSITORY 2011xxx Tappe et al. (2011)

5

Figure DR3: Normalized incompatible element distribution of (A) garnet and clinopyroxene, and (B) calculated pristine whole-rock eclogites from Nunatak-1390 using a 50/50 garnet/clinopyroxene mode. Primitive Mantle values after Palme and O'Neill (2003).

(Ellis and Green, 1979; Sharp, 1990; Ai, 1994; Valley et al., 1995; Jacob and Foley, 1999; Krogh-Ravna, 2000; Van Achterbergh et al., 2001; Larson and Sharp, 2005; Simonetti et al., 2005; Schmidberger et al., 2007; Tappe et al., 2008)

References for Data Repository

Ai, Y., 1994, A revision of the garnet-clinopyroxene Fe2+-Mg exchange geothermometer: Contributions to Mineralogy and Petrology, v. 115, p. 465-473.

Baker, J.A., Peate, D., Waight, T., and Meyzen, C., 2004, Pb isotopic analysis of standards and samples using a Pb-207-Pb-204 double spike and thallium to correct for mass bias with a double-focusing MC-ICP-MS: Chemical Geology, v. 211, p. 275-303.

GSA DATA REPOSITORY 2011xxx Tappe et al. (2011)

6

Barth, M.G., Foley, S.F., and Horn, I., 2002, Partial melting in Archean subduction zones: constraints from experimentally determined trace element partition coefficients between eclogitic minerals and tonalitic melts under upper mantle conditions: Precambrian Research, v. 113, p. 323-340.

Barth, M.G., Rudnick, R.L., Horn, I., McDonough, W.F., Spicuzza, M.J., Valley, J.W., and Haggerty, S.E., 2001, Geochemistry of xenolithic eclogites from West Africa: Part I, A link between low MgO eclogites and Archean crust formation: Geochimica et Cosmochimica Acta, v. 65, p. 1499-1527.

Cherniak, D.J., 1998, Pb diffusion in clinopyroxene: Chemical Geology, v. 150, p. 105-117. —, 2001, Pb diffusion in Cr diopside, augite, and enstatite, and consideration of the

dependence of cation diffusion in pyroxene on oxygen fugacity: Chemical Geology, v. 177, p. 381-397.

Ellis, D.J., and Green, D.H., 1979, An experimental study of the effect of Ca upon garnet-clinopyroxene Fe-Mg exchange equilibria: Contributions to Mineralogy and Petrology, v. 71, p. 13-22.

Jacob, D.E., 2004, Nature and origin of eclogite xenoliths from kimberlites: Lithos, v. 77, p. 295-316.

Jacob, D.E., and Foley, S.F., 1999, Evidence for Archean ocean crust with low high field strength element signature from diamondiferous eclogite xenoliths: Lithos, v. 48, p. 317-336.

Kramers, J.D., 1979, Lead, Uranium, Strontium, Potassium and Rubidium in inclusion-bearing diamonds and mantle-derived xenoliths from southern Africa: Earth and Planetary Science Letters, v. 42, p. 58-70.

Krogh-Ravna, E., 2000, The garnet-clinopyroxene Fe2+-Mg geothermometer: an updated calibration: Journal of Metamorphic Geology, v. 18, p. 211-219.

Larson, T.E., and Sharp, Z.D., 2005, Interpreting prograde-growth histories of Al2SiO5 triple-point rocks using oxygen-isotope thermometry: an example from the Truchas Mountains, USA: Journal of Metamorphic Geology, v. 23, p. 847-863.

Palme, H., and O'Neill, H.S.C., 2003, Cosmochemical estimates of mantle composition, in Carlson, R.W., ed., Treatise on Geochemistry, volume 2: Amsterdam, Elsevier, p. 1-38.

Pearson, D.G., and Nowell, G.M., 2002, The continental lithospheric mantle: characteristics and significance as a mantle reservoir: Philosophical Transactions of the Royal Society, v. 360, p. 2383-2410.

Polat, A., Frei, R., Appel, P.W.U., Dilek, Y., Fryer, B., Ordonez-Calderon, J.C., and Yang, Z., 2008, The origin and compositions of Mesoarchean oceanic crust: Evidence from the 3075 Ma Ivisaartoq greenstone belt, SW Greenland: Lithos, v. 100, p. 293-321.

Schmidberger, S.S., Simonetti, A., Heaman, L.M., Creaser, R.A., and Whiteford, S., 2007, Lu-Hf, in-situ Sr and Pb isotope and trace element systematics for mantle eclogites from the Diavik diamond mine: Evidence for Paleoproterozoic subduction beneath the Slave craton, Canada: Earth and Planetary Science Letters, v. 254, p. 55-68.

Sharp, Z.D., 1990, A laser-based microanalytical method for the in-situ determination of oxygen isotope ratios of silicates and oxides: Geochimica et Cosmochimica Acta, v. 54, p. 1353-1357.

GSA DATA REPOSITORY 2011xxx Tappe et al. (2011)

7

Shervais, J.W., Taylor, L.A., Lugmair, G.W., Clayton, R.N., Mayeda, T.K., and Korotev, R.L., 1988, Early Proterozoic oceanic crust and the evolution of subcontinental mantle: eclogites and related rocks from southern Africa: Geological Society of America Bulletin, v. 100, p. 411-423.

Simonetti, A., Heaman, L.M., Hartlaub, R.P., Creaser, R.A., MacHattie, T.G., and Böhm, C.O., 2005, U-Pb zircon dating by laser ablation-MC-ICP-MS using a new multiple ion counting Faraday collector array: Journal of Analytical Atomic Spectrometry, v. 20, p. 677-686.

Steenfelt, A., Garde, A.A., and Moyen, J.F., 2005, Mantle wedge involvement in the petrogenesis of Archaean grey gneisses in West Greenland: Lithos, v. 79, p. 207-228.

Tappe, S., Foley, S.F., Kjarsgaard, B.A., Romer, R.L., Heaman, L.M., Stracke, A., and Jenner, G.A., 2008, Between carbonatite and lamproite - diamondiferous Torngat ultramafic lamprophyres formed by carbonate-fluxed melting of cratonic MARID-type metasomes: Geochimica et Cosmochimica Acta, v. 72, p. 3258-3286.

Valley, J.W., Kitchen, N., Kohn, M.J., Niendorf, C.R., and Spicuzza, M.J., 1995, UWG-2, a garnet standard for oxygen isotope ratios: Strategies for high precision and accuracy with laser heating: Geochimica et Cosmochimica Acta, v. 59, p. 5223-5231.

Van Achterbergh, E., Ryan, C.G., Jackson, S.E., and Griffin, W.L., 2001, LA-ICP-MS in the Earth Sciences - Appendix 3, data reduction software for LA-ICP-MS, in Sylvester, P.J., ed., Short Course volume 29: St.John's, Mineralogical Association of Canada, p. 239-243.

Woodhead, J.D., and Hergt, J.M., 2001, Strontium, neodymium and lead isotope analyses of NIST glass certified reference materials: SRM 610, 612, 614: Geostandards Newsletter, v. 25, p. 261-266.

Table DR1: Major (wt.%) and trace (ppm) element compositions of clinopyroxene and garnet from the Nunatak-1390 eclogite xenolith suite, North Atlantic craton, West Greenland.

pristine high-MgO eclogitesSample No. 488585A 488585C 514320 592572E 592572GMineral cpx *2σ grt *2σ WRa ±40/60b cpx *2σ grt *2σ WRa ±40/60b cpx *2σ grt *2σ WRa ±40/60b cpx *2σ grt *2σ WRa ±40/60b cpxn 34 55 50/50 17 23 50/50 47 58 50/50 17 19 50/50 11

SiO2 54.5 0.6 40.7 0.7 47.6 1.4 54.8 1.1 40.1 1.3 47.4 1.5 55.6 0.5 41.2 0.6 48.4 1.4 55.2 0.3 40.7 0.5 48.0 1.5 54.9TiO2 0.50 0.10 0.10 0.09 0.30 0.04 0.07 0.04 0.03 0.05 0.05 0.00 0.09 0.06 0.05 0.04 0.07 0.00 0.18 0.07 0.10 0.04 0.14 0.01 0.12Al2O3 7.8 1.5 23.6 0.3 15.7 1.6 5.5 0.7 23.5 0.5 14.5 1.8 5.9 0.3 23.2 0.4 14.6 1.7 6.9 0.2 23.3 0.2 15.1 1.6 6.4Cr2O3 0.08 0.03 0.06 0.03 0.07 0.00 0.19 0.03 0.16 0.08 0.18 0.00 0.23 0.02 0.20 0.04 0.22 0.00 0.26 0.03 0.21 0.04 0.24 0.01 0.26FeOT 3.1 0.4 16.4 2.1 9.7 1.3 3.6 0.6 17.8 0.3 10.7 1.4 2.8 0.1 16.3 0.3 9.6 1.4 3.7 0.2 17.7 0.6 10.7 1.4 4.0MnO 0.04 0.02 0.37 0.03 0.21 0.03 0.06 0.01 0.51 0.07 0.29 0.05 0.04 0.02 0.41 0.03 0.23 0.04 0.05 0.02 0.46 0.02 0.26 0.04 0.05MgO 12.0 1.0 14.7 0.8 13.3 0.3 13.3 0.5 15.5 0.3 14.4 0.2 13.1 0.3 16.0 0.3 14.5 0.3 11.8 0.3 15.3 0.4 13.6 0.4 12.0CaO 17.0 1.2 5.3 1.1 11.2 1.2 17.9 1.0 3.9 0.2 10.9 1.4 18.0 0.4 3.7 0.1 10.8 1.4 16.7 0.4 3.5 0.1 10.1 1.3 17.1Na2O 4.37 0.56 0.04 0.04 2.21 0.43 3.72 0.52 0.03 0.02 1.88 0.37 3.66 0.17 0.03 0.02 1.85 0.36 4.80 0.17 0.03 0.02 2.42 0.48 4.57K2O 0.01 0.01 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00

Total 99.4 101.3 100.3 99.0 101.5 100.2 99.3 101.1 100.2 99.6 101.3 100.5 99.3

cTemp. (°C) 869 835 783 891

n 23 42 15 26 13 20 8 6 6

Cs 0.04 0.02 0.03 0.00 0.15 0.02 0.09 0.01 0.38 0.00 0.19 0.04 0.37 0.08 0.23 0.03 0.10Rb 0.22 0.05 0.14 0.02 0.48 0.00 0.24 0.05 1.79 0.00 0.89 0.18 0.81 0.10 0.45 0.07 0.17Ba 3.32 0.12 1.72 0.32 4.50 0.14 2.32 0.25 7.53 0.07 3.80 0.75 8.17 0.20 4.18 0.01 3.69Th 9.39 10.78 10.08 0.14 0.20 0.89 0.55 0.07 0.15 0.01 0.08 0.01 0.59 320.23 160.41 31.96 0.42U 0.01 0.03 0.02 0.00 0.03 0.00 0.01 0.00 0.05 0.00 0.03 0.02 0.06 0.00 0.03 0.01 0.05Nb 0.94 0.08 0.51 0.00 1.25 0.05 0.65 0.02 1.32 0.05 0.68 0.41 1.15 0.08 0.62 0.19 0.92Ta 0.04 0.06 0.05 0.00 0.03 0.07 0.05 0.00 0.04 0.02 0.03 0.00 0.06 0.05 0.05 0.00 0.05Pb 0.25 0.09 0.17 0.02 0.36 0.08 0.22 0.06 0.33 0.11 0.22 0.02 0.47 0.20 0.34 0.03 0.49Sr 68.70 1.09 34.89 16.14 52.62 0.15 26.38 10.71 40.83 0.30 20.56 4.05 45.68 0.22 22.95 7.74 81.51Zr 21.98 9.70 15.84 1.23 5.92 1.81 3.86 0.41 17.71 2.76 10.23 1.50 9.08 2.45 5.76 0.66 8.43Hf 1.03 0.26 0.65 0.08 0.37 0.14 0.25 0.02 1.12 0.13 0.62 0.10 0.45 0.23 0.34 0.02 0.54Y 2.84 30.98 16.91 2.35 3.46 31.35 17.41 2.79 5.01 35.68 20.35 3.07 3.86 33.14 18.50 1.69 4.02Sc 18.98 41.60 30.29 2.26 31.01 58.03 44.52 2.70 25.52 48.21 36.87 2.27 25.23 51.52 38.38 2.63 25.01V 274.32 66.62 170.47 20.77 334.37 75.47 204.92 25.89 353.52 68.89 211.21 28.46 309.72 70.18 189.95 23.95 336.89Cr 346.49 327.67 337.08 1.88 839.83 853.10 846.47 1.33 1312.41 1072.64 1192.52 23.98 1329.48 1200.96 1265.22 12.85 1423.81Ni 163.11 10.83 86.97 15.23 233.48 9.71 121.60 22.38 315.98 9.02 162.50 30.70 180.27 8.47 94.37 17.18 167.74

La 0.95 0.04 0.50 0.091 1.02 0.03 0.53 0.10 1.12 0.08 0.60 0.10 1.25 0.03 0.64 0.12 1.35Ce 3.45 0.06 1.75 0.339 4.18 0.03 2.11 0.42 4.20 0.08 2.14 0.41 4.68 0.10 2.39 0.46 5.12Pr 0.91 0.03 0.47 0.088 0.98 0.02 0.50 0.10 0.89 0.04 0.46 0.09 0.91 0.03 0.47 0.09 0.98Nd 5.34 0.27 2.80 0.507 5.41 0.10 2.75 0.53 6.32 0.15 3.24 0.62 4.54 0.19 2.37 0.44 4.72Sm 1.45 0.74 1.09 0.071 1.32 0.82 1.07 0.05 1.99 0.58 1.28 0.14 1.15 0.93 1.04 0.02 1.32Eu 0.41 0.33 0.37 0.009 0.61 0.14 0.38 0.05 0.62 0.25 0.43 0.04 0.49 0.16 0.32 0.03 0.52Gd 1.85 1.80 1.82 0.005 2.35 1.32 1.84 0.10 2.48 2.09 2.28 0.04 1.96 0.98 1.47 0.10 1.89Tb 0.16 0.47 0.31 0.032 0.21 0.44 0.33 0.02 0.32 0.57 0.44 0.03 0.19 0.32 0.26 0.01 0.18Dy 0.75 4.13 2.44 0.338 1.00 4.20 2.60 0.32 1.52 5.17 3.35 0.37 0.82 3.13 1.98 0.23 0.89Ho 0.10 1.00 0.55 0.090 0.14 1.13 0.64 0.10 0.21 1.30 0.75 0.11 0.13 0.85 0.49 0.07 0.11Er 0.19 3.15 1.67 0.296 0.29 3.74 2.01 0.35 0.36 4.21 2.28 0.38 0.24 2.90 1.57 0.27 0.24Tm 0.03 0.49 0.26 0.046 0.03 0.60 0.31 0.06 0.05 0.66 0.35 0.06 0.03 0.45 0.24 0.04 0.03Yb 0.12 3.53 1.83 0.341 0.15 4.20 2.17 0.40 0.23 4.77 2.50 0.45 0.12 3.17 1.65 0.31 0.13Lu 0.03 0.58 0.30 0.055 0.02 0.68 0.35 0.07 0.03 0.76 0.39 0.07 0.02 0.57 0.30 0.06 0.03

*Two-sigma-of-the-mean uncertainties for individual measurements of 'n' number of grains/spots per xenolith.aCalculated whole-rock eclogite composition using a 50/50 clinopyroxene/garnet mode.bUncertainty introduced due to deviations from a 50/50 clinopyroxene/garnet mode accommodating a possible modal range between 40/60 and 60/40.cEquilibration temperatures calculated at 5 GPa utilizing the Fe2+-Mg exchange thermometer of Krogh-Ravna (2000).FeOT = total Fe as ferrous iron; n = number of analyses.References:Krogh-Ravna, E., 2000, The garnet-clinopyroxene Fe2+-Mg geothermometer: an updated calibration: Journal of Metamorphic Geology, v. 18, p. 211-219.

overprinted high-MgO eclogites592572G 488585B 592572A 592572C 592572DA

*2σ grt *2σ WRa ±40/60b cpx *2σ grt *2σ WRa ±40/60b cpx *2σ grt *2σ WRa ±40/60b cpx *2σ grt *2σ WRa ±40/60b cpx *2σ grt *2σ11 50/50 37 29 50/50 14 12 50/50 21 21 50/50 31 24

0.6 40.8 0.4 47.9 1.4 55.6 0.7 42.2 0.6 48.9 1.3 54.6 0.5 41.6 0.3 48.1 1.3 55.2 0.5 41.5 0.5 48.4 1.4 54.6 0.5 41.2 1.00.04 0.09 0.04 0.11 0.00 0.32 0.21 0.09 0.04 0.21 0.02 0.40 0.18 0.10 0.07 0.25 0.03 0.36 0.11 0.11 0.08 0.24 0.03 0.39 0.15 0.15 0.08

0.5 23.3 0.2 14.8 1.7 6.3 0.5 24.2 0.5 15.2 1.8 5.5 0.2 23.3 0.2 14.4 1.8 6.8 0.4 23.5 0.4 15.1 1.7 5.4 0.4 23.4 0.50.04 0.21 0.05 0.24 0.01 0.14 0.03 0.11 0.03 0.13 0.00 0.40 0.02 0.38 0.05 0.39 0.00 0.44 0.05 0.36 0.05 0.40 0.01 0.39 0.05 0.40 0.08

0.4 17.4 0.3 10.7 1.3 1.9 0.2 11.0 0.8 6.4 0.9 3.0 0.1 13.1 0.3 8.0 1.0 2.5 0.2 12.7 1.2 7.6 1.0 3.0 0.2 13.2 1.00.01 0.45 0.04 0.25 0.04 0.03 0.02 0.22 0.04 0.13 0.02 0.04 0.02 0.33 0.02 0.19 0.03 0.04 0.02 0.31 0.04 0.18 0.03 0.04 0.02 0.34 0.04

0.3 15.4 0.3 13.7 0.3 13.5 0.6 19.9 0.7 16.7 0.6 13.3 0.3 18.4 0.3 15.8 0.5 12.4 0.3 18.6 0.8 15.5 0.6 13.2 0.4 18.1 0.70.5 3.6 0.1 10.3 1.4 18.1 0.7 3.6 0.2 10.9 1.5 18.7 0.4 3.9 0.1 11.3 1.5 17.3 0.4 3.5 0.1 10.4 1.4 18.4 0.7 3.9 0.1

0.20 0.05 0.07 2.31 0.45 3.69 0.27 0.06 0.08 1.88 0.36 3.72 0.10 0.05 0.03 1.89 0.37 4.48 0.19 0.05 0.03 2.27 0.44 3.70 0.29 0.06 0.030.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01

101.3 100.3 99.5 101.3 100.4 99.6 101.0 100.3 99.5 100.6 100.1 99.3 100.8

932 831 964 905 955

8 16 17 10 8 7 9 13 9

0.20 0.15 0.01 0.46 0.00 0.23 0.04 0.17 0.00 0.08 0.02 0.07 0.00 0.04 0.01 0.13 0.000.04 0.11 0.01 1.17 0.09 0.63 0.10 0.30 0.00 0.15 0.03 0.17 0.00 0.09 0.02 0.30 0.050.18 1.93 0.35 9.40 0.29 4.85 0.89 5.42 0.18 2.80 0.52 8.21 0.25 4.23 0.08 2.20 0.154.10 2.26 0.37 25.58 9.45 17.52 2.12 2.75 1.04 1.89 0.17 278.06 1.12 139.59 12.99 1.88 0.920.01 0.03 0.00 0.08 0.02 0.05 0.01 0.10 0.01 0.05 0.01 0.03 0.01 0.02 0.00 0.07 0.020.04 0.48 0.03 0.79 0.03 0.41 0.07 1.68 0.07 0.88 0.16 2.53 0.06 1.29 0.25 0.70 0.020.02 0.03 0.00 0.04 0.03 0.03 0.00 0.09 0.02 0.06 0.01 0.03 0.04 0.04 0.00 0.03 0.020.15 0.32 0.03 0.69 0.09 0.39 0.06 0.57 0.07 0.32 0.05 0.62 0.07 0.34 0.03 0.58 0.130.20 40.86 8.13 183.24 1.12 92.18 17.29 222.34 1.05 111.69 22.13 169.69 1.06 85.38 10.25 208.08 0.372.00 5.22 0.64 52.50 13.78 33.14 3.70 147.29 29.78 88.53 11.75 118.06 29.96 74.01 11.29 149.23 40.590.16 0.35 0.04 1.45 0.36 0.90 0.12 5.53 0.40 2.97 0.51 2.32 0.41 1.37 0.18 5.95 0.61

36.14 20.08 1.89 2.11 32.27 17.19 0.86 5.08 26.90 15.99 2.18 3.95 26.78 15.36 0.13 4.63 27.1851.98 38.50 2.70 9.85 18.90 14.38 0.91 27.51 53.30 40.41 2.58 101.87 19.00 60.43 8.29 27.28 50.6677.05 206.97 25.98 108.26 27.14 67.70 8.11 339.67 87.27 213.47 25.24 312.67 128.33 220.50 18.43 362.27 93.67

1373.14 1398.47 5.07 726.32 661.66 693.99 6.47 2012.89 2346.51 2179.70 33.36 2581.35 649.58 1615.46 193.18 2219.39 2444.796.18 86.96 16.16 984.79 99.52 542.16 88.53 467.47 30.18 248.82 43.73 451.27 70.83 261.05 38.04 444.16 28.55

0.03 0.69 0.13 5.50 0.41 2.95 3.18 0.06 1.62 4.03 0.06 2.04 2.37 0.040.03 2.58 0.51 16.14 0.72 8.43 14.92 0.17 7.54 11.22 0.20 5.71 12.85 0.200.01 0.50 0.10 2.62 0.09 1.35 3.74 0.04 1.89 2.00 0.04 1.02 3.41 0.030.15 2.43 0.46 13.38 0.54 6.96 26.37 0.42 13.39 14.32 0.45 7.38 25.36 0.630.75 1.03 0.06 3.59 0.98 2.29 7.59 1.18 4.38 3.59 1.23 2.41 7.56 1.170.18 0.35 0.03 1.13 0.34 0.73 2.18 0.65 1.42 1.13 0.71 0.92 2.06 0.770.96 1.43 0.09 2.68 2.12 2.40 4.83 2.95 3.89 3.16 2.84 3.00 4.72 3.320.32 0.25 0.01 0.23 0.53 0.38 0.48 0.63 0.55 0.35 0.59 0.47 0.46 0.653.35 2.12 0.25 0.81 4.95 2.88 1.87 4.91 3.39 1.44 4.93 3.18 1.89 5.240.87 0.49 0.08 0.09 1.25 0.67 0.24 1.14 0.69 0.19 1.15 0.67 0.21 1.152.98 1.61 0.27 0.14 3.87 2.01 0.41 3.36 1.88 0.30 3.37 1.83 0.37 3.420.48 0.25 0.04 0.02 0.57 0.30 0.04 0.49 0.27 0.02 0.46 0.24 0.04 0.513.71 1.92 0.36 0.09 3.96 2.02 0.21 3.41 1.81 0.14 3.39 1.77 0.13 3.500.56 0.30 0.05 0.02 0.78 0.40 0.03 0.58 0.30 0.00 0.56 0.28 0.03 0.55

592572DB 592572FWRa ±40/60b cpx *2σ grt *2σ WRa ±40/60b cpx *2σ grt *2σ WRa ±40/60b

50/50 19 17 50/50 28 28 50/50

47.9 1.3 54.6 0.4 41.4 0.8 48.0 1.3 54.9 0.9 42.0 0.5 48.5 1.30.27 0.02 0.43 0.18 0.14 0.07 0.29 0.03 0.43 0.09 0.16 0.06 0.30 0.0314.4 1.8 5.4 0.4 23.5 0.4 14.4 1.8 5.8 0.6 23.5 0.3 14.7 1.80.40 0.00 0.39 0.04 0.38 0.06 0.39 0.00 0.19 0.05 0.19 0.04 0.19 0.00

8.1 1.0 3.2 0.5 13.0 0.5 8.1 1.0 2.7 0.6 11.6 1.2 7.1 0.90.19 0.03 0.05 0.02 0.33 0.02 0.19 0.03 0.06 0.02 0.39 0.07 0.23 0.0315.7 0.5 13.4 0.5 18.1 0.5 15.7 0.5 13.9 1.7 19.5 0.8 16.7 0.611.2 1.5 18.3 0.8 3.9 0.1 11.1 1.4 18.3 1.8 3.8 0.1 11.1 1.51.88 0.36 3.75 0.14 0.07 0.04 1.91 0.37 3.61 0.33 0.04 0.03 1.83 0.360.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00

100.0 99.5 100.8 100.2 99.9 101.2 100.6

987 956

9 8 17 12

0.07 0.01 0.14 0.00 0.07 0.01 0.05 0.00 0.03 0.010.17 0.03 0.31 0.06 0.18 0.02 0.30 0.07 0.19 0.021.17 0.21 2.11 0.18 1.14 0.19 0.70 0.27 0.49 0.041.40 0.10 1.87 1.10 1.48 0.08 2.95 9.62 6.29 0.670.04 0.01 0.07 0.02 0.04 0.00 0.02 0.02 0.02 0.000.36 0.07 0.72 0.03 0.37 0.07 0.23 0.04 0.13 0.020.02 0.00 0.03 0.03 0.03 0.00 0.04 0.03 0.03 0.000.36 0.05 0.57 0.12 0.34 0.05 0.86 0.08 0.47 0.05

104.23 20.77 208.26 0.31 104.29 20.79 123.26 1.10 62.18 12.2294.91 10.86 151.23 42.13 96.68 10.91 21.33 13.91 17.62 0.743.28 0.53 6.13 0.67 3.40 0.55 0.83 0.38 0.61 0.05

15.90 2.25 4.33 26.59 15.46 2.23 4.90 30.32 17.61 2.5438.97 2.34 28.68 50.88 39.78 2.22 19.30 44.07 31.69 2.48

227.97 26.86 359.67 94.59 227.13 26.51 318.15 98.40 208.27 21.972332.09 22.54 2225.24 2442.57 2333.90 21.73 1055.86 1185.37 1120.62 12.95236.36 41.56 445.68 27.90 236.79 41.78 222.78 15.68 119.23 20.71

1.21 2.42 0.03 1.22 1.30 0.04 0.676.52 13.20 0.27 6.73 5.64 0.10 2.871.72 3.42 0.03 1.72 1.21 0.03 0.62

12.99 27.56 0.59 14.07 7.31 0.37 3.844.36 6.95 1.23 4.09 2.33 0.96 1.641.42 1.96 0.77 1.36 0.71 0.32 0.524.02 4.94 3.34 4.14 2.38 2.00 2.190.55 0.49 0.63 0.56 0.31 0.53 0.423.56 2.16 5.26 3.71 1.56 4.98 3.270.68 0.19 1.16 0.68 0.21 1.22 0.721.89 0.39 3.39 1.89 0.37 3.90 2.140.27 0.03 0.50 0.27 0.04 0.59 0.311.82 0.15 3.16 1.65 0.14 3.76 1.950.29 0.03 0.50 0.26 0.03 0.65 0.34

Table DR2: Eclogitic clinopyroxene and bulk kimberlite Pb isotope compositions, Nunatak-1390, North Atlantic craton, West Greenland.

206Pb/ 204 Pb m 2SE 207Pb/ 204 Pb m 2SE total-Pb intensity [cps]

pristine high-MgO eclogitesa

488585A-cpx1 14.61 0.10 14.92 0.02 392,857488585A-cpx2 14.08 0.01 14.81 0.01 394,468488585A-cpx3 14.14 0.08 14.83 0.03 370,909488585A-cpx4 13.80 0.08 14.76 0.02 369,759

514320-cpx1 14.17 0.06 14.85 0.05 379,755514320-cpx2 14.81 0.16 14.95 0.03 437,296514320-cpx3 14.35 0.08 14.86 0.02 380,207

overprinted high-MgO eclogitesa

592572A-cpx1 14.88 0.07 15.18 0.04 462,674592572A-cpx2 14.78 0.06 15.19 0.05 467,242592572A-cpx3 14.77 0.06 15.18 0.04 443,720592572A-cpx4 14.89 0.12 15.15 0.02 448,974592572A-cpx5 14.95 0.12 15.14 0.03 448,249

592572D-cpx1 14.74 0.03 15.08 0.05 288,630592572D-cpx2 15.07 0.06 15.12 0.03 385,622592572D-cpx3 14.74 0.07 15.11 0.06 323,189592572D-cpx4 14.62 0.16 15.05 0.03 340,506592572D-cpx5 15.22 0.08 15.17 0.03 342,702592572D-cpx6 15.28 0.06 15.13 0.06 333,568

592572F-cpx1 20.65 0.17 15.52 0.04 520,267592572F-cpx2 19.96 0.13 15.58 0.02 671,810592572F-cpx3 20.76 0.14 15.58 0.03 702,524592572F-cpx4 19.85 0.09 15.61 0.03 623,175

bulk kimberliteb

488585 - @ 0 Ma 21.28 0.01 15.69 0.01 not applicable488585 - @ 160 Ma 18.45 0.01 15.55 0.01 not applicable

SRM NIST 614 glassc

17.862 0.010 15.564 0.01517.849 0.015 15.552 0.010

17.865 0.010 15.559 0.01017.862 0.016 15.575 0.01317.873 0.010 15.524 0.01217.867 0.012 15.573 0.01017.857 0.010 15.538 0.01017.873 0.021 15.567 0.01517.826 0.010 15.523 0.01017.859 0.014 15.562 0.012

aEclogite data were collected in-situ by LA-ICP-MS and all Pb isotope ratios are corrected for mass fractionation by simultaneous measurement of Tl.bKimberlite data were collected conventionally by wet-chemical separation and TIMS analyses.cRecommended values are 17.84210 and 15.5411 (Baker et al., 2004)

References:Baker, J.A., Peate, D., Waight, T., and Meyzen, C., 2004, Chemical Geology, v. 211, p. 275-303.

Table DR3: Laser-Fluorination oxygen isotope data for garnet separates from Nunatak-1390 eclogites, North Atlantic craton, West Greenland.

Garnet samples *Measured d18OSMOW [‰] 1-sigma **Average d18OSMOW [‰] 2-sigma

pristine high-MgO eclogites

488585A (869°C) 6.18 0.09 6.09 0.185.99

488585C (835°C) 6.39 0.03 6.42 0.066.44

overprinted high-MgO eclogites

592572A (964°C) 5.98 0.10 5.89 0.205.79

592572F (956°C) 6.27 0.05 6.32 0.106.36

*Measured delta18O values are corrected to the Gee Whiz quartz standard (12.55‰; Larson and Sharp, 2005).**The delta18O values are averages of two separate analysis and the 1-sigma uncertainty refers to the average reproducibility, i.e., half the difference between two analysis.

References:Larson, T.E., and Sharp, Z.D., 2005, Journal of Metamorphic Geology, v. 23, p. 847-863.