and a general selection using the wageningen … · 2014. 9. 27. · 7aat32 414 preliminary...

371
7AAt32 414 PRELIMINARY PROPELLER SELECTION USING THE WAGENINGEN 4 6 SCREW SERIES AND A GENERAL PURPOSE NON-LINEAR F OPT IMIZER(U) NAVAL POSTGRADUATE SCHOOL MONTEREY CA A;IF F M P SMITH JUN 83 F/ 13/10 NL 1111 00hhhhh. soo"I.".'mm

Upload: others

Post on 23-Aug-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

7AAt32 414 PRELIMINARY PROPELLER SELECTION USING THE WAGENINGEN

46 SCREW SERIES AND A GENERAL PURPOSE NON-LINEARF OPT IMIZER(U) NAVAL POSTGRADUATE SCHOOL MONTEREY CA

A;IF F M P SMITH JUN 83 F/ 13/10 NL

1111 00hhhhh.soo"I.".'mm

Page 2: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

11111- -- - 'I 221.liii,-imm

jJ1111.2 1.40

MICROCOPY RESOLUTION TEST CHART

.NTaCNAL BuREAU OF SVl-SORDS -,963 -

i: a

Page 3: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

NAVAL POSTGRADUATE SCHOOLMonterey, California

F-1

THESIS DPRELIMINARY PROPELLER SELECTION USING THE

WAGENINGEN B-SCREW SERIES AND AGENERAL PURPOSE NON-LINEAR OPTIMIZER

by

Michael Peter Smith II

June 1983

C-(: Thesis Advisors: D. Salinas

JG. N. VanderplaatsSApproved for public release; distribution unlimited.

83 09 14 06Q-%

Page 4: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

UN LSSIFIEDSECURITY CLASSIFICATION OF THIS PAGE INIM 0400 Eam _________________

REPOR DOCMENTATION PAGE BREAD COMPLTING ORM1REPORT NUMBER (2. GOVT ACCESSSONW M . RECIPIENT'S CATALOG N4UMOEM

4. TITLE (nd uIEUIef) 5.POF REPORT APRIODOCOVERED

Preliminary Propeller Selection Using Master's Thesis;the Wageningen B-Screw Series and a June 1983General Purpose Non-Linear Optimizer 6. PERFORMING ORO. REPORT NUM9ER

7. AIJTHOR(eJ S. CONTRACT OR GRANT NUZOER(s)

Michael Peter Smith II

S. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

Naval Postgraduate School AREA & WORK UNIT NUMBERS

Monterey, California 93940

I I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT OAT!

Naval Postgraduate School June 1983Monterey, California 93940 13. NUMBER OFPAGES

____ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ 36214. MONITORING AGENCY NAME & AODRESS(It diffeeent inem C..gtilinhd Office) IS. SECURITY CLASS. (of ths report)

Unclassified

IS&. OECLASSIFICATION/ OOWNGRAOINGSCH4EDULE

4r IS. DISTRIOUTION STATEMENT (of thise ePet)

'4Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract sneered in Stoek 2c. if iffferse howe Report)

IS. SUPPLEMENTARY NOTES

19. KEy WRDS (Ca1.ue on riewo side if neseain OWd Idmntfy by bleak numbee)

wageningen propeller FORTRANpropeller strength design optimizationpropeller selectionship powering

20. ASISTRACT (Cofie en mewe" side Of ueeeeee and IdeinuII by 6eek nembee)

This thesis presents the use of a general purpose non-linearoptimization program in the preliminary stage of ship design forthe selection of a propeller based on methodical series propellertest data. The propeller series utilized is the well-knownWageningen B-Series. Three (3) "Design Cases", representing thethrust, power and matching approaches to powering problems, areformulated as FORTRAN subprogram analysis codes for solution by

j ~DO IjN517 aa OF i Nov " is omSLEItEr

S/N 0102- L116014-6601 U CLASSIFIED1SECURITY CLASSIFICATION OF THIS PAGE (fte,, Dae. Andeev

Page 5: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

UNCLASSIFIEDSECUmTY CLASIPICATION OF THIS PA6S ( DO Em

j (20. ABSTRACT Continued)

the synthesis/optimization program COPES/CONMIN. Designerconstraints considered are:1) diameter limitation2) cavitation limit on expanded area ratio using Keller's

criterion3) strength requirement determined by an empirical relation

and by a method developed by Schoenherr withmodifications by the author.

Objective functions considered are maximized open waterefficiency and minimized propeller blade weight. Optimizedsolutions to specific problems previously presented by otherauthors are obtained and results are compared.

Aocession ForNTIS GRA&IDTIC TAB 0<Unannounced ElJustifictO

LAvniiabuity Codes

Avail and/orD15t SpecialIA

SN 0102- LF. 04.6601

UNCLASSIFIED2 SECUNITY CLASSPICATION OP T1iS PAGUt'W DOSm J.

t .J

Page 6: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

g Approved for public release; distribution unlimited.

Preliminary Propeller Selection Using theWageningen B-Screw Series and a

General Purpose Non-Linear Optimizer

by

Michael Peter Smith IILieutenant, United States Naval Reserve

B.S., St. John Fisher College, 1971B.S.E., The University of Michigan, 1976

Submitted in partial fulfillment of therequirements for the degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL

4 June 1983

Author:__ _ _ _ _ _ _ _ _

Approved by: ______ ______'/__

Thesis Advisor

Thesis Advisor

Chairman, DeaTt nt of Mechanical Engineering

/Dean of Science and Engineering

I f 3

Page 7: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

I ABSTRACT

This thesis presents the use of a general purpose non-

linear optimization program in the preliminary stage of ship

design for the selection of a propeller based on methodical

series propeller test data. The propeller series utilized is

the well-known Wageningen B-Series. Three (3) "Design Cases,

representing the thrust, power and matching approaches to

powering problems, are formulated as FORTRAN subprogram

analysis codes for solution by the synthesis/optimization

program COPES/CONMIN. Designer constraints considered are:

1) diameter limitation,

2) cavitation limit on expanded area ratio usingKeller's criterion

3) strength requirement determined by an empiricalrelation and by a method developed by Schoenherrwith modifications by the author.

Objective functions considered are maximized open water

efficiency and minimized propeller blade weight. Optimized

solutions to specific problems previously presented by other

authors are obtained and results are compared.

4.4

Page 8: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

3 TABLE OF CONTENTS

I. INTRODUCTION -- - - - - - - - - - - - - - - - - - 14

A. BACKGROUND-------------------------------------- 14

B. PROBLEM STATEMENT------------------------------- 19

C. SCOPE-------------------------------------------- 19

D. THESIS ORGANIZATION----------------------------- 19

I. OPTIMIZATION---------------------------------------- 22

A. INTRODUCTION------------------------------------ 22

B. DEFINITIONS------------------------------------- 22

C. PROBLEM STATEMENT------------------------------- 25

D. COPES/CONMIN------------------------------------ 28

1. CONMIN-------------------------------------- 28

A 2. COPES--------------------------------------- 30

E. CONCLUDING NOTE--------------------------------- 32

II.POWERING, PERFORMANCE AND PROPELLERS--------------- 33

A. INTRODUCTION------------------------------------ 33

B. DEFINITIONS------------------------------------- 33

C. POWERING CONCEPTS------------------------------- 37

1. Basic Relations----------------------------- 37

2. Approaches to the Powering Problem-------- 38

D. PROPELLER PERFORMANCE CHARACTERISTICS--------- 40

E. THE WAGENINGEN B-SCREW SERIES------------------ 44

1. Background---------------------------------- 44

2. Series Results------------------------------ 45

3. Limitations on Series Data----------------- 48

F. SUMMARY----------------------------------------- 50

Page 9: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

IV. PROPELLER SELECTION--AN OPTIMIZATION PROBLEM ---- 52

3A. INTRODUCTION----------------------------------- 52

B. DESIGNER'S CONSIDERATIONS---------------------- 52

1. Propeller Size----------------------------- 52

2. Cavitation--------------------------------- 53

3. Strength----------------------------------- 54

C. THE DESIGN VECTOR------------------------------ 56

1. Parameters--------------------------------- 57

2. Design Variables--------------------------- 58

D. CONSTRAINTS------------------------------------- 60

E. OBJECTIVE FUNCTIONS---------------------------- 61

F. PROPELLER SELECTION OPTIMIZATIONPROBLEM STATEMENT------------------------------ 62

G. CODING FUNDAMENTALS---------------------------- 62

1. GLOBCM Common Block------------------------ 62

2. SUBROUTINE ANALIZ-------------------------- 62

H. SUMMKARY----------------------------------------- 65

V. PROPELLER BLADE WEIGHT--AN OBJECTIVE FUNCTION -- 67

A. INTRODUCTION----------------------------------- 67

B. THEORY AND PROCEDURE--------------------------- 67

1. Limits of Integration---------------------- 67

2. Blade Section Profile---------------------- 69

3. Blade Section Cross-Sectional Area--------- 71

4. Volume Integration------------------------- 72

5. Blade Weight------------------------------- 72

C. CODING------------------------------------------ 72

{u D. SUMMARY----------------------------------------- 73

6

Page 10: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

VI. THICKNESS-TO-CHORD RATIO--A DESIGN CONSTRAINT --- 74

A. INTRODUCTION -------------------------------- 74

B. PROPELLER STRENGTH ANALYSIS--A HISTORICALREVIEW -------------------------------------- 74

C. SCHOENHERR'S METHOD ------------------------- 79

1. Background ------------------------------ 79

2. The Blade Model ------------------------- 80

3. Bending Moments Due to HydrodynamicLoading --------------------------------- 82

4. Force and Bending Moments Due toCentrifugal Loading --------------------- 85

D. ALGORITHM FOR THE CONSTRAINT ---------------- 97

1. Theory ---------------------------------- 97

2. Coding Details -------------------------- 99

E. SUMMARY - ------------------------------------- 100

4k VII. DESIGN CASE NO. 1--PROGRAMMING AND COMPARISONS -- 101

A. INTRODUCTION --------------------------------- 101

B. THRUST APPROACH FORMULATION ----------------- 101

1. Design Vector XT------------------------ 101

2. Powering Constraint --------------------- 103

C. PREVIOUS SOLUTIONS -------------------------- 104

D. SOLUTIONS BY COPES/CONMIN ------------------- 106

1. Variation 1 ----------------------------- 107

2. Variation 2 ----------------------------- 109

3. Variation 3 ----------------------------- 109

4. Variation 4 -i-----------------------------I

E. DISCUSSION ---------------------------------- 111

7

Page 11: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

VIII. DESIGN CASE NO. 2--PROGRAMMING AND COMPARISONS 114

IA. INTRODUCTION----------------------------------- 114

B. POWER APPROACH FORMULATION-------------------- 114

1. Design Vector R2 --------------------------- 114

2. Powering Constraint------------------------ 116

C. PREVIOUS SOLUTIONS----------------------------- 117

D. SOLUTIONS BY COPES/CONMIN-------------------- 119

1. Variationi--------------------------------- 120

2. variation 2------------------------------ 122

3. Variation 3-------------------------------- 123

4. Variation 4-------------------------------- 124

E. DISCUSSION-------------------------------------- 124

IX. DESIGN CASE NO. 3--PROGRAMMING AND COMPARISONS -- 128

A. INTRODUCTION----------------------------------- 128

B. "MATCHING" FORMULATION------------------------- 128

1. Design Vector X3 --------------------------- 128

2. Powering Constraint(s)--------------------- 129

C. PREVIOUS SOLUTIONS----------------------------- 131

D. SOLUTIONS BY COPES/CONMIN---------------------- 133

1. Programming Details------------------------ 135

2. Results------------------------------------ 135

E. DISCUSSION------------------------------------- 136

X. CONCLUSIONS AND RECOM.MENDATIONS------------------- 139

A. CONCLUSIONS------------------------------------ 139

B. RECOMMOENDATIONS-------------------------------- 141

C. A FINAL NOTE----------------------------------- 142

8

Page 12: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

APPENDIX A: FORTRAN VARIABLE CROSS REFERENCE LIST 143

APPENDIX B: SUBROUTINE LISTINGS -------------------- 145

APPENDIX C: ANALIZ CODES--DESIGN CASE NO. 1 ---------- 215

APPENDIX D: CONTROL CARD IMAGES--DESIGN CASE NO. 1 --- 231

APPENDIX E: COPES OUTPUT--DESIGN CASE NO. 1 ---------- 234

APPENDIX F: ANALIZ CODES--DESIGN CASE NO. 2 ---------- 272

APPENDIX G: CONTROL CARD IMAGES--DESIGN CASE NO. 2 --- 288

APPENDIX H: COPES OUTPUT--DESIGN CASE NO. 2 --------- 291

APPENDIX I: ANALIZ CODES--DESIGN CASE NO. 3 ---------- 330

APPENDIX J: CONTROL CARD IMAGES--DESIGN CASE NO. 3 --- 334

APPENDIX K: COPES OUTPUT--DESIGN CASE NO. 3 ---------- 336

LIST OF REFERENCES ------------------------------------ 356

INITIAL DISTRIBUTION LIST ----------------------------- 360

9

im • i Ij

Page 13: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

LIST OF TABLES

I. Summary of the Wageningen B-Screw Series -------- 45

II. Material Identifier Reference ------------------- 58

III. Global Common (GLOBCM) Catalog ------------------ 63

IV. Design Case No. 1--Results ---------------------- 113

V. Design Case No. 2--Results ---------------------- 127

VI. Design Case No. 3--Results ---------------------- 138

10

It~ -4

Page 14: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

I ....

LIST OF FIGURES

1.1 Traditional Design Spiral ----------------------- 153.1 Open Water Test Results--B 4-100 Series

Propeller --------------------------------------- 42

4.1 Design Vectors 5 and R -------------------------- 59

5.1 Propeller Blade & Hub--Side View ---------------- 68

5.2 Expanded Cylindrical Blade Section--ProfileView -------------------------------------------- 70

6.1 Strength Section at r = r - - - - - - - - - - - - - - - - - - - - - - 83

6.2 Bending Moments due to Thrust and Torque -------- 86

6.3 Center of gravity "G" and intersection point"N" -88

6.4 Internal Loading on a Blade Section atx = x0 = ro/R ----------------------------------- 89

6.5 Position of "g" of a Blade Section "Slice" atx = r/R ----------------------------------------- 93

6.6 Coordinates of centroid "g" of any BladeSection ----------------------------------------- 94

4i1

Page 15: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

ACKNOWLEDGEMENTS

It has been said:

If someone says It's impossible, then, quite obviously,he has never done it.

With these words in mind, I now recall and give thanks

to those who have assisted me in attaining the educational

goal represented by this thesis:

My mother and father, who provided, among other things,

a secure and stable home for me to grow up in and who always

insisted that I fulfill my potential for formal education

at every opportunity.

My brothers and sister, who have always offered me nothing

but praise and encouragement in all of the tasks that I

have ever set out to do.

My aunts and uncles, living and deceased, who provided

the counseling or the little "envelope for a rainy day"

when I needed it the most.

My grandparents, now deceased, who possessed the courage

and forethought to venture forth across an ocean to our great

country in order to build a better life for themselves and

to afford their offspring opportunities of a lifetime.

My close friends, past teachers, instructors and pro-

fessors, who always pointed me in the right direction with

astute guidance and timely advice when all seemed lost.

That one junior Naval officer, who was not afforded the

opportunity to achieve the milestone represented by this

4 12

Page 16: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

work because he maintained "the watch" for a shipmate like

me.

And, finally, to You.

On a more current and professional note, I especially

thank Dr. Marto, Professor Salinas, Professor Vanderplaats

and also LCDR Michael R. Maixner, USN. Their patience,

understanding and tireless efforts in helping me close out

my academic career on a successful note are deeply appre-

ciated and will always be remembered.

And a special word of thanks to Mr. Robert Lande for

the expeditious and accurate typing of this thesis.

13

4A

I--' J

Page 17: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

I. INTRODUCTION

A. BACKGROUND

The ship design process, in its most rudimentary form,

has been formulated and tracked by the utilization of the

classical design spiral (see Figure 1.1). The design follows

a convergent helical path past each major milestone "spoke"

until, after numerous iterative cycles, the final configura-

tion is "centered" upon. Whether one attempts to segregate

the principal phases of Preliminary, Advanced and Contract

Design into separate spirals or combine these phases in

series along the entire path to the center, it is not long

before the designer's roughed-out sketches give way to serious

"number crunching", specifically that of propulsion power

estimation.

To estimate the power required to drive the ship through

the water at its design speed, a decision must first be made

as to what type of propulsor (i.e., propeller, water jet,

paddle wheel, etc.) will be used. For the average case, and

for the discussion that follows, the marine propeller is

chosen to be the propulsion device. Since

a ship propeller may be regarded as a transducerthat converts the rotational power transmittedthrough the shaft into the translational power topropel the ship, [Ref. 18: p. 10]

the selection and design of this device is obviously an

important factor in the eventual size (weight and power) of

the ship's propulsion plant. While hydrodynaxnicists provide

4 14

Page 18: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

TRADITIONALDESIGN SPIRAL

VOLUME a STABILITY

SHP MARRANGEMENTS

ENDURANCE FUEL HULL FORM

WEIGHTSX

Figure 1.1 Traditional Design Spiral

15

Page 19: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

a myriad of theories and techniques to generate a "custom

built" (i.e., wake adapted) propeller for the ship under

consideration, their expertise is usually not required in

the early stages of preliminary design simply because the

design has not been refined enough beyond gross estimates.

At this stage, the designer strives to formulate what is

possible based on previous experience. For preliminary

power estimation, previous propeller designs (i.e., "stock"

propellers) and results from methodical series of model

propellers are analyzed by the designer in order to select

the "best" available propeller under various conditions posed

by the problem under consideration. Three examples of typi-

cal problems encountered in preliminary ship design are:

1) Given the ship's effective horsepower at a specific

speed and estimates of hull performance parameters, which

propeller, as determined by certain principal characteristics,

will require the least amount of delivered power from the

propulsion plant?

2) Given the delivered power from a specific propulsion

system in terms of torque and revolution rate at the pro-

peller/shaft interface and estimates of hull performance

parameters, which propeller will generate the largest effec-

tive horsepower and speed parameters?

3) Given a ship's effective horsepower and speed, various

hull performance parameters, and the propulsion plant's

delivered power characteristics, which propeller will "match"

4 16

Page 20: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

these requirements at a minimum amount of weight for a speci-

fied material?

(Author's Note: For the sake of brevity, the three

selection problems just cited will, henceforth, be referred

to as "Design Case No. 1", "Design Case No. 2" and "Design

Case No. 3", respectively.)

For this study, the methodical propeller series method

is viewed as the designer's choice for preliminary powering

analysis. One of the most-widely used methodical series data

on model propellers is the Wageningen B-Screw Series.

Initially, the results of the series were presented as tabu-

lations of non-dimensional thrust and torque coefficients

(KT and KQ respectively) versus the non-dimensional advance

ratio (J) for analytical work and as the familiar "Bp-65" and

"Bu-6" diagrams for design purposes. As "trial & error"

design methods performed by hand in all engineering disci-

plines gradually transcended to numerical manipulation by

the modern digital computer, the necessity for the adaption

of the Series results to a format suitable for use in computer-

aided design methods became obvious. This was accomplished

through multiple regression analysis of the original open-

water test data of the 120 propeller models in the Series

and presented in the form of polynomial expressions for "KT"

and "KQ" (Refs. 1,2].

The adaptation of the Wageningen B-Screw Series polynomials

to various types of propeller selection problems formulated

174 .

Page 21: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

for computer solution has been implemented recently by two

authors. Triantafyllou [Ref. 3] and, of late, Markussen

[Ref. 4] presented different propeller selection problems and

proposed different schemes for computer-aided "optimized"

solutions. In short, specific expressions for the con-

straints imposed and the objective (optimality condition)

to be maximized, expressed in terms of a number of design

variables and parameters, were developed. Then, each system

of equations was solved by a Newton-Raphson method to give

a solution set of the design variables which maximized the

objective and met all constraints.

Rather than formulating and coding a different optimiza-

tion scheme each time a propeller selection problem presents

a different combination and number of design parameters,

variables and constraints, a better approach would involve

formulating the problem (constraints and objective function)

once in terms of all design parameters and variables and

utilizing a general purpose optimization scheme which can

handle any combination and number of constraints and design

variables. This alternative certainly allows the designer

more flexibility in solving his problem. Moreover, it elimin-

ates repetitive coding and debugging associated with the

implementation of a computer-sided solution for each particu-

l~ar design problem.

4 18

I, _ '=

Page 22: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

B. PROBLEM STATEMENT

The problem, then, is that the previously cited computer-

aided "optimized" solutions to the propeller selection problem

are not broad enough in capability to handle variations in

the problem formulation. The objective of this thesis is to

apply an available general purpose optimization computer

code to the solution of various propeller selection problems

encountered in Preliminary Ship Design in order to enhance

the flexibility of the selection procedure.

C. SCOPE

To achieve the stated objective, the general purpose

non-linear optimization code CONMIN [Refs. 5,6] together with

the engineering synthesis code COPES [Ref. 7) (hereafter

referred to collectively as COPES/CONMIN) is utilized in the

solution of the three previously cited preliminary design

propeller selection problems. Using the Wageningen B-Screw

Series propeller characteristics expressed in polynomial

expressions of various design variables, three "analysis"

codes, required by COPES/CONMIN, are developed in such a way

that various combinations of design variables and constraints

are used, thereby demonstrating the applicability of the

COPES/CONMIN optimization program in the solution of propeller

selection problems.

D. THESIS ORGANIZATION

The remainder of the thesis is organized in the following

manner.

19

L-

Page 23: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

Chapter II presents a short description of the optimiza-

tion problem in general terms and a follow-on discussion of

the COPES/CONMIN optimization program and the mathematical

techniques employed therein.

Chapter III introduces definitions and concepts applica-

ble to the propeller selection problem. A subsequent dis-

cussion on the Wageningen B-Screw Series is followed by final

comments on constraints imposed on the propeller selection

problem.

Chapter IV presents the formulation of the propeller

selection problem as a design optimization problem which

can be solved using COPES/CONMIN.

Chapter V discusses the background, formulation and

programming utilized in estimating a propeller blade's weight

for subsequent consideration as an objective function.

Chapter VI reviews the author's modifications to the

propeller strength analysis developed by Schoenherr [Ref. 8]

in the early 1960's for the American Bureau of Shipping. A

subsequent discussion on the programming details of FORTRAN

codes, which are utilized for the determination of adequate

propeller blade strength, completes the chapter.

Chapter VII reviews the formulation and programming for

the analysis code which is used in solving propeller selection

problems represented by Design Case No. 1. Sample solutions

are presented and compared to those presented previously by

other authors.

20

Page 24: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

Chapters VIII and IX consider Design Case No. 2 and

Design Case No. 3 selection problems, respectively, in a

similar fashion to Chapter VII.

Chapter X, the final chapter, presents the author's

conclusions and recommendations.

As a final note, all computer coding presented in this

thesis is done in FORTRAN IV, the language used by COPES/

CONMIN. For the reader's convenience, Appendix A provides

a cross-reference of the symbols presented throughout the

thesis to appropriate FORTRAN variable names appearing in

the author's codes.

21

_

Page 25: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

II. OPTIMIZATION

A. INTRODUCTION

The purpose of this chapter is to introduce definitions

and concepts used in the formulation and solution of the

general optimization problem. Then, a short discussion on

the theory and implementation details of COPES/CONMIN is

presented.

For further study on the theory and methods of optimiza-

tion, the reader is directed to the texts by Fox [Ref. 9],

Fiacco and McCormick [Ref. 10], and Himmelblau [Ref. 11].

B. DEFINITIONS

Before discussing the techniques of optimization and

their application to engineering problems, some preliminary

definitions of basic terminology should be stated. Terms

which have relevant significance are:

1) Parameters--The numerical quantities for which values

are assigned to produce a design are called parameters. From

this, it follows that a design may be specified by a vector

D containing "p" components, each of which is associated with

a parameter. That is:

(2.1)

Dpp

22

L J

Page 26: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

However, in a design process, the parameters are determined

by some logical procedure through analysis of some kind.

Some might take on fixed values to become "preassigned"

parameters. Interrelationships among other parameters might

exist so that only some of the parameters are changed when

one design is compared to another. This consequence leads

to the definition of "design variable".

2) Design Variables--The parameters for which values are

chosen in some fashion to produce a de;,Jcn are called design

variables. They represent an ordered collection of components

which is a subset of the design vector ff. This subset is

unique in that its components are "variable", i.e., they may

take on different values in the design process. Having

"preassigned" or fixed some of the design's parameters and

only allowing the remaining "desigrn variables" to change, leads

to the conclusion that a design is now uniquely specified by

a vector X containing "n"~ components (n < p) , each of which

is associated with a design variable. That is:

= (2.2)

Ixn

3) Objective Function--The computable function of all or

some of the design's preassigned parameters and/or design

variables, with respect to which the design is to be opti-

mized, is called the objective function. Single valued in

23

Page 27: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

quantitative terms, the objective function's minimum or maxi-

mum value represents the "best" obtainable or "optimized"

design. It is expressed as F(U) to show its dependence on

the design's parameters. But, since a design can be uniquely

defined by R alone, then clearly F(X) suffices as an expression

for the objective function.

4) Constraints--Restrictions on the design which must be

satisfied in order to produce an acceptable design are

called constraints. A constraint may be classified as a

"side" or a "behavior" constraint. A side constraint re-

stricts or bounds the range of the design for reasons other

than direct consideration of performance. The side constraint

on the "i"th design variable may be expressed as:

Xlower < X < X upper i = 1,...,n (2.3)1 - 1 - 1

A constraint derived from those performance or behavior

requirements that are explicitly considered is called a be-

havior constraint. Most often, it appears as a computable

functional relation involving the design's parameters, both

preassigned and variable alike. The relation may be an in-

equality so that the "j"th of "m" inequality constraints

can be expressed as:

G.(D) < 0 j = l,...,m (2.4)2

24

U _J

Page 28: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

Alternatively, the relation may be an equality on the "k"th

of "9" equality constraints expressed as:

Hk(D) = 0 k = 1,..., (2.5)

Of noteworthy importance here is that, as before, if

some of the design's parameters are preassigned, then the

resulting design is that defined by X which contains only

the parameters that can be varied in the design process,

i.e., the design variables. Therefore, constraints imposed

upon the design may be expressed under one equation as:

G. (X) < 0 j = 1...,mJ

Hk(X) = 0 k = i... (2.6)

Xlo w e r < X. < Xupper i21 - 3 - .

A final form for constraints is that of the discrete-valued

design variable.

5) Feasible Design--A design in which specified constraints

are satisfied is called a feasible or "acceptable" design.

6) Infeasible Design--A design in which constraints are

violated is called an infeasible or "unacceptable" design.

C. PROBLEM STATEMENT

If one presupposes that a range of designs exists within

a selected design concept, then it follows that different

25

ii

Page 29: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

methodologies also exist by which one may choose the param-

eters which describe the design. One such method is optimi-

zation where parameters are chosen in a way that the design

will satisfy all of the limitations and restrictions imposed

upon it and will be "best" in some sense. In view of the

foregoing definitions, optimization is then a selection method

applied to a design problem by which an objective function

F(D) is minimized to produce an acceptable design which satis-

fies a certain set of requirements called constraints.

Formulated mathematically, the general, non-linear,

constrained optimization problem may be stated under one

equation as:

Minimize: F(5) =OBJ

Subject to: GA(D) < 0 j = L,...,m (2.7)3

Hk05) < 0 k =

X lower <~ .< upper =2. - 1 - 1.

Again, as pointed out in the previous section, the design

may be uniquely defined by just its design variables as

specified by X when some parameters are preassigned. Thus,

the general, non-linear, constrained optimization problem

can now be stated under one equation as:

26

Page 30: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

Minimize: F(X) = OBJ

Subject to: G(X) < 0 j =,...,m (2.8)

Hk(x) = 0 k =

Xlower < X. < xUp p e r i =1 - i - 1

Solutions methods for this optimization problem are

abundant. Those pertaining to the linear and quadratic

optimization problems involving a few design variables are

most often presented in graphical or analytic form, although

numerical schemes are, by no means, a dormant form. Struc-

tural and thermal problem solutions are most prevalent. How-

ever, as the optimization problem becomes more complex in

terms of non-linear relationships among an increasing number

of design variables and of an increased number of design

constraints, numerical or mathematical programming techniques

dominate the solution methods.

To limit the scope of this discussion, only the numerical

techniques relevant to COPES/CONMIN will be considered. For

more background on optimization techniques and applications,

the reader is directed to a recent paper by Vanderplaats

(Ref. 121 which presents a concise, but thorough, qualitative

review of optimization. Although this paper deals exclusively

with the application of design optimization to structural

problems, it also contains a very extensive and current list

of references on general techniques and applications of

optimization.

4 27

Page 31: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

D. COPES/CONMIN

As previously stated in Chapter I, COPES/CONMIN is the

collective acronym for the FORTRAN program utilizing the opti-

mization code CONMIN and the synthesis code COPES. COPES

stands for COntrol Program for Engineering Synthesis; CONMIN

is an acronym for CONstrained function MINimization.

1. CONMIN

CONMIN is a FORTRAN program, in subroutine form, which

solves the general non-linear constrained optimization prob-

lem as stated:

Minimize: F(X) = OBJ

Subject to: G.(X) < 0 j l,...,m (2.9)

Xl ow e r < upper j1 - I -

Equation (2.9) applies to the entire statement. Observe

that equation (2.9) differs from equation (2.8) in that the

equality constraint set, given by VX) = 0, is not specified.

This is because the version of COPES/CONMIN used in this

study does not consider these types of constraints. However,

this will not pose any difficulty in solving the propeller

selection problems previously cited.

Again, F(X) is the objective function (OBJ). The

vector X contains the "n" design variables (NDV). G. (X)

are the "m" inequality behavior constraints (NCON) imposed

on the optimization problem; Xlower and Xupper are the1 i

28

L _J

Page 32: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

respective lower and upper side constraints which bound the

"design space" over which F(Y) and G.i(R) are defined. As

functional relationships involving R, F(R) and G.(M may be

implicit or explicit, but, in any event, must be continuous

and have finite numerical values.

When the inequality condition of equation (2.9) is

not satisfied, i.e., G.(W > 0 for any constraint, the con-

straint is said to be violated. If the equality condition

is met, i.e., G.i(X) = 0 for any constraint, the constraint

is said to be active. And, finally, if the inequality condi-

tion is satisfied, i.e., G .(R) < 0, for any constraint, that

constraint is termed inactive. Any design, defined by R,

which satisfies the inequalities of equation (2.9) is desig-

nated as a feasible design. Likewise, any one which vio-

lates these inequalities is termed an infeasible design.

The feasible design with the minimum objective function value,

often referred to as the "minimum feasible design", will,

therefore, be the optimum design.

During the optimization process, CONMIN employs the

Fletcher-Reeves algorithm [Ref. 13] for locally unconstrained

problems, and Zoutendijk's methoqd of deasible directions [Ref s.

14,153 for locally constrained problems, in a numerical pro-

cedure which attempts to minimize the objective function,

F(R) = OBJ, until one or more of the constraints, G.i(R),

becomes active. The numerical search procedure begins with

an initial Y vector which may or may not specify a feasible

29

Page 33: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

design. Modifications are included in CONMIN so that, if

the initial design is infeasible, a feasible solution will

be obtained with minimal increase in F(X). By iteratively

updating the design vector X by the following relation:

R(q+l) = (q) + * (q) (2.10)

the optimization process continues by following the con-

straint boundaries in a direction of search S so that the

value of F(X) decreases with each iteration q. The scalar

a* defines the distance of travel in the direction of search

S. The process terminates when a vector 5 is found such

that no further decrease in F(R) can be made. The vector

is considered to be optimal and, at least, a local minimum.

CONMIN can be used alone as a subroutine in any

FORTRAN program where numerical optimization is desired.

However, in order to make the optimization process more "user-

friendly", CONMIN has been coupled to COPES in order to

simplify its application to various types of problems.

Further information on CONMIN can be found in previously

cited references (5] and (6].

2. COPES

COPES is a FORTRAN program that provides automated

design and trade-off capability to the design engineer. It

utilizes the optimizer CONMIN to provide the following six

specific capabilities:

30

I _' _id

Page 34: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

1) simple analysis

2) optimization

3) sensitivity analysis

4) two variable function space analysis

5) optimum sensitivity

6) optimization using approximation techniques

During the execution of COPES, say for optimization, three

principal tasks are performed:

1) data management on the design variables and constraints

through location assignments in a FORTRAN common block called

GLOBCM.

2) decision process control on the attainment of an optimal

design vector Y through multiple calls to the optimizer

until a minimum or maximum value of OBJ is achieved and all

G.(X) are satisfied.

3) evaluation of OBJ and G.(W) at each Xq and X-q + l when

ICALC = 2 through multiple calls to the user-provided analysis

subprogram, SUBROUTINE ANALIZ.

For the application under consideration in this study, only

the optimization capability will be used. Therefore, further

elaboration on the other capabilities is not warranted.

Reference [7] is the user's manual for COPES/CONMIN.

Details on the mechanics of user implementation are presented

with subsequent illustration by example. The reader is,

therefore, encouraged to familiarize himself with the refer-

ence. However, at this point, it is sufficient to be aware

of the fact that a user of COPES/CONMIN is required to:

31

- a

Page 35: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

1) provide a FORTRAN subroutine called ANALIZ which per-

forms the input of preassigned parameters, the evaluation of

the objective function and constraints during the analysis

phase of the optimization search and the output of the

results.

2) provide an assembled deck of control cards required

by COPES.

E. CONCLUDING NOTE

The field of optimization is both extensive and complex

and, therefore, the foregoing presentation is, by no means,

complete in every detail. However, it is felt that the pre-

ceding overview, in conjunction with the cited references,

covers the necessary prerequiisites that will enable the reader

to follow the application of COPES/CONMIN to the various

propeller selection problems in the chapters that follow.

32

Page 36: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

III. POWERING, PERFORMANCE AND PROPELLERS

A. INTRODUCTION

The purpose of this chapter is to present an overview

of the terminology and concepts that pertain to ship propul-

sion, propeller selection and the use of model propeller

test data. Initially, fundamental definitions used in ship

powering problems are presented. This is followed by a

discussion of the "classic" types of propeller design/

selection problems encountered by the naval architect and

marine and naval engineers. Propeller model testing and

propeller performance characteristics are reviewed next.

The chapter is completed with a discussion of the Wageningen

B-Screw Series.

The goal here is brevity. The reader is, therefore,

encouraged to investigate the references cited for further

details.

B. DEFINITIONS

Some fundamental terms associated with most propeller

design/selection problems are:

1) Effective Horsepower (PE )--power required to tow the

"bare" hull (without propeller; rudder and appendage allowance

assumed included) that generates a given resistance (R T) at

a given speed MV. It is determined by:

RT V (3.1)

4 33

Page 37: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

2) Thrust Horsepower (P T)--power delivered to water by

a propeller developing a thrust force (T) and moving at a

speed of advance (VA) without the influence of a hull form

ahead of it. P T is determined by:

P 4TVA (3.2)

3) Delivered Horsepower (PD )--power delivered by shaft

to propeller, normally specified at the outboard side of the

stern tube. QSis the torque delivered to the propeller;

nis the revolution rate of the shaft and, consequently,

the propeller. PD is determined by:

P 2rr Q P (3.3)D 550

4) Shaft Horsepower (P S)--power delivered to the inboard

side of the stern tube having a transmission efficiency of

ns is determined by

P (3.4)S ns

5) Brake Horsepower (PB )--power delivered by the prime

mover at connection flange to the power train. While P B is

normally associated with the prime mover's rated power at

this connection (BHP), it can also be specified from the

power train/propeller side as:

34

Page 38: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

- s (3.5)PB - IB nG

where B and n G are, respectively, the bearing system and

reduction gear transmission efficienci-s.

6) Thrust deduction factor (l-td)--ratio of the tow

resistance (RT ) to the thrust (T) provided by the propeller.

It is determined by

T

7) Wake Factor (Taylor's) (l-wt)--ratio of the speed of

advance (VA) to the ship's speed (V). It is given by:

(l-wt) - A (3.7)V

8) Advance Ratio (J)--a non-dimensional value, associated

with propeller test data presentation (see figure (3.1),

given by the following relation:

j V(1-wt) VA (3.8)n D np D

9) Thrust Coefficient (KT)--a non-dimensional value asso-

ciated with the thrust force (T) developed by a propeller

of diameter D which is turning at a rate np and operating

in a fluid of density p. It is defined by the following

expression:

35

I_ _i

Page 39: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

TKT 2 4 (3.9)T p np2D

10) Torque Coefficient (K Q)--a non-dimensional value

associated with the torque (Qp) absorbed by a propeller of

diameter D which is turning at a rate np and operating in

a fluid of density p. It is defined by the following

expression:

KQ D(3.10)Q p np2DP

11) Open Water Efficiency (n )--the ratio of PT to PD

for a propeller in open water conditions, with a uniform

inflow velocity field at a speed of advance VA. It is ex-

pressed as:

P T T VA JT (3.11)no - P 2Tr n 2 1TK

D PSQ

12) Hull Efficiency (nH)--a ratio of work done on the

ship to that done by the propeller expressed as:

PE RT V (1-td)

H P T T VA - (3.12)

13) Relative Rotative Efficiency (nR)--the ratio of the

actual, behind-hull efficiency to the open water efficiency.

The value of nR does not, in general, depart from the value

36

u _.j

Page 40: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

I I I I I i

of 1.0. Most often, n R varies between 0.95 and 1.0 for twin-

screw ships and between 1.0 and 1.1 for single screw ships.

Applicable units for the terms in the expressions above

are:

1) horsepower (hp)--PE, PT' PS' PD and PB

2) pounds (lbf)--RT, T

3) feet/second (ft/sec)--V, VA

4) foot-pounds (ft-lbf)--Qs, Qp

5) feet (ft)--D

6) revolutions/second (rps) -- np

7) revolutions/minute (rpm)--Np = np/60.0

The quantities T, VA, D, Qp and nP are obtained from the

propeller test data results. The quantities RT and V are

specified from the design point on the R-V curve for the hull

under study. The quantity p is a property of the fluid in

which the hull and propeller operate. And, finally, nB' G

and nS are characteristics of the bearing, gear and stern

tube systems. In preliminary design studies, nominal values,

based on previous designs, are usually assumed unless, of

course, these systems have been selected and actual values

can be specified.

C. POWERING CONCEPTS

1. Basic Relations

Simply stated, the fundamental powering relationship

to be solved in ship propulsion and powering problems is:

37

1 1

Page 41: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

(1-td)PE = (l-wt) .R no PD (3.13)

Utilizing the definitions just presented, equation (3.13)

can be rewritten as:

RT V (1-td) 27 QS np

550 TY-w"t .R no 550 (3.14)

Rearranging terms of equation (3.14) gives:

RT (l-wt)V 2ir Q (3.15)

TIEtd 550 R o 550

And, finally, when substitutions are made, equation (3.15)

becomes:

T VA T(l-wt)V 27T QTS n (550 550 - R no 550 (3.16)

Equations (3.14), (3.15), and (3.16) provide the basis for

different approaches to the solution of a typical powering

problem. More background and information on the definitions

and equations presented above may be ;ound in Chapter VI,

Sections 10-16 in the text by Comstock [Ref. 16] and O'Brien's

book [Ref. 17].

2. Approaches to the Powering Problem

From equation (3.16), three types of propeller selec-

tion problems are discernible. In the first instance, the

propeller thrust T and the propeller's speed of advance VA

38

L _J

Page 42: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

are taken as known quantities. The fact that T is known

substantiates the "Thrust Approach" nomenclature given to

this type of selection problem. In the preliminary (or, in

some circles, conceptual) ship design phase, the specifica-

tion of T is based upon the requirement imposed by the

resistance of the ship (R T) at its design speed (V) (or, the

effective horsepower (PE at V) and estimates of wt and td

in the absence of wake surveys and self-propulsion data from

model tests. Essentially, the thrust delivered by a selected

propeller must provide, at least, the thrust required for the

ship hull under study. The objective in the "Thrust Approach"

selection problem is to determine, by logical means, the

appropriate values of QSand n P when the open water efficiency

h(r) is set by the selected propeller and its performance

characteristics.

In the second instance, the delivered torque (QS and

the propeller shaft speed (n P) are taken to be known. The

"Power Approach" nomenclature is given to propeller selection

problems of this type because PDis known. Here, with the

shaft and propeller speeds being equal, the-torque absorbed

by the propeller (Q P) must be, at least, equivalent to the

delivered torque (QS) The corresponding objective in the

"Power Approach" selection problem is to determine, by logical

means, the expected ship speed (V) (or, the speed of advance

(VA )) and the associated thrust MT that can be developed

when the open water efficiency (n 0) is, again, set by the

selected propeller and its performance characteristics.

4 39

Page 43: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

The final, and most familiar, types of propeller

selection problem occurs when T, VA or V, Q and n P are all

known. From equation (3.16), the open water efficiency (n 0

is now established as a requirement to be met. The objective

is, simply, to select a propeller whose open water efficiency

ho ), developed thrust and absorbed torque are equivalent to

or "match" the requirements imposed. obviously, this approach

on the selection problem has been designated as a "matching

problem".

The reader is directed to the paper by Vassilopoulos

[Ref. _-8) for further information.

D. PROPELLER PERFORMANCE CHARACTERISTICS

Up until the late 1950's, much of the knowledge about

the performance of propellers has been gained from experience

with models. To study the relationships governing their

behavior, a model propeller is built and run in a towing

tank without any hull ahead of it. This is done by running

the propeller on a long shaft projecting well ahead of a

narrow, hydrodynamically shaped pod or "propeller boat" which

contains the driving mechanism and recording apparatus and

is attached to the towing carriage. The propeller advances

into undisturbed fluid (usually water of density p and kine-

matic viscosity j) so that the speed of advance (VA) is known

and the flow into the "disc" swept by the turning blades is

uniform. For the model propeller of diameter (D) under test,

readings of thrust (T), torque (Q S) and shaft revolutions (n P)

40

Page 44: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

are recorded over a range of values for speed of advance (V A)

in this "open water," condition.

Using the laws of similitude, the collected data is

reduced and scaled appropriately into the familiar functional

relationships between the advance ratio (J) and the non-

dimensional coefficients of propeller performance. These

coeffi~cients or performance characteristics, defined pre-

viously, are:

1) Thrust Coefficient (K T)

2) Torque Coefficient (KQ )

3) Open Water Efficiency (n 0

Figure (3.1) graphically depicts the relationship between J

and K T and K Qderived from test data for a propeller defined

by a specific expanded area ratio (A.E/A 0), pitch-diameter

ratio (P/D), number of blades (Z) and thickness-to-chord

ratio (t/c).

Definitions of these terms with graphical illustrations

pertaining to various aspects of propeller geometry can be

found in Section 15 of references [16], [17] and in van Manen's

publication [Ref, 191.

More recently, highly analytical theories (lifting line,

modified lifting line, lifting surface, etc.) for use with

high-speed digital computers have been formulated and subse-

quently used in "modeling", in a mathematical sense, the

propeller and its behavior in the "wake adapted" (or, behind

hull) condition as well as the "open water" condition.

41

Page 45: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

-

I

4--

a I 01 a 3 @ 01 as 07 01 0s 10 'I 1 Is 'A Is 1

Figure 3.1 Open Water Test Results--B 4-100 SeriesPropeller

42

Page 46: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

Additional benefits derived from this approach to propeller

performance analysis include:

1) determination of blade section profiles along the

propeller's blade radius (R) to achieve uniform lift and

internal stress distributions;

2) computation of "off-design" performance characteris-

tics in all quadrants;

3) subsequent determination of hull surface forces, bearing

loads and spindle torques induced by the propeller;

4) prediction of steady and unsteady stress distributions

in the propeller blade using the finite element method on

the blade of the propeller under study.

Obviously, this approach to propeller performance analysis

serves to:

1) eliminate the time-consuming and expensive model

construction and testing of propellers in tow tanks and

cavitation tunnels;

2) eliminate the "scaling" discrepancies which inhibit

the reliability of design charts and model propeller data;

3) eliminate those design charts altogether.

As in the case with model experiments, however, the ultimate

objective remains the same, i.e., establishing the performance

characteristics of the propeller in terms of KTV K Q and as

functions of J. Having these relationships enables the ship

designer to proceed in solving the power equation (equation

(3.13)) through any of the approaches previously discussed.

4 43

- J

Page 47: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

4

E. THE WAGENINGEN B-SCREW SERIES

1. Background

The model test data of the Wageningen B-Screw Series

have been selected for use in the powering problems to be

solved utilizing COPES/CONMIN. The choice was driven by the

following considerations:

1) the Series is widely known and, despite its growing

obsolescence, is still used in preliminary ship design

studies.

2) the availability of previous investigations [Refs. 3,4]

which utilized the series, for comparative analysis of optimi-

zation results.

3) the applicability of the polynomial expressions for KT

and KQ to computer-aided analysis.

The Series tests were conducted from 1940 through 1960 and,

therefore, represent propeller designs (principally naval

and merchant applications) and design philosophy of that era.

Specifically, the Series consists of 120 model

propellers. As is customary in methodical or systematic

model propeller series testing, the number of blades (Z),

expanded area ratio (AE/AO) and pitch-diameter ratio (P/D) are

varied systematically, while the blade outline, the profile

of the blade's cross section along the blade radius, blade

cross section maximum thickness (t), blade section chord

length (c), diameter (D) and propeller hub-to-diameter ratio

(d/D) were kept constant for given values of AE/AO and Z.

44iA

Page 48: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

Table (I) summarizes the variations in Z and AE/AO for each

set of model propellers having pitch-diameter ratios (P/D)

of 0.4, 0.6, 0.8, 1.0, 1.2 and 1.4.

TABLE I

Summary of the Wageningen B-Screw Series

Blade OtmOe rade area rati AE,

0.35 0.50 0.65 0.80

0.40 0.55 0.70 0.85 1.00

5 0.45 0.60 0.75 1.05

6 0.50 0.65 0.80

7 0.55 0.70 0.85,

2. Series Results

The test results of the Wageningen B-Screw Series were

originally presented in the form of Bp-6, Bu-6 and KT, KQI

and -J diagrams. As stated in Chapter I, multiple regression

analysis was performaed (again, [Refs. 1,2]) on the results

to produce the polynomial expressions for KT and K . The

open water efficiency (n0 ), as a function of J, follows from

equation (3.11). The correction for "scale effects" was

achieved by using Lerb's method of equivalent profiles

[Ref. 20). Although Triantafyllou's thesis [Ref. 213 sug-

gests an improved method for scale correction, the results

of Reference [2] will be used in this study.

45

Page 49: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

In propeller selection problems which use this

Series, values for KT and KQ are defined as:

KT = fl (JP/DAE/AO'Z,t*/c.75R)

(3.17)

KQ = f2 (J,P/D,AE/AOZ,t*/c.75R)

To compute KT and KQ, the following equations are used:

K = K; + AKT

(3.18)

K = K6 + AKQ

The polynomial expressions found in Tables (5) and (6) of

Reference [2] are then used to evaluate to components K '

K6, AKT and AKQ.

Table (5) in Reference [2] lists the coefficients used

in the polynomial expressions for K' and K6 at an equivalent6Q

Reynolds numbpr (Rn 75R) of 2 x 106. It is defined as:

c.75R V(VA) 2 + (0.757Tn D2

Rn 75R A p (3.19)

where:

V = kinematic viscosity of the fluid (ft2 /sec);

c ' blade section chord length at 3/4 propellerradius (.75R) in feet (ft).

46

Page 50: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

To account for "other effects", coefficients AKT and KQ are

introduced. Table (6) in Reference [2] lists the coeffi-

cients used in the polynomial expressions for these coeffi-

cients. "Other effects" include the operation of the

propeller at an equivalent Reynolds Number different from

2 x 106. Also, variations in other parameters which define

the propeller's geometry, specifically t/c values different

from the ones fixed by the Wageningen propellers, are taken

into account by corrections to the equivalent Reynolds number.

By keeping the blade section's chord length (c) at the value

of the Wageningen propeller, a change in a blade section's

maximum thickness from the standard one defined by the Series

(t ) to one preferred in the selection (t* ) produces a

new equivalent Reynolds number (Rn75) given by:

75R =exp 4.6052 + 1+2.(t/ 75R) (£n 75R-4.6052)

(3.20)

where:

n.75R = the new eqaivalent Reynolds number;

(t*/c) 7 5R new equivalent t/c at 3/4 propellerradius;

Rn.75R the Reynolds number computed by equation(3.19);

(t/c). 75R standard equivalent t/c at 3/4 propellerradius for Wageningen propellers.

47

Page 51: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

For the Wageningen B-Screw Series, the standard equivalent

t/c is given by:

t/C 75R (0.0185 - 0.00125Z)Z (3.21). 75R - 2.073 )E/Ao

Further details on blade section geometry will be addressed

in Chapter V. Reference [2] contains background and other

information on the equations above.

3. Limitations on Series Data

In utilizing the Wageningen B-Screw Series in any

propeller selection problem, the following restrictions

apply to the Series data:

1) Number of Propeller Blades (Z)--The Series considers

only propellers with numbers of blades as shown in Table

(I). Therefore,

Z = 2, 3, 4, 5, 6 or 7 (3.22)

However, the two bladed propeller, i.e., Z = 2, is not very

common in conventional merchant and naval ship designs and,

therefore, is not included in this study.

2) Equivalent Reynolds Number--The Series data, as pub-

lished, is valid only in the range of equivalent Reynolds

numbers given by:

2 x 106 < Rn < 2 x 109 (3.23)

48

IJ

Page 52: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

If the equivalent t/c is varied from the standard equivalent

value (t/c).75R' then the new equivalent Reynolds number

(Rn* which results from this variation, must lie within

the same limits. That is,

2x 106 < Rn* < 2 x 109 (3.24).75R -

These limits are appropriate for full-size propellers. For

example, given the following:

a) wt = .22

b) V = 20 (knots)

c) Np = 104 (rpms)

d) D = 25 (ft)

e) c.75R 4.0 (ft)

f) v = 1.2285 x 10 (ft 2/sec)

the value for Rn.75R is equal to 3.619 x 1O7.

3) Pitch-diameter Ratio (P/D)--The series data considers

only pitch diameter ratios in the range given by:

0.4 < P/D < 1.4 (3.25)

4) Advance Ratio (J)--An inspection of the Series results

in graphical format shows that J varies over a range given

by:

0 < J < 1.6 (3.26)

49

L _

Page 53: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

5) Expanded Area Ratio (AE/Ao)--Using Table (I), AE/A0

varies over certain ranges depending on Z. This is stated

as:

0.35 < AE/AO < 0.8 Z = 3 (3.27)

0.40 < AE/AO < 1.0 Z = 4 (3.28)

0.45 < AE/AO < 1.05 Z = 5 (3.29)

0.50 < AE/AO < 0.8 Z = 6 (3.30)

0.55 < AE/AO < 0.85 Z = 7 (3.31)

6) Hub didmeter-to-Propeller Diameter Ratio (d/D)--From

Table 37, Section 17 of Reference [16), the Series data

requires that:

d/D = 0.18 Z = 3,7 (3.32)

d/D = 0.167 Z = 4,5,6 (3.33)

F. SUMMARY

From the preceding discussions, the following observa-

tions can be made:

1) the "Design Cases", defined in Chapter I, are examples

of the powering equation solution approaches. That is, Design

50

L _j

Page 54: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

Case No. 1 constitutes a "Thrust Approach" problem; Design

Case No. 2, a "Power Approach" one; Design Case No. 3, a

"Matching" problem.

2) equations (3.17) and (3.8) imply that an optimization

solution to the "Design Cases" will involve PE' V, wt, D,

P/D, AE/Ao, (tec). 7 5R' QS and np as possible design variables.

3) when viewed from the concepts on optimization presented

in Chapter II, equations (3.25) through (3.31) constitute

side constraints to an optimized solution of a propeller

selection problem which uses the Wageningen B-Screw Series.

Having noted these points, the propeller selection problem

can now be formulated as a general, non-linear, constrained

optimization problem.

51

I 1

Page 55: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

IV. PROPELLER SELECTION--AN OPTIMIZATION PROBLEM

A. INTRODUCTION

The purpose of this chapter is to present the formula-

tion of the propeller selection problem as an optimization

problem that can be solved using COPES/CONMIN. Three usual

restrictions considered by the designer in any propeller

selection analysis are stated as constraints. Then, the

components of U and Y are assembled based on requirements

from previously cited relationships. The restrictions

considered by the designer and the limitations imposed by

the use of the Wageningen B-Screw Series are presented in

inequality constraint format. A formal statement of the

propeller selection problem as an optimization problem is

followed by a review of the GLOBCM common block format and

the basic subprograms used in all three versions of SUBROUTINE

ANALIZ that pertain to each Design Case.

The FORTRAN subprogram listings are found in Appendix

B. Comment cards have been used extensively in the coding

development to assist the reader.

B. DESIGNER'S CONSIDERATIONS

1. Propeller Size

The first restriction on the selection of any

propeller is size. That is, the propeller race in the stern

of the hull under consideration will only accommodate a

52

Page 56: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

propeller of some given maximum diameter (Dlim). As a con-

straint on a selected propeller of diameter D, this may be

written as:

D < Dlim (4.1)

or, alternatively, as:

G9(X) D i < 0 (4.2)

2. Cavitation

Another item of importance in propeller selection is

the cavitation phenomenon. When a propeller of given diameter

D and expanded area ratio AE/A0 is operating to produce a

thrust T, the formation and subsequent collapse of water vapor

bubbles on the blade surface, i.e., cavitation, is likely to

occur if the localized surface pressures, usually on the

"back" side of the blade, drop below the pressure at which

the fluid would boil (Pwatvap) in the surrounding environment.

Avoidance of cavitation can be reasonably assured by selecting

a propeller having certain geometric characteristics. A good

empirical relationship that establishes these characteristics

for propellers typified by the Wageningen B-Screw Series is

the Keller Cavitation criterion [Ref. 2: p. 259]. It speci-

fies the minimum required expanded area ratio (AE/AO min ) to

avoid cavitation and is given by:

53

- I mlI

Page 57: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

(1.3 + 0.3Z) T(AE/AO)min + atm acghc£- wv " +b (4.3)(Patwatv'apw D7

where:

Z = number of blades;

T = developed thrust (lbf);

D = propeller diameter (ft);

Patm = atmospheric pressure (psia);

Pwatvap = fluid vaporization pressure (psia)

2 4= fluid density (lbf sec /ft

acg = 32.174 (ft/sec2 )

h cz = depth to shaft centerline (ft)

b = constant: 0.1 for Z = 2, 0.2 for Z = .

As a constraint on the propeller selection, this requirement

is writen as:

(AE/Ao) min : AE/A O (4.4)

or

(A E/A 0) minG1 0 (X) = AE/A 1 < 0 (4.5)

3. Strength

The final designer's consideration (for this study),

included in the selection of a propeller, is that of strength.

54

t_ J

Page 58: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

Given the propeller's material (promat), selected from Table

(II), and the loadings (T and QS) imposed, it is important to

ensure that the blade's cross sections have proper dimensions

(in an ideal sense, maximum blade section thickness (t*) and

chord length (c)) to ensure adequate strength. Since the

use of the B-Screw Series requires that the chord length

(c) vary as a prescribed function of D, Z and AE/Ao, as given

in Table 1 of Reference [2], the adequacy for strength can

be determined by an appropriately selected value for blade

section maximum thickness-to-chord ratio (t*/c) alone. So,

if t*. is the established minimum blade section maximummin

thickness, then the strength requirement follows from the

constraint given by:

ti/C= (t*/c) mi < t*/c (4.6)

The fact that blade section maximum thickness for the B-Screw

Series varies linearly with the propeller radius (R) allows

the strength constraint (equation (4.6)) to be evaluated at

one section along the radius. This point is chosen to be at

the 3/4 radius (.75R). Therefore, equation (4.6) becomes:

(t*/c).75R min (t*/c).75R (4.7)

or

(t*/c). 75R min 1 < 0 (4.8)GII(X) --- /c).75

Page 59: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

Reference (2] suggests the following empirical relation for

the minimum required equivalent blade section maximum

thickness-to-chord ratio (t*/c).75R min

Z 0.0028+0.21 (2 375. .2 .P/D)PD2 2

4.123N D (S + - p (t*/c).75R min 2.073 AE/A 0 12.788

(4.9)

where:

D = propeller diameter (ft);

PD = delivered power (hp);

Np = propeller revolution rate (rpm);

Sc = propeller material allowable stress (psi);

P/D = pitch-diameter ratio.

However, in Chapter VI of this thesis, an algorithm which

employs the Schoenherr formulation [Ref. 8] with some modi-

fications, is presented as an alternative to equation (4.9).

C. THE DESIGN VECTOR

In view of the preceding presentations on optimization

and powering, the design vector D can be assembled for the

general propeller selection problem utilizing the B-Screw

Series. This vector is composed of preassigned parameters

relating to environmental conditions, hull characteristics

56

Page 60: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

and the propeller which are required for various equations

and the design variables.

1. Parameters

a. Environmental

These parameters pertain primarily to the fluid

conditions in which the propeller operates and to the atmos-

phere. Required for various calculations, they are:

1) fluid temperature (*F)--Temp

2) fluid density (lbf sec 2/ft 4)--p

3) fluid viscosity (ft 2/sec)--v

4) fluid vaporization pressure (psia)--Pwatvap

5) atmospheric pressure (psia)--patm

b. Hull Characteristics

These parameters pertain to certain details pre-

scribed for the hull under study in the powering analysis.

They are:

1) wake fraction--wt

2) thrust deduction--td

3) relative rotative efficiency --nR

4) number of propellers--noscrw

5) shaft centerline depth (ft)--hck

6) propeller diameter limit (ft)--Dlim

c. Propeller

These parameters are specified in view of their

discrete-valued nature. They are:

1) number of blades--Z

2) material--promat

4 57t_ __ _J

Page 61: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

Table (II) lists materials and properties considered in this

study. These values are taken from Table (35), Section 15

of Reference [16].

TABLE II

Material Identifier Reference

promat Material Allowable Stress--Sc Density--wd(psi) (lbf/in3

1 Cast Iron 3600--3950 .260

2 Cast Steel 5915--6265 .289

3 Type 2 Bronze 7200-7585 .305

4 Type 4 Ni-Al 8910--9430 .278Bronze

5 Stainless Steel 5400--5500 .283

2. Design Variables

In view of equations (3.13) through (3.17), the

design variables common to all selection approaches are:

1) PE

2) V

3) D

4) P/D

5) A o

6) (t*/c).75R

7) Np

8) 0s

The evctors 5 and X are shown schematically in figure (4.1).

58(

ii

Page 62: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

Temp

p

V

Pwatvap

Patm

wt

td

no scrw

U D lim

zpromat

V V

D D

X = P/D P/D

AE/AO0 A E/AO

(t*/c) .75R (t*/c).75R

Figure 4.1 Design Vectors Dand

59

Page 63: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

I *I I

D. CONSTRAINTS

Besides the constraints imposed by equations (4.2),

(4.5) and (4.8), equations (3.25) through (3.31) are rearranged

to the format of constraints in equation (2.9). They are

listed as follows:

1) Equivalent Reynolds Number--Equation (3.25) becomes:

1 < .75R-< 2 .75R < 1000 (4.10)

2 x 106

Two constraints are derived:

GRn* 75R106)=l----~ < 0 (4.11)2 x 10

Rn. 75RG(X) = 2ix10- 1000 < 0 (4.12)2 x×106 -

2) Expanded Area Ratio--Equations (3.27) through (3.31)

become:

(AE/Ao) lower(Z) < AE/AO (AE/A) upper (Z)

(4.13)

Two constraints are derived:

G5 (X) = (AWAo)lower(Z) - AA O < 0 (4.14)

G6 (X) = AE/AO - (AE/AO)upper(Z) < 0 (4.15)

60 JtL

Page 64: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

3) Advance Ratio--Equation (3.22) becomes:

Two constraints are derived:_J

G1 (X) = -7 < 0 (4.17)

J

G2 (x) - 1 < 0 (4.18)

4) Equivalent Blade Section Maximum Thickness-to-Chord

Ratio--Using equation (3.19), boundaries on the range of (t*/c).75R

are defined by:

1 < (t*/c) < 4(t/c) .759f(t/c).75R - . 4 (4.19)

Two constraints are derived:

G 7(X) = l(t/c).75R - (t*/c) < 0 (4.20)7 2 .75R

Gs(X) = (t*/c) 75R- 4 (t/c)75R < 0 (4.21)

E. OBJECTIVE FUNCTIONS

Upon consideration of equation (3.13), Design Case No. 1

and Design Case No. 2 require that the open water efficiency

(no ), given by equation (3.11), be maximized. In terminology

related to optimization, this is stated as:

61

C I

Page 65: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

OBJ1,2 no (4.22)

Design Case No. 3, the "matching" problem, requires that the

blade weight (bldwt) be minimized. This is stated as:

OBJ3 = bldwt (4.23)

F. PROPELLER SELECTION OPTIMIZATION PROBLEM STATEMENT

As a general, non-linear constrained optimization problem

to be solved by COPES/CONMIN, the propeller selection problem

for all Design Cases may be stated as one equation given by:

Minimize: F(X) = OBJ1, 2 or OBJ 3 (4.24)

Subject to: Gj(K) < 0 j = 1,...,12

Xlower < X. < Xu p p e r i1 - 1 - 1..

The constraint G (X) and the values for Xlower and Xupper12 1

will be specified according to each Design Case.

G. CODING FUNDAMENTALS

1. GLOBCM Common Block

The GLOBCM common block, required by COPES/CONMIN,

is now assembled. Table (III) specifies the assignment loca-

tions for the FORTRAN variables which define objective

functions, design variables and constraints.

2. SUBROUTINE ANALIZ

While each Design Case uses a different approach,

all analyses are very similar. Therefore, each SUBROUTINE

62

K -

Page 66: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

T III

Global Comnon (GLOBCM) Catalog

Global FORTRAN DEFINITION

Location Name

1 ETAO no

2 WEIGHT bldwt

3 AEDVAO AE/Ao

4 DIA D

5 N Np = 60 •np

6 PE PE

7 PDIVD P/D

8 QS QS

9 TC75R (t*/c)75R

10 V V (ft/sec)

11 RJCHL Gl (X)--eqn (4.17)

12 RJCNU G2 (X) -- eqn (4.18)

13 R75RCL G3 (X)--eqn (4.11)

14 R75RCU G4 (X)--eqn (4.12)

15 AEAOCL G5 (X) --eqn (4.14)

16 AEAOCU G6 (X)--eqn (4.15)

17 TC75CL G 7 ()--eqn (4.20)

18 TC75CU G8 (X)--eqn (4.21)

19 POWBAL G1 2 (K)--eqn (7.10) or (8.11)or (9.4)

20 DIACNU G9 (X)--eqn (4.2) or (9.6)

21 AEAOCV G10 (X)--eqn (4.5)

22 TCSTRS G1 1 (X)--eqn (4.8)

23 RJ J

63I ,.. j

Page 67: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

ANALIZ shares a common structure and other common subroutines

which perform calculations required in all cases. Appendices

C, F and I contain, respectively, the source listings of

SUBROUTINE ANALIZ for Design Case No. 1, Design Case No. 2

and Design Case No. 3.

a. Structure

The structure common to all cases follows

accordingly:

1) all initialization of environmental, hull and propeller

parameters is accomplished in the input section (ICALC = 1).

2) evaluation of KT and KQ, all constraints and appropriate

objective functions (-no or bldwt) are accomplished in the

execution section (ICALC = 2).

3) output of results for each optimization problem is

accomplished in the output section (ICALC = 3).

b. Basic Subprograms

The following FORTRAN subprograms are used in

all three SUBROUTINE ANALIZ codes:

1) SUBROUTINE CH75RA--calculates the equivalent blade

section chord length (c 7 5R) for the propeller using Table 1

(Ref. 2, p. 252].

2) SUBROUTINE REY75R--calculates the equivalent Reynolds

number (Rn*75R) using equations (3.19) and (3.20).

3) SUBROUTINE COEFSA--calculates the thrust and torque

coefficients (KT and KQ) through sequential calls to SUBROU-

TINE CALCKT and SUBROUTINE CALCKQ. The polynomial expressions

64

L J

Page 68: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

(Tables (5) and (6), [Ref. 2]) for these coefficients are

contained in SUBROUTINE CALCKT and SUBROUTINE CALCKQ respec-

tively.

4) SUBROUTINE OPWEFF--calculates the open water efficiency

(no ) using equation (3.11).

5) SUBROUTINE JCNA--calculates the constraints on the

advance ratio (J) given by equations (4.17) and (4.18).

6) SUBROUTINE REYCNA--calculates the equivalent Reynolds

number constraints given by equations (4.11) and (4.12).

7) SUBROUTINE EXTCCN--calculates the constraints on ex-

panded area ratio (AE/AO) and equivalent blade section maxi-

mum thickness-to-chord ratio (t*/c 7 5R) given by equations

(4.14), (4.15), (4.20) and (4.21).

8) SUBROUTINE DICNUA--calculates the constraint on the

propeller diameter (D) given by equation (4.2) using the

hull parameter on maximum diameter (Dlim).

9) SUBROUTINE CAVCNA--calculates the constraint for

cavitation given by equation (4.5) using equation (4.3).

10) SUBROUTINE STRCNA--calculates the constraint for

strength given by equation (4.8) using equation (4.9).

H. SUMMARY

The propeller selection problem has now been formulated

as a constrained optimization problem which can be solved

by COPES/CONMIN. Two items remain for discussion before

proceeding to specify the final details pertaining to each

SUBROUTINE ANALIZ code and to present numerical examples.

These items are:

65j

Page 69: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

1) the theory and coding relating to the computation of

the propeller's blade weight for the evaluation of the objec-

tive function in Design Case N4o. 3 (OBJ 3).

2) the theory and coding relating to the computation of

the minimum required equivalent blade section maximum thickness-

to-chord ratio (t*/c 7 )in for use in the alternative

evaluation of the strength constraint given by equation

(4.8).

66'

Page 70: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

V. PROPELLER BLADE WEIGHT--AN OBJECTIVE FUNCTION

A. INTRODUCTION

In this chapter, the method for the computation of the

propeller's blade weight (bldwt), the objective function

OBJ, is examined. First, a brief overview on the steps in

the computational procedure is presented. The FORTRAN

subprogram SUBROUTINE WGTCAL developed from the algorithm is

then described. Again, Appendix B contains all subprogram

listings.

B. THEORY AND PROCEDURE

Given the material of a propeller, the calculation of

the weight of one blade involves nothing more than a volume

calculation, a relatively routine task performed by most naval

architects/marine engineers. Analagous to the determination

of the underwater volume of a ship's hull, the calculation

is an integration of blade section profiles' cross-sectional

areas over the propeller radius (R).

1. Limits of Integration

Figure (5.1) depicts a side elevation view of a

blade and hub, parallel to the propeller shaft axis. The

cross-hatched area indicates the trace of the volume to be

calculated. In view of equations (3.32) and (3.33), limits

of integration are from r - .167R to r = R for Z = 4,5,6 and

r - .18R to r = R for Z = 3,7. For convenieance, a non-

dimensional variable "x" will be defined as:

67

Page 71: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

1.0

t 75R

.75 -

.50 -R

.25 -

. 20

.18 j~.167I

(Z=3, 7) d/D

d/D (Z=4,5,6)

x~r/R

Figure 5.1 Propeller Blade &Hub--Side View

j 68

Page 72: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

_X

iR

r (5.1)

Limits are now expressed as x = .167 or .18 to x = 1.0.

Quite obviously, R = (D/2.0).

2. Blade Section Profile

Figure (5.2) depicts an expanded cylindrical blade

section in profile view at a given r or x. For the Wageningen

B-Screw Series, the profile is defined, geometrically, by

a succession of vertical ordinates which specify points along

the blade section's profile on the "face" (yf) and on the

back (yb) with respect to the pitch reference line. At any

r = xR, ver-ical ordinates for "aft" (P < 0) and "fwd"

(P > 0) portions of the blade section are determined by:

Yfa = V1 (t* - te) P < 0 (5.2)

= (V+V 2 ) (t*-t* ) + t* P < 0 (5.3)

and

yff =V(t* - t*e) P > 0 (5.4)

Ybf (V+V 2 ) (t*-t*e) + t*e P > 0 (5.5)

where:

VIV 2 = tabulated values depending on x and P(see Tables (2) and (3), Ref. [2]);

69

L - I

Page 73: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

-4 -

00

0

W riH -4

-4'

441

4'4

T) HH

-444

z UU

11-4

Z >1

rz~ "4

-44

4J'

E-14

rz~70

Page 74: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

t~e = blade section leading edge thickness (ft);

t~ = blade section trailing edge thickness (ft).

Units for Yfa' Yba' Yff and Ybf are feet (ft). For this

study, a reasonable assumption is made in that:

t = t* = (1) t* (5.6)9.e te T

3. Blade Section Cross-Sectional Area

The cross-sectional area at each x = r/R (A(x)) is

determined by:

9 10A(X) = Aa + I Ai (5.7)

i=l j=l

where

h + hA = ai 2 (5.8)

h = Ybai - Yfai (5.9)

hai+l Ybai+l - Yfai+l (5.10)

Expressions for Af, hfi and hfi+l follow in similar fashion.

Values for yfai and Ybai are determined at 9 points

along the "aft" portion of a given blade section's chord (c):

values of yffi and Ybfi are determined at 10 points along the

71

L_ ..J

Page 75: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

"fwd" portion. The values for APai and APfi are fractional

values of the blade section's chord length (c) at radius

r = xR as determined from Tables (2) and (3) in Reference

[2]. The units for A(x) are square feet (ft 2). Units for

hail hai+l, hfi, hfi+l, c, APai and APfi are feet (ft).

4. Volume Integration

The blade volume (bldvol) is finally determined by

using Simpson's Rule for integration of A(x) along the non-

dimensional radius x using appropriate limits.

5. Blade Weight

Once the blade volume (bldvol) is calculated, the

weight (bldwt) is determined by:

bldwt = bldvol - wd • 1728 (5.11)

where:

bldvol = volume of one blade (ft 3);

wd = material weight density (lbf/in 3).

Weight Density (wd) depends on blade material (promat).

Table (II) lists appropriate values.

C. CODING

SUBROUTINE WGTCAL is the main subprogram for the blade

weight calculation. It, in turn, calls the following FORTRAN

subprogram for various calculations:

L 72

Page 76: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

1) SUBROUTINE TDIST--generates, at specified radius

values, a distribution of blade section maximum thicknesses

(t*).

2) SUBROUTINE BLDPRP--generates, at specified radius values

(i.e., r = .167R or .18R, .2R, .3R, .4R, ..., .9R, 1.OR),

various "blade section properties", one of which is a blade

section's cross-sectional area given by equation (5.7).

Other properties which are determined (for later use in

direct stress computations) include blade section chord

lengths and centroids and "critical point" locations as

defined in Chapter VI.

3) SUBROUTINE BLDVOL --performs a Simpson's Rule integra-

tion for the propeller blade volume (bldvol) using blade

section cross-sectional areas generated in SUBROUTINE BLDPRP.

The blade weight (bldwt) is computed as a final step in the

main subprogram SUBROUTINE WGTCAL.

Examination of the codes in Appendix B reveals extensive

use of common blocks for passing data from one subprogram to

another. Comment cards provide a full definition of all

common blocks as well as a description of the task being

performed at various points in a given subprogram.

D. SUMMARY

The coding developed for this study is, admittedly, not

very compact and efficient. However, the intention has been

to write all codes with sufficient documentation in order to

facilitate the reader's understanding of the algorithms employed

as well as to make the author's debugging work easier.

73

L __J

Page 77: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

VI. THICKNESS-TO-CHORD RATIO--A DESIGN CONSTRAINT

A. INTRODUCTION

The purpose of this chapter is to examine the development

of an algorithm that will be used to determine the minimum

required equivalent blade section maximum thickness-to-chord

ratio used in equation (4.8). The formulation is based upon

the method developed by Dr. Karl E. Schoenherr [Ref. 81 in

1963. After a review of the past and present methods employed

in propeller strength analysis is conducted, a description of

the Schoenherr model and a list of the assumptions used with

that model is presented. Then, a brief restatement of his

model's equations which are used in the algorithm is followed

by a derivation of the author's modifications to the Schoenherr

method. The chapter is completed by conducting a review of

the theory and coding employed by the algorithm.

The principal reference which is cited throughout this

chapter is, again, Reference [8]. The reader is encouraged

to review this reference for further details.

B. PROPELLER STRENGTH ANALYSIS--A HISTORICAL REVIEW

Marine propeller blades present a special class of struc-

tural problem. That problem lies in the difficulty of des-

cribing a blade design in simple mathematical terms for

subsequent analysis through various means. Until the "finite

element method era", analytical methods, including the one

74

• m J

Page 78: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

[Ref. 8] adapted for this study, relied heavily on practical

experience of the propeller designer and semi-theoretical

considerations. Analysis by these methods provided a cri-

terion of stress rather than actual computation of stresses.

These methods for predicting blade stresses were developed by

using "beam' theory or "shell" theory.

The use of elementary beam theory in propeller strength

analysis was first adopted by Taylor (Ref. 22]. He treated

a blade as a cantilever beam attached to the propeller hub

and loaded by thrust and torque forces distributed linearly

over the propeller radius. His approach is often deemed a

"Imodified beam theory" because he chose to calculate the

direct stresses using the moment of inertia properties of

expanded cylindrical blade sections with neutral axis parallel

to the nose-tail (pitch-reference) line or chord of that

expanded section. Reasonable estimates of stresses along the

blade surface were achieved for the unraked, unskewed and

narrow-bladed propellers of his time.

As propellers "modernized" and became skewed and wider

with increasing rake (mostly aft), modifications, improvements

and alternatives to Taylor's theory were developed. Prin-

cipally, modifications by Rosingh (Ref. 23] and Hancock

(Ref. 24] proposed using moment of inertia properties of a

blade section that was normal to the generating line of the

axially projected blade outline. Ronson [Ref. 25] later

improved Taylor's theory for application to wide-bladed

75

Page 79: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

propellers. Morgan [Ref. 26] provided an improved method

for calculating the geometric properties of "modern" airfoil-

shaped blade sections. Aernoldus and Keyser's [Ref. 271

"quasi-static" modeling of the propeller blade allowed

for additional consideration to stresses induced by centri-

fugal loading of the raked and skewed blade. The beam

theory approaches to propeller blade stress analysis culminated,

for all practical purposes, with Schoenherr's work [Ref. 8]

in 1963.

Alternatives to Taylor's beam theory approach, prior to

1963, consisted of the application of "shell" theory to the

propeller blade strength problem. This approach was first

proposed by Conn [Ref. 28] and subsequently formulated by

Cohen [Ref. 29] who modeled the blade as a helicoidal shell

with variable thickness and infinite width. "Shell Theory"

was utilized again in experimental studies by Connolly

[Ref. 30] who, like his predecessors, was also forced into

making an assumption about the behavior of the displacements

of the blade sections (i.e., constant displacements normal

to the constant pitch blade at each fractional radius dis-

tance from the hub) beyond usual assumptions of shell theory.

Essentially, his experimental results on one specific pro-

peller contradicted the computational values. Attempts at

a generalized numerical solution to Connolly's equations

appeared in 1963 [Ref. 31] and 1964 [Ref. 32]. In 1968,

Atkinson [Ref. 33], compared Connolly's results with currently

76

Page 80: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

adopted cantilever beam methods and found, based on the

inconsistency of results, that it was rnot possible to_

recommend one method over the other in the blade strength

design procedure; another approach was needed.

Commenting on Atkinson's paper at that time, Sontvedt

[Ref. 34] pointed out that, in view of these inconsistencies,

the only approach to blade strength analysis which did not

require very broad assumptions was the finite element tech-

nique. Developments in the method at that time were provid-

ing a new and powerful tool for structural analysis. The

propeller blade was just another application. Genalis [Ref.

35] developed codes for the determination of displacements

and stresses in a blade under hydrodynamic loads using the

FEM technique and modeling the blade as a shell, a 3-D ele-

ment mesh of tetrahedrons and rectangular prisms and, finally,

a composite of shell and 3-D elements. As an aside, a

finite "difference" solution to Connolly's analytical equa-

tions was proposed in 1972 [Ref. 36]. In 1973, Atkinson

[Ref. 37] reported the application of both hydrodynamic and

centrifugal loads to a blade modeled by a thin-shell triangu-

lar mesh and a thick-shell parabolic and cubic curved element

mesh. The results of the triangular element were considered

unsatisfactory. Another use of the thin-shell triangular

element was reported by Sontvedt [Ref. 34] in 1974 using the

SESAM-69 code (Ref. 381.

The need to model the blade correctly near the hub,

where root stresses are usually critical, necessitated the

77

Page 81: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

consideration of 3-D elements in lieu of thick/thin-shell

elements (Refs. 39,40]. The use of the 4- and 10-noded

tetrahedral element (i.e., TET-4, TET-10 respectively) to

construct a blade mesh was conducted by Beek [Refs. 41,42].

He observed that improved accuracy of stress values, achieved

by the use of these meshes, were overshadowed somewhat by

the extensive storage capacity required for each analysis.

Another "natural" improvement, from a geometrical standpoint,

appeared in 1978. A general 3-D curved isoparametric element

was incorporated in a computer code [Ref. 43] developed by

Ma based on his previous formulation work (Ref. 44].

The finite element approach will continue to grow in use

in propeller blade strength analysis with each successive

improvement made to the basic elements which are used in the

mesh generation of the blade. But, until the computer storage

problem is resolved to the point where one mesh generation

and subsequent stress analysis of one particular blade be-

comes a minor processing task, the basic analytical techniques

will continue to be a meritable "check" [Ref. 45] in the

preliminary (or conceptual) phase of propeller selection/

design. In this context, the method formulated by Schoenherr

and his colleagues twenty years ago is considered for adoption

in determining a minimum required blade section maximum

thickness-to-chord ratio.

78

t _ _.

Page 82: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

C. SCHOENHERR'S METHOD

1. Background

Schoenherr's method is applicable to preliminary

(or, conceptual) propeller selection problems because it

employs an assumed thrust and torque force loading distribu-

tion for the propeller blade. This assumption is made at

this stage of the ship's design because the exact wake

velocity distribution at the propeller race is generally

not known.

Also, his method is applicable to propellers repre-

sented by the Wageningen B-Screw Series because the blades of

these propellers meet Schoenherr's criteria for the blade

types covered by his formulation. Specifically, B-Screw

Series blades have:

1) a small constant rake angle of 150 over the entire

blade radius;

2) a constant pitch distribution over the propeller

radius with the exception of the Z = 4 propeller whose pitch

is slightly reduced near the hub;

3) mild skew;

4) linear distribution of blade section maximum thickness

over the radius of the blade;

5) aerfoil profile qualities where the nose-tail line

or the chord of the blade section is approximately parallel

to the pitch reference line.

79

I_ -J

Page 83: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

2. The Blade Model

Schoenherr models the propeller blade as a cantilever

beam with unsymmuetrical and variable area cross sections

subjected to loading distributions of hydrodynamic and cen-

trifugal forces. The following additional assumptions apply:

1) Flexure theory applies. This subsequently implies the

following: a) plane cross sections remain plane under load,

b) Hooke's Law is valid, c) the blade material is homogeneous

and isotropic, d) fibers are free to extend and contract

independently of adjacent fibers, and e) stresses at a point

arising from various forces superimpose.

2) Shearing stresses and their effects are neglected.

Only the direct stresses on a strength section are taken

into account.

3) The strength sections are taken to be the expanded

cylindrical blade sections at various radial locations.

4) The neutral axes of a strength section are straight

lines passing through the centroid of the expanded cylindrical

blade section and are parallel and normal, respectively, to

the pitch reference line, and therefore, the chord, at each

blade section.

5) Bending Moments are applied in two planes which are

mutually perpendicular to each other. One plane is normal

to the pitch-reference line (and chord) of the strength

section; the other is parallel.

6) The angle between the principal axes of inertia and

the neutral axes is zero.

80

Page 84: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

Using this model and assumptions, Schoenherr applies

the following irmula for the evaluation of the direct fiber

stress ([ao]) in a blade section at a radius r = ro:

[M0 (]n uO [M]Eo wO [___ O

[a]o no o A(x) (6.1)

where:

EM] no, [M]o resultant bending moments in planes0 normal ((MI ) and parallel ((M] 2 o to

the strengtR section's chord at r = r(ft-i1bf) ;

[F o centrifugal force acting normal to theplane of the strength section at r = rand resulting from the centrifugal 0acceleration of the remaining bladeelement mass above that strength section(lbf);

uo , w0 = coordinates of a point on the strengthsection's periphery with respect tothat section's neutral axes system (2-nsystem) (ft);

A(x0 ) = strength section's cross-sectional area(ft);

Izo = moment of inertia of the strengthsection with respect to the "I" axis

(ft4);

I = moment of inertia of the strengt sectionno with respect to the "n" axis (ft");

x 0= non-dimensional radius given byx0 = ro/R.

Since equation (6.1) indicates that the direct fiber stress

is greatest at points on the periphery of the strength sec-

tion, Schoenherr selects to examine four "critical points"

81

kL I

Page 85: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

on the periphery where the fiber stress is likely to Le a

maximum. These points are designated as C, (, C and

O on Figure (6.1) and are specified by coordinates (ul,wl),

(u2,w2), (u3,w3) and (u4,w4) respectively in the "9-nU

reference system.

The values for (MIno and (M] to are determined by

the following relation:

[Mno [pno + [Mcb]no (6.2)

[M]o= (MplZo + [Mcb]zo (6-3)

where:

[Mp]no = total bending moment due to hydrodynamicloading acting in a plane normal to astrength section's chord at r = r(ftlbf);

[Mp]o= total bending moment due to hydrodynamicloading acting in a plane parallel to

a strength section's chord at r = r(ftlbf);

[Mcbno = total bending moment due to centrifugalloading acting in a plane normal to a

strength section's chord at r = r0(ftlbf);

[Mcbo = total bending moment due to centrifugalloading acting in a plane parallel to

a strength section's chord at r = r(ftlbf).

3. Bending Moments Due to Hydrodynamic Loading

The derivations of [Mp] no and [Mp]£o follow directly

from Part I of Schoenherr's paper [Ref. 8: p. 83-89] and,

82

I l I

Page 86: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

0

4-))

o04-

rzW

04-

00

4) -H.44

00010

4 J 4 .J -4

414.zu 44-4U

1-4 E4 f-4

(D-40

83

Page 87: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

therefore, only key equations will be restated. References

to equations which contain no decimal point apply to equations

as numbered in his paper.

Thrust and torque force are components of the hydro-

dynamic "lifting" force acting on a blade. Using an assumed

non-linear distribution of thrust along the blade radius

given by equation (2), Schoenherr derives the following ex-

pression for the bending moment due to thrust ([M t]o ) which

acts at a blade section located at ratius r = r

TR 02 (x0 )

[Mto z (6.4)

where:

T = propeller thrust (lbf);

R = propeller radius (ft);

Z = no. of blades;

02 (xo),Ol(xh) = functions of non-dimensionalradius x evaluated at x = r /Rand xh = 0.2 and given By eqaa-tions (4) and (9)

For the bending moment due to torque ([M q] ) which

acts at a blade section located at radius r = ro , Schoenherr

derives the following:

E~qJ =Qp 1 2 (Xo)

-M (6.5)[q1 o z 0 (Xh)

where:

84

L_ I.

Page 88: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

Qp = propeller torque (ft-lbf);

Z = no. of blades;

2 (Xo0),l(Xh ) = functions of non-dimensional radius xevaluated at x = r /R and x = 0.2and given by e~uatiSns (19) Xnd (4).

Figure (6.2) depicts the component resolution for

[MP]no and [Mp]zo which results when equations (6.4) and

(6.5) are imposed at a strength section at r = rO which has

a pitch angle Bo . The following relations are derived as

equations (42) and (43) in Schoenherr's paper:

EMplno = [Mt] o cos a° + [M q] sin ° (6.6)

[Mp]Yo = [Mt]0 sin B° - [Mq] O cos o (6.7)

4. Force and Bending Moments Due to Centrifugal Loading

The derivation and expressions contained in this

section constitute the author's modifications to the formu-

lation in Part II of Schoenherr's paper. In Part II, Schoen-

herr's derivations for [Mcbno and [Mcb]zo are formulated for

computation using a propeller drawing. This follows from

the fact that his method, which was funded by the American

Bureau of Shipping, was intended to be used as that classi-

fication society's "designer's check" on adherence to the

Bureau's strength criteria from a propeller blueprint. To

evaluate the direct fiber stresses from equation (6.1) for

the Wageningen B-Screw Series in accordance with Schoenherr's

85

L ]

Page 89: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

mz PE-4

04 4

E-4z

01E-4

00

040

04.J

0 En

.41

Cz~CD0

00

cia)

86

Page 90: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

method, [M]cb no and [Mcb] o must be evaluated from expres-

sions derived from the available information on blade sec-

tion profiles and other geometric characteristics which

are contained in Reference [2] and previously used in Chapter

V.

Consider Figure (6.3) where the centrifugal force

fCF] o of a blade element above a blade section at x = x. = ro/R

acts in a radial direction from the shaft centerline. Its

line of action passes through point "N", which is on the same

cylindrical surface as the blade section at x = xo = ro/R,

and through point "G", which is the center of gravity of the

blade element above the blade section at x = x° = r /R.

From the figure, the following expression is derived:

[CF]0 = (CFlo cos C(xO) + (CF]° sin (xO) (6.8)

[CF]0 is shifted to point "N" and is decomposed into

components [CF] cos (x,) and [CF]o sin '(xo). The entire

cylindrical surface in which the blade section at x = x° = r /R

and point "N" lie is now expanded into a flat plane for further

consideration (see Figure (6.4)). In this configuration,

[C F] cos (x ) is normal to this flat plane while [C F o sin ?(x0 )

lies in this plane.

Let point "0" be the location of the blade section's

neutral axes system (i.e., the i-n system). Then, the forces

and moments due to the centrifugal reaction of the blade ele-

ment above this section act at point "0" and are given by:

87

'1 1|i

Page 91: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

1-4-4

0.

04J

.4)

4

00

X'-'

;0 I 0

- 0

444

2 00

E-4)

H

Page 92: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

E-4

H

X0

0

4 J

U

V

E 0

41

89

Page 93: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

[FC] 0 = [CF]o Cos ; (xo) (6.9)

ED ]O = [CF]o sin (xo) (6.10)

[M b] o = [Fc I No- (6.11)

[Mcw 0 = [DC]o • - (6.12)

where:

[F c = direct force, due to centrifugal action,acting on the blade section located at

x = x0 = r /R;

[Dc]O = shear force, due to centrifugal action,acting on the blade section locatedat x = xo = ro/R;

[M cb = bending moment at point "0" imposed byS 1F]0 acting through point "N";

[M cwI o = torsional moment at point "0" imposed byED CIO acting through point "N".

Since Schoenherr's method does not consider shear forces and

their effects, [Dc]0 and [McI will not be considered in

this modification. However, [F c1 and [Mcb 0 must now be

computed for each blade section along the propeller's radius

in order to account for their contributions to equations

(6.2), (6.3) and, finally, in equation (6.1).

The computation is derived as follows. Consider

Figure (6.4). Again, [F C O acts through point "N" and is

normal (outward) to the plane of the figure. [Mcb] 0 is now

resolved into components of the X-n axes system as follows:

90

F-

Page 94: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

[Mcb ]no [CFlo cos (x {po sin ao + qo cos 80 + Yco) (6.13)

[Mb] = [C1 cos ;(x o ) {qo sin 80 -po cos 80 + Xco} (6.14)

where:

8o = pitch angle of the blade section atx = x0 = r /R;

X distance of the blade sections centroid fromthe generator line (ft);

Y c = distance of the blade section's centroid fromthe pitch reference line (ft);

qo = distance to point "N" from point "P"parallel to the shaft axis at x = x° r /R(ft);

Po = distance to point "N" from point "P"perpendicular to the shaft axis atx = x0 = r /R (ft).

00The quantity 80 is found by the relation:

tan 8 1 (P/D) (6.15)T O 0

For the Wageningen B-Screw Series, (P/D) is a constant along R

except for propellers with Z = 4.

The quantity [CF] 0 is computed from the relation:

wdV o 2 (iG) (6.16)[CF]0 = 1728 acg (27rn) Ro

where:

91

• .. i.

C _

I1

Page 95: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

Vo = volume of the blade element above the bladesection at x = x. = r /R (ft3 );

2acg = 32.174 ft/sec

wd = material weight density (lbf/in3);

np P = propeller revolution rate (rps);

(xG)o = non-dimensional radial position of "G"for the blade element above the shaft

axis;

R = propeller radius (ft).

At this point, only five quantities remain to be determined

for the evaluation of the expressions of equations (6.10),

(6.13) and (6.14). They are:

1) cos (x o)

2) p0

3) qo4) (x G) 0

5) Vo

These quantities are determined by integration over the

blade element above the blade section, located at x = xo = ro/R ,

from x = x0 to x = 1.0.

The values for p0 and q0 will vary with the location

of "G" (from Figure (6.3)) which depends on x. Consider a

radially thin slice of the blade element above the blade

section, located at x = xo = r0/R (see Figure (6.5)). This

thin "slice" is located at a non-dimensional distance x from

the shaft centerline where x0 < x < 1.0. Figure (6.6) depicts

this section expanded onto a plane. Let "g" be the centroid

of that "slice". If x is the distance from the generator

92

Page 96: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

(U

0

.4.

0

-4

11 44x 0

4-40

0.41

H

lid~

93

Page 97: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

H

0

>I1

4J-

144

00

00

ra 0

4-1

Ci)

0

41)

V0i0

.V

L 94J

Page 98: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

VI

line to "g" in feet and y is the distance from the pitch

reference line in feet, then, from Figures (6.5) and (6.6),

the following relations apply:

i = x R tan n (6.17)g

i -a = i9-x sin g -y cos ag (6.18)

t = x cos 8 - y sin (6.19)

where:

n = rake angle at x;

x = distance of "g" from point "P" parallel tog the shaft axis (ft);

yg = distance of "g" from point "P" perpendicularto the shaft axis (ft).

For the Wageningen B-Screw Series, rake angle n is a constant

150 everywhere along the radius R.

Now, to compute the volume of the blade element above

the blade section located at x = x. = ro/R, the following

expression is used:

1V0 = f RA(x) dx (6.20)

x=XO

To compute the non-dimensional radial position of

"G" for the blade element above a blade section located at

x = x0 = 0 /R, the following expression is used:

95

JJ

Page 99: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

AD ̂ At32 414 PRELIMINARY PROPELLER SELECTION USING THE WAGENINGEN IA/1B-SCREW SERIES AND A GENERAL PURPOSE NON-LINEAROPTIMIZER(Ul NAVAL POSTGRADUATE SCHOOL MONTEREY CA

'I ' IFI M P SMITH JUN 8 F/G 13/10 NL

llllt lillEil n1111111IIIIIIIIIMIIIIhhIIIIIIII

IIIIIIIIIIII

Page 100: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

liii I*Q~~ 2.2go11112-

00 13

Page 101: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

1f A(x) xdx

()o-- = 0 (6.21)

f A(x) dxx=x

0

To compute the tangential position of "G" for the

blade element above a blade section located at x = xo = ro/R,

the following expression is used:

1f A(x) t dx

X=X 0

T = 0 (6.22)o 1f A(x) dxX=X

0

And, finally, to compute the axial position of "G"

for the blade element above a blade section located at x = x°

= r /R, the following expression is used:

1f A(x) (ig-ag) dxxo g

Ao = 1 (6.23)

f A(x) dxx

0

Using the values just determined for (3EG)o , To and

A0 , the following expressions are used to evaluate p0 and

qo :

xP0 = T T (6.24)(xG)o

96

t I

Page 102: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

qo= AO - xO tann (6.25)

The expression for cos i(x ) follows:

cos(X) =--- (6.26)0

The formulation is now complete. Equations (6.10),

(6.13) and (6.14) can now be evaluated for any blade section

located at x = x0 = r /R. From here, equations (6.2) and

(6.3) are evaluated. Finally, using the results from these

equations and equation (6.9), equation (6.1) can be evaluated

for the four points, specified by coordinates (ul,wl),

(u2,w2), (u3,w3) and (u4,w4), at any location x = x0 = r0 /R.

From the development discussed in Chapter V, the

values for A(x), Xg yg, I no and I o are readily available.

D. ALGORITHM FOR THE CONSTRAINT

1. Theory

Schoenherr's formulation with the modifications just

derived can be used in determining the minimum required

equivalent blade section maximum thickness-to-chord ratio

((t*/c).75R min ) for use in the constraint Gil(X) < 0 given

by equation (4.8). The procedure employed is as follows:

1) assume an initial value for (t*/c).75R mi using

equation (3.21);

2) increase this value by a small amount;

97

_ J

Page 103: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

3) using (t*/c) .75R rain obtained from step (2), generate

a distribution of minimum required blade section thicknesses

(t*. ) for blade sections at specified points along themin

propeller radius, say at r = .2R, .3R, .4R, .5R, .6R, .7R,

.8R and .9R;

4) determine all blade section properties to include:

a) cross-sectional area, b) chord length, c) centroid location,

d) moments of inertia with respect to the principal axes

system (i.e., X-n system), e) coordinate values for the four

critical points defined in the previous section;

5) compute the hydrodynamic bending moment components

[MP]no and CMp]Zo at radius locations just specified;

6) compute the values of the centrifugal force [F c1 and

the bending moment components [Mcbjno and [McbJ o acting on

blade sections at radius locations just specified;

7) calculate the direct fiber stresses at all four

critical points for all radius locations specified in step

(3);

8) check the following condition on the calculated fiber

stress at all four critical points at all specified radius

locations using:

a]o 1 144 - Sc (6.27)

9) if the maximum allowable stress (S c ) for the material

is exceeded, then return to step (2) and repeat. Otherwise,

proceed to next step.

98

-L J

Page 104: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

10) since the minimum required equivalent blade section

maximum thickness-to-chord ratio assumed in step (2) has

produced blade sections of adequate strength, evaluate the

constraint given by equation (4.8).

2. Coding Details

The algorithm just outlined is incorporated into the

main FORTRAN subprogram SUBROUTINE STRCNK. This subprogram,

in turn, executes the algorithm through sequential calls to

other key FORTRAN subprograms. These subprograms are listed

as follows:

1) SUBROUTINE TDIST--accomplishes step (3); generates,

at specified radius values, a distribution of minimum required

blade section maximum thicknesses (tin)* for the assumed

value of (t*/c).75R min);

2) SUBROUTINE BLDPRP--accomplishes step (4); described

previously in Chapter V;

3) SUBROUTINE HYDLD--accomplishes step (5); computes the

hydrodynamic bending moment components, given by equations

(6.6) and (6.7), at specified radius locations;

4) SUBROUTINE CNFGLD--accomplishes step (6); computes the

centrifugal force and bending moments, given by equations

(6. 9), (6.13) and (6.14) respectively, at specified radius

locations;

5) SUBROUTINE SIGNDS--accomplishes step (7); computes

direct fiber stresses, given by equation (6.1), for all four

critical points at every specified radius location.

99

- J.

Page 105: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

During the remaining steps of SUBROUTINE STRCNK, the

condition on allowable stress, given by equation (6.27),

is checked at all critical points of blade sections located

at specified radius locations (again, r = .2R, .3R, .4R, .5R,

.6R, .7R, .8R and .9R). The final calculation made is

that for the constraint given by equation (4.8).

Again, extensive use of common blocks, for passing

data from one subprogram to another, is apparent upon examina-

tion of the codes just cited. Comment cards are used

throughout.

E. SUMMARY

The end of this chapter marks the completion of all

prerequisite background and formulation discussions on the

application of COPES/CONMIN to propeller selection problems

involving the Wageningen B-Screw Series. From this point,

each specific Design Case can now be solved as an optimiza-

tion problem.

100

| | | 1

Page 106: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

VII. DESIGN CASE NO. 1--PROGRAMMING AND COMPARISONS

A. INTRODUCTION

In this chapter, COPES/CONMIN is used in the solution of

propeller selection problems which use the "thrust" approach.

First, the thrust approach to the propeller selection problem

is formulated. Then, a review of a previous author's solution

to this problem is presented. Four variations to this pro-

peller selection problem are solved by COPES/CONMIN. The

chapter is completed with a presentation and discussion of

the results from the four variations.

B. THRUST APPROACH FORMULATION

1. Design Vector XT

As previously pointed out at the conclusion of Chap-

ter III, Design Case No. 1 constitutes a propeller selection

problem which is solved by the thrust approach. In this ap-

proach, the effective horsepower (PE) and the ship's speed

(V) are specified by the designer. From the viewpoint of

optimization, the quantities PE and V become preassigned

parameters. This reduces the design vector X (see Figure 4.1)

to:

D

P/D

= AE/AO (7.1)

(t*/c).75R

Np

101

t __ J

Page 107: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

Having specified PE and V, all of the design variables,

as listed in equation (7.1), are not independent. Recalling

equations (3.3) and (3.13), the following relationship

results:

PE (l-td) 21Q S NP

= (l-wt) " R o " " (7.2)

Rearranging terms, this equation becomes:

(l-wt) PE 550-60nO QS NP It-T "R - 27 (7.3)

Considering that the open water efficiency (n0) is evaluated

prior to the computation of (-n0 ), or OBJ1 ,2 , then both Np

and QS are not independent design variables. One must

be selected as the independent design variable. Then,

the other variable becomes dependent on the one just

selected.

For this study, Np is selected as the independent

design variable. This choice will reduce the design vector

X for propeller selection problems using the thrust approach

to the following:

D

P/D= AE/AO (7.4)

(t*/c).75R

N p

102

L _j

Page 108: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

Finally, equation (3.8) implies an alternative defini-

tion of X as given in equation (7.4). The design vector for

Design Case No. 1 propeller selection problems is, therefore,

defined as:

D

P/DAE/A 0 (7.5)

(t*/c).75RJ

2. Powering Constraint

Having determined the design vector Xl, a final

restriction to the general propeller selection problem, as

stated by equation (4.24), remains for consideration. This

restriction constitutes the remaining constraint G1 2(X) men-

tioned in Chapter IV.

Simply stated, the selected propeller, as defined by

--T, must develop enough thrust (T) so that the powering require-

ment, specified by PE and V, is met. Using equation (3.2),

the thrust developed by the propeller can be specified in terms

of thrust horsepower (PT) as:

(P_) = T V(l-wt) (7.6)PT) dev 550u

From equation (3.9), it follows that:

2 D4

(PT)dev = 550 V(l-wt) (7.7)

103

L _j

Page 109: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

Using equation (3.12), the developed thrust horsepower can

be defined in terms of developed effective horsepower given

by:

( (l-td) . de (7.8)PE dev = -wt T (Tdev .8

The restriction imposed by the thrust approach method,

where PE and V are specified, can now be stated as:

PE <- (PE)dev (7.9)

Rearranging equation (7.9), the constraint G1 2 (RI) follows:

(PE) devG1 2 (Xl) =1 PE < 0 (7.10)

With the design vector R- and G12 (R) defined, the

propeller selection problem represented by Design Case No. 1

can be stated under one equation as:

Max'.mize: F(X-) = OBJ 1 , 2

Subject to: Gj(X-) < 0 j = 1,...,12 (7.11)

Xl o < X1. < X1upper i =1 - - 1

C. PREVIOUS SOLUTIONS

Triantafyllou [Refs. 3,211 considered a propeller selection

problem represented by Design Case No. 1. In his example

problem, the following parameters were specified:

104

Page 110: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

1) v = 1.139 x 10 - 6 (m2 /sec) = 1.22613 x 10 - 5 (ft 2 /sec)

2) wt = .22

3) td = .19

4) nR = 1.025

5) noscrw = 1

6) Z= 5

7) p E = 18153 (hp)

8) V = 24 (knots)

9) D = 22.0 (ft)

10) AE/AO = .85

The hull under study in his example had the following dimen-

sions:

1) Length = 710 (ft)

2) Draft = 30 (ft)

3) Beam = 100 (ft)

For his analysis, the design vector contained two varia-

bles and was specified as:

P/D

Using an iterative scheme [Ref. 21: p. 791 to solve two equa-

tions in two unknowns, he maximized the open water efficiency

(no ) to obtain the following results:

P/D = 1.1651

Np = 104 (rpm)

105

• Jm

Page 111: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

P = 25544 (hp)

no = .6676

For future comparisons, equations (3.8) and (3.3) give:

J = .8286

QS = 1290000.0 (ft-lbf)

Triantafyllou's results are summuarized in Table (IV).

D. SOLUTIONS BY COPES/CONMIN

The propeller selection problem, as stated by equation

(7.11), is now solved by COPES/CONMIN. Four solution varia-

tions are considered.

The first and second variations attempt to reproduce the

solution given by Triantafyllou. The design vector XT

(NDV = 2) is used in both cases. One variation uses SUBROUTINE

STRCNA to evaluate the constraint G1 2 (XT-) given by equation

(4.8). The other uses SUBROUTINE STRCNK to determine G2(X-T).

The remaining two variations will solve the propeller

selection problem using the design vector XT (NDV = 5) defined

in equation (7.5). Again, one variation uses SUBROUTINE

STRCNA; the other, SUBROUTINE STRCNK.

In all variations, the following parameters are used:

1) Temp - 59 ("F)

2) p - 1.9384 (lbf-sec 2/ft4

3) v - 1.2285 10 (ft 2/sec)

106

I I Ii i II

Page 112: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

4) pwatvap = .247 (psia)

5) Patm = 14.7 (psia

6) wt = .22

7) td = .19

8) nR = 1.025

9) noscrw = 1

10) h = 19.0 (ft)o£

11) Dli = 22.0 (ft)

12) Z = 5

13) promat = 5 (stainless steel; see Table (II))

14) PE = 18153 (hp)

15) V = 24.0 (knots)

All of the above are initialized in the input phase (ICALC = 1)

of each SUBROUTINE ANALIZ pertaining to each variation.

The constraint G1 2 (R) or G1 2 (RT) is evaluated by SUBROU-

TINE BLPOWI which appears in the execution section of each

SUBROUTINE ANALIZ.

1. Variation 1

a. Programming Details

Since this variation uses the design vector XT,

the following design variables of XT become paran.,ters and

are specified in the input section of SUBROUTINE ANALIZ (ICALC = 1)

as:

1) D = 22.0 (ft)

2) AE/AO = .85

3) (t*/c).75R = .0348 (from equation 3.21).

107

_ _ _ I

Page 113: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

For constraints, the following are used:

Gi (R ) < 0 j = 1,...,8, 12

Only nine of twelve constraints are evaluated (NCON = 9).

Obviously, some of the twelve constraints are redundant since

D, AE/AO, and (t*/c).75R have been specified.

The upper (XTupper) and lower (XT ow er ) limits on1 1

the design variables J and P/D are set to be:

.01 < J < 1.6

.4 < P/D < 1.4

These upper and lower limits are specified in the COPES

control card deck on card image F under respective fields

VUB and VLB. The initial value for each design variable

(XTi) is also assigned on card image F under the field labeled

X. The first list of card images in Appendix D lists all of

the COPES control cards used for this variation and variation

2. These cards also specify the locations of the design

variables in the common block GLOBCM (see Table (III)) as

well as the locations of the constraints and their boundaries.

Further details on the COPES control card requirements and

the format of each card are contained in Reference [7].

An examination of SUBROUTINE ANALIZ for this varia-

tion, found in Appendix C, shows the calling statement made

to SUBROUTINE STRCNA.

108

Page 114: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

b. Results

The output from the optimization/analysis, per-

formed by COPES/CONMIN, is listed first in Appendix E. Re-

sults for this variation of the propeller selection problem

are tabulated in Table (IV).

2. Variation 2

a. Programming Details

Everything discussed above for the first variation

applies here with one exception. An examination of SUBROUTINE

ANALIZ for the second variation, found in Appendix C, shows

the calling statement made to SUBROUTINE STRCNK.

b. Results

The output from the optimization/analysis, per-

formed by COPES/CONMIN, is listed second in Appendix E. Re-

sults for this variation of the propeller selection problem

are tabulated in Table (IV).

3. Variation 3

a. Programming Details

This variation uses the design vector XT. For

constraints, the following are used:

G.(Xl) < 0 j = 1,...,12

All twelve constraints are evaluated (NCON = 12).

The upper (XlUpper) and lower (Xl. w e r ) limits1 1

on the design variables D, P/D, AE/AO, (t*/c).75R, and J

are set as:

4109

i • m •| mj

Page 115: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

1.0 < D < 50.0 (ft)

.4 < P/D < 1.4

.2 < AE/AO < 1.1

.003 < (t*/c).7 5 R < .50

.01 < J < 1.6

These upper and lower limits are specified in the COPES con-

trol card deck on card image F under respective fields VUB

and VLB. The initial value for each design variable (X i )

is also assigned on card image F under the field labeled X.

The second list of card images in Appendix D lists all of

the COPES control cards used for this variation and variation

4. These cards also specify the locations of the design

variables in the common block GLOBCM (see Table (III)) as

well as the locations of the constraints and their boundaries.

Further details on the COPES control card requirements and

the format of each card are contained in Reference [7].

An examination of SUBROUTINE ANALIZ for this

variation, found in Appendix C, shows the calling statement

made to SUBROUTINE STRCNA.

b. Results

The output from the optimization/analysis, per-

formed by COPES/CONMIN, is listed third in Appendix E. Re-

sults for this variation of thepropeller selection problem

are tabulated in Table (IV).

110

J

Page 116: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

4. Variation 4

a. Programming Details

Everything discussed above for the third varia-

tion applies here with one exception. An examination of

SUBROUTINE ANALIZ for the fourth variation, found in Appendix

C, shows the calling statement made to SUBROUTINE STRCNK

instead of SUBROUTINE STRCNA.

b. Results

The output from the optimization/analysis, per-

formed by COPES/CONMIN, is listed last in Appendix E. Re-

sults for this variation of the propeller selection problem

are tabulated in Table (IV).

E. DISCUSSION

Overall, the results achieved in all variations compare

reasonably well to the solution obtained by Triantafyllou.

However, the following points can be made.

Variations 1 and 2 give the same results. This was ex-

pected in view of the fact that, even though constraints

G9 (XT) through G M(XY) were evaluated, these constraints were

not considered in the optimization search conducted by CONMIN.

In variations 3 and 4, the diameter (D) was driven to

the limit (D lim). This bears out a fundamental rule in pro-

peller design, i.e., the larger the propeller diameter (D),

the greater the open water efficiency (no).

The minimum required equivalent blade section maximum

thickness-to-chord ratio ((t*/c) 75Rmin)' computed in

, ~~~5 min..m

Page 117: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

variation 3, is substantially smaller than the one computed

for variation 4. As pointed out in Reference (2], the empiri-

cal relation, expressed by equation (4.9) and derived from

equation (70.x) [Ref. 46: p. 6201, does not take into account

the effects of centrifugal loading. These effects include,

specifically, the direct stresses imposed by the inertia load

of the blade and the bending moments which result from rake

and skew of the blade. Therefore, the algorithm developed in

Chapter VI should, and does, produce a larger value for

(t*/c).75R.

A final observation on the results concerns the values

of the open water efficiency. The "optimum" open water effi-

ciency (n ) achieved by Triantafyllou is lower than those

achieved in variations I and 2. A possible reason for this

might be the neglection of the term "dRe/dJ" in Triantafyllou's

formulation of the analytical expressions [Ref. 21: p. 71]

that he used in his analysis. The difference in the open

water efficiencies subsequently accounts for the differences

in the propeller revolution rate (Np) and the delivered

torque (0S) when the relation in equation (3.3) is considered.

112

IJ

Page 118: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

TABLE IV

Design Case No. 1--Results

GROP I'TW4 TRIANTA-FYLLOU 1 2 3 4

PE 18153.0 18153.0 18153.0 18153.0 18153.0

Given V 24.0 24.0 24.0 24.0 24.0

Design D 22.0 22.0 22.0VariableSpeci- A/A .85 .85 .85fied (t*/c) 75R .0348 .0348

D 21.9991 21.9659

Design P/D 1.1651 1.0036 1.0036 .9981 1.0071Variables .8205 .8149

(t*/c) 75R .0330 .0642

J .8286 .7371 .7371 .7343 .7394

Maximize n .6676 .7091 .7091 .7109 .7066

Dlim (22.0) (22.0) 22.0 22.0

Restric- A" min (0.5258) (0.5258) .5269 .5267(t*/c) (0.21266) (0.50761) .021998 .053259

75rein

Np 104 116.9 116.9 117.4 116.7

Other Q 1290000 1080451. 1080451 1064574 1084003

PD 25544.0 24051.3 24051.3 24030.3 24094.8

113

L I

Page 119: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

VIII. DESIGN CASE NO. 2--PROGRAMMING AND COMPARISONS

A. INTRODUCTION

In this chapter, COPES/CONMIN is used in the solution of

propeller selection problems which use the "power" approach.

First, the power approach to the propeller selection problem

is formulated. Then, a review of a previous author's solu-

tion to this problem is presented. Four variations to this

propeller selection problem are solved by COPES/CONMIN. The

chapter is completed with a presentation and discussion of

the results from the four variations.

B. POWER APPROACH FORMULATION

1. Design Vector X7

As previously pointed out at the conclusion of

Chapter III, Design Case No. 2 constitutes a propeller selec-

tion problem which is solved by the power approach. In this

approach, the delivered torque (Qs) and the propeller revolu-

tion rate (Np) are specified by the designer. From the view-

point of optimization, the quantities QS and N become pre-

assigned parameters. This reduces the design vector X (see

Figure (4.1)) to:

PE

VX= D (8.1)

P/D

AE/AO

(t*/c).75R.75114

J1

Page 120: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

Having specified QS and Np, all of the design varia-

bles, as listed in equation (8.1), are not independent. Re-

calling equations (3.3), (3.11) and (3.13), the following

relationship results:

(l-td) J K T 21rQ S N pP(E (1-- t)- . nR "W * " TO 60 (8.2)

Q

Rearranging terms, this equation becomes:

PE (l-td) (l-wt) K T QS NpV (-wt) R" np D KQ 5 TO (8.3)

Considering the relations for KT and KQ in equation (3.17),

then both PE and V are not independent design variables.

One must be selected as independent, while the other becomes

dependent on the one selected.

For this study, V is selected as the independent de-

sign variable. This choice will reduce the design vector X

for propeller selection problems using the power approach to

the following:

V

D

= P/D (8.4)A E/A0

(t*/c) .75R

Finally, equation (3.8) implies an alternative defini-

tion of X as given in equation (8.4). The design vector for

115

L I

Page 121: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

Design Case No. 2 propeller selection problems is, therefore,

defined as:

VJ

X2 = P/D (8.5)

AE/AO

(t*/c) .

2. Powering Constraint

Having determined the design vector X2, a final

restriction to the general propeller selection problem, as

stated by equation (4.24), remains for consideration. This

restriction constitutes the remaining constraint G1 2 (X) men-

tioned in Chapter IV.

Simply stated, the selected propeller, as defined by

X2, must absorb at least all of the power delivered to it

(PD) which is specified in terms of QS and N . Using equation

(3.3), the power absorbed by the propeller can be specified

in terms of delivered horsepower (PD) as:

2w Qp Np(P D)absorb = 550 (8.6)

From equation (3.10), it follows that:

K p n 2 D 21T N(PD)absorb Q 550 " 60-(8.7)

But, equation (3.3) also defines the power delivered to the

propeller as:

116

Page 122: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

21 Qs NpD 50 60 (8.8)

The restriction imposed by the power approach method,

where QS and Np are specified, can now be stated as:

PD L (PD) absorb (8.9)

Rearranging equation (8.9), the constraint G1 2 (X-2) follows:

GI2) (Dabsorb < 0 (8.10)

Further simplification of equation (8.10) gives:

QpG 2 () 1 - Q < 0 (8.11)

With the design vector XY and G12 (-) defined, the

propeller selection problem represented by Design Case No. 2

can be stated under one equation as:

Minimize: F (X2) = OBJ1,2

Subject to: G.(X2) < 0 j = 1,...,12 (8.12)

X2Iower < X2 < upper =

1 - i i

C. PREVIOUS SOLUTIONS

Markussen [Ref. 4] considered a propeller selection prob-

lem represented by Design Case No. 2. In his example problem,

117

L

Page 123: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

the following parameters were specified:

1) Temp = 18 (OC) = 64.4 (OF)

2) Pwatvap = 0.0206411 (bars) = .29943921 (psia)

3) P atm = 1.01312856 (bars) = 14.6974 (psia)

4) ixoscrw = 1

5) h c = 6.7 (meters) = 21.9827 (ft)

6) Z= 6

7) P = 18.9 (MegaWatts) = 25344.9 (hp)

8) Np = 110 (rpm)

9) VA = 15.65 (knots)

For his analysis, the design vector contained three

variables and was specified as:

J

)P/D

A E/AO0

A restriction for the minimum required expanded area ratio

((AE/AO) min ) , given by equation (4.3), was also considered.

This imposed a constraint given by equation (4.4).

Using an iterative scheme [Ref. 4: p. 110] to solve three

equations in three unknowns, Markussen maximized the open

water efficiency (n ) to obtain the following results:

J = .61095

P/D - .864380

AE/AO - 36.1861/40.6123 (m2/m2

118

L -

Page 124: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

= .891012

o= .654391

For future comparisons, equations (3.8) and (3.3) give:

D = 7.19091 (meters) = 23.593375 (ft)

QS = 1210130.0 (ft-lbf)

Markussen's results are summarized in Table (V).

D. SOLUTIONS BY COPES/CONMIN

The propeller selection problem, as stated by equation

(8.12), is now solved by COPES/CONMIN. Four solution varia-

tions are considered.

The first and second variations attempt to reproduce the

solution given by Markussen. The design vector XM (NDV = 3)

is used in both cases. One variation uses SUBROUTINE STRCNA

to evaluate the constraint G12 (3R) given by equation (4.8).

The other uses SUBROUTINE STRCNK to determine GI2().

The remaining two variations will solve the propeller

selection problem using the design vector R2 (NDV = 5) de-

fined in equation (8.5). Again, one variation uses SUBROUTINE

STRCNA; the other, SUBROUTINE STRCNK.

In all variations, the following parameters are used:

1) Temp = 64.4 (eF)

2) p = 1.9892 (lbf-sec 2/ft4

3) v = 1.1900 x l0 - 5 (ft 2/sec)

4) pwatvap = .2994 (psia)

119

L _j

Page 125: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

5) patm = 14.697 (psia)

6) wt = .22

7) td = .19

8) TR = 1.025

9) noscrw = 1

10) h c = 21.9827 (ft)

11) Dlim = 30.0 (ft)

12) Z = 6

13) promat = 5 (stainless steel; see Table (II))

14) QS = 1210130 (ft-lbf)

15) Np = 110 (rpm)

All of the above are initialized in the input phase

(ICALC = I) of each SUBROUTINE ANALIZ pertaining to each

variation.

The constraint G1 2 (X2) or G1 2(XM) is evaluated by

SUBROUTINE BLPOW2 which appears in the execution section of

each SUBROUTINE ANALIZ.

1. Variation 1

a. Programming Details

Since this variation uses the design vector 35,

the following design variables of R-2 become parameters and

are specified in the input section of SUBROUTINE ANALIZ

(ICALC = 1). The ship's speed (V) is specified as:

V = VA/(l-wt)

= 15.65/(1 - .22)

= 20.0641 (knots)

120

u _,

Page 126: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

Markussen elected to use the standard Wageningen blade sec-

tion maximum thickness-to-chord ratios. Since the equivalent

t/c is given as a function of Z and AE/A0 (see equation (3.21)),

then (t*/c).75R is calculated during each analysis (ICALC = 2)

by the following relation:

(t*/c).75R = (t/c).75R

For constraints, the following are used:

G (RT) < 0 j = 1,...,8, 10, 12

Only ten of twelve constraints are considered (NCON = 10).

Constraints G9 (M) and G1 1 (3) are redundant since no limit

on the propeller diameter (Dlim) appears as a parameter in

Markussen's formulation and (t*/c) was taken to be the75R

Wageningen standard.

The upper (XMupper) and lower (M ow e r ) limitsI. 1

on the design variables J, P/D and AE/AO are set to be:

.01 < J < 1.1

.4 < P/D < 1.4

.4 o < O < 1.1

These upper and lower limits are specified in the COPES con-

trol card deck on card image F under respective fields VUB

and VIB. The initial value for each design variable (XMi) is

121

-. ,

Page 127: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

also assigned on card image F under the field labeled X.

The first list of card images in Appendix G lists all of the

COPES control cards used for this variation and variation 2.

These cards also specify the locations of the design varia-

bles in the common block GLOBCM (see Table (III)) as well as

the locations of the constraints and their boundaries. Further

details on the COPES control card requirements and the format

of each card are contained in Reference [7].

An examination of SUBROUTINE ANALIZ for this

variation, found in Appendix F, shows the calling statement

made to SUBROUTINE STRCNA.

b. Results

The output from the optimization/analysis,

performed by COPES/CONMIN, is listed first in Appendix H.

Results for this variation of the propeller selection problem

are tabulated in Table (V).

2. Variation 2

a. Programming Details

Everything discussed above for the first variation

applies here with one exception. An examination of SUBROUTINE

ANALIZ for the second variation, found in Appendix F, shows

the calling statement made to SUBROUTINE STRCNK instead of

SUBROUTINE STRCNA.

b. Results

The output from the optimization/analysis, per-

formed by COPES/CONMIN, is listed second in Appendix H.

122

-L I

Page 128: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

Results for this variation of the propeller selection problem

are tabulated in Table (V).

3. Variation 3

a. Programming Details

This variation uses the design vector 2. For

constraints, the following are used:

G.(X2) < 0 j = 1,...,12

All twelve constraints are evaluated (NCON = 12).The upper (X2upper) and lower (X2lower) limits

1 1

on the design variables V, P/D, AE/AO, (t*/c).75R, and J are

set as:

10.0 < V < 100.0 (ft/sec)

.4 < P/D < 1.4

.4 < AE/AO < 1.1

.003 < (t*/c) < .50.75R

.01 < J < 1.1

These upper and lower limits are specified in the COPES con-

trol card deck on card image F under respective fields VUB

and VLB. The initial value for each design variable (X2i )

is also assigned on card image F under the field labeled X.

The second list of card images in Appendix G lists all of the

COPES control cards used for this variation and variation 4.

These cards also specify the locations of the design variables

123

C

Page 129: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

in the common block GLOBCM (see Table (III)) as well as the

locations of the constraints and their boundaries. Further

details on the COPES control card requirements and the format

of each card are contained in Reference [7].

An examination of SUBROUTINE ANALIZ for this

variation, found in Appendix F, shows the calling statement

made to SUBROUTINE STRCNA.

b. Results

The output from the optimization/analysis, per-

formed by COPES/CONMIN, is listed third in Appendix H. Re-

sults for this variation of the propeller selection problem

are tabulated in Table (V).

4. Variation 4

a. Programming Details

Everything discussed above for the third varia-

tion applies here with one exception. An examination of SUB-

ROUTINE ANALIZ for the fourth variation, found in Appendix

F, shows the calling statement made to SUBROUTINE STRCNK

instead of SUBROUTINE STRCNA.

b. Results

The output from the optimization/analysis, per-

formed by COPES/CONMIN, is listed last in Appendix H. Results

for this variation of the propeller selection problem are

tabulated in Table (V).

E. DISCUSSION

The results achieved in variations 1 and 2 compare ex-

tremely well to the solution obtained by Markussen. As

124I~' .1

Page 130: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

pointed out in the discussion in Chapter VII, variations 1

and 2 are expected to give the same results for the vector

XM. Obviously, the values obtained for J and P/D, as well

as those for D, and Rn* 75R, are very close to the values

generated in Markussen's example. However, the values for

AE/A0 are somewhat different. It is interesting to note that

the value obtained in variations 1 and 2 (and, for that matter,

variations 3 and 4) is, essentially, the limiting value for

AE/AO, as given in Table (I), for Z = 6. Markussen's value

for AE/AO (i.e., .891012) exceeds the limit (i.e., .80) in

this table.

As pointed out at the end of Chapter VII, the minimum

required blade section maximum thickness-to-chord ratio

((t*/c). 7 5R min)) , computed in variations 1 and 3, is sub-

stantially smaller than the one computed for variations 2

and 4. Again, the same explanation applies here as well.

The results of variations 3 and 4 differ somewhat from

Markussen's results. The reason for this is simply that VA

(or V) has not been specified as a parameter. Consequently,

a higher value for the advance ratio (J), which corresponds

to a higher open water efficiency (no) , has been found in

the optimization search. This result can be interpreted

in the following way. Given:

i) a six-bladed Wageningen propeller (Z = 6) which is made

out of stainless steel (promat = 5);

2) a power train delivering 25344.9 (hp) at a rate of

110 (rpm);

4125

L -•mI J

Page 131: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

3) a hull with a wake fraction (wt) equal to .22, a

thrust deduction (td) equal to .19 and a shaft centerline

depth (h cz)of 21.98 (ft),

then, the selected propeller, as defined by X2, can drive

this hull at a maximum speed of V when the hull has a maximum

resistance given by PE*

4j 126

FL W

Page 132: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

TABLE V

Design Case No. 2--Results

GFUP ITEM MAKLaSS VARIATIONS

1 2 3 4

PD 25344.9 25344.9 25344.9 25344.9 25344.9

Given OS 1210130 1210130 1210130 1210130 1210130

110 110 110 110 110

DesignVariable V 15.65 15.65 15.65Seciied V 20.0641 20.0641

J .61095 .6475 .6475 .9927 .8753

JV 30.9138 29.5355

Design iVA 24.1127 23.0377Variables P/D .864380 .9036 .9036 1.1986 1.0308

A/AO .891012 .8018 .8018 .7946 .7986

(t*/c)75R .0397 .0397 .0499 .0638

Maximize o .654391 .6660 .6660 .7643 .7330

DI m (30.0) (30.0) 30.0 30.0

Restrictions A/Ami n .574729 .5070 .5070 .4622 .4266

(t*/C). 75Fkin (.02729) (.0647) .02706 .0638

D 23.53 22.25 22.25 22.36 24.23

other PE (14057.3) (14057.3) 19945.5 20653.7

.75R 6.478x107 5X107 5x107 5x107 5x107

127

'4

Page 133: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

IX. DESIGN CASE NO. 3--PROGRAMMING AND COMPARISONS

A. INTRODUCTION

In this chapter, COPES/CONMIN is used in the solution of

a propeller selection problem where "matching" is desired.

First, the "matching" approach to the propeller selection

problem is formulated. Then, a review of a previous author's

solution is presented. One variation to this propeller

selection problem is solved by COPES/CONMIN. The chapter is

completed with a presentation and discussion of the results.

B. "MATCHING" FORMULATION

1. Design Vector R3

Design Case No. 3, the final powering problem con-

sidered in this study, constitutes a propeller selection prob-

lem solved by the "matching" approach. In this approach,

the hull's effective horsepower (PE) and speed (V), the

delivered torque (Qs) and the propeller revolution rate

(Np) are specified by the designer. This reduces the design

vector R (see Figure (4.1)) to:

DR P/D (9 .1)

AE/A0(t*/c).75R

For this study, the design vector X is reduced further

by eliminating the propeller diameter (D) as a design variable.

128

Page 134: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

That is, D will also be specified by the designer so that

the design vector for Design Case No. 3 is defined as:

~P/D)=Y A E/AO (9.2)

(t*/c) .75R

2. Powering Constraint(s)

Having determined the design vector XT, a final

restriction to the general propeller selection problem, as

stated by equation (4.24), remains for consideration. This

restriction constitutes the remaining constraint G 12( M men-

tioned in Chapter IV as well as an additional constraint.

In the "matching" problem, the selected propeller,

as defined by XT, must satisfy two conditions. First, it

must develop, as a minimum, the effective horsepower (P

as imposed by the design specification. Citing the formula-

tion previously derived in Chapter VII, this condition can

be stated as:

The constraint G 12 (7) follows accordingly as:

G1 2 (0) (P 1- dev < 0 (9.4)12 P E

For the second condition, the selected propeller can

only absorb, as a maximum, the delivered power (P as

129

Page 135: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

specified by the designer. The formulation is the same as

that in Chapter VIII except that the inequality signs are

reversed. The condition is stated as:

(PD)absorb . PD (9.5)

In defining a constraint G1 3 (Y3), another location, say

location 24, in the GLOBCM block (see Table (III)) would be

assigned. But, considering the fact that constraint G9 (X)

will not be used because the propeller diameter (D) is speci-

fied, there is no reason why G9 (Y) cannot be redefined, for

this Design Case only, as:

(P)absorbG9 ( X P D__ _ - 1 < 0 (9.6)

9 P D

Further simplification of equation (9.6) gives:

Qp

G9 (X-3) = - 1 < 0 (9.7)

In reality, the constraints just defined should be

equality constraints. The word "match" does infer equality

in some sense. However, as previously stated in Chapter II,

the version of COPES/CONMIN used in this study does not

directly handle equality constraints. But, since CONMIN

attempts to minimize constraints in the optimization search,

it will be assumed that a "match" can be achieved.

130

LJ

Page 136: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

With the design vector - and the constraints

G12 (3) and G9 (3) defined, the propeller selection problem

represented by Design Case No. 3 can now be stated under

one equation as:

Minimize: F(X-3) = OBJ 3

Subject to: G.(X--X) < 0 j = 1,...,12 (9.8))

X3lower < X. < X3up p e r i = 1,...,31 - 1- 3.

C. PREVIOUS SOLUTIONS

The propeller selection problem considered by Vassilopoulos

[Ref. 18) actually represents a propeller "design" problem

using the "power" approach. The example problem which he

elected to solve is taken from that posed by the International

Towing Tank Conference (ITTC) Propeller Committee. This

problem is concerned with the determination of propeller

thrust (T), diameter (D) and speed of advance (VA) (or ship

speed (V)) for a single-screw cargo ship where:

1) power available to the propeller (i.e., PD) is30,000 (hp)

2) Z= 6

3) N = 105--110 (rpm)

4) Dli m = 23 (ft)

5) hc = 19 (ft)

The variation of ship speed (V) and of hull effective power

(PE), thrust deduction factor (td) and the wake fraction

(wt) is also given [Ref. 18: p. 20].

131

L ..I

Page 137: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

The results from Vassilopoulos' propeller design exercise

produced a propeller that is "matched" at the following values:

1) PE = 21292.6 (hp)

2) V = 24.24 (knots)

3) QS = 1500606.75 (ft-lbf)

4) Np = 105 (rpm)

5) PD = 30000.0 (hp)

His propeller "design" was based upon the following specified

parameters:

1) Temp = 59 (OF)

2) p = 1.9905 (lbf-sec 2/ft4

3) Pwatvap .247 (psia)

4) wt = .22

5) td = .1725

6) noscrw = 1

7) hc9 = 19.0 (ft)

8) Z=6

9) promat = 5 (stainless teel, see Table (II))

10) D = 22.0 (ft)

11) Np =105 (rpm)

12) PD = 30000.0 (hp)

Using an optimization scheme incorporated in his MVAPDP

computer program, Vassiiopoulos maximized the open water

efficiency (n0 ) and designed a propeller with the following

characteristics:

1) J = .852

2) KT = .242

132

L j

Page 138: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

3) KQ = .0478

4) no = .691

5) AE/AO = .767

6) bldwt = 7617.2 (ibf)

By utilizing both the lifting line and lifting surface

methods in his design procedure, Vassilopoulos' MVAPDP program

evolved a "constant stress" propeller blade. Consequently,

the values for (t*/c) and P/D varied non-linearly along the

propeller radius (R). According to Vassilopoulos, this

resulted in a minimum weight propeller. The values for P/D

and (t*/c) are listed in Tables (8) and (10) of his paper.

From these values, (t*/c) .75R is approximately .040.

While the propeller represented by Vassilopoulos' design

is different, in many aspects (rake, skew, blade section

aerfoil shape, etc.), from the Wageningen B-Screw Series

propeller, it does represent a minimum weight propeller that

has been "matched" to specific design values. Appropriate

results are summarized in Table (VI).

D. SOLUTIONS BY COPES/CONMIN

The propeller selection problem, as stated by equation

(9.8), is now solved by COPES/CONMIN. One solution variation

is considered. The following parameters are used:

1) Temp = 59 (F)

2) p = 1.9905 (lbf-sec 2/ft4

3) v = 1.2817 x 10- 5 (ft 2/sec)

4) Pwatvap = .247 (psia)

133

I-

Page 139: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

5) Patm = 14.7 (psia)

6) wt = .22

7) nR = 1.025

8) noscrw = 19) h = 19.0 (ft)

10) Z = 6

11) promat = 5 (stainless steel, see Table (II))

12) D = 22.0 (ft)

Two problems are examined. Problem 1 specifies the following

additional parameters:

1) td = .1725

2) PE = 21292.6 (hp)

3) V = 24.24 (knots)

4) QS = 1500606.75 (ft-lbf)

5) Np = 105 (rpm)

Problem 2 specifies the same parameters as:

1) td = .171

2) PE = 17630.0 (hp)

3) V = 23.0 (knots)

4) QS = 1500606.75 (ft-lbf)

5) NP = 105 (rpm)

All of the above are initialized in -he input section

(ICALC = 1) of similar versions of SUBROUTINE ANALIZ. There-

fore, only one version is included in Appendix I.

The constraints for G9 (-3) and G12 (X--I) are evaluated by

SUBROUTINE BLPOW3 which appears in the execution section of

134

L J

Page 140: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

SUBROUTINE ANALIZ. Also, note that SUBROUTINE DICNUA has

been deleted from the execution section, while SUBROUTINE

WGrCAL has been added.

1. Programing Details

All twelve constraints are evaluated (NCON = 12).

The upper (X3Mpper) and lower (X3 ower) limits on the design1 -

variables P/D, AE/AO and (t*/c).75R are set to be:

.4 < P/D < 1.4

.4 AE/AO < 1.1

.003 < (t*/c) 7 5R < .50

These upper and lower limits are specified in the COPES con-

trol card deck on card image F under respective fields VUB

and VLB. The initial value for each design variable (X3i )

is also assigned on card image F under the field labeled X.

The list of card images in Appendix J lists all of the COPES

control cards used for both problems. These cards also

specify the locations of the design variables in the common

block GLOBCM (see Table (III)) as well as the locations of

the constraints and their boundaries. Further details on

the COPES control card requirements and the format of each

card are contained in Reference (7].

2. Results

The outputs from the optimization/analysis, performed

by COPES/CONMIN, are listed in Appendix K. Results of both

problems are tabulated in Table (VI).

135

L _J

Page 141: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

E. DISCUSSION

Table (VI) presents the results of problems 1 and 2

along with relevant information from Vassilopoulos' "design".

Problem 1 attempted to "match" a Wageningen propeller at the

design point found by Vassilopoulos. The first COPES/CONMIN

printout in Appendix K indicates that the "match" was achieved

at PE equal to 21.168.1 (hp) and PD equal to 28,150.0 (hp)

(or, QS = 1500607 (ft-lbf) and Np = 105 (rpm)). These values

are judged to be close enough to the "Given" values in Table

(VI).

It is apparent that the Wageningen propeller does not

require all of the 30,000 (hp) of delivered horsepower. The

propeller characteristics (i.e., J, KT, KQ and no) for problem

1 compare very well to Vassilopoulos' values. The expanded

area ratios (AE/AO) are, also, very similar. Of course, the

obvious difference is the blade weight (bldwt) . The Wageningen

propeller blade is over five thousand pounds heavier. Does

this make sense for a minimum blade weight?

The answer is yes.

All one has to do is consider the values of (t*/c) for problem

1 and Vassilopoulos' design. Vassilopoulos' "constant stress"

blade was designed to "absorb" stress up to the allowable

design limit of 5,400 (psi) (for stainless steel) all along

the entire propeller radius (R). Table (12) in Reference

[181 gives further details. The Wageningen propeller blade,

however, represents an "older" type of blade which was de-

signed with a linear blade section maximum thickness (t*)

4i 136

L _j

Page 142: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

distribution. Consequently, it was "overdesigned" for strength

beyond the 3/10--4/10 radius (i.e., .3R--.4R) and contains

excess material. A heavier blade, therefore, results. Note,

also, that the optimizer did not drive the value of (t*/c).5 R

to the minimum acceptable value, (t*/c)75Rmin"

The results of problem 2 show the effect on blade weight

(bldwt) for a Wageningen propeller when the hull's powering

requirements (i.e., PE at V) have been reduced. The weight

reduction of 2000 pounds is significant. The complete re-

sults are listed in the second COPES/CONMIN printout in

Appendix K.

137

L..

Page 143: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

TABLE VI

Design Case No. 3--Results

GROUP I Tm VASSILOPOUIDS PR4BLEM

1 2

PE 21292.6 21292.6 17630.0Given V 24.24 24.24 23.0

QS 1500607 1500607 1500607Np 105 105 105

DesignVariable D 22.0 22.0 22.0Specified

P/D * 1.1813 1.0906DesignVariables AE,/Ao .767 .7944 .7742

(t*/c).75R .040 .0794 .0681

Minimize bldwt - 12842.6 10464.7

Maximize no .691 - -

Dli m - - _

Restric- AAO m .8515 .7722

tions (t*/c). 75Rmin - .0691 .0681

J .852 .8290 .7866

.242 .2349 .2063

Other KO .0478 .0448 .0372

no - .6915 .6950

bld t 7617.2 - -

P/D varies with R

138

Page 144: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

X. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

The general purpose non-linear optimizer/synthesizer

COPES/CONMIN has been successfully applied to three typical

preliminary ship design propeller selection problems in which

the Wageningen B-Screw Series is used. The formulation and

programming of each required analysis code (i.e., SUBROUTINE

ANALIZ) have been made as general as possible to allow the

designer a broad variety of solution options for solving

propeller selection problems which can be classified under

any of the three Design Cases that were considered. The

analysis codes have been "modularized" to the extent that

methodical series data from other propeller series, which

are available in the polynomial expression format of the

B-Screw Series, can be easily adapted for powering analysis

utilizing design optimization methods.

Further flexibility in the solution to the propeller

selection problem has been achieved by using COPES/CONMIN

as the optimizer/synthesizer. The designer has now been

afforded the additional capability of specifying the design

variables, the objective functions and the constraints of his

choice. By solving propeller selection problems in the way

presented in this thesis, repetitive problem formulation and

coding have been eliminated.

There are other advantages to solving propeller selection

problems specifically with COPES/CONMIN which have not been

4139

Page 145: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

directly addressed in this study. As stated in Chapter II,

COPES/CONMIN is capable of performing optimization analyses,

sensitivity studies, optimum sensitivity studies and optimi-

zation using approximation techniques. The designer, there-

fore, can select and perform any of these options, using the

same analysis codes which have been presented in this thesis.

While the utilization of a general purpose non-linear

optimizer in solving propeller selection problems allows the

designer greater flexibility in the selection procedure, there

is one important limitation that should be stressed at this

point. This concerns the question whether or not the solution

vector, determined by the optimizer, is a "global" optimum.

As stated in Chapter II, COPES/COMMIN assures that, if a

feasible solution vector is found, it is, at least, a "local"

minimum (or maximum). This implies that, for two different

initial design vectors which are specified in the COPES Con-

trol Card deck on card image F, the same optimum solution

may not be determined by the optimizer. Both solutions would

correspond to minimums (or maximums) of the objective function

and are, therefore, correct. But, does one or the other

correspond to the minimum (or maximum) of the entire vector

design space, i.e., the "global" optimum? For the moment,

at least, there is no definitive answer to the question.

Despite this uncertainty, progress in the field of design

optimization continues to be made. Current developments

[Ref. 47] will soon allow the designer to have a choice in

140

Page 146: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

selecting a specific optimization algorithm from a "library"

of proven optimization programs which employ the latest

state-of-theart numerical techniques. Again, using one

analysis code, the designer will be able to generate any

number of optimized solutions for the problem under study.

B. RECOMENDATIONS

For future consideration, it is recommended that the

automated design and trade-off capability, provided by a

general purpose non-linear optimizer/synthesizer such as

COPES/CONMIN, be applied to the more difficult problem of

propeller design.

As pointed out in Chapter I, the use of the Wageningen

B-Screw Series represents a "selection" procedure rather

than a "design" process. Today, analytical propeller design

procedures, utilizing lifting line and lifting surface

theory, are becoming increasingly popular among propeller

designers. The propeller design, which results from the

utilization of these analytical methods, is, unquestionably,

more efficient than the standard series propeller. However,

these methods require consideration of many more design varia-

bles in the design process. This appears to be a natural

application for the use of a general purpose non-linear

optimizer/synthesizer.

Here, an analysis code, much larger than those which

have been presented in this study, could be developed which

would incorporate the lifting line/lifting surface theory

141

_J

Page 147: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

for the determination of the propeller performance character-

istics, the local cavitation numbers and also the calculation

of the pressure distributions over the blade. These pres-

sure distributions would be utilized in the strength analysis

of the blade. This analysis would utilize the finite element

technique on an appropriately generated mesh model of the

blade. Having defined the steps for this design procedure

in the analysis code, the propeller designer now "couples"

his analysis to the optimizer/synthesizer for determination

of the optimum design. A massive amount of computer storage

would certainly be required, but this concept is feasible

and, in the author's view, is worthy of future consideration.

C. A FINAL NOTE

in conclusion, this thesis has demonstrated, in effect,

another interesting application of the method of design opti-

mization. The author, in no way, wishes to leave the reader

with the impression that the techniques of design optimi-

zation are the "be all--end all" for engineering analysis.

Design optimization techniques are useful and powerful tools

that stand to relieve the engineer of the mundane tasks of

numerical calculations and subsequent graphic plotting.

But, they are just tools. In the final "analysis", good

engineering judgment is paramount in their application and

use.

142

Page 148: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

APPENDIX A

FORTRAN VARIABLE CROSS REFERENCE LIST

Symbol Fortran Variable

AE/A0 AEDVAO

(AE/AO) m AEAOMN

bldwt WEIGHT

c75R C75R

D DIA

D lim DIALIM

h ck HCL

J RJ

KQ KQ

KT KT

noscrw NOSCRW

N p N

P E PE

P D PD

P/D PDIVD

Pwatvap PWATVA

Patm PATM

promat PROMAT

os QS

Rn*5 R75R

Sc SC

td TD

143

Page 149: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

APPENDIX A (CONT.)

symbol Fortran Variable

Temp T EMP

(t*/C).75R TC75R

V (ft/sec) v

" (knots) VI(

wt WT

z z

Tio ETAO

TIR ETARR

v WATNU

p WATRO

144

Page 150: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

APPENDIX B

SUBROUTINE LISTINGS

I.-~ IU li I I - 4L J,'It CL U(4-4 0A L z 0-.j - 0." U

LUL 3 ILnx u (A I W I-.MO-x U. :33JQI 9LU CI2-iUJ.3 . COCO

4 - (x I- a: - U. -. O.)~II-- (3.;I-I. 4CL 01i - U.>

uJII0 ~f-- Mae x ozJ -4. IJ -4 3tJ4.4Z -0" U - "

JaW :-i3 L'f34 fl- Q JJ 0.-- 3U -.4" Z acL - 3~ 2

Ae X 4 _wz-AW- CCI--4Z .. O zxu- 4Z

A) %Mo.-*(nJ-U 4 L.L -9 -- 4 LI. ti4 ~ -m J..Ja 'ULI. 'j-12 LU .4.4 Z -- 0I1-:JuWI-.OLCLUJO 3-t- Owwu 4 w ww.JU.LUL-L[J~UwI-,U..u%6Lww4i C3 (yJf~kLL l- CO.Wo Q L4~w 4 LZ-..000.

Uth044 =,% LIJLd LU*(w Ic~ q'hDxum- LUqkv/IxUdI- qvtt. I-- W4- AU AO3 1- 0 1--L60f -- Jt'J-4= ZAX-J40C ZI--J cd Z44Wju0 .-4 041. ZIA J.~0

Z- ZL. 0.0 .4-4O06.<J~U1ZW- bLU- u I..Zt. I-Z.3 0 ~l ~ ~ 4 - Z 3 0 0 4

IA CLN

4 LU4 ZCC-=Cj~-uu"0oj-LO -q ow --4 x "Lc "N 4- c .

-N N 3 3 3JJx ). -a 4i 4

xa LD at 4 4 4

- Z Z Z Z Z ZQ Q4 t0 Q0 C3 W

f- xx x 2 x x.3 Liu Q Q0 Q i 03

0. j

LU LU

C3 Z

o 0 - 0CL c _-j p

j145

Page 151: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

, O O O O 0'2,uNnt in i~~O~ 4OO 0 O o 0o o O O O O O o a*O o 0Qo t.% w 0 0 ufuO

~ 4 SP-0 0 0 -4

I.- Lu -- iLjOI- lU LUO1.- 'JJ 1-JlUOI- u uiOt- 'm *Jj'ij * :Ucf.

~~~~ZLZli wo z~! ~ ir E ~ ~ -c

W M jJL4LW 0 OLW'4CW 0 tJUIflW :3 O.lUJw -n o0oa ~ .z.3

~z0c 14t4 IA Z4fZZO -JZ01Z~9 Ai-4 zm-ivza zqn-4" Qz -. 4-4 Z -' Ili =.- lJ : -JLJ1

j..IQJJ 0042J -0,2j J0, 4j.J 4W U--6 J1--- -- Z -" x -Jz - -Jo. - -(a

4.leUWLUL Q.JWW L.L. liJW:UJ. (Wj-JW Lu UUWa U, ~ :;d) I) r- -<U. o. Z 4U 0J~m~u 0. IMCL.~U.f UI 60UJO 1-ta -i

.1m Z1-.JW4% Z4jw49m ZI-.4< Z4 JUJ4C X )(Q* )ZL)* (A< z

CJI~~~* -- 4a * Cy L.LU( 0 . U U . L C U

LuI- aWIW-Z CQI.W l.(aLJ0I.Wl-WQQaIaWl. 4U.4Lwk U -1 -1

0. 94 z

3 Q 0 0 t(I

-aj L)r q:p

4 4 4 4 -m43 4- -J~.<

9.302.

z Z Z (cc

(a 0 a 0 0 (a ~ iL146.

Page 152: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

13 -4 -_-0- .4 zt4v 4 4-

I * 4 -qkj 0 LU

DO U(-4 &U -0 - ('3-O-4 (Z3 _

- -4:X3 Ww =4-- 0-4c4.3 . .C .S-.44 f3 ~ - 3 C

%_M U._U.L - "Q QJ 0. 0

t- -4moC4.-4 -. 4 z -

a' 0-0-4'4 -L. - 0- 4< 0. 0 % .3 %

-- j ac I-~E U

- 6 "6.4 -4 %r" '3cg I.' -'4wC~ * LW. - '0 '4

.0 .00)~- voj LU

0.4-44 M... -- --8-a: -4'x A'JL'0 0* 4)).-.. qlj JC 1 .j N4 -4 N

0-J> -Z=44. M4< 'i-. 0.n-uV7 ' LULU Xo- -4 -4 -~z. O atn0 44) %. 44 --- 4 .q

* 0.-4, OJC" - -. AO 00 Q 0 C3 0

00( .-4 -Xqe- 3J 4!V- 4<

8-- w4 '4OO- UJ< tJ.J v? t0 -13 P0

Y. -go - .4 X 4 X.,4 44C e-w MOW low0 .4 .4 w ft 04- - .4 (-D Q'4 vi 4 l.l

QC(M 0(3z4.J CO Q - 49 )- Z -* * *tm ..4 "m-4 0 .. 4 .qt4L P-~ f. ac) LUj .4x 'u

OX k4 -tm .(m4% 9( OW *00

---- .- Q 8.J % at 0 0 * e'48- 04.". - L40 n) ~ ' - 0 (3-4 0y-4 -J-4

Il. 09& JJ4. ^-.4 4% l WI.L4U 1% %-d041-J -bLjLj . Lu 'U- Luw-LUX w.-4.4-...4 '4OL)8-JJJ ! 4.Q) sti 0 N o il

Is Nqw LU SW4 LUq ow

_r It -t LUZ -~-Iz8"z-ZZZZZZZZZZZZZZ X Ow) ZIZQ ZO'. Z* * * 430tJ40 -00000000000 ad Z os-oz 0'-4 0"-

Lu LU U ZC'L0090000'0 0OOO0OO0 LU U. OOU.. goLu 00

147

Page 153: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

0-3.

~0-

0-A.

71Q

6W

ux

_j_

6y vy

4<4.4.q<14 _L0

c3QQ~cac~c3a 0 x

(4 Q<q44444< 41444~4 I-Wu -- J

C3 0 O********* ********* ac cj

-* * -***** ***** 4 '-.' -*~ CX-*-,0.00000 00000 ZI- tuo -NO*. -NJow ao 0qooowr_(r-_ oeQQocj L 0* * 0"1* Of"*

* ~ -4 *(13JocammfO uor-~ca -oUaS' or-O OUJO 00wo,o~ 0 tY.O0~.~.1..,O* 0 444O(%L% a I-IA M .4Il r."1L% tn~

*0 * 6 *0 0 0 0 * 9 0 LA4 . 'Ofl 9,0(n 9*0(n(3-4 .4 C--NN J %.wCC1'CJ.4.,. IUJI± ZI e e 3Y a 41 ( 0 S01M - LWu.W w. W av. 1~ WL.JL JdtJ.^0 UAJ W 4.j k .Jj04 t of *N IfNI9It I 11 01f ia - 0.4x 0 S11 1 *ifo olIt

'4-.. -4- --- 0 4-Q -J* N

Z 06- -Z MWZ M '- 02 C)* P-0- t- 0 WOI I 6 S -I 6 I-- 0 "t9-- Z Zwo zJ)(aJ Zw ZLL 00 U. 13C 0 <<<U. 0O~u C:Ot. 00

-. Q.~ o .D j QxI- OW C .P. 'Qb OL)

4 148

Page 154: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

4A r0 04MtA4rtm4% -Nqr o-

-4-*n pmb m t~- (% mtnQ-OJ-4 M 4

(7i r0. 004'I~ &4 0 0 60 a0 GO 0 0 00 1.0O.3I1).4 *0U eW0O

,o-4tno .-4-- im inI. 0u0O Lf'vr.0 .40 m U 0.? -0

1.4 t-4e0 a aa

w 4 w 4A-4

Q4~ ~ Z~ 4~cO O~ Z ~ 4~4149 ~

Page 155: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

a 41N oI oo 1r 3

Q. 1~ II' 4'j~ C"CL'4 1".G am. am.4 '4'CJO1 41Ma 0606a.l*j1d~t' dLCO dVt.'4 CL It

LL:U -J;-

IIz j

0u0.IlJ.A Z.1

If 'J.0

£4 .U 0 10A.OC LU '-4

4--JLU Li

74 0-UQL z1 -t

4- -

If >n -.1QLUQ. N -U *

LU > UJ

m- < a .-tnL -.1 acU - -c

'1.r aj 4 U 0CL LA. LU- u~ n u awo ttjsi

Or CX QLU 1 4 1100000-4-41NIC'J 0 .000-4-4LU-4c I9 LUNI . 'In 0 0 0 * * * . 00j a 0 0 a *

31.-M" 11 9.0-.~ 000000000 11 44 00000Lv f a.. cg. x cii U. ad II1 a lol 1111 to ,1-- tolol ii ii

m-Wi- (J 49 - UJ U - --- - -- -0-4 -

z - 14s 4 .aa a aa aaaaaaO~u aj 4. LU (Za ~ ti c ca a t ~fl

Ji'LJ LU 1-4- P-4 CJJJCJC(C. 4 m4 - Z

~~i-4I If If if. If If If .41J.4h It~i UJU - (%d - l.U >~.I L . l...UU -1 1

ICLUX 4 a a4 P- I P-. I IIII I III 4 -. Ii 1~ 4- U 1-0 if'a a -s LUj

LUJZ4Z 0 0 Z< mm<.4 U.

4 150

Page 156: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

'Ai

.A3

QUQ

151

Page 157: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

Q0 Lno 0

N NN~N N NN~~ ml $ ill 111 11N $1 - tlo

C(300fjQoc3QO N N 0000000

~4 0 .- '111 -?U#off" 00-i- 11011011?U . . .-%4% .& .,U 666 61MJ r - -i - -

4 152

Page 158: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

II

'U 0 t a tItIIIItI

1533so iss

I s toofofIfIs 10-- 411 , " to' to Ittototoit - Ii It t s of its #I5IfIs II-# itof I 4 Of I

~ 5~ a .Z4

153

Page 159: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

OOoOOOOOOOOOOOOOOoOOO-~OOOoOOOOoO~OOOOOf~O~ ~OOOOOO

~ ~

4.0

II

OO~OflOVOO'1uWwW'~OOOO 0 ~OOO~O~O~ U. 00 ~U~W~~4.,-40O

~~OOU~rr~OcO0 00O0-E~Q~O-4('*O0 oI~a~er~u'gdwg,4J.a~'rIg 0 *.wr~.rq~,.-,i.J 0 UJ ~ 0 * ~ *~.JU'~M

~ *eeeee.eeC0e.eeee.eeO 0000cjo~j~.Juo g w jo~.j~uta~u gg ~ ~..~ooooo~c,,i ii Qc3000QOOta ia .-. '.JooNNqqN.9tgw~~wgsflIgigNIIIgm.m S4 ~

aaatJ On aaa

.*..ffbb.in. U .a..fbfafaa. *IJ *4.4.4.4.4.4.~4.44.~44.4.

~ * U.~U.U.U.~UU.U.LL~4qq4qq444LL~LIJ.U.N~NN(~JNCANNC\J(%JC%1I'NJ(%J q%,jC~JC'.JCJ~N * ~

* ~

154

4-~ J

Page 160: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

Lfl

042 00 00 6 0 0 N 000 a 0 00O4 f~f

-3O~.JLJ0 UI ~ U Z uJ000000w a OUOOOC2cLJOq.c(JtoN~ I~I9~I M II 11" If" I 1 -fff l t 1 - ~ ol 1o

e e a ~ tJa a uQe --

155

Page 161: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

ac.

10

9gn

LU #16o Soo 0 0 '0 0 4 0 0 000 0 00000 99 4C0600go* 00OO*0000600O0

-40O(3~~~ o00o2 (2ic00coo 1o00oo011 "0,r-.41* lo loll lowu 111 11 -1 lo 1*1 11 1 11-0 If " " Itd If" 1w 1 -

g .0.1 >ZP'421 '4.'.2 IA >3 >I~' 20 >.'p > 2m. 4..4rdI>.2 > IU > U >'44 > > > >> > 1 > hI> WU'-4

OUQ~

156

Page 162: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

if 0 0 0 000 0* o * 0O090 O O 00000 o00og o 06000 o

c3(OQQ4 j3c20 44-QO(JOI 4.

* Oft$ 1111111fill ll -4 " o i n" o 1 1 1 1 1 - l

'M =Z

o. U 1.161.11

o0(I~sn~rl~Q Q 0O00Oo000000UQ on0-e

0rn~00 O0 u.000 00 00 O0 00 000 0Q~.41570O

Page 163: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

0 0 ~0 0 M 000 o @:0 * * *~ o o * o o00 000

^^O z 0qQ2o4tt ~ O f -wqjW-

ffI o - fo 44o 4849 oft f fI I f- f44" tao "4$i

4 AI,,t 466LJLLLLIkLU4 MR41

CJ >71p 00 i>>I .2s 2:10 0> 2 Zo 1

OOOQtfQ 0O0000QO~0O0OO~0'~flflf158QQO

Page 164: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

0r-

If

.4O0U0 0O0 00O00 0 00 !0 0 00.Ot 0 00I OO0

wliwo 4 Q~J03t aI 99 f3Qa(UoQ III Is'J'J~J If .~JJJIS " OfN- to Itt l "0 o I f

di

159

Page 165: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

00000300000000090000 000O00000O00C000*OO000

16

ru 00 0 0 0O| 0 0 00|O 0.q 0 ~ '

Page 166: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

0L0C 000004 0 ( LLLO LCCL(a .. Q..Q .. mi:600000000Om0%9360.0OM0O000O0000

-4 -

Cf. I--

qce *4 -

-. .U

.

~1 C)

LUL U 0

co LL "s9

-U -4 --

at.0 *. 4. I_u Z- -(%- +M

3 - --

0(y au. I - .

0.~U 06*2

4 U. --. %* - -%UtL ses esgo . L UU lj -%

LU~~ )-" - I-f. --. 4 WINI~+ a3 -- 40.O44--

-J 00 0000 -. Gd * WYWL.L Q *,Z

.U 6 4 0 Zf- 4 11 .2Q qL 40 1.0. 1- 0030 saaac - -4( -44g --.

aa-0 -0I3..K q Aim . 4 f- -4~ 0 * I.

-4cOO 000MO &&, -%U. 6X&4L4II 44-II

4q *i x x 6J; _-j a. m *j 0i of^ LZ NII 4.Uj4 ~ 1I.- .J

OQU QQ .. NUw .U

U~s4 0 00 00 00 U *-4W -UJ~161Z

Page 167: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

An - j

- 0

- 43 at

4 0 - '-

Ok N .. - -c

-w 4 .- -40

-% 0 j. :3- %a- '1% CU a S0 _-4 .4 "O.4m * 0 (j -4L

1.' Z4 0. . 1 ..g 04 *- *C -4 3- *- '-uQ Oc.. --- 00- -

00 3 4 -04 "I. C4. &I -4al' era 0 4.

(3tt 0 0. N0N .U . C IO . f 2.or.J -4 *D -L *-0-~( 4 * (.3 4

C3" 4 0 4 * I - X~. -4 *. *'~c * U-w 3. - *"O OctUw44 +0 -- - *

CO 0L N. .4-4 ww '*** w O 0 0 ""

0 I4 -4 +-o+ -+ + +--4+0 . ca. to.~IJ. 0-4 + 4 -.. 4% - X O 1 4.4- 0 .X I-C --.- 4 SJJ4 z

0."4 . Wn -.- i 0 ~4 -43- MSt rN ."~ -4 A4-.4- - * (n4 -cq -4.44 4 =CJ Ifq4l( ifc ..s.I 4 w * - U.

q4 )4- '.40.0. M .M4c~-. - . * 6 1. . I40.

U -Jo -. j33-4>-3444Qv--4- 32U -- i *O4'-.4-4-Q(" -. 1r -AL00.

.9Wo . IS 4 AL 4a-%S4 - 40 U. 'W38 wU.4-.4 4- I '4.j 0 -40. 1 X0"" - XZ S -4cx>C A %4 :34 -U .L. U4-4'-0d U LU.4 -Z 0-0-(

-4- *4f0.4 x *)w. Z49 J 4 w..~ tI -4-0 A-4.. 1 - t- *54..'"LZZ Z X-L0- - A w -4 11 -4 -0-4-U w Z. u. L

Wo-0 0.Q *.0.4-&33X-Z Z -~ ZO ->)I x . =).-40 C0". 00 0 s-

wI.J 0% NZ C2 -4% q U .4w ww 4JJ~J 0 ~~-~04 'q04 ~ N- 3fl .4J NO~u N.a (N~C -I

5-* -.. 5,4m..~4~ ~ 2 -N4.? .4Q~j -0.0 -- 5162- 5'4.

Page 168: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

DCLUQWWW'J'L U U*W 4 WC ' ' U I f U'

- u~ 4 *L

* IL 4tA.J -4-(

O* z~a _u

U. C Iil 4

.J~LC UJ4 4LU

U4- Ou fll9L2NCLL -Oi(a :2 - J* -A" U)I.-U LU L6 4cd)

- 4Z ZAq

Nj -I,)- =9-c "tz :a c1.% 44 mA x

MA C:) - " i.% It4I< W

4 M U a.4 --" :3 9jX- v 1 -U c- 10NamU -4W(J4W a -N4 - 0

Z!,~ -- ) 0 Uc 1 - U*(- 1 J

-oX--. LLIU - 4, -c- 4u a O

0-*6 +4+ IJ-44 4c2 40 .4. Q.0 I 4 9 LU LUJ -

'. U.U.O -.. LU a.U Q" N4(M* Z--. JI C K).WON 00 ... '. -4 2 4 '*' (~o (

:r Zo **-*ao -./)~ W '-(r. I *U (2 .

W%----. .M -co A - 1-4 -4rxa4 "=w -~ I

~~~~~~C CCa U. ~CUj wo44 11 * '40- 11 3J, U.) Q4 * C~ U4j

0 11 aLL+*..- Q JJ4 4.1 * 4X~ ULd) 16.U.. Uit _j

a)0a.33.w VI CM(a "Ox0W Z-Z -j UJ.. d- zoo. 00 zoo z.J.1lL4d'..4 49-q 4I9- Qp9 " ZWQ Z W Z J-. x ~ z ~ Q -

AU I9-4 -LJ 14 z -a" p. now .wwuCW a.U t.1 WU4. WW 'WsIa. WW -W

Q q 4 W J3( "U~ (J4Q Q

in . UL ~ 0 ~ - J ) U.. 6 gy g P

041 N N 1

163

Page 169: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

t'f41lIlLR IS- QON11(f) .3r-.QO -Tr.J' ltn-4N~4Lfl XNr- l~n

MC6.CM4&60MCL0..0.

1- -4 -q

3:3-

Z M L. L4 . (Y.

I. -c c

~±5--4 1---0- 3

0-4~ - '- L3 t.1:19 4 14 XZ -4- -

I _j c.o - V)j - A -O I ~ '3. 0u.1 -q- m -c .wj- l'

4LX Lq <X -I.:

U. CA 3 -- a ca . -3 4Q Q-~ Z- X -4 Z~ Z-

,J .J *-s- 4 I

0.) -z N U 3 *m/. w 'X -)I Z - -IU 3u4-A

"lJ C 4 -Y +- I-

QUJ 4 t- I >4 )W. -EI If 4 i<-.- <= 0 M" MCC, 0" -- I < -

I.- I QQ - * ow 0c IJ -0 114.J~~ ~ ~ i D1 If C U a.q- 4 UJW( -- MUem (

i 4m x 2 1tj -> f4Ztw 4X-Q -:-q 3-4 ( x'1 -j 4"4 -ZO Q"

>. )j 43c - 0 9 43o 2)4 -JC of- -.- 0 " J-O LJ L It ,u- U)U .4 7.*J I4 %< (2'.0(2 o- Z

ax ~ ~ J Uo -xzI XZ3 -- - - - -71D0: 0a o O "z W -. 0"c m N MIX.0 4 -r XI -4 M*09 wo-

- ~ -0 .44i of. 141 -'i tX - - t- 2

-O WL6 Q WW W.W et U0 I O.-- U.1. U3 -44W).-4 eQ (

C.w - Q W> oll- o -.- OZ 3: Z C4 .) *f I)

ITO M ~ Z - ~ ~ -4 i J I

4- ~ ~ ~ ~ ~ ~ JLQ 43 2 - L3. O)Q3 4 b-QXe ~ * ~ 4~f ~ Q"4-QX L Qi -

- ~ 4- ( 4 '4 (2( -.. * 3L 00 -0~4J.-164- -

Page 170: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

.3aIr,33() 0, ,0

10 luQ l OOQvw'UDO oo A O Okk

o... ... CCCO. 'JCL 4u. CLo-.Q. A.G. ~ C3-L.0. 'LO. CLor-o

.3(

-4

LA-. -z-4

I- Q so:3LI -j

-4 _OQ I X

J 4u UQ .z -. ). J

"Z- 44 3 If

04 LUJ

1CM 4- "==-. -4Q .3 z -14" -- o QXz U--

,J).6 CC - .@I- S-0 -I- l- -

Q zmz _j ' .73pa zoo- 0 u" 0 3

If of-* 0 u PU.- t

(0 maum u* L WL. - ~jc1* j O .4'. -ak. - w

r'4 ("( ITs ~ .LAI to w" I.2 ~ ~ ~ ~ ~ ~ ~ V - --- eLA* W .. LA

0 3 U.. £J.-.-3 .- U.-Q*

0 LI~ (J(3L 04) ~ A 165L

Page 171: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

0-4 -. 4...-4 -4.4.4-. .4 4.4 4- 4* a 1 .3-,.4-.-

~ I. - OZ X U 40

.. .u%iU LA' 0-t a -.j WWWJ- U. LI

S LLOU-L XI-L% :V _

-l %- C3.. W.-% r-. . .~ .** j</S. oc4 - =44 -% =4 .--qu _j Lnf I 31--

':4 06 60 N. .0 -7 .4 cc

U LUCA.JIMLU w~ t- /)31 LI ki- ww 4 4A~ A-u o l .u' ftl z~ -3 U cw +4+

Uitd) 04 X~ a. - 0. 4:3 M~- _

I. U. 0 u SAO iU Q .- L 4L 0 o-- 0 V.

Q 4 0 CLM.MUC aL4 C3 Lqf - LI4 _-j UL "4-MU(i-44 dc4 W"( .J 1, .43 C + '3&

o -.Ju .. ~ ft a uu *o i-40 4444

~ JCWii- .4 K >am 0. 4 <** 4LUWAc A.M ;.j L.J.I L0 a). ~ LJ

ZIJ-- (.L 06-U C3 ftn (AI L 3 -M 0 -4C4

0 Q ~ ~ ~ -4(1 -Z w 4" - ia ww 4

0.4z I NJ-L I4 q-1.U -C-= WE >.aI- 'I) '0 .- L% N

<a1-J -. 4 3.2 43 =,% a 06-4. Cd) -3i z -i -A(XLUW"4 ".q * Lt . M/3 UL 1-0l

*mZLI'U -- 3<0 tv)- 0..-. X3 M*0 13z qcmqf- v+-ft ft zI -) -4NU. 2 .- to'-4

1--=Q* Mt*.Ct~ i--.Qu ol-4tQ. - 0 -0Li-Q " -W-7 4 -M V) L "% 0ZI- 0

j ~ ~ ~ .4 -41-4-Cl ft ZZtQ>Jw L - 0 4jr. Nn< .rq t

0 ~ C "n-x 0 L44L.3 r.~ .4Z, N0 4' 04 3 4 -1j.-A o er-o4 *L&4" LIW N% ow4L L-0 1W-

0. m 0 3Ifl--l- .uI3u I-LU W"" -4 cLU L a N' 0 N

4 4 Ex 4 -IJ -i-2tX(7UIQL34 'L/). - IrcCZ -@- -I- 3-4 1% LUL 4 L.P(L- .9L % . 34A .94p 3t. '4 0.. 3 0

QM-< CACLI~fl.4. 0 11.- a - * 6.4=4x ;j ZZNd3i3- _ .4gxxa ww .4 LU C 4 1-N ON 0co MI CL ~ *cq 4xW'fl7 1i- - I/)1~ *- 0% Z

V) .4 QN-Q 1%%.~W W4j~4Q. 0:3 uJZ- cla 0. "0 ~ ' W~ 3 ~ 4 * W~.s4N*

4~~~cuj 0 ( *Ltt.4 ~ 0 o

LU l 4%I~t W.4 K.'~U ~I % 4..IU166 L

Page 172: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

CL,00OO0OOOOOOL0':,'A .CLO

10 10~44~JU r~tJ~JULJ(J(J _j(J3'3~

4% 1% -'-41 4

- 00-4 -4 * 4.0 30 0 ) - 0

S0 00 R L -

"n N J N N N

0- -o 0 D 4J

I- ev2 - '

OO0 0 0 4 o z* 0 0 W 36%W

N ON LN 4

~ *~ % 4 4167

Page 173: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

Ll. 'U 1-, -4

a. U.- u i LAzLU- 'ruOz

-oA U. Z q (J Li o

LU1 -JU.J Q* I- (ac 'UQX-.' - "I-4L :>i 0- 2 (A Q

I--'A .CL CI- 2

a a u LM I~ - C3 - -2q z LU reZ .LL r- > L_j a 4 LZCLZ- JUJ. =,Lio(: .40 Q- 1:

'4 U.-Q'-UU .4l t-( s.1 4 - 4 '4n(AC'-4 -JL.ALLL* P~l i G ~ %it UL6- %. C

LUI *-JJj" 0-4." XI) *) Z l ) 6

4Ui- 4O -7X '& 3

%<m4 "W G-EZLLtJ. CuJ 442 I--.

Z 4LWZOC7gWW (W-x JOM <Z j W ac

.A. Li~i~i4~E..C4~i L * r~r~ *j Ln ICM Li '

o o 431-JQ~ -C Q44 .'31~.- 0 ix.

0.40lp. GL.J 044 .J4 . .&UJ4 'af- ZZJ CZ Q6 0.

Lii 1-2 O- ~ E

Li~ Lr QG~-- - - L4 .2 -44fl9. tj Q0 0 0 f - 4

0 0-Ad -ac 'c4 -ac LU 4 A

- 0. WrU..-3 A- U > - ~- I- Sm ftw.341-L0.. t- _u I Q 916 LU

Q ~ 0 - £GE2 C Ln of L 1--. 0 ( I.2 .4JIX-7 01=g : x _ 0 L U

_j 133 C3Li" j 04M W ) X I- j -IJ 414 Z 0. -6u a J..' r-E L % 0 -0- -a

LU fu4 i' W % 1. ' 4 - S '.0-1 ?_._20yZ- .0A_.u3I-GE4 I- 'L PZ -- 4 44

0- UJL.b lC6X'%-r-% i t- V. C w- P- "4

X 0 ft q *040 I- "E I- q "

uc QC ZV GE Li QC Z Wi wl L W Wi LU jJ

2: 23 Z U4I-0-o LU M11W.1 4 =w LU4<OwzU) U) 0.0 Z3 ILUG L0.(i. Qi I- a %.0. .4 oflmw

j4NMVA' -4 -I

4 168

Page 174: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

2 -

U. U. t---.-a -- 4(mJx SIC 3

I ut. Uu.--) LA - 4 fU . I U& j ic

0~ LL. 46ou L JIU4 ?- P.. .

Cfl ~ -"LM...i0 -0.-

f- 3C3X -4j q a J tC3 ~ ~ ~ --0 .4Ujj ccq ~

Z~ >0020 C91LUC3 (3f * 0 dLu -4 -34CL~)-4: -4 3 L0 C6 .

I. L 0U...4 -. 4jj Li - CL .a A; -

4x !" U UQCCC 0LV r.1 - w. 4tJLU40 Q Q'*(Q.ZQO -4'3 0 %Ln LU

0~C3 Li LUJ.Lh. 1-44 z

~- I. J~tJLJ--~J CL - C *.J Q 0

0WA 0 0 0 .- Z40 %1Pmi.00-CLnX -4 ft"- C6.

0.L .txx QMJ <Z

ZQ,'1lI-4 a oLn m(Z 0 4 Orf- 0

O- 02 44< i--.1 Z j4

.4qd - -.~~U4 3834 4 OI on

U~~u A- t- VP4.U . - L

0 . 1.0%i ~ - 0 4. 1LU3 ~ b tM L La) (A4 3 -. ;4 .lk 440 .'J1 LU I- -Z cy

LU LU -qt.3 *4M O4m&U'P44 *.9 . P-1LJ~d 90.D1tntL -". L" (.J UJ

= - 4 a ofN

&001-t. _0 d(3 0 43DC. 141 :3224

at .c 4i X' 0.4 4 4j Q 3CU

V) WixZ -Aci. w a 4j u1(XAj

~1699

Page 175: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

'.1 4P O-jjr

Lli JCIAJ LU * IUL. :.11-U. -4

Ix I U.U. -4. - LA ..

A -14w .390. -. rJI td A~ Nz. f 4' ~ ZZ:Z- .J uj ..J3 i - -0u..J 13

LU "" -. 3U -""Usb"Q -a 0 .

~ JU O~. 4I,1 0cuJ Lnlt. A 'O.A.* ft Aww P 1640:03 X

A ~ I~4~O~ Q. U~1- ~ .3LU

L I- M...JQ& w 4S4.4qgr W6 J'LJ~% L . ao - -W.L Ic4~U~ Alq XLJC. -. j Z LU Li c

x vi LW*U CW -I-Li-- OU3UJ *- .4J. z Qj x.U. 0 2 OU-9U,..Ll * 3C -01. - 0. -1 C. .4 _u

1- ". Q;-i U -- J a- Lii w. -j4 'U CU,.3XLUZ LJULs.)jWOc .. j q4J649z LU C3. - . . _j -

- 3 0 Z0O 3SqQiL '.^J.4Oo -At C 3 - (Z AS i:3 Q -no4m4rl. Cf N (3 N.C.

-4 0. 4I4=ZL 0*Jq mLJ C. Ei I- i

3j W 0..n .- ".- - - CL 4 0.cdx~~ 4 z

-n U*C.2 6U 40:0 -30. *Li-4.UO Ofl- '0 0 ~

4LAI~w> %Q~ >. *% wUO

CL. ' > %*Z.UJ'I'4 S-Iq Q 'r U -1 W tZ-j -j.-at Q*4=Q w - _ C - 0-a0 4JIPI 4- S-.J 34% uj >. A-

* 4.J4.4-.G0 ft O @ -a 3 3 ".4 w 4xI-.3 a ozgWlJ.-Qz U 4 W 5L 3I

mm U A JJl 4 Cr4f-.g.l~l P.- M 1-I L

Li 0. OSi %.'~ ? a LU Ot- 5

.3 X a..j "45-U -4/flZX'o ce 5 U. .-40 LU t-

5-U A'LIII.J%lL'4.' PM a. vJi w '

co m CL 4A %&J.V 1 .Gat I.- C j -5- #5-u v)3- 0 La07W -4 'T - i -I4 L' 4 .

.3 3 2-P OM 1-* .3 MM CLW . Q AO4M~t 04N *

-- ~170j

Page 176: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

K3:x

LU -d

Z 0.z

* I-

.9L Q ..lO LU

Q Q.. C3

- ~171

Page 177: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

O000',00000000000~00000 0O000000~00+3'0 ~ ~ ~ C 4rjV tl'P-0 .4cl t 3N f4 L ~~%.4~I' f 0~CJ~'*f

fl4 LU w -3 * 4C3 39 Q _'P

4%.~ * -- * 0- (L I N*0 . (3 LU Ca 4

z~ 0%"M 4 * W* > ~ 4 0 '0U C -wa 40* % a VLU *ac 04 act 07 0~ >0 4* 4U 43 C0 N- 00 -

<?.'-a- 00- !I - -0 44 "* *-0. 0-. *4.Mt -,-")4 +Lul u .IWLL -0 0- '0 > - * * N *-oe'JN

V.1.U0I.-Z U. *? 4 CL* > 0. - -Ib -4(n' M.)>b* * 0* :,33-49 Z q4.t OW CJU. 0-* -4'0 NL3 + 0-4 000-f --- WN

. co 4.jaelAWO ,V _CD- CUP 0 CO W_ SI (n WC' N 4OL .*I4 034co aI.n ) U MW cJ4I* C C LJ 00 1-19- g0O q * Lfn*'o -v,-*

I- LU L L t'4&L L%LJ''MW *411 W141 ' 4 t14 Wtj .J 3.* '41,4 w .,m

3 Q -q '0Lt..Jul-- 3-P (1040 *0 *-4 0** '-0 0* C Ncafq' +.-z M C2Z0ZU z 4. 1( 0 *I' 7411 ""ro LE1Q* + . 4-9 -11*

LU "4to Z20: .3 *-..st r 00 e:Qbm-1 cjN4.o--U t- 66 (A."- *4'.LJ4 tX 0 1 "fn.-j * Q3 MW S".44'M-. -0 (.a* C34.144 t"uJi'

a LU xC'4(3LUJZ U3.. e - "-.WOZ -0 au- I LJ..(3J- +*UJ-(30.0 * *) 0 0C U6.Ijewi- dW 0 -. ec4 0 0% 0 -44 -e0.ON*4 -034'3. *0*4.10 0~ +00 -4-,G w* W** .~* 0** N-OW

.-4 = -. * 011.N..44 + 4* -Ii'4 * -4* 4 -04qCNON 0 -, I - -r +* 0-4 FA')044 0 (J.d1'+ * 0>

Z3 '4 N~j0w4 'f-o~z0p (34.* Q~f4* 01Q'7 _G -t -4 <-4~J-Q ^4*->>-* - -U

1: t 4 0* _ DL.U * ,N0LU4-*q * * Q--N -449 2 -2,~< 0(344 * -- * W4* jW-c3WN-4* 0*-

>.0 -'-0w 0*4LJ-* -0 -- (3(4C'1.4* M w-*(a aft M * 440 - -.4-4JJO4*.I--LU Z-4 Qc.~W~* *W4'0NM- *N1'

4 )'.z Q~-;,Q QQCL *UUM*Q0.'*-** W~ I-. NNWIL* -. qNa**JJ0011*(L-*N-'O*Na %*

ic_ t 4 -N IMC04 0 CL* -a1 -4 ** Of--4 -40*IA x Q**NN**40* Q*~U~ Q*

'.4 I'JL GQJLJi* * 0caQ* .40* cab* .0 *(N40ca"" 3* -4

-CE X X *0..0.z.-(JQ-w0.** -o* QW* *. w 0 CL3 + -. 0*

-g 3 OU (C D 0* -WU3 Y. -2(L * -24 * (lo-

X. ~ ~ ~ ~ ~ _ f U O- * * W * *' 4

U .. I*0 I ~~~'0~0 11'0-N- NI'-c7"..fl n

LU (Al~~11 0. U' . a~11 0jU~j(f1U %j0S 4('.-w0~ 04'10 ON L 04

m3 -3 0o 4. - .'3 wW ww www-(7W aw* yw-0 0 I- 40. 0. *1 :4 )d 9 )C Y.

'.4 -4 '"IN _4N .- 408 _4('J(1 _4N-40% 4(nC' -4N.m '4N

172

Page 178: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

pq ~~~~ *10a< dC0 -1 4

a. 0-4* U'4**

cauv* J.Q2

.U * L * 4t 3I'J ~*3** 4j a ZON*tl UJ*

Lu1*w LA ;9IU. VUQ L ('I) *~.I4 x1U

Q** OW z 0 4 2.4 :7 (7

-* -XOLu~ * C3-n "e

2 ~ ~ ( +3~c'U Y21

13 -4 3urOL u .Qc3N lu+ Y.

Q*s L Z-4 g1 0W u.OU.CgLI-40mn LIy '0

0 Z cc0 Q. -*at 9x,--ftw~j VI' +# -- * _ mi * L -3- tn)

~ 401 .3 +- N P * -4 +

Pu LU U-10; 0-ol4ria tJ*4n-g 4J )C- .. ~ c C~ C 'J * A

C4nUW 00 QI0U%* OrJwow 4 1q +

or.,o~f A1. z_ ul LfloomooO4<6 210C (n

0300 .. cr .1 0 .0 O N *C000 Z -Q3 .3 @9 1 -5. 1 9A 4Z4 4C3 041C- SC.2 4. .I J L I - .

o ~ ~ ~ 4 -4e'~Z cn~

173

Page 179: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

O ~ 44 4~.OlevI ', 9-4J'd -t~'11 a-')?' 4 ST4

3 4400 Z 44% *' Q 44%

-4, *qa r o(4*lo,, WNJFb 4 '3

S4 rq 4-4 0 AM 4 .m .U. x *Q A.0. - W.'

cz -.% I-J a4~~ *4* --ftZ04: z% Al CII-W l CM u*4 0 mj' ~

'-A 10 4 A ' *U t- *'.4-Q -*44 Q 4c

ac 1%A *j -2* - *~ -1 -. 4 4.* -a* L

4WSC 0" _cJ -t +_ *4~ c** 0 O0e

I-. -40"u.u. - * -cn-"c(q w* a.0*0 V"Qa

-j 0 4..JW&4w )c -mW0O(Q 0* m0..0 *0w*' N*4 -"61 ft I-Q ft QtAl. 0.4I at* ocL*'- -O* -. * 4

WQ wiit %itJ WJJ-7S~ WW . I"W- 4DUQ Ug* Wa.1-~ ~ I 0U.U JwI I "-r-*..00 ~ -* 0-40 44.J4"

S 2Z=0Z0%Ot c 0.-%+WMJO '0 -. ~JlQ? Lfl 4. 1-lu I" <. 'ZkU x: M. 0 (L .e? -4w +(ON ** 0-.*-403* U .

'A.b LLI1 0-%4-Ujc %miU 0 * rV~w * ow' -'dIw'm %W.d~-~W L 464..I0UJU "A 0 4* W- fl I 0W(%J tn+ 4'.r"t 2.

'a 0 m~x l IC.4X. U. * -4- flt0m vtnl N'. + * 0-* : LuiLU .. ). * +f*4' 4-4 4.0 -* O0-0 0

-IIMU * L'4*nO-flWC'ItJ 0044L4 *OLj)-CC 01 Q ** Lfl -. 2'00 0* . .43-*4 A'0

NJX 0 Q (%( 'O(C1q0 1 0:11. *Llw> !3 I

L ofl QI-U Q +.4 *4- -4- 9% 4 '4>O I4 4.4 > w 0I'~ U .

LU L.0 -00-4 'm*~*' 40*' 4

1-Nd. -4 UI14U *i.J4 V -UQQJ*U- 4%0.lp Z 00 3 -W "- fl.4_I _W. *a of~~. .~Q - U

a -4 UccaWU -)W* c3Lt~c wL**UJO. L9 -e- X

I-~ >- Nn*LU-i ***1UWL**-V 40 1% J0 Q0I. -3 eO - * **-* #* *) -r2*4 N r *w 0 -

_j4 00 4 W 0w00Ow~L Zw LU4 & * .J 10 tP W-C* f%4u'~*4.r-e3'CDM*0,0 - 10 1-

LU tu C..A j .2 U2 - 0 .2

-21.j J W ' "iJ.JLJ 0 U~. 0e *I J W * 0 6 .J j

M .3 t* * J ww w w w *w_'w U Qj00 I-40 0 C3www * LU .4

(A. J ~ _j i. a) 11 of WI II -11 + It 11 P - 1U_.4

q3 MU .* NU M1 It. UN I- 0 r- 00 X *;w LU

0~- 44 A3N2C c . d"4 . 4 .4m' W. 4('J adf' W.N Z

174

Page 180: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

-4.4.-4-44

-u a

S W .4W UJ 0

*-J N(-wft4 . I- * L

17*40 :0

nc* * <0-* U. I-

rn 4~of0.4tJ(J LU +J ..(qC34q O.lm*04 0 41+

**4>--'ON* Lk, (JI- '4

0... -- maw* _u -3 U

-,o * *. -,t~-3 r

e'30000 02oI.- -( +

~o ofoof OX -% -

E ~ ~ .1 40 0 *0I .N

t" U N U u fi t4

0~. x Lr 0 . ULAJ

175

Page 181: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

4-4 44j( ~jCU. ka.- .. 1 -

1. UJ. Q, Q I-

LU U 4t.J 0..ki U.3U 7 l >-n

o "x>Q -(-1I r-tL--vj (3f -e0 V 4

Li) I -01- tn.I .4f 3. 4

4 Qw"uj-'u P- J-Jn n0.oL6 t ..- o-J -W .i w - L

LU LUJ-3 C4.9 = KJ Z C

ztIsc I4.3U1-'2 LU a-) ..$ a

V-) 4LLO'Z-.O- Q I- 4 -- X LA.

C3U '4LCX -04 "a "i

o .~UJ.JJL OM14 0:3 eQZ z.

LU ~ 00~U 4 .0.4 0. r- :<I--ML tU~ '&U(j1. tU G -

"o 0 -.03 -(n 494 PI- a: 4

w4L.-fl.. *b 0.L

"J490" (3 Z I-i-V*-4 2#0 Ui 3 0

Q6J9- 0 - 7r

Li) QL%4(CQ LUUJ tui (w* 2. LU( &-. a ( 1 34 &n

0. - V) qcxz4t- a. *-4 ZI ft OWS4 (3 ((g I.%

t^ 0 Z-4"JO1

C7 0 J:*3 cS* *~

Lu -U40.4 ft tL&~)4'1 4x

- I- .I. j .

= . 4 I Q~ ..J /w"Cm z0'a- LU 0OlWQce4 cwz

V4) 6'-.QQ Q0Z Axo4j.4. u~

176

Page 182: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

OOO0C"OO02OOOO00~00O

.- 0 Wz ~ ~ L6aL

-Oz Z. P- A*ILU LUU. - x 1- ftLI.i.. -

Zqc(u LI..J Lf 4 9

An i-'ae"3Lu. C LM 4 ft M'- 3

L6 -1-i- %I" Cf %J ~ 0.

-r3 A ;J 20J Z aJ

..1 -4 ZC'CLZM4 LU -4c 30. CL - Lt . .3LL UQ*Ot)- L L.a a .LC~ ft-) a. W. N

Lq .1 cQ.49=qLLJ Jlb9 tiaD %jr CI. cc3 6

Q i n ~ C3-(j" A -Z A

"M - OWq QlLJ ZLU lu -U- I.-LU440 04 %a0.J.JL I- 3. C

0. Jr--)-' (3: -4 G N. u I

0 -. 03II-2"(J.UOL .AW I..Z X 0 0* stn Lu *

Z-t -~ p aq .ZflL LL4 d)C.L. '.L OC, . 0 - J >

or -Za 0 0 N 2 *

.0-L L S-) -X IL 1% UQ~f- P40 CL~ U. (A

0. Cr- I. ft t4 OM- -

u 4 qtZf 44 -.i-. a s- SPW. ~ ~ ~- CL o OZA4 -aLZ U i-

*..J. -L. xZ N4 o- a. *

Q.f tai - oIXL % U

-14.Lc -- 3 . L a. -ca 4b,. 3 :2 a -

49 0j 34~ 'ULU aqt W .3c e 0 .

x U ~ 04- * *. j t- I .2

~~w 0~~ _j -Z. U l-

:): -00 C p .1i ZZ N 0 -7 O .4 #I 9 muz

k(.3Q( Q3 I--~r~L Q) VI

.4N~rt * .cmg.4

6 ~ ~ ~ ~ ~ ~ w~ 0Zl'IQQSQ. - 0 i

LU L 4~..Z 4 *.jE~fl4177

Page 183: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

Z40.0.(1IlC Q 4,7a .4. . 4 L .0. C. 6L aflU1U a. O.CL 4.M a.4'Q 4J 4..4J .Q.gQW'4'?'4V 4 CL.7 '47-Q.Q -4. 4. -. 4.Q-. '74.Q M.M. Q.T'?4 4. ?-. . - .-V .?4 .? '.' G - C

1X I- i 4 LUi

LU -4..*LX -,3 0:' 0U. Ala Q- CL - ILJ . Li

a2..CU. J. A(4 4 .3,* . I.- 4*. L- L .II - - uL

C3 Luo-cl In -Z 40 1 -a .4 LI-. % cc O J'> _j -J4 . '0

o~ In 4 W~ 4J. ow04 (j - U. .o~i idiU 4 l 0,~* W-49 0 >t - AM .3 -C 0

l U-..Q J--*'U-J LUZ.-1 -t - XLI (J 0 Z a

Z . CLIIL 4%~U cQ 4 In"- - 0. 's J ~ n'"Z) 30U.4L(fl4Q.3PZ-Im tr-. 4 C16 >:3 -4 L6

'A JLj.-ac '4O 00. OX ~-4Q Q 4 <0 C3U4 It -o)-q CL UW -00 1-001- 1.-L ,.jLn * Lc% (Al > "c~

I-1 4 UU .- QLJU CLJ- Lu -0 /) =~ Q1 U.kj 4 ac I.. z~'-. X0L4 C)LLi-4WL Q-4u<34 (3w 64-. ui- 0 C 4 *

U.1-X~-04.. 44J.U I-~a-U .11'0 -. I44 .U6'X . 39 *. (X ft C. 1', '03

C I LX.LU~ L 4 -- I A. I) q.-q I.& mIli 4JUL-I--40.Q. 0.In-Jo -.j wa2 zli LU LU LU *LUI-- U.u (A0.10Z30 -" 3d4. '4 7-i-< LU <r0WU~0~IL00~44~- (. _4 <Z NIJ"' 4j

4 0~ Q J.4LLIOLI .4.~J~iI Ij QI * * LU.UJ tJt<m-. ZIAl LI z Q"'4 0.

U.4(AfLO 1.t - "- 4 * WI- a0. -X %1%00 .4z 1:- <* L% J

"=I-LUQLjLU4L -6: < 1 4 04 0zW.4")>Q -dl% I.- X,.4u 0 -j

WQI "- -04 a?- 14 * .CC .0- U.4LCf-OW)LZJW ugLI 1.3 N ) %% ', 0 :2"-, -Z WX4 1*-ZZ WX Z t.-

>~ . u 4 2 * aJ. -t I'4- LI-4I-.JZZ woL/ a 0' L. fl LU '

<Q4 4 -j403 -4w.J IW.-~ x~0U 1 6L 4 -o.4 fq W=~ %I .- #-a -

(/) '04 'L'4C~#.JU 1-LU mm. A m"1- C*a . C ujt%. -6- -9)3 <4 - 3C4 0

?-~ 4- .041-Q ft a W4 V LJaU LL - I .4x LU w o.4.SqIIXO-0 LaZ LI;.LJ - =I-- -4 r-4J 0-

Iz'4 =-t q4 ft- -A trl .2 LC I .2tt E(y.UJL7t- xcx 'V Dt * 9 .4 0

-- O-UQ 0-- -~ LL" .4 '-4a %x LIj LL cc4L ') * =f #-4 +cc

.JI"tU..L.~J A. UJ -4411 61 v

L.U LU -,q. 4 *4L&W)4 .4 14 -j * -4 (LI Zz z t'-.",Li -Ap43ULICLL- Luj U. LuJU P-- A -

< .0 4 0 Z1 ZtiZI- _4uj x z e 0 Q'0 0 v 0 09 < 0=404- '01- CL CC (3 LUX Zm W m s' A4>c Q71 Me-LJ: W4 4 LUJZ LJ UL 0

m 0. "-..4 4i -a 4 49 =WI4ZLI 43 A I. X4 x <:3 :3Z -14:3 jI--- OLU LU on~W0ri CLx m a IL LU 0U.

V) MLILLILLZLLILLILLILLILLILLIL LILL a44 _-j LILI

1781

Page 184: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

I.~

A 9.%- #- I.

0jc jL 40

o- z 49

ofN 0 9-4 0 Z cc Q

44 za q I.- ql.Lsoz 00 2L u UU

4 .4 C4

LU cgw U ~179

Page 185: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

90

U. LU -4 .6~ L6.I 0 n .. .

' .- >I- rA 4C 0

U 0 cc Li UO .4. -4

!X 4to - j Z. -2: "0) Q Z

aU cLJ.JL OL I-I ..Q-. - C.2i*- j.-w tI- 4 x ft CL 3 ( -

4 U 4XfA =U2 Crd *-A. x

4~ 4 J -U =4*LJ n O -n I- uQ.I Q -. L6Z- 3 -C4 .4r. -J ~

I- ~ ~ <p m uI. cie oUU.J U ~J L /

4 U ~ 4-J<"4n -Unj 3Z

QA .qd LJ .4J <_'3 I.LMUQ0." -. I-.. 4

t~~j Li f *c -- q C. 04 c (9 -

Ln ~ ~~ =Z4. 0 r 4 * I(I- -,w" -cr Lutn-i -e

:z -. a $. - Li "tx

I- c~i~-.- %. 34 34 1-

j' 0 Ziq~g -Dp _j (D Z

4 a~ 1. - 4Q JO4 3 c

Lu"1L(O.. LU a-Lccc 0~j- ~ ~ ~ ~ < C Q Qmw..O j46~(J0

.- N ~ t 4 -LI

U) QQQQQ Ii 41J JUuuIU

180

Page 186: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

CL 6* z= ) c 1

00 LU N I I '3 Z ~ 'J I- ~ J-.LL. u*LAIJ UA I-~u~ * J4 -o JU) i= 1-4

N. -. ,A r-. L-On X 04. ujm= .4 -q C I.- I_-. J _4 -Z U I ,Z I F.Z c44~ IAJ 4IZU" 43 U -

S'Z 3 ;UO"".- 00"LW :3Q.JU. :Ua.LU a -IC ft I- in.. 1-e UJ9 J uju ...JU.'Z 0 )~ M jL73 .4 OW~ XOXZLLM LTU. r-

L L -a ~La :nuj 0 wJ X -4 W~L~ -3 -ZO4-4 wj -u C0LZ X 3U. a aw Xa -C I

0-.j -4.q Q4w Occ-0'4 :3-f -.. j-.'4 -sqg-j L4uj4c1 , L A U4.4LI U.-

tu 'J.J Wc~daujcflZ' lz.uj 4IZU cgWz (.- 'Lce Leo ae ix 4':t ola.jwoa- LU ..JLUZ -AUJ- 0. U 4 -J ZC5...iO ( =0.U0 Oj9U U: act

W>U.0-o'N- tjZ0IU 10Q. U. 3,3 < WZ-J . u.1Z< £3 ca g 4M3- -qLuI.-'.U4 ZO a3 . % zat r.U'4LJ~-' .' 0 .'4 0.Lua.1-W-...-4"L4t L.A -.. JCLOOI- I-'.-JW .J-..J'W (j: -q% Z XQ OVIUL(L-.-0W0 MOuO3.-<I-- -j -x Cox4 (.90 zx) l-Qw z " L&IA%.JLA U d L -% ~ Q," -- 4wd -4 -W t

UJWWJLJ-4-4WZ uZ4 -jj W3..U L- Q %1 -2 a (J4 6f4 <U. J.40 j -I -flI0 .LL-U4 O'A Z U4:)CA ZJ -jUL,,-: -4 -. J - .)w - J AI L~lflWLU .<L1-LULJZA :3

.4 LU.ULJU4C'Mttd Tl m--4UPf9-, LIJ 'L~-~4.JZ.E.-4 ~ £Lu P" aL.Q a. UZ.I4U-Ub s' I-O-W-U I- .2-J UII- U. 001)- .0 4QU03UU0U1ZZacl. mZZ3 0-M0ZolA.-m "0U (A4 wJ wa"C .ja0.-o".0-U-jW4UU 4UW 00 rj

.LU . a

U- 3

CL- x x r 4

a 0 ft

Q -J XZ4-4

(U.

LL~LI z Uac

LII LUX0S

z- IR I--11

0- 4 00 0C

Z0 - 0 0 cc CD U

181

Page 187: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

tsinitiIiu~nnt~t~t&,inLu~fii~utiO0o -0OOOi VI11,4 qjll~~,jV"l wIlaOuUuAl

0.~ CW tO4C0 0L.MG ... 0 .. LCL(C.LL(CQ L..QQ .. 04 x46C ( I iN' W '4~ L'45J (3~J'J'44J eJ4pU4iU'4'4J'U4J U 'O'J'UQ g 4 '

- a

0 C16 .-

0. 30 . 0 1 4

Z -4L 4(.3tC -

- .4 "Q -4X.> Z

x4 0 43 0 1- '4J

Lr .4 In r 1-j (&(.w t -j z A4

-O z '.4- I. U.1 z. 'LL

V) 7.0- CL - CL us Z UJ

4 qtl-L U .U .w - Z'J LU )Q

( 1- 200 C-31- Zn .Osj 04.. ~ -4.4 % I- 0 - Lu 0

% 4-j -- am -4Z 1 3./CC~ -00 .4 32 xx A 44:

-%( XEl vt-.z I- Q ."n -

LU3xo2 .- 4- Q4W k~zJ 1- 2a*J fl--: c ww I-I- I-- 4-%..

a q~ 4-. 32 OnUe

-- 4-4 -OfJZLUL -AW 0 ZW~4(4 Ne.Jfl"IC' Q 4

.44,4.43 *4 4 - 4U.Itz"O * *oeeM * 9-0.

I- et a;Lwj~j u .a " Z.CZ-i !U -f -cl U If II 0I of of M Ln

-- O 4 -9J (.U -D Z or z 33 : 31: I.. O0.

%.VIX l200(4 -W4-4 cc~ U' -4~3E (3 0j *0.0. JUCJO L

<i~w ec=.Xwr3U - AC x 0O a a j

LU SIO 9- L

4-- tj >Zlo--xddzzxzzZ%%' - in4 u. "-4Q

(D3LQWCOO0( 3, -4 W4 4 q c Wcc c c -.

4?4 'I .2-~Z2Z .J ofl Q X (WJULJ0CL U.

it- Xod"O x0xz0(z 0 -4 s-s 34( t 1- -4

ULULU wZOnWOMOOC0000 4 1-- a. cc U..LLU.LL LU I-

M06 (iLUUI.0 LU 4 0. V).~(

182

Page 188: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

ZOO- zl -e -uj LU~ L'iJZ

ac q l .W uj

Iz I-z Qj AZ j4 LL'4Z -. zZ-

-4 P-J140 MU <XLU-

(4~4 a3 .b 3aU. od

0.L ac ceu 003 .J)(= J-'- -4 'U(/1 _

01l- Lu~ .4U C9 -00Z4 0. tjo

>(COJww3 .?u.0.:3 0.U. LuA --.. U~- 0. "4

t-x .wz "Uw = Q. (,4 ')*U.t- oz-3aZl-Z'-aZ 0. * -4-14 f4lm.oo. " 00 "~.6U." "WZ.Q"WZJ WU~

rzz .1JII..U'I~3 :3 Q -3 *3 3 '-W0IZl-.Jd it-CAn O.~ - -t- I,--. .0,Z t--.J.-Plq (flUJq4Z VWq z f 3-0 -JJ(J IV-O-

-I-4cjLUW~r^CxWCUUJ(Ai 3 0z 0 >QZ 14OZ aOJJW

CL u~n CL.4 %LU Z .4 LUZ 4 1- - ' - 0- *-0 L6Z(Af

(3.UIW 3-.h LU -:3.-4 3 9, U L. .-.-Q .4"".. s*)--Ju.Zg UUtjz QU - -(3 '3 3 3 U.- (Cj'.q 0

~4.U40~.4.~JZI (1 0 ON1 eao *.Ln 017 0 W J.4M-t.-uwIJ- t-LUtjI- LU ;(o t CO CC0% a 0 -1 it 11 If %

WJOW 1.1") W ud) P".. 0 -4@ * -S 0 0 1--- P- q o*.-Q wO -4Z -0 -4 Mcg Mt -tJ(.J

ClaQI.-4!2 fl-I Lu 0 '34 1 U* t L 4 141I.JI140- yI" lx

.j 11Z L304Z C3-Z Q-62 0o -O.LUww ZWWcc we t-0- I-I.1-0- 0 .- 1.- iCac Dom~ %Lc

Z~ - 2wv 2w z 22211) UZZIflU'-.-"

Q-4"O- Qf- (20 OQ Qov -I ZOQJ...cc L ( 4 0 P-v "-Ji

-4 "0 d4 dCw'

U. ~U UJ.

.18

Page 189: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

.JUJ40 0

I-Q

CL~~ -*- A U Z

'U '@4-4< .Jj a -uo -wtULU u-fl- Z 72,

I-CCIz.c i.

c~* 00." zIA"-qnLU 11U

*4.4 Zl1Q >0 O'0.0.C "4I.J-JO 0 UJi i-U

4Oc ac~ 3CU 0cc -. 4-JZL."" ccv).j .4 LUU) xtWU)

0 -0-4 I-JCLU LUX( ZLU)(

I- 1-.1" 0u.Z * . 4

1 JU)U 1-I-2 u . X1 4 24- JU.1 6 W z 40 OWL 1-Luz(x 0* U LUll V) ZI/ LVI

W "4t "4 .- I UI 3D--t -~0~u cc au 0 OC~.

-. 1 Ua _j -~).J 4 Z- -4 L. .. -J.jI 0 .- 31.41 a --- 11J * ~ % .. j4 U. (3-4 " 4 J 4"" "402 - -. OUJx x IUW Zi.-;UQ - -.- 3. > l.-Om00 - Luc "4cc LJuotl -I4 * "4O0fl.U"aO 'Z

I f .q q4 .. J-tJ-J "4ZaLZ 4 - I I xw)(A U)C3 C<** - Ot.J0.. '-MMI Lww 0 0JO. :2 IL40. x

''"4 -U* -. ld)Ix XtL)) 36 04 -9 fAl. '"4 -C CC 0L."LU Z+++ w"' N XI 1% I-cu U 0

Iq 4 4QS'" LizZ £ iac"44 .JW) 1% U.£ = WLU 1%"4 i1 +"4 c.ULU~I- :1 W.p 4j I- > (j4- I--

V ) L44.J" Zo~ oxmI0.3; Q "I-- M P I- xa '= : 1-:Id)U)(fl 40C 0 (4U) 1 0I

tx~~U) Ncjl -u 0 It ..Jw kA <?- '"wUJ- V)N ot LUJIJ.U)U) W."44 .-j If 6J QQ EU M I.J..JLJ

i CfJ Oww Q32 Z0C~~ Z0 LU -JW NZ -. 94 If If 11 ZI.- 31A1 0 * ! OW WA)( 6UJ 11 LUsC O LUWQ. 6

"4 0 + If " Oz = c.001IZ OI5 Xx t Z - ZU) 4 ZM.VI MS 46 %,"(4-6Q6U -dS O.J W'"LJ 0 Of N N.J~..J "4 U6 "W "WWJU "

I ~ -c 9.IN49019 %ZZ-i Z%-~~" Z%0 Z' t- O"4 LI - 4-MEZ-49 iuz'.i 4 ZI U)fl~ Wf4 p- MI-. c UJ. W tU .L "41M 1 4IA.-IAa P- "" C ajaa.A.M. C P- -0 ""s % "rU41 %2-9 "4(.J.j0..-j ql~o- "WzLJ..jJ %. 'ww Q W" w w~4 "4

o)Z -JVf "wvU)1z MZOZ Ctnwvvn0 Q of >. O ( x -

Z -JO X IzUW0449-C0 0 ZW,(.J

L 184

Page 190: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

-Q.C6hWL4Ih3f600.

W , A, :IV -f I

.5. .jUj -J. 0 ZZ :z'U..Jtu X5 Jt .. LUJIU LaoU

4.5j -JZ 4-JZ 'AA >-1 U U.).CZ NJ~CL10ZZ C.'30 Z . 4 ':nw 3a -

M-4 -U cc LA.u .J#1- 0 1-P CA LUO 3W uj

4W J-4 at-4 a m± J ~ -*~

_ .J-Q 4 -ZO 0 CO (.-.0 CQ. 0 '.2LU Z-4 -u 0U' tA 1f ~I-1I 0 x

c3w Qw - 01LZ -4 z 4 QuJ C.1L w49-I-'JO -2 9- 0 L% me .- tn - Ln0-

4WL <.JCJ " 4LUJ Z 'Z I- 9-0) 0* Q.- 1roci kxuj ca lx 3 Z-JWuzI-W -6U4-4 LAA LX 'JJ4L7. 4 LA. "4 W.'.W W -*wU9#-qz-.ax ZUiw - -J z.a - Z ~-z..J.z-jq r-ww3LUC4 WOO UJWO 1- 0 U ajjQ4-j *~---

W.O 0.ZwI 4 (1 4ZM0.4O.xw Oa4IJJW X

LUJU. iJaiI - JJ= .J t- UJQ~J44qCO4% NM(4.4%nv=1-4< x Z 0 ZI-. U. Z UI4U0 Q2 .- %* -01t- X 1-WU CI- W W CC U. L4 0--*OQ

.v) z"I U U."~ 46 W.WLI,- .439.-Q 43 * **)* *I20 XPf- X 01- 0 U. .4L .P NM-O C9 a u =f 0 Q 0 O /wZUwwZw %--~

LALi04. QC.LU1 x .L/) - 'J 3 4xL34UI34=--~-

~ -. % 744-ja4J fUOt7C 30"LU-Xt(W - MW 0 -. (U M 4 0 m W.ju.(L:WCO

9-0 - -100 -40 a4 0 Uj-j3..)j- *aw22'.DZLU ~WLA4<0L W q Z "44 OZ 0 C3 u~J

Mi. ^4/ I'J t.4 -- W mm"4J"J 0* xmw~xw'. LM0 X 4.4M % LA.LA. w M -- 44 .0*- *

-. < M - - ' 4 2IxC, e-"nl *.1-4J44X WI.L6.-. WWP. Z WZQJIJ& (D.- N-4 *'%' CC--U. 1- 4 14- w Q3 I- < tcJf- 4

4U13 ) 4/P 44wLLJw W- -4*4 0-(I.19-~I- t-I 0 -0- 0 43'c~s-&G x

0% .3 ul..J W 133C, A"uj " I L-A. "-4W1- .2 0 4-.,

LS N .jW Q W 6" L6i ii3 g'LUIx(L 'UWOG. N LLUCCLo N LU -A.20.4P cz 20.1-) - 20.1') I.. cc CC 1% wcc 'z O

1.JM 4 U4 -La2LUz a zO'C'CLL - wtX - :)Q de

lu.49 w J; 0 wI-X 0 (-j 4 w ".c aP- 0- 3 "Wt- L6. " P- -.j -a wP Ij W3 w34 W

3~13 001-a A Q 0 j Q O Uj Q U-Z4

-4N' -4 .-4

185

Page 191: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

4U 4 LU

kn .4 0 L

LU Icy 4n t*-0I -4fl- Z U-- I- r- 0 - <

-0 0 - 4 1%Q & AC2 -j Z(4 *L. 60J-" e- XQ CI =

WF-WO-LLU 4 -4lLn OC (4.3L ) L.U. L- 4C a 0

4LU4u ZO-- .9A*QlL - -( 0Z >z CC 7

-4 C) I 4(QCAQO (0 -M -(j (4 -1. 0,,, * t.JJ 1-w ..Jrfl QLfl w4 w

O0ILL jLWLUUkncXW, 04 Z ZLWZ ZmaZOCCuO0 ULU -0- L- a* -o

t- A. (LP.1 64.1 ..jfxL w4 - f L~ d f..j a; .j a49 LU )(.LJLJWUZLJ -10- wc £(W Lu -

(L0.LU "Q4( -'3%4 x Y-W1. 0- ft4 21- ZVI 6UC3 ft .

UW4AJ)0 . -to -Z CC:%

-% .. i-jc X( -4 4~-

"- -' .ax ft I-. 0 '.1

f I iUtzJ.- 04 '.4 34 '-JU"

- 0. L~t-.1 -. 0.49 @-- Uq LU0. Lur-041 .- --94 Rc 0 f C.~

.~40 -3 804*Z"CO I-~ '4-94 '4 =z'4Qt .c01 Z 00z

u LU P"110-a. ".%f%->WU Vl)*&Lu 0 w.10 %X -zX a,*. 0s. :n"

LU LU qt4.5 .4nj&&v)444 4i x

0 .CO-I ZZ1 _4(4 .JQ.Z

La. W" i 4 ZI.D4ZL -44 441L)z ZLJ W,3-r LU onwo0 0 4LU2

4 Id) -4 0.N~uaj.J4LJ0. (. 44J U

186

Page 192: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

0 0c ..J3

L3a. xf 1 ft.) ad- Ic** WL.4 .4 4N L2 t. O

U ZU '4*L

4 1-- 00. f

U) z -0-t I..t 4b 3. U 3 Q

-44 41. 04-1 * (J.JZ LUZ-*fr. t" UJ o -~ L - a )

'u MJuJOZ-q. -. q) A- -J CL L

W. W^Z~.4tJU - X M- 4 -w4 c%4zwQ0I-4 ti 4u w -4

-0 %ZXt&O~6 04A -t(n L 4.- 4LU 4.q W-4mz "WJU JWA U)

Z J i 04" a. UJC3- *t CcLUL-C C a. 0 U) . . w. lb :4

'3 0 0.wJ4-U4ft3. - *f in Il00~x Q 1 *I*q r4LNI.ZW w4im QLJ w

SW ~ x .514ZULU4jOiZ0. te W -40

4 >Mww" ".q 014 q

CL 1u- *I- ft 44 I-*-qI. qc&z-0 aj *0 -tI

4 4 "4- % L"-t (Z -

" 4 0 U) 4.ftf-(>U -4

LU' :3 0ZN =ad 0%. a 4

Q~~. 3 -.J ZUL -WIX~2 Z ca~

U LU wqA 44.JuLU)4%4 t- ..

C ~ ~ ~ Q ZICA4~WO. M

x 3 z . ..aG ZZ LUUI '.J.Jm~.4 m A - ~~j4 2C4(.3 Z 4-- tU a0IW0IXWO "wLz

U) U 4 0 OQ94JQ. 00. O%4W.-4t'j~n..t '4N -4

187

Page 193: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

*t)~a-~OO '~t114IflO~O~O~.W a- 400.O 4C.J(1A.fl =4o IO.'C r~ -tm -Or- o

C6QQQQQ .... (.Q0 L.LL 1CC .40 .. C .OL1-.136Q Q. . ..

tuo o fz

U-4 Q I L cm -4 1 UU

ac (A wt U C voc in (

(* O9311L.10- Ur- .- TtLLZUCU6> Z>~ 0

t= U) 4W=-@l 0- C)a- 6 - UpU- fJl--r-q&c l

0 LU ce-i4eU~. VI'

Iq I- U 2 ~ Q.~ 49U

LU 49 0j w- JC qJJ .O-_4Q .1 o

4 ~ ~ ~ ~ : a-Z W 'V~-

41 2ZL)~fLIf Ur- U

o- LU -4 4a4-01r0Ur -- in

LU~f 49 LU Q.).)4(4.L1 L Li La4i M -4 zW 49WU -U-

LU Q Q Q Q w.-

C3 4U 1-4-

F- UU 4gx uj >~~~~w z48 48" 484'PO4 ;1

LU O-4*CLi L OLiC e0 c

LU 3A <. tn LiJ- Li-j U~-: f4w- I-OJL 4t~ 4a-L a-LJ ILO.Lju3(3

04- L" LU-nC LU GU #Al "t-.3 uZ 04L- -q

Q-4- 448-9 I-4- Z049hi 9

LU 2z j LU 44 LL r 3dJ. .1. 3 gou 034A f0

a- 4N44 - 4 *4M IT4 4

a- Z .- juu s-JIh' a-U ~8LUU' 188JL

Page 194: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

4 Icc X

C4 CLz n - i2,

'-4 2, U

ji I- 1-

4 LU 0

CE LU UU

.6 . 4

zo R- 00crC

a..

A L4 Itf

4~ 49 Li 1- 0 rf

lu-huj)" 0 q4 4 " "

e '-Jo O.- -:tulLiawc2u, i inno.5

0- .C - -----

4i u4u 4u wowoi'6.

U -. d189

Page 195: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

M.O0.MA.0 gi. 30 C&4.Q04A . 40.. .J a.(L.C %MMC6' I . 4.'Oa. Q '4 M.M ' M.A.% 0.

44 4 44 444444.'4u. cc4444444 4 444

0.1 LL I L . -- Z 4 (/

-. N4 -~JU 0-in.3 f

I-C Q u.-.4u- IZ I - .3c. -)z. J U. ii j uQf JU.- 0j alZ I- .

4 AA-Az c %% UJL .3 *t ~ 4 .3

"i .J '.a-OU)4O.J03 00- it N 4 --C =*. I-'~ 3u0.rg Zz .- -~ -

0"= U. "O "Q-*JI '3 - - QI U.

UJ.o* ww z z w wvC xflU(fIU I- 0-k z 4 4

C3 _O-j I 4 .04wl.4- - 'A N 4 1 f .L (

Id) '.-L&)CxU0 Wo. W . a& -4 a. 04

aI4ZI .±j (L6UJ-.L ix~~.L -4 -Ao 04xzw LJq ~LL *U-Cc~- S00-004 Q .4 tn CL *A .ca

~~~~0 a0~U qr-~~4 V~J I . . 4CL

4cU-4'q- Z -44 LfJQ 4 Q*

I.C -.WI-U. -FA.- F'. 4z 40( . ~d) 0U U0.4 0'l .0 - -" .- j >0 U. CI

4 xUU~P~)CA I-t. u3 0 - =at l m Id) j'-~ 3 ~43(4Ln14 3 -Zw' 13. U14V '3Q ad "

4 W W WfW OZ) a .-4 -. 06Z Q)

0 440 U3I- 004'w0=IQ4 U =:a 0.A-*

;LZUu. au a-.J(3 -q<W 0..J 1 4000(24

a U O I~.. 0 Q34t3U) 0.4 QW "W (.fli **

4w mU qxmqi-~0Z-0 00J ft 0- ar * 0.Q ci U.U.0.A..UJZW L.4 0= - JLUW 4b 0 1-

I-, 11-:9 ".$lI- ziU OU 0~i 0L.4 j oac&X acu u t',vX O. "1ovr

-j 0 PU'-10 W . - J' a UU3C

0 ~ ~ ~ LU a U 00 occa 4x 4Y :3 -a o

31 040.0 -w

-C. 14 0UU 04 Ut1VI-4 LW IL ( ~ 0~~~~4. 0. o ftio-.0 3 3

I- I- OC ""q 4C04I- z.4 . .1

z -t 0J 0-1 Z * XZ40- 33 QXQ4 0.aJAD '*-

0 0 0Z~dI~ Q-. ZMZMQO<Oom 5(3 *

to . (.- d23 (6 P -'IU.W -4-4"4I.-'4

zJ :)~0 w- .osJC0 0 '%.LW%,UJW

01 34iti1tin.4 '3'l04 Z 44 * -. 40

190'I&~.d. 4 '1'' .5.. 334 '

Page 196: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

-44.4.44-4 .44-4- If4 4 4. -+ - -

4 4%44*~4444%44%4 q%4%4 4 4 4 444 444%44q%4 q -~

1.t-. .J4i a .U

- - 0 ~ UJLVJ

*i * -7-9-J-0 0 j i L C 4 l.-

* U -0 - Q -"(M LUQ -t- 0 CL -UJ t4 =. ~cc

Ix**. z .q tz,2L"F- .Q. ix Iz tx i jze

fIr 0 3 1 la Q. ." .2044" NIt 'M - w z Z%0 - X ~ - Zf (JX Q.J3g -" W- 6O

OX o a j -J - W'J LL .. LUqj 0*V 00 -

)( ( L 20 J OZ "-4' C LII 'r" "9 - 4 OI - w L J~ z-w t i C* ccl -0 C v

(iAc o C3 * . * a -- Q LZ C7o - 1, 4- ON -1sCY 0.7~ * * . - .g

0. a U .. 0. -i-16 1--40# 0 0-o 1,CC- I- '- 0 CC) 0 Z i .~ - Z- -

I- - a 1.- 0 WO10 .4m UQCL Wm -.Q (U-* (.0o'eoo 9xo LU 0. '4 491U-4 OIn en *( *(14 .u I. 0 I- 'no M4 Z~.3. IV. .

*) *6a .J F- 14 P- %L u~v U. P%4W _jW4L" 0 UL, ~*fl1 4 ~l-j AC A -4 *A 140"uL GLXX3 iLLU.i ""U.Q%C-94 Z .J J P-1m "'0- QUJ -4 S 40 -

I 0-'%~- .S4 L ~f I- 0 Jou- Q 0 Co ~ ~ ~ ~ ~ 4 N~0~ 0* ~ *- 0LZ 2n us*'L N UsO

*IsL3. 3 * 9IV* ITI.j W 0- .'L IngUI

Ifl~i('4U 1~ U ~ -% JL *J ~ ~ %J1£.J

Page 197: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

IY 7 An32 414 PRELIMINARY PROPELLER SELECTION USING THE WAGEN INGEN 4o SCREW SERIES AND A GENERAL PURPOSE NON-LINEAROPTIMIZER(U) NAVAL POSTGRADUATE SCHOOL MONTEREY CA

m hFlr)MPIHhJUN83hhhh1310 hl

Page 198: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

W11 1.0.11.

11111 L25

MICROCOPY RESOLUTION 1 EST CHART

NATIONA L SURE AU OF STAN. -OS 93A

Page 199: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

,CoMMQ~~m OO CLM ix mLa~m rmm

* zz Ix

a I J4 'UJL

U-4-4.4-4zZ

o~Q *~UU0 MwCJwm .4UJ'%Q(UJ

*QOAIt Qco*%**a .- % %

mwt~ X 9.c LZMXN".

Z NO.OA.Q.C-i L4. -- 4 *L V JJJ - -

zox* = **

~6 (JQz

o .0ZZ w192

Page 200: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

ca 0jo z z

10 O 4 C

LL ~.~

OU O4.4 '4J

CC" LU

L/) LU U. LL' '.4

_j 0 (Z'J-ZW U.

z ZI.-LUI-LUZLU 114 4Q 1 L) LU

F- LU 44'0 U>AU-

4 -

"1 0 z(x %J *c

.9 Z ;; *-U

Lu LU * j 41 W

(Z 4 .4 -7 0-04 L&LJ

-a IT i' a 11 11de400aI * cgZ..j--Cgx c -j-4 uj qJ.Z-J

V) u. X- m .WCCCjS-

193

Page 201: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

u4* -"*.4-"a g~

o4 L6

-4 LA.U

-j CLoJ 4.

U. C3 UJ j 1-04

1U. .1iLU. 11 i aJ~LJ39 cy~ I4-CI

-74LU00

C30* .4 U.-(Y

0 - x. Q~ "-o4 w

* * 0

-, I- 4L194

Page 202: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

-j >

C4 u.J A

U. Ift

-M .3

LU talj LU NpLn .9 f39 W

9 fl- ft (LZ _- 3z M.4- Qm ox -u~ .j

" AUW 4qw 04, wJI %61 L4LL I- ju.JWZ4. fl49 z. ..k z

Z tjw Zi .J 4 's- CL a.I" .JuLU49cAA Li . c7c *b-jLLU. .JU-*XW .3pj tim 4w3 w

W C3 >0.40. "Q 040r

%Ju~.. ca- 4I

,-UJQC qQ3 . W

U~>4Z4.4 * L+j

*.(34'- _j. 32 WX- 0

:20LLULjo" .44 4C ~.4 - a+- -P 34C 34 :3 Z

U 4ZZ4I- a& 00

Li *.i ac j. a( 1-c-s LU %JK cc

Vw- -a wt.JQ x" -4

4 C4 uje -m f >w 3wr fb-* i-o 3*.J -. q e4zz 0 1

L16 L W.3L&1%-' L& %J

Lu ~ ~ ~ ~ a L"q. a.clll

a :3 AWZ~i-- .cc 01- &Z'JX4QW CD C63C1ZLJ i ."-

:) z 11- LiU 0-ILWO -C OW2vi V) *- 1 >Z X x %Qac4.0 %J CLcc

L iJ

Page 203: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

-o :) -4

L. ('7

*. ~ VO v r:32 ~ ..J.-: U

f boaua5 0

-4 Zzat-r-3U- M 2>

.jl 0 I. w2 2CZQ A

". 0 tLJw".Ow 'L6 U JW44A w4d

w1 W~QQU)0Q. Q-~ II. ~ LJG.JC1. C

LA

tA L

LA a. 4I.- c. - a

)I. rj- OnI3U 'X w~ *Z 6

,. LU in tn UUUzL e- fftLAI l

ac ac - LU mcclxm

am w CL L I- I-- wg~tn-w

:) 3Z P" LU LU N-r-a--Luz

L 196

Page 204: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

ul V4- 0~

Z1 *0(M 4"4 CFt l44 f - k

' A :3w LJA Q 41L 4--in "C -0 qc Aj

LU 3Q.u ' nae 315. (.1 0. CLm.4fl-- x m .4 t 4 ;1 A

is ac W Ii4t 4 0'~.-S .d 13 -j 3C3. Q'U A1.1 L40 4151 Jj -1 .. 4 '4 LL

4z QP'0J.U -L QZz.4: CC 6-4 *-4-jQ Z CJCJj. Q 0-4u::r-Zt j 4X Qt- 4

-4*-U 3.-uJ& 'A-% Z ZlC -Q Z * 4z I* -

LU-4 a:l 1.0. C .4CUZ - X o- .I 0. LU w 0

"-5 %6 W .JJ I-- LL-- -. & X.. -% 0

0143Z--U4 fl U4 . IV-t S. .a * 4.4>4144 'LU cc 0J L0 LU %

Lu-IAC -Z -00~0 .U, a. x. 4V W 3CQ. 3(a 440.3.ZZ>m X w*

.- ~'1. w~ w4 -4 w elet) ".Jinfzx m/) '-4 'U i-

n -0 600-u. -#-JU Z4 u N -W 14 14~~~~~~Lu * J ZLLCLU ~ ~ J- f Lol L (UJ

I.- £ 4WI.J-.J.cc.J Lj.uU At* c4 M W4 N W"11o - Otn4MQ~4ww o-SW > M UN i - 4 mi.-

CL We- 641 4rz X-4 -1 Q (, X.I0P- i -qc--3.1-m a la q LU - W. 0 dc CL

*3z.WXC.II4LJ s 3 W-4 Z W %- -W Cin "X a-1n4 or- C - C ix 0j.N. JI".UJWat I.- tI in OxI

)10~ ~ ~ ~ 4l je m0-3a *)% OA LZ t-" 4 45-'A 39 -. J-4c~ W.gJ 32 U 5 Z A 2 q I 4 ".1 I

.A 0 ~U --. r- 3 0 I t -, a 0 -wl

.~0A0 49 44Mi.Z4 N-c "I. Na -- a.J 11Zda- a4 0j -4 z (A-LU

IA in 3U"o Z -j. xdwz It QI x m w n

w m in 4qr LU. .-9 XQ0..4% %Z>LU 0 -J i I- w r- LA 0

LU ON. NK8 o Q.-40 U.'fl 1 tj 1 U) c (at I.- Of'

~ 44 .5 36- 0 IJ UUWI.Q

LU 5*4IJ.S.4 .. ~zI/)41l '4*1973

Page 205: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

Nk

'0 :

wcl~zznr.j

IDu-uj

~J198

Page 206: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

M O.6MC4NrC-OGCLO-I4C'JM.CCLLL6 LL'CL44A 01'-

L6, * I-

LA.? -

Quill .4 --

u Ow -1-1 (30 x

C4 (JUJ -46

k--LIO o.U- 4 t in - 3;

M -M "~ u Q. I

I" 'x -&4.%~ -%j .Jf 6&( I

0 -"J.uk cvW Of.. Wl- a£ UJUu Z O4 3 f 0.. a2.

SM t-JcQ.L*4 W - 9 -,a a;U. J (JLJ. .0- Qz U4 W1 LU

4 U ukdcc4a U4tfl0 *I1 I

LL<QC.CUJ 41.) _14

-WA0 - - - -a. .tt xX C33 t

I-L CC qt Z4 -0~~g- . 4 at- 3

- ~ ~ ~ ~ L lcLQE'44. L

q Lf4~' - UU1 (-'U ZM 0

a. Ur..-:L LUL £4 i-4~04lZ -4 Aq4

4 :EC4 414(- 1-4 ' '83-. 0 4c Luu4N7X .. j -4 S

4"10-CL %%rQ>uj Z I%

Ot W3~ ac% 4 -

C3 m .G 4 (e ~l2

IZ (Z) CL lz2iq j - 441 14m :- Z. OIAQC - t U

t4 A.ZI Q%00 Q wZX

0 0 I * O~JQUO

.4 4 I4JZZ 199

Page 207: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

ici

LU Y. -3 ~U.. O

Ln L-)i-. 4 r- 0 x

-40Z fti 0-1i 0.

4 Z 41- Li j 4~JL

. U V)L _ wLn ft~ EA 31

,%: a- -a-L'.- uW ~Z Li stil tAS ~4 3- M* 0.3LU ~ ~ ~ ~ M '.'P.UJ.~ *~ .:) Z

00 M.0430. 0OQ _L 4?- (AaLAS Ot Jr- 01- W~'~L

U. -jji WjV4(h- X ~ Q --

LU ~ ~ *IW 4Li 6JJ6LUC QIL ~ ~ L/,- -j);PXJ A j . i .ujiLU ~ ~ i9 04g c 0"0 2A -L

m<=.I-I -4 .JQ

LLJ-<(AC36 0 I- 0*f

.07 4 4 q~

-Ot .34e34- (34 01-Li ~ p,-~ iu~ oco La~ -

P.O. &Z - c .4 .. I I__ 1

%i "J.9 Li-r . i W 3f9ZI :

4~~~4 W ca71-. %-~W

2an c LaI. .jJeV)I-Zu LI 1%

F-1 -Z 4v Z I- Eli0 0-40 "( 0 -4 J I

3C 3: Z Iti# atS %,,%c 4 Z. WZ3-J -. 4lfQ -W(MM Q~

LJQiJLU fLiL.J.JWiw Li-J6 i4 W

C~zW__ C tl. 200j

Lj iiAAW -LWq

Page 208: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

IMNt 4 N-4-1 44 144WN m'W44414mt4 tmM ~ W 4W m *4,4NI( mmmtf Ji m 4m Ott Ot

MMMMMM M OrMo1O4NtfML MMMM" M MMMM M M CU MI, M3. MMMO6 M Q.r~.f O-.cJCLM MM

N1 Z.- -a 0k cc 0> cc J> lc 201. 1: I;>.

*. QU.LJO ZL4,3aa 6U.C0 40UQ a:U.LI0 Zu.03tw WI.CI LU L - LU I-.LU. v~- ILU WluZ.- U I-UI LU JJOI.- LU

4~~~~IX Lu"Gx Z=J.Jt ==JI4 JI-I = 4-J9 ZcI

4-9i~ n)Zzo -J zxO -q (AZ -i O-zza < /)ZZC3 -j U-)ZZO< 4UZ ".~4 4z< -4"4 OZ .4.4 <z .4.4 j~ 71 -g"z "4

~~040~"" Z0 04.

Ul -U~J~wI-cgul-.J2w OW .UJZ Ul.-LCIU -JZ I-(JJJ ..JZIUI,-Cga -JZ! U5 A~U-I-WULUOWUjt4- *UWUUlJ U-)..-ULUQLWOU-~l-WUJL

in "4LLJ.Jj LuJ-WU .Ja U O.jCr -UU.U~g U-o iQJl.4 z I0W .J-JJLUU.U.UAJa -.JWAUL cLJ-LU. 0WU. UJU -JW .LJWLUJWU.LI.LUuJ-JWUJ-j 0 Q 0O4LMwO44.Z 0. LQ.LLQ 4 04uL

LL t- tnI--.JW4'X Z<.JcM4LC ZI--JW-jM Z4.JW-<W ZI--.JWU< Z4W4'0 .-4 <4c9 I0OoMI I -049.1I.OMM0 I I.QU140. I I.014CO0 I 0''04AZIV I P

Z LUM =4"44) :c =4Z =<-(A =.4"Z =4"flLU "4 l"4-C.6wK 0."4~ULD ~ t~4,JL1 ~-04~J.05,j UJ -. X "X)""4WO0 3)('-4."4UJC -4X.-""LUCD -X-4LULC -4)(""qWL "4)(-4

L..

(, . 03% % 1% *%-4 J-o 1-4 NN

*' L.J -j *j .jUr LU14 A 4 4

e.2o

0 00 a 0 0

M z (300

201

Page 209: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

7-kLil cz IOq I zOoe CC (

Z.JI.XL0 Z)CO3O L6 : OL = -D0.JLU 1 .Jz I(-4 V* C .0 a-4ULJ UJE 'U

.- J.>- UJ (WO U LU ag.- 1-4 4 cf u Z .J'4 .-442X

14OZZO -jI ~OZI.Jei. J. 1-- ZUJ 4)X.8 0I jcjct '3 4J- I.Qz 4W-0" -q -.'L 44 -1 b-a. Q4 .. JZO. J'U4 O.U LI- #-UJOA I

.4044 - C3 0042J -U,-0 Itu<"Uj LUL U .j ~j~xj Z=t2 .-

-UUJ - I-04LU1- I--J-*'J 1---j aQCJO0o'3O0'4clLUZ 0 Luat iQC2 CLc-Co L)Z'-"Ip- JZ-cc(U)W 4u.~.Jow. ZOL'uOcz'o.-j QW-JoLU .u. -ccou ..JZIU-Mi~cdL* LUsae , F- - U.00 .4 Lu' ,JZ0 'U 2 0

LU AtW~uuQn-,ujOWLU=-<4 2-1"i tjtj. QQ- ac ZQC 4~Q ULUU. OJCJC LU J-JgC LU"C.Q.A .- W. O-IQ.-OP .. J% ... JU .JCC.-JUU.Lusjtuj.UJ:ULLLLLLLJ-LUUL6u A V)cAA oC~4 1- :3 j.84 :D)(J<4Q Cox~XO~.4.~u.J).-ufLLUO49 034 OiUJ b-Lj 49 Q.LU -449 2WA 4

Zi--A.uJxc Z49.JLU4Z Z )(zt* (.Qj~wcoN(u~lL-W O:30 -Z -J:)C .. Z ..a4-COW I -OC)A.II-0b-4 *b-4LUj 0-4-04w .1 Jf 0Z-AL

# -f4.UwLJ P LU.. J UU-LI a uaLuJ £qC-%J'4U-ujLU P-F~-uJ I-UWUOI-WU14a.Q.o.o oJO .&ILZ~nzZJLpdz

LUCC .- 4"OLuc -4bouctc.u3C~j.~~oo~-cc-ju34UJUJ~M U

14% Z

i~j a. x. x a

0 0 0 02 0 0CX X~ a . ;I M a I

0 0 03 0 0 0 0 0 C0

202

Page 210: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

-L '

.j'nC3 .J'n3 -)mn3c 4flX o4 -1 4Z-4 --- -t 14

'-to -4~ .-4Q *-etj

L14 U C J(/IW (Y.) LJJLU C4 ccJ-3

-J . -j -J 4

(Amo n-JO (-jo3 n-jio -*P-

'Ai1 CLWA Q.-Lu. i.-muJ C 0w-.cI.NC&I- CN*fV- NZJ-. N -4=~ Z

,L *vlu J.*VP .*vI .* '-4-

I-LJI .S- LI- U. W..4 C3

L.

wJ L u U LLZC Luw -

S. . x ~~UC L- C4 -U - 4LO3 l

Nki ~ -OQ3( ,- N

~ 44 LUUJ 0 ac Q7 (~SNZ - 0

'J I U U (QMQQ q )--Kdd-JWQQ4(4MW3 J-Z d

4'J *(-4iIm4I L~ U~iWWW -4

W'ZOwAV CJS4 Q4

LwILLL= 4 4 4 4 t~ U U--- I IL.

-r '* twZZZZZ~zzzzzzzzz~zzzZ .j -"*V** mooooooooo w

q4 z~x~~ z-J4wu w Z0oo0Q00004 300000 =Q0 -1 1 0

4 203

Page 211: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

UJUDW~~~L Q3f.f 4,41

'CL6LC CU JJU AU'U QU Q.UUU C 3CL(CL06C C (3(3 0446 Q6C4 -44.4---4".iJC~ '4L'd J.'.'uiqiutMqq'g'i%'%t w Kt4r-. 4-1q -91 -74

LU LUX ~O vw 00.(33

-L -4 N M -. 5. 1. 3wxJ

L4 fto3(3 .J 3cwXw 4axi

-4~3- S." A-44~-Ja-zC "tA a LZ W ----

4( 4 q-3 (3 ( L

-z 4i 4W4U q X Z I I I I

LU . .... -6- "z(3 ZO <. QCQCCQMO0 *****I**LJUJ (3WU =-j 4 )QUQ WMJCLVI 0.4 LAW (3U (i (3 a3 CLc I cxc

ZL37 Q - L4 3-0-10'~(30. c 30. %,- lu<O-L4 0L ---- ' .-

LJLX. x'( ~ '. (

1-~~ t- I-- .. j +- +1((LfCL Z* Z3J U4L U~.W QU4 ---W

34 Z'2 ( C.-L2 M3 x-i QMUWO. W LL-w--.-LL

M-4 * o z4 * U.- 4 4 4 A- -0 11 La- if ~ - 1 4 4

-JL~q &.(J< iL OJUO 0 0 0 -4ZWO -o Z4LI) at~ fL* W(3WifWCWif it

I-- -Z X4-iZ -4 - -

U .X L( 0. X . .U.U

0" t UI (3 LN6- "4 4 LU UL-4- 4

z -- -.j " "- -Z-" "- - - 0 0 -

z - z z -?4 z~ 410. (D4 '4 - "4 t-<UW 0 -0 40. 0 4 - - - - 3U

LU IU.. g -U -154 H -u ii. - -II(3(204(3 (

Page 212: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

LL0 XJ -JV(

U cl u :J' U )

14 (a Q 3c Q e U 0 U.z Z -. 4 wf W 01- Lfl X.4- 04~ 0 f-C 3 I-e 3 ll"* 1 -MCC-* x

La lJLI. x~ XJ.<Q Ui -tnaU 1mwz4 Ql Z 0 . W.~- I- o4l44U ls 0q .4 I lUJ V) -j m

I"Otuw zo xcol: Ji -J W 4 ccU I- -/fl. -CL1-jl* W4 .J-q ..JW -4 1 a Wn- < -- 0. 3

>Q - r- a .I ~ ~ ~ ~ ~ ~~ - tLULj0.e pi i3 *(D '~

z l-ut'.-J.QU/1 - jLnlUOLn J

.- W W -49fu d C:P l. -I- O Z 4- _IIIlJ.j0 IL . ILY.Ztn -. I M -Um.l- CL 1

C 4 9 0 - 0 ..ULJ-J L LULI-. QLZf ft (3 00 4 - a.-4 1M 00UJWru% L...JJQ J([.Ja 0 *vj -V -J J uz -

t4 0 o 0C o 4n-t -i~ -. a U-00 '9 LU tLUJ OC Q'O-4c0%-Jqr4 a014 0.

6Lq4ZU fto" ZQ Q4-J~44owU - w.41001- ZVI

76. -, x 4zO0 00

arZU V) Z 14 I--- ILq *ini = =

<-t * U .U4wm li~. XEZ v)h- F-OAO ("r, -Z4 ad444 0 40 4LU UAU 14

-JJ3 -JO , .1c 9-z 1W Is .4 34 IfJ if03 00

0 - I.J XL -tn Lvq~ *.4~~lwwl WV)'

- 3 a#- b-.JI-I9~ - 300030 00ft -Z4,-o -.4 4 Z 0 0

9-~~v 3 0..j -4-tu MfI0.- 44 4 4

09-4r( wl .0 0 * 0 c uZ Os-IZ 3U 09 . -UIA GKI -149 U.. 9

10 0. 14 4 my11'- 4 114 10 9-.J -

4- 2054 lVP FU16A66lrV-L.

C3 1.I o =04 ~jz0

Page 213: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

-. N N N 4"N NNN LON)'

a. 0(z 0 4LLS 3jtl -. 1

0- ~ ~ - 0 Q

7r -% * y

-3 -1 Lu IC* L300( 4 -(2 QO (.- .

((X X q I-- Z* '

vlvwl No 0.L Iq -

m30 ULL -um 4< I.

0. 40 In 2C A.L0 ~ ' 0 e QC r

2A j 0 q* :Z* Zjr

000 LU -o 4-4 (" U(Z fl M ~ i' C19 W .4 4(,prt L - (.

C16 3A LA V(' IU 2 * -411 r Lu.

rt& , LLA Z% "" NN N4 'O l -f0 -4q

I-- 9 I - A Uj4 jnt I'-4 .4U. '4wLk . .92~-1 <4w t- w* ow

0 0 3 m -r w .3W NflO

00e 0 *A **e 206

Page 214: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

oo~o000000000000o0000.0,o0,(,O D,0

LL a- - Jn J4U-4 -4 cc

CL 'Asg LU V) P 4 3 4 .0wz

I-- 0 0 0-~ -- 0..4~~ Oac -4

z QJ c.-JU. I" = U.. 1 t. C -4-.0-414w ' I LOWA

I OLU-ZC f0 Q ackn I 0 W!4'.- ft .. f%.a

W u 0"-0 -4 1 W w 0 L.J-U.U. -,- -(A .J44g--C~0 -JC3 ...J I-<N44cJ-.-. -3a:-

(nocL -4~Z 4- zo'j,- . :3cO- ft.0- . 4p -M

ae 4 JOZTI I-0c4LU JCO 4VO-4 Y.f t -Z(d) .4.

_-jW It~L*-- .JJ - I x LAI-. 4 I- 4 -Q C .<I- v 4 r-j UWl-uJu.=lu.~Z --WkI- i- a C). -- 4-.)(01 "( 103

V) Z0QLMU.UL6-0L.~ -A OM - c :w40.Nj ".-CO3 -*'j.4 Z 1-1-(LW.- lc4WLujuOQV)1z 1-.0 -4 1-- Jj)C.JX -- -A OLnJi W. (XvfvU LLX.46 W.GLt-.J-4U)j wW "i r o .j u4 -f LIa.-

L46 I- .. U($-I-A..jLJ0 .J l-014LJ 2Wu - O~c 0u..) ag- * -4#. LUg.-0 -. -. j.It3Wl- U. 4092tn --4 It c'd .-~ -4- C L 0.

Li 0..L40I CJ t.2S. J 0 -- "44qu.. IJ.Z fj

I- LL 2 Q f-O-0.r'c30 -4-tr.0 0-' win minO-.- J~l .fq iiCL ~ U .- 4 .U.Z4.- <t 4-

Q M M . 0~.U1.)~04 .4 (4 1 -. Z3'MA LJ( -4QALI ft ft (a -%430 ftin . - 1 1-

X LU4(V)Q6 ft Ul 0-4,44 o-- a&*

a. .(xJJ Z L4 I- 4--Vtj.:) -3- :.

A .~J1- 0 1> .2->- - )0- 4U- 0LU 4 0.--flZO -4 4WW

.1-41-* 4b I- - O .. 0..4 -) (.3 Zi X4.n~~~~~ ca:Apj 0 0.4.q O)- A.-4 j a a

OAO-JI30 -4 -Ax4Ws-. M=O4Q- a.441 c 0Q4X -O~ )o

I- - (I) ,3bCUJ4 "t- ca-.4l00Ic at L~tnqA(:)t- - ao w4/3ilc0 -4.-4 ',LULU

0- 0.f f-U-4- .ICX .- 40I - -4 - -O~ 034cin q(XD..Xp3q- 0t -4 4..JMT oft&

-9 f-.ir %4901. ~ ...--- fl 4w-

Lu Q.A( <w-g3.~ C.J~LX

C) C3 1- 49. 0.4l1 -0-0L.- ccI 20(m Oc a5 m m rit jk-Xe

V) (A .UJ 4aoq4 ~ at ac C4 .. 0.L -.

207 3 ~.0.Z.V Wf

Page 215: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

tj I-X4

- co

00

*r -j oljoj oo oa1,. 0 4 090** -Ln- '03tne3 0Lk,)e3

ac 0 A0- n00n

-if- *.rUfat '-Il1Ln 'An .4 1 $U t11 i o1 1o

a 00 &Z- j 111 i

ae A I-Amm Ofl000 0 00 0aV 0

Z"0 JU *4'0UtJU' LJ'L'J"l.IfL a.

34C-4o- 4AX10JJJJJJJ.ZZ W2aecrl x.U 3000000 030000 .

I4Lr LU - - -- -U3~t 3c Uc -0

;.zwg-4zzzzzzzZZZZ Xj Z . . . . . Z 0 -9

Q090-0000000731O000000c U 0000 30000A ~ O tU

~.'-~J4L~tq.J ~ ~ 3 '4 h..~.IL&JIUIU3D LCt U.IJUL ... LL1%i. %.J % %% ~ % ~~ Ud W W W 3Q.

* * . '-4j J.L&.U.A.U Liu -

Z5ZZ2ZZ~.~ZZZZ~ZZ2 ZJ '4-' Z208-Z

Page 216: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

CL. 4LMC4V&# . MM (LM (Or..rO.hOCNL MLf Mr M CLO.4Nh1)CL MM LM Mr-MO M'-t .or-

cc l.- Ina. z -J.1

CCQ4 :3 azj-J 09(-4

ac ot/ 04 ..

cc tiINI -4 3L - -4

U. .31 -4A 04 i.-

ca 4i C3 -. INA/

c -1 CC z 3 -Cl

0 ?-1- 3 z L"x 0 U.-LL N -- 4CLJ C. 0q ac -41o~A 1- *"cr.:N ) .i L 2 - 3

1o 4% II-UJJ Mi CL-U - .i~'a 'ad 3 'd LiL12 3Li)4j-x Cu 14 -J -jf- UJ1-. x -_34C'~

Z * Q% 1-- 3 - J.1 .) Z

1A. .i L4C4.U.J C.4 z - LU x - I)

U.. * ace42t.J .1 7- LIq X 4Oq--w~ (n CECo -4i L I' ::I

4N .. 43L 3q r- Q X1 t- .

". 0 ~ U 4..-.L ea '40. I-- V) N .

"a4 XL1-4L 0 Z- - AMI.0w CE3.-. 4 X W. 4ZU5 X U

QCE LA X-4.01.4 0 .. u 1( La .3aOfLI ' 30 -4 .ac P- 3 z 3 .J

0.3jT X -4 0-,' ',- x -q 3 Q I -. . - ...J 0tug

41n Ul -oUo4LUUc. L*o X34 W m m - U. c1 W1I IXUU4 9 m )3 0z o M- z U.1 1.- ae a U i) a .'4 7m ')

"*"w - ' f-l- UM4 uj(E I 1"4 0. u 2 CE 3u t . q tC cZCE -I- OC 4 X+ aW 34 a. zU LL Z <-I

3D -%3%W 4 L 11%0 j - ..0 -4 J- - -.4 4. 0 - a a L CVOL

3-4 0 awI- Q 13 -ac l' 0 o X 3 c U. Q M I -C II-t If1 - .

I& Cc U hLULJLU L4 j ..J 'a -.1 LU .. j U3 _.j LU _.j I- ft. J-P W1-L A UJ-W.9 Lul~jrf -4141 9 P- -ad " .d p-q -ad p- -. 0 -q 4 usus

.J.J 4 %U.J-QS.4 L.j33 -% X. q d M 'd us q uLI% Lq 'a q z W. == J-I.I Z l-.I.I 03C 4 z"If Wt- U Q Q Q Q 0..J 3J Q3 Q .4 L13133 Q-9WUUJ X <W3 tcE 1,.(&a. LA CE.3LU2-00 N. UJ0..J~i-- 32ZcEce 'j f-aq U 00

209

Page 217: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

NsaNNN~'a~e.JNN'q 4 1:3-4J4%

a~ 1-3 a3C

C.D 5 t 0-0 . c.A"

~1 1

- 0 0 0 --

-' -j "- .4 .. < - x

-- -Q (J- 4 "o A o V 0 0 eQ U 0 .*t

'7i '4.- -.. '4. Z% 2i L U9T.94z.L e-c. .4. o.O 4 P.

I4 4 -14 U- j. -4 9LQ 0

"- Z- - Z- ZW4e- x X*&Q 0.U 0LA WW %.- UW W6 - 'A

LU~~L LU L L w .

-z -" " =

-~~-t 0 w0 0 - .sJ JJ

4. q'.~~14- .4. .- C Quiw). ~~=c ... P ) 4 L

w4 *n V F-

*W 00. (.

210U

Page 218: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

L(1.O'. 0'l~.I~% 0.'4-.4Y "40 ' Jf 4MtA 0 r- .o0 Lys.34N

.0 'A .00 U 0. o4 4l b(IJ l 3

uQ~0J 3..44..+ 44,(J~I'

,aj(A~ M4O4~ gIgLg' Q13 4JI U'J'JA 1* r ~ r.grg

-4c 30 I-)

*6 .4a LLJJ :X3 W

*"-QxqOA m44 V)~ 01-:

14. t- - nC- 'UW~t-J C--r- U 3

W .4 -aJ *Q4U 3- 1. 4 Q-. P-4

l L U.J Q~~.J 4--Ip 0 a kA.Q -Q Q-Q~JuU0A-1- woo At 4 4

Cd - 400.ALimO A? 4

0~~~V '4 -4L. U).-

r- La -4W3~' oA A 10

tj uj -qw LZUJJL0 a4JJ.43.0 3: .4 0 n

W4 I--( Z~ U.4jI 0Q4 0 - Z'4 I- LA %

CL x a ox-~C 0 0c A X 4 *a0r

x ~ L.00 4- Lii -4- a

Ln 04oo x/ xUJ 0 I * <4

-4 L(~io 2 -3 ii f -4 ~--4 A-JC -4Z '% *tA* 0

*~-c ao .- 7n 114 .a C'

IAI 6AA 'AAf 0-4 Ut- 04

'4- J4 SOC- D-OC-K 4

0- t-0 rA t- LA PIIaj 0 v L6 ow-k

-4 4' A - qcj if 4k U ..3 "W 4Zt- - -A t. i V -, 3 ft OWa 0 W O z

.: C3 L.J (3 & -'.4 4 A = 0 "3 P.- IM z 1 06- OP.

m m .a on) X 44t LJ Wz OL Q 110 P

Z 0- U 00%4 -. r- .4 0.4 4 W= L * (30.

kia W. 0- 1-'4j 1- LA . "4 D -- 0 -4*

" A *' Z Q -OQ~ UUQ 43 0*(O

211 ~ '. ~ 4..4 *"

Page 219: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

U, -4

-4 -4 ;

vi 0 U -lw I~o .- 9 4- 0 O~rf- -- n--t-

* Do* -A A g N -a

-~ ~~~ 4 ****0

04N tI 0 4 0000000 *

.J O? 4-~ ~ ~ I UUN ~ OO~J

o 0 0 0212

Page 220: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

I(AL -j -o

L4 Wh. 0 z a 0. ft -L -)- -:3 - ~U -L J. a -ft z..--o 40.0 pm4- -A I~ -- w z 0 4~w-4 *Z £ I-00a Uz Z (A-4tl Q U% -4~A *44 w (3, a.4C LUJ-U a AOawil- Lfl 3e.i.*i-4 .

cf 0. LU. LUc - .J.. 0 - 0 Ln ~- 1

. ~ %U< ±i - -. 3 s - I- *- -14'-4 -.

LU tI uj c94wm'.4I4- WWU >A 4-> e~) a.44cqb )39 '- rl-vivoJ UiwzL' 9-..JO t Ln - . 4x 3F =O~I

4 4-'lI- LUj -C.9 C)C 9- r-4A( 0-- - .0.1 - -GO Q i-..."OCL*. P--- '- CL 9 - 4-P.4w X eQrn 1-

J) .920 tw-UL-040 OZ - CC *xc~~ -.- "Q.( ~0 043 z 4'. ov)LC 9-aw-q4j-.Qc 1-0 j a I.-a0.N- :4 ~ Ln I.-

. W ~ " L 9'Z - i % J 0- I .9 - L U > C . J ) ( 1l l l

LI . U.J -J-JQ 9-4MU) j. A< = I- -4<0X 4Z e Z(0 0 0 -J LL -J OW a ft OUA..f sflw a Lut-.*z Zoo-,uLU*.....w etCzj4 x3 C4-~4-.- 0. - M. fL

La ". 4qxu~66%."w.~ CL~L~ .3 C. % t La w 04&.-9U.,4 "..& X II.- k4. 0Q..)4..Ju q~I SO -m-J _ i 0 0 ~-)~4 ZJ LU

La ' U4JwCQ. cOi-c. 00 u " Q..4 4Ax.- qf- 0

ac. I -"W0 U rn O.

,A-IVIfL0 - 'A .0-4.-4W .. of -. 00L OXcf 9-A 4WNLUOOO 3m 14z%

*3-jl w4.< -1.)w _4 A 13ZQVI-4 LX LL 4W -9 -n(

.cid J of- 0 .Jw 1 03T t 34 Co -I--<VF-: UJ -t Q. -d)O:Z(0 UWJ XQ -c4r I- X 04 .- q. 0<l) * 4 I9-c

OAJ-q a wNI.-q0 1-__j XZN

Q..J031-4CY0 -4 *4) 4.2X4W44 4.qx w 0. 4 NJO5

-3 Z .7PW~Q#"- "l- CX 4-.0"1 _ 4J"4 04mcC-0 L2 0m~n4~c.J93- * MwWLfLAfLAQJ jjLU P9W)

Uln -4 LUJ- V4- ftjo -40 . '3 349 34-4.3 U. 0.4 0 -4 - af a "

ai. Li x3 - p.d-s4q~cI cjj.d Lux 4Li.Qft3UWl- '-4 ft-41-4CC-4 <tj I--

.j Qi 'ZqtjLJ-. CC..0w 9~ 4(3-%" ~ . 0L~4 OLWI )VfO

3ua %x.. CC -4c ~0 a -O-.J4 -2ZCJ4.

LU, LU UA. .4wwZ9-X~

eg U 6 W% Zg A 7-4(d 0U. .- 4M(4U0.'4 JLt

:3zLp--w0 U u Ii 5A .jl~o43QV) -* %Q I-C N CC 4y.

(0094 4 ** *00i04(2130

Page 221: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

0000 000 0000 0 000 0000 000 0000 000 000

zU -w

U4-as

.4 '.4<

X La - I-- LU 4 CLU XuxU LU - L L

Cc LU luQ cqo "atn~c (a 0

Z L -4 Q. -4 3I00DI0cu <

- ;I Ucx k (1 4~ m 4N3i cac- .-4 OJO V eU 1

-4z 4. LI0 -l- .4 to """ P.I K 0 Q 4 W.. LL AQQU m

)lo w 0 0 a LV MW McX 40.o 0 U. -j1 w -

a U 4 L V~fL0- cZ0 u(iJ Q J QZLU a 1% u a. 0.~ 64~~ 4 .Q4 n C3 43C I- 40W4N/I es.. t

I- -r tn a- .4 4 I L t INI

). .4 I-4 .4 L .e- Li rW..4 PJC3L

.- U 4 Li "..WW.4 4 )I - *z~z~z zz Xt X c XU a LL .a-wuaq uoJQLJOL 41 t

(2000000 000-% (% 43C XU " 4 9 IX). ac ac .e ac :3I-"%'% %)~ 0 i I.- 0 i I- _o W- 0~-a-n _j "1.-0

4J.J4Z0000 w < ( W U.. > 4u 4 UU UJLUQ.44441J Q- Q (a , LU 0 SL 3=W

JD~(jQ Q U lJ L L U Q£IIQ~' L

~ 4 L.I~ L214

Page 222: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

APPENDIX C

ANALIZ CODES--DESIGN CASE NO. 1

00000 ~ ~ ~ ~ ~ ~ ~ ~ nQff 200200000000000000002 jo

U fl'lQI%~-" ~ O~

1- ;~ I4U

Ox U .- O'.4 x -4a

Al. .4- Z S. 3 CO

Lnu j~ Q-4 kn

M- "- 4 flU

"4 W .. 4 C-UJ 0L

."Q 09 ~40 a - l U

L ft 4"9 at. ZW UOW LO. ama 4z CLil

-J 3 .JJQ q -4.1 QZ -

O)4f i -JZ 0. 039Z 34- W~.. a CL4

61'3cjZ k Z5 C3.J (A I-L

211&J I*"D a -4 U 4 W Uj" r. W

.1 a.- 4-4U .. tJ (L' - 61nu w qccz-q - ft) 0. ' Mk U) W X

-qU)- -4 Iq I.- J*t"j'4 N4 Q7z o 0 x N

,%%if -J.wp Uj-4 1%. %1- %4 e- *.4 " - w " o w-" ZW4P CCQ-C- :) " 44Q I..I Qw~ UN 9 0 L4 1 S LN44 .Uj

Lu ~ - 4-j~ -4c t- to 4 c 4a fZoL l CL-*

IC " .4 -14 tiiot I- U)

CJ aGW6- ft ;j u41- LU C 1.4.49 O C PLV-J LU .V= 00~~0J U 'A .41 0..2G C Q.2 0-Q x #I-X2(

ZIJ 4g12tI.. =.-. Us 4 - U.. A I-W C4% 61 2 '4 4(1 41

U2 * N 215

Page 223: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

%Iqlq ~ ~ ~ )O0 0O 0 *4444q 11%A - . -- 9 9 0% a0 ,O0 q

j O O J ~ J 0 J J ~ J t J Z

Q I

4 i

LU

a up) j 49&. -4 (14 4 ~I.J A..g

.J(M C)J 0

-n P4,ejwa A - I-(1' 440 C! -IC *.- >- t

00~ AcL -o .. .

NIQ., W-~ .% I Z - L-Q*x . ot 00ZJU ~

Lfl Lu V)hL -9~ 111. 0 ( 4 -q 0

N ~ ~ ~ ~ ~ ~ 0 D40*'a. - f 0 I-

U '4 UU oILflU 0-4£41. .N * J4 (9.

U. La M LUL-. Lf4

.4~~~ I.- a "c~r..r"Lfl. 0 F1L W ~ I..4 4 ~ -4J0'3 J

o ~C . :0 U. ~.JU U.-ZJA Z U.S 0.,40000 .* 0 Z I) 4 's.W J ZJ )(. a ..

pt.'*oo. ~ L 1- -. SI-OW

'11JWQ U * .Q

"4 ~0NII . 0 ~ . 3 *.a...w2160

Page 224: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

9-'[email protected]~.00%0.4 . 4r-' 01O%-4N-~ O.3 J..000000~~~J0U4-44z --J.'J'I NI1(I~ 1 L1I~91CI. a'?J'

Z. e -t 'A N.2 '30lg '..0 * -. .-

3 - r--, '%4 O * X )% 11 %(

*4z4J ': eUt V. If-4 a -. 0O.">0~ ~ ~ ~ -4%1 -O 4 0 av4 4 4-

0 z,3~c *' ,(' -- 4*e O -4OIL .4-W-%-

20<9-- % -4 e..t-4L -40 . AJ C

o (flLigf3L. 0r. Ne .-- e be" - to. a- ~ ~ jjJV. -4a e I NU.99- . ' 01 - 'um

6U.-.j - 40 JO)I - U. - j -. -4 .. %

.004-.J a .- u(flq L00. -40t = e Io - mL0 04J~b - lAOC3C* Z a - X die804O I~

0.-. e4 ' e -" *lA.'flJU"J _

-- Zn I * .3 - 4 W - 4 4 1 A - - -

u'. go. QA - fi I .- 4~o I-. c~ j j.. . -I.

I 9 -.(n I-. *ALL-X%%I)UJ. 10 4. Iea %n.3 3 * J I U.. L.Xt LXgJCC--e . ~ 4f~

9 -I #- .n I -J 3 j l - U . - V. 4 v~ .r 4 L n ' )

-~~ ~ -) n.r3 -% /)NXA4 9O.u W. U- jj.- ~ -~'-4d LJ Vd) Y 9 1-0.- I-40LI.-o- 1Wi.4rWXWXW

*0 C)- VW J U X n~ WO 6.l)4).f)

.9,) 90) . ZOZ6 Z Aj ..a..J W)CQL4L 4. x; . u. " '.UU -o Je C3.e - t - LA q< 9-wlq"QWL.ILI 4 ..J.J--.JJ..j -.i_UI- l co U% 0 - 0J "i -"$-- ).4Z * I 9-.wQ.

oo 00 so -4 04l I-- 64Z 110. oa 9- 94-94#-K2 P-0 I9-0- a LUJUJ' <- 4.S 4W44-X. S zm-sm.qUV .4 U qu% 0% (.L A NOj ~ 0J~4~-L WOUJ9JULII

x .e 'Z. x - - : 4 z ZA I-.9x-j~.4.j I,-.jI-jf-..JI-ca 10 Q 4 (NJ4 0~L~A 9-LLW 4 4 4

-I--. -I- wI. 1.- 0% Q% Q f> J . . . e .,011W *'.4QW .-4.OW O"-4UW.-WU - 0 V) 0 LUZ -XXX=()(0XXQ(X1-)xx

ZIJz I:x 3 om Zw -z (3 -a be *N'J(%('4e NINNm *C~lNNNC'4cj(mJ. WJ9-Z IJ"Z O36- "a IM LIi A w a. p 0. . . .~- . CC .

t.LWL. 00&IA LJLU 00 tj= M-j .j -'

ow"J6- (.2Q" (DUQ- (.2 OX M Z -J -9I9 - -9 -9"W U4-4 4 44 A

OW "0 30 a z 0 ' 3 a a.M4 4. 4(LJ.fl' 14 'Vj. L.4 LL l.4 -.

4-J ml -r Ln u4 4'9 0 .-404I (,1 .' tA vU r30 00 o 0 :0 0) 000 00

0300 0 000 0 0ON0%0 IT.3%0 03 3

217

Page 225: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

LA.

*%U-4. - N

- Q~% - ,

X--qa .0 00 owot.* .

000 00 0 ee * 4.

UL- X

O.U~ uj -jgU -

ALI. ZLMt. U.Oa

-LLLUJ La- qj. . .a .a

Z Lu .~

L46 LL .~ 0.LLLL L. aMU% I*.Ii0 aa-a aaaa

Cl) U'4 a a-aa -* Uir3. .0 sh 111 (I!5iliiL

0%.. 17%(3% .0

,.4~(Jaaaaaaaaaaa aS aft .218 )

Page 226: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

0.0.00.0..0.0 CL0..0.00....0000... .C0.CL0..0. ix %.00.. .0.00a .0..0,-U..0

4 U U

-,t I- 40I

0. 3c4C

LAQ .4A -aL

Ln, ZO 4Q -f-c

I-j t u- 4 JW) a:3 - 0L- . "Lu

4 - Iac 24 U

>LA. -i~ - u 43 U -- 4-f"0 OKA )0 An CM U

~~L0 I-1i -0.

QO _-~ -) * L Q

.1,.4 t'LJ -ULI Z X-4r -f 0.- 0 .

.VJ6U 4 0"-q wLULL LU X 4LU Ui-4Q (i10 -A (4. C) I-4 -1--4 4Y.X - -c L- nU

1..!l Q4U OUJ j 0 .

4 Z4 r,40 -- 0 t-.. >o.c1 ~ 0 .- @ % z I A LU A-

CEvJ- 0-4 Of- Z (n r-m 4< 'J)AIO %3 W 0 .X j 0%4 ft ZU 4 I- A O$1 j ( 4 C v<.E-..-a -. qrt s4( 7 I*-I 1-0 .-4 .0 x LoUa U A c e 4(j

z') "-. Mu 0 C3a in a 490..(440S M LW <QOt-qnj t&Lq.J ci x4 P- in 1-It0 " L/) A.l ;

OL C3LU0 Q6 .4. eW x LI- CL 9 L-U(J- O"-

ct 0 -'.) " 0.4t- LkU . U4q- -4 C tcAPff- w LU4Z ft..3p4l- 00 - 00 0U W -- ZZ. MI 1-M Z ') W Z

' ~ ~ ~ 3mj~ - -(n-J z . 4 4 ' 1- I- C ~ l I.--w uZ V .-. .If -J0J

.J(.Je~OI.O.3l%%JaC ~ j WI')u.J QOQ OWL QUOO ' 0 "J

~ .4 0.219

Page 227: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

00000:a(0000000000000DC00000z:00) 300000C) 30000 300000000

Lii

rI-

tA Q

42 .%

U.L mQ a

-4 -d 'nI0C

Q. r- V)4 0 L

* n I.4 4#_L Ili ('4 .j

(m-.0 0L (J: 3Li " 02:Wj >' )0 I

3-A r %Y -9 - *(-'---,n -Q DU- CL3-- i1

= Li X' - en) 44 itng . 0 ._VLA Iqf i 0 UI . 0 "(

W LL ('4z -Z.Ji -4 04 q( X -LA N43 0W C3- -U M4 0 0 1. CL- Li

> ' 0 (3 z x L / 0 33I.-kj LA- LO L?- 4r6 w -

Li 0<0C 0 LLA IL U. Z * J/) J_* .- (. -. 43-fl -.m3CJ3 Q In3 NUjLI LU UJO3"

If of "W4r w wq*4.( LU I/I 3- NJ'

UA oU -4 c M -4 4 P. 1 -3 L3X4)XCL6 WLAI. wi .4 MXZXA4 L ~ iLiiZ0 O

D4'44(3J Li O3~~4I ~ ~ ~ ( *.tIu Q"..~...JUs 33-~S ?

0~0LL '30

4 220

Page 228: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

~ -4

La aa a .4 aCL% 0011 0 (A

o *-0 - a4. 'r 4 a~ ( % N

20- a4A. a O. -0 -""44 U~~* a-. -r*A. -X'% f10 NQ -,4 -

0I4 - *Ifa Lu if -- ft-j4-404 -1 - - ow 4 x : --- #a %-4 -

4ni-3UL *a -4U -U - 4~ - LL -AZr ZLU L- -1 11 XU. a)( aH '4 o"4 -4 -

Ci (.(4 0- NsxVAJ LLI- aa.J a3 0uJ C

.4 U r 1LlA.. e4- a . ?L cr if 1.--J 11 "Z

LA LLU.;om " a aW-j^m ft re o4 .ww wow L~*4 U3 or. ft-a l'jQ%) 11 U- LU - "J a.jI'- LtU Xi -CUgJ4aaw N't f i-)(4Xz

fU 0.* Noj <,M Z a a 7- jil)A.,jar'j

SZI P" ~4UJ-J.4.4W -- -&- a--(l-X )( 4. L' ag "-.. 4 .. 4 a J Wl -M -

SM A A W- 'l I LU. -v 7I - =lqLJ.tX OK 11 --.g o .-g .-olr- I "'Af t-a -UL .4U.U)uja. .D - l Vowa o".

0 a lz QLL U.Z tyaLUI- aa 6GCL %(X

aj ' ) J )a) JJ..j LJL.. -4 -4 -.4 -4

(.j W ( A L-UU 4 .aA'U - I" (A'~ ~ ! -~ I- -. 04 x U ... 04 a: "J -4j1 wo)

-- - C~.40 0 (l "V7'J4 a--a---W - Li 4j-- . aI.4 1U 'A -Q.JAa -. LL-.I XIJJCrWLU~

O 0 0 I'.JW ~ U 1 W U.U6. .. 4'(jl-c.4a.LU I.aIa..-

4.tJ~~- -jc aIlx~ a - j l/..J.4 t- - I -ol) *Li ood zlj A~ 24 COj ->-% L. 1 66 L4 1u.1 ul 1.U

S J- :J- - a4.4 LA <-A I)LU,4#-CJLtJUQLr4

t P. Uico UAP 0 .3.- 01 " "--- >--.' < t-'UO. 4 q4O'o0 .0 *0 .-4 -Q4 I-- Ltz I-(AQ 1..CL 44<.4(3Q F-( Ili I-Z tUWu- t-, 4R AU WW ~ J -Z~am

.qUp 4U' -4U" V%~ CLW 'CtN d~o WQLUC-q4COW W~LJWWUIar ft a' a a - - X -4 z zom- 4 .JZ2.A..Ji-~e.

X- (Z'- cr -4 .4 WA Q41X LAU.-IS "Me-L3A X~4x4CL.LU CL W QLAU LU 0 0 U. _j .q .a...a.-a a ." , "

IOo"IO .. Qg -4'OLU .~O'w 0 a C3 LUZ oxx:xxxc-XX

ZOX zu3z ZOM z.z-. - 3 a wo a *'%IC%('j('Jw rONINNrJN *(cq'JC%JcWIS4Z (;)""Z Cl-oz La." .1 LU Lu * a L a a a aaaja a

Jk.JL8. L.JWL6 . LALA. LALJ LJC CX J _.j w - " - w

< 4 4 .4 q 49

QW3 40Q " 00 0 0 30C(-C A; sL1AU. LL. LLI. LLU. LI. U.

'-4 ~~~~~-4 44 Jm. .(fl. 4(NI (TI '1* ull I I Q' -404 (n7 CII 'u N'- 1

00 C D coC 0 00 0 00 00 000 0 0 00 0 L'

221

Page 229: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

~QQ.q'~ ~ ~44

Nk'

X.O.

- Wo a*%UCU~ a 0.f "In

o-4A .J- -i

Uj .1 .U. 1~ -L

Six Am %6U.- "n-. L." 0.4

a~~~~~ aQ 1'%% %''%%''4 z

- a a Iwft .f a a a aaa ft. t Qf

.4t.4J.0 9* * U O 0 z~

U. L6- LLU. U.~ aIg ~ N a a a aa aa aa 4N

.0% .7a ... 0 ea at

- . .4. .. .- 41

G%4 0.%0% a aab bb s....1

222~'

LI ' ~ t(~ 1*~

Page 230: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

a..

-3- 3 Luz

(3 -go 4,AlZ- 44Qa o

044 zo -4 4 t-cao.- 0 Zz 44 0. UJ~u

u4 a- 4L. ._j JIL A j Id)

u-1 n 1-- 1 : 9.in 4

'44meL4 I -Id -a. t * ,-C C3ct~- 0-.2 ~of ZIA VI2V

~ -~ 0~ ft4 1i1

&DO-L.0- <i Q 3 L4I-

L.) "- MG 4J of* 014J JM 4LU uQC W .4

0 K4 4 t- ~ 0- -JA Z i-u 0 QiCjo4 4r-OI 4: * 44U.4j >Q-otj * . j alict LUU z L 4

't LU' 6- ~ I 211)m X 113 Q. - 3k L -%cC3.- * - a -7( LU 4W)c 3)

=0.qrq 010( 429 .2 1- < '-1-wmm"n-Ug i-e qt (.)L C- (O f . "(.2.

< .c4CC 049 Or%. a tu -4 ' i -- )%P-1 9 a4 0 NZ< 9-_j ..9et e* x~ "4a I-I- 1.0 -.1 .0,1 X UO00 U1 in a

Q- 0 -nIo 4 4 1. M4 4 f Uw 4 . A"4 21 cc 11 UZ 11- . 01 .~m 0 .-@-4Q~ -4 ..4d& .1 L1 vAE Jd A-0 IM

-1 L444 .. 4& 3 r..41 .4 r 6 - - %--UJ j IIJ - 1O

4-r CX-.--3 -4 0.4- LU 'd Ujg%.. !x 1 4j4U~ Z - - Q. 14 0 r,3 ) LL 0-g600 Q. N- IIAZ 3V.(30* 4-4 0=00.1 I- 0 ' 4

L-j 1-04wz4 01i 2 N ~331-K J CJ 4 q. 0. 1- 3 4 - 4

- 3 4 ujI -31.1( ULU z S- (JQ f a U.f

44w~-3-0-gj-% 40Q I- X 4 LU OQ0r- X * .

Z43 ~ ~ ~ ~ ~ ~ ~ ~ ~ jj JCJ(-)*. 0 1 .0@ L A ~ *-0 *%L.J ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ k~- tLjI~ L ~ '4 . . J * ~iS j Uq0 64 U

-4~m-.(~4'~4 0 '4 0 L5~0-4 J - . .223~Z L

Page 231: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

I.-.

44

0. I)L Mu 13 0 L

-Lat O.i wi -U

.JW: f 0 .(3-I-~Z eI- ,

r-e4 -%-w ,J n .9 - OWlu M.N C) &Q ..Jv U L

-r"t- *- AZ - CI- - u-0 -

4% f~ W -V .cUI LJ 'n I0 ( 4.0 4tu 0

4~ ~ ~ ~ ~ ~ ~ r cc~~~.Jg~ f U *d

. - tIA.j f QXlZ .iaLZU~ 0. "0 OM CJLUJO Q.

U~~~tI- O-IOt4 4 - U * JJ 1-('~dI~l~~Ja Ili6- w. WLU w~ Z440- 4AP 4

-qq 0 .4 4- *0 0)t P.P. 040.f~&~ q "1 6J 00 LJJj 6U~ LU

oxl%4 1% A. 44A *.4xflL.wZZZ 4z (q- LJOO000Qza W W

-4O~ 0. x Oij so Z ~JRW-?' U ' JR 'JWW L~u~ELJ4 ~ IA~

.4q~~~~~~ac c U 1 #* 1 olS 11

N N (.J ,J U ~r.J M~L g~.,224

Page 232: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

1LLU.Q ..QQ 36CCC

C;C

049 N C9. .001* 0 If. 00 L

* 03 LL. 1.1.- *

0o-t ILi -4 -%_ % 00 3uo_*404 11- %4. - *~t _-.- o1 (

F-t LL o.- . - O 0 --4 _L O.Z . LZL3.) 0 'i -4 -. o -4 _(2. Z _A Ik_

cc 0,- cf.J - .014.0a OUft I .-m - ~ A.."c 11 U^0.-u 4-.4 Xlf'/) % % '% %* 5

4 io~a . - a" 04SC.l u '" ). o a s-. LU -t 4C% Of~ LL0 . U as q4 .- .- j WU.C f

f- CI4Z~ 0 -tu S -J 'sU 0 co * J s. X- K0Oc.*c... N. - 4.a Or O . Zu ft(40 x -4 -4 *-4'.J (04.4

In I-atU U~.. * Jw4- fL .. 0 S. L4.d&Z.

.30 - -L(A .LnU-. CcQ . Inm *.W L07 V. V

- "tu I4Li-fO -. t..aU. III-.0. IIONUJI

U0- I )AA LJ44< USJ UO -. C'd) AUJI 4 0 1ALU -.- I X I WrU C -IUQUC

04 --n- W W W -4W 1-(36-4- a -

1 l iz J, 4 L a _j "U.,3-a.-e. at.Jo wj. jiUw JAI

r- LA O j 0 -1 >.j '.Jn() > . LUJ. -4 M4 m 4 -- C4 coSO ' 4 -0 4 1- -UW )0 7_- )--40C.iU J1CJfCXJ

3 ~ ~ 14. 0IX N- >z LXWLU..Q-. U.1) 4l h)Ol)

0.L U J1JIU LU 0 U s4 " -. . .- 4..Jf. .. Lai.q

* *L 0-,U *7)-4"U 0. a n C Q. OwcXMXXXXXCC XXXXXXXXXX~hd

t- 0 1# -- I- z. 4 .4Ctc /).4 5 - I -~

QQ% *A WU 040 Z'-J m4)z.U U _ J.J U

OQ (_7Q" Uu' 0 X A A _j I.-W > 0-W0~~4. .0 *0 .4 .04 A- A A-0.Z-- - -44-40~x x- x- 0 xUU x- a. xW0-~J LS.~

ZIP 0U mU mm' acW % md LL =)W 0.aU = =WJUU-~t -r. C3 a 0 0. 0 aJl

-j xw UL. I.u L16 U. Q. LL W. U.4 IA.04 J ~UJ~ ~~~ a.L 0.L LU 0 0 aA 0. . 0 -nu u u

- - - - ' 'a ton' .. .. 3 . .0 0C CC 0C C4.OW*4'W *-'OU1-4W - A 0 0%0%

~ ~g ~ '~qg~~.'u .. UJU"*Ul~V~U"'225U''

Page 233: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

4rwv v .7r, a0%( (4 rnO-a

U..

-LA.

JIM ta.f f '4a

Li~,*aU."

-a af ofC a af af tol of 11"I

. . . .6 .065 6 (

WU.LA U.WJ.II~ . r a

"f Ia I- aLJ a aa aa aa a l

ana.c. . ee .e ec .i

-. - o " 0. a a.f

(%J- CNNNC'INNNNNNNN..)(NN

-AU LL aiU

~'-~~LJ LI. 226

Page 234: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

>%j a

(. , L I- '4

1- ft3Luj

L it vp zz t I-L U1.4 - ... 30

Lnl- 4 in 30 4". Li

>:-4..3 zi0

(JJ 94- LJ.- * -

ca0 M- -_jL a. ;Lij.204 4.iZ ZLj LU ZLU (i

.ui * etq r-. Wn %J auL.q40. *.1qq.j 4 %Q

OL0 4Z A- 3- ( J CAPLI

-LI.%A- 04 1,- 0 0Ujc

0.-C 7- iZ 3- <4 I- - 1. -4L

-. 20.L3 p-Li AAZ L33 U 0

_ce Q a+n m- 4 AZ. 3M- tIJ =, -1L

-sl &'W46 .- .. LULU .- L L-4 cc L

W-M ".OJ' Pq-Li z.i 0. 3 LU4. iw~ji-q o44 O-4 lAJ4 L wA LA _jLi Ct4laccau-L .--U j34 CL -J t)~4 ..f- -t - O I 39 Li 4 4 (L- ('4 4n

,4 Q *J*C4 Y_ I.1J4 "-~I 1 4 <U. I- >V. . u A L

ka.- 0Q%=L0t-Nx .4 0- OkN. . M l

Z4Ztua .Li 4cr14c -14Z 04 LiA 0Li i~ - 000- (z .1 LA 0 0.NZ~qg -_%j' -490CLJ 4n~ 4qc -j4 Q U _j V) * X r 0 *a a0 0 IUd- eg *i4 U

:) "- OQ M 0 iAn " -44 _i 1.- 0. N%..4 ifit a% LUU 4142 wq.fLi'JL1444A C:Q I- i'A 8 it L-30 it . LU 04% 0 s*(-4- La

~" P74 t.IJ.4 LI.0 "0 -4- .1 U LLZ .IP LL *ZL _j L.JI.J14 Li@LUUL%.Vb6U.L%t- %6J LUU. 4* r 4 l- 20-9t.4 Li MAILJ -.8 NIf /)4

"-CC ot a a j -"4 0 .4" 4 LU OI U4494 -A tLL itU6 j P4Lil1-lj" LUZ Q.Pl 110 I SO ad) LU 1--ASO0. Q. .4G6 z ILZ3i0:3404 0 1- z

4LUZLJZ Xa 4.c -IZ Nm3p-A 3CQ49j) "41- C0. .-ODZu 0)-IUQOC =LW z ""LL

.4cm("Iitm ,.J04~ 1441 41

227

Page 235: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

I.- _

Lfl

C4 c

43 -MnC3 :

_j A : J 4 1j- -1- 1 U '4 Q (

*X44 _f:~_Q z . - ot ek

4~~~ 0 -i- u~~ 'q U v - 41%L '.L ql- 4 W 0 "1%j q~ol M, (J 0

g CL t"X G*..JU4- Q~Z W4 LIL 0o a o. O- * L

-"fm* * C -JJJ -- u- q -J. - ~~ - .i JI - "- I" it 1.(41 L-j( L4 uJ LU W63 4 4( e' 4

I-. O 1 111~.0 W~ o" '"- I 0 (.JL.U WUQ U&U 3 30 O .u j

o ~ ~. IJJ e-~.J'~Z~J.SPZZfL . -0 0 0.. 0W 0

.4 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ . INS .U~gU~ig ~ 4.V a 0 s w Q O L~~~-r~~~~u0 c ' Nou~Jg~t4 -

FI0 ~ ~ ~ I--JJ ' 901- SI-- 228-

Page 236: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

000000 3O00OOO 0O 0000 000000

~~~~~~Q' ~ ~ ~ ~ ~ ~ ~ J04 4JI01 '[email protected]() IQ~Q A. Ll 0O4jrO2O.~'Pf

LA -: 0.

004 't-~ -4 - (A-4ZL ft. -IL *o -

"Li 01 s 0 -f1C -4C344L LA 0'4% te 4%0 .4 - '%. .*%0 0 J0

0. 01 N If 041. 11 - - _j 1 -: - -.- _(J- '. i- 0 - - o.-E - 0. 0 -4 -4N,1,1^

4n ?3 U U.a - . 0.;p 0 am-.W . -tL U *

P% 4cow U , -". 1 -4-4 -3.6 Z. **. *, .j -n acc%2 -4XAO OmIIJL .g40. C3.0.m-aW 0w,.0

(J4 -C . 7-LQ% I_ 1 - it *.4 if *4 j,- 11--- wlLJ 11 *. r -- -$ ":L #.u -.. .L 3-.' .3 04 0 * 0)% ..- 40 0- . -. _. /j

LULOI- No 4ca- = - i: tAJ4AON I NAN* ~ ~ g 4 e,.Ju..GLU)XUJ ftj 4 9

vi 41flf JU44l LU LJ rU -L L1) W---U

X - "V t-4Wm - ..J'6,&&(L 0 - l V - -WeV

0 0 1 U u.c LLf~ 0 (XWCCI-- 0 -46 e4X . --0. 0.1."f- Nbo-' -U-4 " c0 . X.UI-e_

* IY"Ut4 Ni X,)6UaJU6 -41tA4'n4 -4 .4' ~ ~ ~ ~ ~ t UUU -JAC _'_J -L/) 4 J .cct1,~j~ (NJL)f" u(.J

J ..n M Z Z0 414 LONC4 .- 1-..-U LIJ*J. We" U.S. WI-f ftr-4 Uj V) ce 10.r'.- l-440.-g.. L~C~Cucuc~

0 0 'il#.LU x LU /)4% I.I.L .. 'J- ~ ~ . .- L-J5.-

U 'U LnLj .. w I- ..J -i .400Ot CI f.J .qfl 04) od O0. 4 Z =..J -J-r( L 66 LC LU Q LU LU LU

(J3 (I- -wP S 44 1-UJ4IQULJLJI4 qI'- LU0 WUO . / b"4 44-- 4~ I-UG. 4 4L L 4L

03 00 .0 -4 04 9c cgZ lfQ s I- -4-44449a -Ca 1-0 C. UJLL-4 p- 4 q4W '.404UI~I-_LUJXLUA ccJAx~atEcSc~xcA

0 -alp 40'P u' CL4 -9. La - 4 ;X W L U CX _J 4 C- a. U tALUWLJLUtJIMLJUJLJx - - z Zc I-,.ce.jz.4.j I- _j I- jI- .I- .- J~~~7 O'X X0 .4N I LU_.-40.LU.4j 4j4J....j.

- r Z 9 W -. %:Piz 0-104-6 P5Q-4cLuj lI4dlq -qL-acLU 0LU 0-UL U 0 0 L. 1- -" . e-Je--m.

A ZOA ZiOX Zmz -CD ae *NIN(MJ'%I NNN('JNWlQ~ *I"NCMJ('.jNQ"Z. U".Z W"- ".W LU LU X . .. j binft a ab..*

WU. wLJLU LJW. LJM M- a. - '

3t44(.2Q Q2Q L20 .3. Azz .i - 1-- 16 - 0- - 1--ac LU 44 qc A4144444 I0-.iJJ AL azx a. z 3. xZIP V) (Z CM ac C LX lx0LU.-0 00 a 00a0 C00Qix x LLL U. Lab. U. L6 L U. 1. U. U.-4 -4 NCb'? 4tNj(V)$.L 01 .4 -4 -4 4 .4

0ID0(00 0000000

229

Page 237: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

LUML*r a

Q4 ,

ej

%a eo .aa a OLo

7;. . N 4

U** -0 0 : m

J<WV-

-Z d. 0,. ft.. f af a OZ a ft

aa-aaa a ft or a ft a

Q* M Eh-~~~ ~~ z' ss si si si si i(a

.... *a .. * .e0

a a a a a a a r4230~

Page 238: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

APPENDIX D

CONTROL CARD IMAGES--DESIGN CASE NO. 1

0. at

zz-

N4 4 -

""Z. a. x 4.0J

4 u4

0.--

.3 ~ - e~m) 0J.... 04 94 04 -4 -4 ,4 .4 -

J-4' J - 3 d1 .>

QW AC

'44 4*

023

Page 239: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

z z-

XT :0 '44344 4 4 - -

C

-M-~ LL- e 4.66.4 je se k C 0 6 0 0 0 * e

-c', C3' r. '4 'd -4 .

Q. w i

.. ~l ' ' MU 1 Z4 .4 IN 0Sl- 9- 6. 0-4(l 6 -4 0- 4, 6r- 0 6C e

'JJ PZ c~ o .Z In 0 ~ -70. '4 4 .4 (A& 6

(3Z =9 t '0- OV)(

"IxZQ L 30(N

(3232

Page 240: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

00* *

-4 -4

0 Q* 0o c.j

*-40N0('I *",I 0

r'J-ecJ-** 4.

00* .0

-4 -4~ZI liAw

233 J

L.L - - _______________________________

Page 241: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

APPENDIX E

COPES OUTPUT--DESIGN CASE NO. 1

A 4

z - -l

Ao , Z

4. e~23.

4. 0. -

Page 242: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

'- .J

• • • o 0

Zet° , • •a ° •a

-aa Se

a -- 3C~C l 0002350

Page 243: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

2 0000)

-- so Z2.1.

-,004

Z SS.032

=103 MON.. 2500.00.

* -- A

Page 244: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

* ADA U

a A

~ ~ ~'4@e400 d~a2 ~-O'- * 2.~COS% 240

Afln* ~4C AC 20 '%fl0 CDCflO 00-. -.- w ...- -

UW~J ~4 VD oa.a UJ* ~ 'r4%A - - - *** r

A n- 2A C

* . S *

~ - -S - -

44 2-. 2

'a. I -& 4~.A.S A

* - 4 S4 4

* a %'a22 - SAD- --z - N4SC aatAfl

a a.405 fl4~ A A.4 4 45 - S A

A- - ~44 -i- 2 4Z~~i 2 I '.4.4 a. , 41u4

* - ~ - an-C CX ~ - 4AD C 4U4 .2C2 * - - -

AIM 4 -' .. 2 '.04 A'a - 'a" S.

4Z 4 C4. ~MM 4 4 4 4 SA- - a =

- 4 222 4 4 *M 44 %XI& A 4%DJ£2 4 fl 4 - 44 4,-S.D-S Sib -

JIC A ' 'a *

ASh *4V~S 44.4444 &4 4S'OS 544

4! 4 ~MM4 4h.lJJ !CawAOChSD. *~'.2 4 0043 a.4XC~O 224 44224 '4154044 SEX

4 AD -- - A- -,

A 4 4 2* C AD -J

- a - -

IC - S4 a - 4

- 4

2 5 a -

-~ a a 2

2 4 AD 2

237

I

Page 245: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

0

C.

* *

* - . 0

* 4*

* - 40

* 2 -* 4 AC* - 00

* ;3 0*00

* a. 0 00440 0 00Ma - -

CM 4 2030*~02-~

-- - 40* 4 * C MV 4044

C K 0.4111.* - * C 10 400

S 2 X .44

4 30 0* 4 * - * 20 00

* * - 4 40- -4 ~0 4014

* 4 4 C4.4 44£ - 4 AN

- 4 4 4.40

4 238

K ___________ __

Page 246: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

_0

ia

o 4

o -

223

SW 6.9

Page 247: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

30.450

3, ,.. 44,,o oo <

:,,. :l~l 300000oo 0o- 3II II0

30 • o00000o000l

3 45+00~

4Sea0 + .,1AU.4 -. ,4??00

+ Bg 00000

3 3: -i <.=3- - .4 .

-4 'aC .2 24f

Page 248: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

;~1,'~n NCO *.4C~-4 * @0fld4 OfI3.Mn 4.C 0 *0 *.A0 PM ~ lC.2

~ntJ 4- tt J doIA - ' - .ON

4 Z

* A * -

-4 'a a- J,

4 ..0£ 4

- a =t.:4 4 4-, 4* .4 4 4

4 . ~ w = A- 4 4

Page 249: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

z

---- 4

2

242

L

Page 250: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

A A A A 2

= a -

a A 41 1

4 a 41 ~S 41*

* 4. 4.2 - S

4. 4. a 41 -2

* 4. abE -

4.4.4.4.4.4.4. A

~3a~o~ a

~ ; : A

.J*3UtaJ.ab. a

a a 2 a

L ~243 j

Page 251: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

I ....

-%,zs

, -C

.2 2 . .fl°2

as z - t .x @ 0 33_av as 3= 33 3 3

-a - C -

,* a ° 3.4

.2 -44A

t 4 #!

Page 252: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

3 -co-

.0 40MOEN=.a

@4; 4402

-is s a . . :Iz

2245

Page 253: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

C

00000024 3

0a , n,.o00C ',°

- -. - O.. 04

3 4

44246

A 3 .1

Page 254: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

I.

,-

* * 4* 4J

* Ai soel 14

* * 0* 44 -r

24o

* N-.*, - 4

£22 A44

* .4 ,.

; 0. • 0,0

, * - i --

Page 255: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

4141

4141

'41

4-.5441441

4.'44

e. 414122

55 - -4141

N. A A22 444141

410

- 5*2 44- 41

41 41'2- -- A-4 41441 341 Z 4 ~dI ~4fl 41 41

a - ~4 -4- =~ ~415 S A 41 .1 5- 41.n5,ne.. S - * ~41; ~4156A 4141 - -4

4141 - 541= - .arN .3 - - Mt41 ~.41..-1 41 6~ 46-41 41 500 41 'S ~ *" S III 415 24146a 41 3 5 4- 2 41 -41-4 - - -, z 2

A0 -410~ 5.4541 24141 .u*41 -41-

~ 4154 ~65 - - -- - a" ~ -4 -

4 34 - 404 41 41441~*4 S.'. 34.4 SIc - a

4 4 5.~~ - -- 41 '41 441IS 41a 41 - - a- £,,aaa ~n. - 41 -4. 41 4 44 44 445 - S41 - 5 5 2445-5

S A - *4* 4141~4141~- 41 MA .45= 541 A4 5415465 41415 5952441 41 241 2241 ~441

t3-J 41 -J - -- 54141

4 248 Ii

Page 256: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

00

~4Z00

00

'a3.- .. 000 %S

3 .4044W 000000000

000000000

ooo'o00C

0 30 000000000

U UU0V~4J00S

30 00044%43044

3 04004 00A'4

300000000

- .* 440044

4 flSSSiiSinS3 00000000000

U-c44 U .

a 000030000

U Z 33 3 - 3

- 3 ZOO-z o -t

U 4 . *O~440*t*40t0* .ag..-.-..

- U 0.4 S

* Ut 5 U.0 ~

O e.w.e

- 30 3 uS

% ~ .4 U

249

U __ Wi

Page 257: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

1~~~

0 a- 4

* .4 .

045 ~ '-4*0* 44~~~'6

0 4t0* NO'00 4.40 4.* .rw0*OO.eMS 0f~.0u~. ~.-0 00 zo a~..o- a~..00.0 o~.oa...,J 4.6- 441 mn.44 0.aaJ ee0 q,..

4 - - - 4 on -- -~ 0

0

8.6.4 .44460 e.G 04444 .40.460.4 44

444 2

~I ~..4 ~* - 4.-C W4 a -~J02 - 44S~ -

-* - 'a840 .4.4a4~4 - J 5~AJ 44

* 44 4 ~ - a 4

~ ~ ~* -- - ~U41t4t ..4& - S

.4 a.~J4 00&Z~ *~4 - - 4

40 4 a .. 0 4044 4.4 - -4* 2 3-8.4444 *o a. a.-- ~ - a.

- U 0E~ C 2 -, 4444 - 4 4UCO C -4.444. 4.8-44 - 4 a.s.3~ -

3 'J4 42 6 M.b- S *.~,.4C44A4J * *4a44* g. 40.4 444

0 M4 4S4flflM1~ 04.4 - 40 ~4%4J *

0 a. 0242 )44200 *24 4.2*~ ~~444*S0O.46 *21

44 4 ..

U 4 a. 44 C .4 0* a S 4 .1

- - .4 * - =C C - .4.4 - - .4 5 2- 4* 1- 4- 4 5 £ *4 24 S - U

g * a - 450 5 a - a

- - - - a. 44a. a~* 0 44~4 a 0 .8 *

.4 .4.4 * 8. .4

4 250

Page 258: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

a

a'.

-'-an

* C-s.-4

U

251

-~ Wi

Page 259: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

A A A A 2A A A a

K w -A - SA 44 44 1 -44 44 44 2 - a.A A A W 2

a44 C* 4' A.'

a a aga a aa. a. a'* -a. a. aa. a. .. hZ -a.a.aaaa.a A

2 2 2~ccccca -

- - ., A.4CIJCU~4C4 A

'a - .4

.4 '.4 2'.4 2 -.4 44.4 - 44 4'a .4 2

252 4J

Page 260: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

2 .!

)z

- ~ - - - -- - -- . . . . . . . . . . .* 5-0

S

-- - -- -.

-o-Gc .04 . ... ...

• . Umr 4m. 'zj0.. . ......ql . , U 'S 'S 0 . 0 0. 0 ,o0lo.lml l4 0 0 2.- -- -- -

253

- Ss@* I~0000000* 0 S .'0 -d U . - - -

Page 261: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

C-101 0. a cocoaoo

00000 000000 000

40 ~~4000 s____- - 24000 0 ,I

241 .000 t00t0U* ~ ~ a c

254.-.- 41UlU~M.J.

Page 262: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

40

4

4La

a 4* -

£ 3

- - 40

4 4~ 4

* - at- - LU- 4 -* & 4

4 3.-

- I

) 255 j

Page 263: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

0 6,

0

U"2.4*0* f00 4.60 '.4 0*..*

- 6.0 00 go .4.44.4 .50~0 0-~

O - - - .4t-~.4 On -.* .4 4~ 00

t...* te... U.. ..... S*t. U*S

a

-6,U.* ~-.4 .4-sn- -4 ~4J2.4 -U*~ -

-~ ~~-O.6 .6.44 *~U .4

- .SS 0 .4.4~w.s. -~.- a

$ 6 - JM~.4.4 .. - £

6, ~ 20U.Z 644 - - 4

~ -0£ 4.6 - .64. 4.-- =~-.6~ - C .4

- fl..S 4 - - 4£ %ZSa - a *.642 ' - *.4 a.1 s - -n

U .J'4.4 .6 4- J* JC-5 S 4.a.nJ.s .. ,a.-c - . .44. * 4' 46.6a5.4 .4 *t%.D SS

4 .4 42u4,3.M... 244 U0 ~ .4-04 .4 04~ 2S...£Z00 EE4 4.425.4. .50&5- ZEE

a

.2

.6 - -t S

.6 3 - *.4 - S ** .4

S 44 .4 2 5 4S - S .4 2 .6

- - .4 .4 - .44 .4.4 - * = -.6 - - S U. S- .42 .4- .4.4 .4 .4 Z a* 5.4 £ - 0 -

4 .6 4a

6, 0U. SE 0 4 5 0U 45 4. 6 *~ .6

256

I

Page 264: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

S 04

2 20

2 7°

2, .3 ?

.. J 2 JiG

* 4 0 P.O

a. _ * o

* 2 4 Ad dta

Page 265: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

2020

4020

14.0

c~ .. *4

2 41.0

I.e. 'S

ON 14-0~ C0~~ - £1

20 a - -II 0

o NN CC0- 2 .0 .0

0 1414

.0~ S- C

C

20 -- 2 2II ~4 - IS

I'd 005 -- 14 04Ce C C III III sd 3

a. -. -a-5.

- SIC dl a J *OCs U

Ow CC'dC a 0 - 14 aflNa - - SIC,da ~.o 2~" - -

I I - U

CC 2 2ZN a. 4145 at -ai.,C-O-

~ - -

ann a 41-a -.0w 8se aa -"CC-'

CC C C CS - CC ZCCC

S*Sb~ a at C--

45CC 393

258

-J

Page 266: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

00000

-z-

--'noo2590a000~e/0

,,J o o oo 0 00 0

259 ,"

Page 267: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

U a

~ 000 - A03m... t,. m..en ,0..'....ee.W, Oede

- 30~~0 N..0 30 ~0 '4*0W~0 00300.0 0'4~* -- "-'4 .00.0.

'J ~MJ COO 3J1J JQ~*J '.J4 40.3S. - - - * Oft N

* '4 - N C

***** ****U* *0* *613* ***S0O 0*

-U

-~ '4* -- 2* 0.* -aUg S.a2 -

-z OEWOAC Caa ~ 2a~ '4 '4

S%0 - 0* '4

S ~t*.0. - aa..Ca 0.~ - S

a 0.. .. 30.Z. CS..'4 - -'40* .5 -c 0 '4a - 4 0.42 3~0. as* - 0. U '3* 0

- - -- -- O*-~- - 0.- 3.2* 0. 4 m Cs .210. - 00 C%4J

23 0. 0. - 20*4 O.in0.*2 0.0. SS~.w 0*040'S '40.*SU* 3*0.4 0.0.0.0.0* 0 *

-t .0 *0flOt~ O~S 003*0.3 -- - 2'40* sz..tm tS.~S0.C 0.in.d *n*Js~J '(2=jj3 a aa~C CaU- OCa 0 '40 -OMflSU% C-33*1 0. .0~ fl.flOO 224 24200. ,0.EWSO0.CI. 20.2

I 0

'4 Wa '4- 0.2 =

'44 a= '4

-, ** - 0* -, 0*a a 0. '4 2 a a0. a 0. 4 4 .3

a 4 0. a 4= - - .0

a - - 0* 0. 2- 4 0.2 -

2* 42 0. a U -N 2 C . - C

2 0. ~- .* 0. '3*- '4* .i 0 .5 2

0. 0*2 3 2 a UU a £ 0. '4 a

260

I

Page 268: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

r - - __ -

* 4-s,

0

I

261 Si

Page 269: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

I-

A ., -. z -a-. Ab dhA a

A A A -

I a -

t 4.

Page 270: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

.2.

4.224

Page 271: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

- A-

0 0U 2 @44 a00@@Qwaoa

.~ .~ .. . . . au @ , . .e

Ca2 u 0. ..... j U 0 0

40 ML 11 1 14 .

4 .*mauw

4 4~ x ocolow"

-NO - , --l -. .a - - *-~~~J

me a-~ i

saa

2640

Page 272: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

~~0

4

~0

-3-

2~

a - ~.

a

3

a4

.-

3

265

L j

Page 273: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

3f r

1a I a R I

Z. X.."0 Z W4 * Q.-. X c i

a.2 . .44@0 AI r*

~ ~ 0 Z A04 ao.u266a-

Page 274: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

, a

Co

,o4"

• o 25

o C

o O

* . C. -,

o ac

*2 a

* a C 4C 4

Page 275: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

50

5,

.10

.1s4

- 500 55

44

* *44 ~mus 0(4 44usa

U (4(1 44* *I SC

O - 00 cAl- ~- ~(V(I 2*

U 00 45 --00

a3 00 22 *** so* *- aS- *4* (1141 00

- Ala - *4

0 00 Ala *1 0

Al O0 -- (44 04

*l04 =0 51* - S4 -- - - a a-~S AlAl 04

34 Sn- 2 -~A 211 - -4m~4 UO - 40

3 ~ ~ * I''ii ~ a 40

0-- .Aa0aAl 2 200~0 sc-. 020*I 34 j.s,0.2-

- Al 44 .0 00S~S =(100 .. ha- Al iS*4 2lS0~

(1 (0~u4 -- 4 - S. - 4

4= 4 S4~ -.S *acs~ S

0-. 80 554 *00

268

L - j

Page 276: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

..... .....

@00**

w00 00

. .o ............

22

@00 .50CK"00

. ...... .

•269

a ?29

t .Z.. 0

Page 277: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

* Is

3 is

a

~ 0.02P~..4 N@ 00 20 ASW..Cq 8N...0.0 aa~i*5'4* ~ *..m. m

WhJ - W *S% 5 4*4J %1 W04* - - - 4 C'4 N

* -t aN 00

* *t**O £33133 **4 *3S*3 *S*t#**#£ Ill

ais. - --- -4 -* 2~ ~

S a-a aws~ a.S *sJa2 a. -

-2 i5553~ 'is.Isb4 4.1 2*3J -

C SW% US 55 *~c !~ ~a a .u a ~2ga. a * a-....

I as

- Isa. 43 2 a 0* - a a -

4 -- 'N a. S

a 25 2'is I - - C

20 2 4 - C£ 5 4- -- 4 a. a -- *2 4 0 4 .2* at Is C a

270

J

Page 278: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

4~flfl

a

t

271

I

Page 279: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

APPENDIX F

ANALIZ CODES--DESIGN CASE NO. 2

00 OOoL0 000L0 0. L.CQ LLLLLL..QQQQ .. Qh 0. 00000o 0'30000 ,' Le0OO CLCO . Lk QQ~a c ' .4-.46LA .L 66C 3 Q.Q Q. )fl,11)I'I C60. t4IiflCL 93 'I 74 4.?4 4.

c~~~tJ ~ a 7:2 -q L M 4-J.J'Q J( 4 ~ 3JJ(J.

00 >0000000000f 00 00J0O 000. 0 (.030

4 4 444 4 44 4

< ~ - 9 -C

Q-Z >: o. z

1 . 0 4L 'ilL'

LJ ~ ~ 4-g.---- wj.30 -1 Q, j ,j 4/3

*u4 C - -n a i- n 4-

a. -Cgx -tJ <.) Z L-j--"I. la <jin o sm U) o L6)

aW SA t4- WL-ji3- C3 C4Q44 o 3. Q . Z 4W

Q~. 42wu "".q alq .CWJ .6 w V.3

4 0V)04-9- 4 39 0.4Lo kAI'&.Cz -eq. VL V% -&aa

%2u"' -q L"4 c- I- 4 ~ i-. CLuj tntG

0.0..i0w Wi - q~ -J, G-j )X 9q39a U L e 64%q- J4.4Q &Q" r- -4 4% %u 1 . e""U 4 p

.. 14wJ C30 in" a Q9 4 '.41'ou L ~ UL " L

CUM. .4P. (JV 0. P- V,4 W~ '"W j "CX '.j 4 plo '3 14 LAl4 s Exl Cc :2 4-3 t~jo

oto 0Z:300tc .4 0. I.- mz q C.-

ca--%~ 3 xj~c -Ism- LLw'4 -o ' U 't'O 0

-qvm t -4c C3( i 0 '66-4 .4-4 '.. A-1

LU ~ ~ ~ ~ (J W Jow JUQ..44/4 0c )-.Qu3g L 4 S*CsV4

(1~ - -- ' acZ2- . .Z~272I&JIi-

Page 280: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

.

I.-4

.4 SO

I-

*C aia.

30 0gt -.1 3-) t- (J mw -

i. ' f- QQUJ -KO w

0 - C -'-4C QC Z~Lit 'mi --j%3m qi L

C*- :-- :.u/I4 3 -s-s~~~ . oOtn~x0 .

N4 ON p Z vi~ co 1 Id) 0 -e- *oL,-q I-.- .4' CLL4O 1- 00* uJ -4

4t0-400,0-t~ 0 sS. -NLLULKZSQ"*X

W .L" O. WGU u LA L4 11 XWDU af X. 4 Ac (n I * X LULM - 9-Ca

a A ui I--I 'lI-~ - i P- 0 4-I- -*96'('4

-4 ~ L Z0 . - ..Z ).-.Q4L 1- 0* . el W*

e~ O~I. . U II: I. 0 .-.- )NOO'O 4j~ Q / .- W U W

-4'46 ~ -Ul.J...J..d.JJ U .~II 4914.. Go

N~~~~~~~~~~~ Q4N. .J I. U~L U L ~ I .~ (')-4 JS(J444.4.4.4.4~ ')J 4UbL~2~L IL.U

3Z~LU I-Z 4UUIJ.I LU C - Q.A3A-273I-

Page 281: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

(P u, 6%QC3 0 Qjz(_ "Ofill CI 1(10,Ir r0s

LXU341 007 O00 0P30 00( - 0 0-3 Or4 N r3C 1 - e r '4*

- q '

Nz - 94 X)I

4n *0 If OQ LAZIA 0-4 r.-4 . (A N

04L -J O- '%aU S

*(Z(N C42 * X* % * 1 -40-LA 01%c\I a - -011 0 aa -Ag - -a 0

-4% 1-4aft -a 4 r1 -1 4

L1 uU.U <%- -r4 -C. a - % S4010 " lox' Oa 'I I -4 O.. Z. ."(J4J. 4(7% I - a. * -t( 3 O a.4. -4 .

LU~J i. *.rCL I* I 4-O'4 it * 11a Q aQ a. II lC4 VC4 " al Va' a..

20>-. am ."(()Q . . U4 . -1Y. LJL41111 1 a Ir. .J IV - If CIO l 119. II

'3 NO aCXCC Zwn 0 .. X~ '4W U5 M0- u~a, -~ I" - LJt..rQ).IU .U a a4

(X XL47d(n) Ljqrx QJ aj am aft Z .. LnLAUJ"04"4. - - 11)__j X ~.4wLj.4 ft.J.-4a - -

co w L LM I LUe *0 a - (Xq.L6 UL X o If '11-64"r-. I -4413 t. LUQ.Kqu.Ltiuw 0 - VI- Via (13

o3 D 1 Ln7ItLJ I LA.(% LL-i% - aC.UL..- - wL @-% -0.

0~~ = 0" (nNQ:< J3. .UJ 13 U ,LL4L .-.-

0 0a4X. u V) UO . I .'I

J *~.) *'. An 4a -. . _j -- q~0,% i3( J4 i- I.14 eL) eLI) eL) -4 aM'_~ J -)0tO.,AJLLU LA. It .U h lU

- 'a- (j- ij' - Pa wJ I~4 t_ qI-3U#J 4 JJ..0 Ljf- .uw Lutp 0 N ~>. _ V -4 q-- ). > 111 I.-WQ. < 4C4-4m0 *0 V3 .03 -4 4 "'I Lxz I-.LCd)L zl'.4Cf - 444Ka t-1-3 4-Q t-ci 03 CULP"- I- q w '0 4UZM ~~

5,O L 5' Z- (Jz4 0 4 OC X Z 0 ujI-4cL =J3WXu-l..j .1-4JLx -z CL 4 .4 W.. " U.Li.4.S1G0.uJ9

LU CLUJ 0.W CL LU 0 0 U. - -4 . a....L*l- _-. - -f .I- - 0 1 M.L)> a a. a. a at 0O a a a a a a

',OW *--lOIU *4'OWu g-O"-4U a a i) 0 wIZ -Xx~xxx4xxx

A ZWMJ zu~z Z03 ZXZ aa -3 OCN~4(Jc'J NAJr(%Ja .rNNNNr~c0-.q 0_JZ tip" -9ULU lu LU - l( a . a at a a. a a QL at a a. . a

'---0 ~9 S P~- 1 -"- 0-09- " d

L-JLJI.L JLJLh. LJLU. W.J wi 1X~ - -Dw-q.. 2(.J". (_O.-q (.2 ci _gZz _j I- -I- t- - - -I.-

.. 4 < < 4 < 44

OW 0 00 0 a FZ0UM U. '-L. . U. LA. LI. U.

-4 '~~-4 4()4L 44 L -4 . 4CNJ MY -7 Ul '43 (11 0 MN(' 4 % 1 4.) r-

o0 00 0 000 00 00 0 00'20

0%crc 0% Q% 9% ON

L 274

Page 282: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

0 o~ooo0O00c~00ooooo000

a% Ua

aj -4W4

0 0'% ac

-L ft..N .... "0a-W 4

1 V7. Ojft .N pa.. .m .06

zu.~x -u. --.0- 0 a -4

-4 N . . . X

a cuc~ . . a o% -- "aJ a~ atJV W

a- . aI U. .a No a . . .a a a a V. 4

0.00-j f".0"0000w . . 0s

LC cz atUc

Ua DO .. IU3d0 *

09- 4

~ g ~ - LA 275

Page 283: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

3 -jOOONc~or'-w~v2-0 (36N-r 3'~4 14~l0~

0 LO L-) I

ft 4

_j 3 ' -.1

'Lf g .4lMC - Z_

-9 a- -A '4(

0-0 -UN :a) (a .)Q )

w( 44-i 60. -4

L3g-. -t- -Ug 0. U)0.o-% 3.C - .-. 3 -

La. x- La.j A; a. -4

..- j JX Lia. LU .4w Qi4-LJ "l0 _V% g- 3 U

0.-%M.L% .- ij :3%j N(3i"U - W4 C.31- ZVI I^4W Ld LU

W4(dV)0. a -a g-- .-U.JxQ.Y. X X OD 'AZ Q.4 -Jj

-.DtLULlc <Q 3Zw ,-J I.-ZLnul-4-C --O3 .ak 40. U.1

.;(x z r- 04LAI- LuJ~LLU Ix Q , 4 -j-41.-Z 0'4CC J-0- 4--4 Co LU

*'Li4ckq a-.a 3Z :3 LU a 0'M..103.j1 Q I-r V ) I.- ( IA

-*I16 4(3.4. '.4(j a 4 -U

w4 >LU(394" ""- UJW C LUt x 4-j C(%A9Qc3JuL -tUJ _4) Q. (3-0I14 Jur-.--C 34 0.4 LU 0 m tLU'k4 qix:)ql.. a. -- - .4(4 -C - l u/ No '4 V) 4

- -:DQ .Xtd4Li 1- ( 2 L.)5i4- 4 "1 1U .4%JIN?4Q -(% -< (3 4 CJ4 '4' 4 -

(31494 OCXgZUjtfl72xt- " LU4 C P- LAj9LJI% Q. U1 L If'QLUC-4Q0.A%4-) pqu N4 * Z C0004 0 x N'OM s Z

4.Ua:3 alMc Z .-*-tj" LU 4~00(N of -C 0 *COO (30Z43C -. S.4gcci -cn3E .-40a J4 '0 _ ) 7- 0 * 0 'U LA W ..-40V) P-

41W *4.~J.- V4. -9 -4 L4-% 'd 14 Wrl" 9%r6 "J 69 -% L'dU'W Off 6:3 "O"- 0 (3 ll N .- q4. J CL N-4 01 Xr43 L&U

'M 4A6 -. 4tnl.JQ~V)4X OC~ P- inA9 X 16 I(2MN - LU 04c 0 *@gxcc~m' La.C4i"1UX-llg3UiltJO94 LO( .0 ..4- '- t&~ai OAL .1 4 L3Qcw4 SI.1%*9 UQLa-V.l6W'%IP-*%Lj U&. 14 '' 0 P- -P W- VW~ . Of If 441-4% r-

P*c 4ra -4 .-41, LLS X Mh-44. L& NigL -2 w-.-3LJ4atu..t Z ft~lz4- 4110 1 *Q Vi) LU 1-ASEO. 0L NQ6C X P-WUZZO v/)

C30* 0:)Ua04 0 t-

:)ZLLI Z3*WOt XW Z -L6.

L 276j

Page 284: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

4JrA~7 or"ko -qj~ -tin 0 W oj~ -4 NJ" LM~ Ot*-

LI

uin

I'.-

.4 Li -

LLIu- 0 3 " 4

<. Z-o a..)Ln' U~t; jC ~ 0 QJ

0 C1 r) - -1. 4-: -4 UN(4 Ln -a.. qWn3< Q-( -u 4

0 "%4 1 In-.z-Jj( I- 0

0 -- r-(.0 i GO- LI LI-- 0 Z0.~r 3: a *' n

I. r..j n 94 0 .' "tq0- - a u9* Ui P-3

co (14 -9~. -* 00.

(AInc L L 1-u *-CLf L~ZUM - LU M mm" oa om 0

44 00 99-iOL 9 " S L

9-Wo 0 0e - I9UL (0L A- U

I -44 1"~I~r w(-~ Li-j LUL~ ) I-NCJ 'IN Ij 0tt Z. I--n 4p >Q X. 39 3- AD- 0-

~L I.-~~4 .4 I".t.* 0 3 OLU 44UL.~c4 LI :) - 00 0 O I

N~ Z u (90 ot4fj&WJLIIZL ,4 0* 4 4 ~ J9-.W3 )-e0.LI~ L I.- '00 * - . '4(OW4

.0 .QQIIJ&LQM4-.4r.QUO U00 t14 0.WU o .44 w .wwu

~'40'O 0 43 /I %wI4WUWL~.3J277,

Page 285: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

x -- t-- 4t 0.4

1 'S. -(:~ , - % -4 -

ZI C '%. t c4-1. -U. MC 3C 0.1 111%C; *(/) J '. 0-*-@ 0 49

LA 1-'%C'j u * A .0 t LI - L - -.

.20.2-0 - '-.. .4.. 4 Q. Uw o.

-4e 11 UJI..L( .% g'. 10.. ftf.4i, f-i

4IU.L a .0W 1-4-. 9. a0f CL V-LL.41J. Z 43 We oft - *)(-.tu 0 C.-4e 4 .

LU 1-4Luj LA 1. -414 .0.4. i0 -Xl..LI. xU7- No -19(iz -OL - 0 00- U. em

4- J . U'.. U.L "- *44LI

40 ..LQU I . 'T " Q J...-,1 ~ If 1"qi -4

.4- . (i5 .3- 1tJLju1j )( LU-JWLLs -4 .4 .4Z oz1 V) I. 1 NV41%(

Q003C P- .J 0.1 AJ-%LUf--qC)eUJ at Wfl 44 .4- - qo Z = 4 j~ 440.-4LL A* -Uw LuJ LUj

4>4 iU n LX t4-oL~a f-'%OL-- LUQCgctWJ

U0 40 ;Q LQ 1.4 - 1- -. 4 -& i-4C)Ltcx V)V) 0&4~ tIl atU 0 11 1%. Z) CO44 J -).4QUL U O cc c L c

0 *O .0 *0 .4 ... 0q4 ce Z -)Q.Z4l- 4 9I- .4-10 1-0M .1.3 PM(2 Q UJ'..j1 I- 4c4 LLI -4 mqnS--wj~wcr cccm

-N X- - i ZU U II-4 .JZ0.4..J 4X-J-..-J-- w~W W. 4 w "4 w(x Cau- P.4cLujW XZ4j.4=4

LU CLUJ 0. LU C.LU LU 0 0 La. * 4- 4e .a m. a C -a..0aI- W1 wI. '-. 1-- (11 CF (3. Cnl -- a0i < .. . s-.. o

-OQOt 0OWO. 00WL *"-OWAtUoC a o i 0A C2 C)U)(9 oxN-xxxCn~

ZON zoM zam =.XZ- 03 * em. *Ac'.tJ CjCNIJ('JN *N~('gIUc.JOu4Z IJO4C LUs- 0"4 .w wU LU A ftJ. m*C...Q. ft

L-AJIi LJ6I U4JWJ6 U.Jj J~ QLj .. - W1.1j. (-'- ?DJ-s ~ 33 3 Z . - 0-I.- I- 4 I- t- I.-

C3 400 a * 0 aw IL L.u.. L. ALL LL.UL

(TO ') r kQ m0 M ~ Qa 4NAnv14

U0 00 0% 0 %0 0t

278

Page 286: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

00CqO o 4(O4 v,0O0O~w00 (rt O0(o (m4l

(A It, 1011 WO00iOO Ic(14TV11111SI I0otI

C) 040

-j azO

-"I i CL 4-4

X X f - . a ..

OA~' -: -N

%a~minUn

-UU owV .wa c'J

ZtLL 1.%0

m. sZzxx- Ln. W Oz- l.

11C X:I m cmc m m

Z .3 mZ ~ .J0~0 Xi.4MU. U. U.U. t.6 U

w 0% WIMP cm -- a*a

m #W jm C m mm mm ma n i279 g

Page 287: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

.,. l- X .1

A~z -3

u.~O - 4

O.j -MVa. a

r - .%&I-.1

1-ja i.4 f-O. ma.-Q OAC -kn 1 C34

(44a ".q 01 ztn LnALL3WtC a9 W 0- 0 * -

-3Oxxx j1' -- U4 .j-U.4Lua '4U 4:xJ L31U LZ(J .Iq :"W Win QCL LID

-xn-3L~jj QC(. w -4

qff 19U9 Q~. LU

'cc Q "- 0- Of- a x

-T~~awN ON 0 a-(j .0W~LJ.'. f- b4UJUJ z LW N Lu -j

-4 Lu'- -- S 3-IM- a. 4 - LU 0 1 u~ft S c . Q~ N inm Lia in

t -ac US' -4 Q -j 21 ~ LU4

(3J" "(mE.uln-7- 4o LU f - U'01LJ'p (L LU Cpl.. U-1M0.CAr(~ wN * X (3 D O(.";. 0 x NON 0 ZAc~~oujZL *1U3 ms3a %0 zuP4'uW LU 4O0''N x * -4 00(04 Z

6%.d W-444LJ-o 1U% -4 %-'4%4 wU .1 'Irl e*4SI a of -4 %4W."I *4 w-Ocf--cu-a- :3 Of- Q' 0 4 '0 *q .a t a. Nt,4 II A-3w

Lu 4tiA 0IlJI4 (a~ P- to*. a Z " o= If JR U 0-M a .(cm'46-0 Qa9~~w-(J qczo - .4 4 Q. C~d x- Q. 0C .j 0'-jt'.J if .

"4%V 1Ua6ba.i%-- h Q614 W 'U t- . .904 L '41U -.4J I9 4 "'.1 f-P-m .**3 - 4 L 1"0 LU44 c (X j .J 6jQu I-.9tt U

.JLW 4^ 1~9 90~ Vg . i inL 9-s0ac. Q. f'd0. = so-uzOc 440(2* O kUV4 Q m Z

=I..qZLJ4ZO "I.- M1MzuW 0-2wow =W Z ".-L

-~'~rm.4N" .4

280

Page 288: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

~o~oooooo~ooo~oooo'~.~o'3 7)oo o~o .OO3~*-44(- f o-Q0 34N~ f 0 0 Ae 0(qIU O%04~~ 01tC(* - 4' tI ON*J)

,'uu'g CLLCCC Lu*C XML .LLCQ .... MA .0 L CMW

t'0~~1W~)11'tI'..VI -?~ ~4P.3 UN

II-:

-I-

QQ* -- 4L-.

(9LnR4 &Z Ilui-4-N

wd min 9< -4 C.4r"W -O zwLJCI Lu- UJ

xfL o- 00- M Lr-- P-0 1-

L -0 LU 3-0- Pg-. qi.

U% CL -AU *U(~%V6L XJXM -t LU (3 Of00 0.4 0iN z (A Q-w )fl *J>0uqQ -olj 0 -%4- . 1

I- M4 in7* otn0 Je .1'*"W 4 N4 -i ~ ~ U. Y 0-*a"WC *(j zd

Q. in -%3In 0.N .0 (LUL U . (3 "

p .4 Zj %. %W L.1 LU %0V) a z C" a-tn 44 "$; 1 * XqLQCQUL%- U90 9-

LIIz 1.4 NI UU-~J.. 4 Z .I-- 0-5N14X79.0 (Q4UWLQ~ :) opqL~~ M - f 0-aa-of - V ~ w.w ~ w w- t- a -*t C) 0a 0

LU *-ZIf nL..UZZ cU 0 U10000w 0

C4 4U 0"U-.W .J)-.~ Ou 0-c*za* 0O

.b ~-d 6*~.J4J ~~9- I.JI&co

-4OQ 6 L . L 3 4- LZL3

I~d0 0 0 Id) %WN UJWL W~Z4Z281.

Page 289: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

* 40C a a

04J6 % 0 - a 00Q a x '- a~ $ * (3 .

* ~ 0 LJ .. 04 -4.n 01- -14'% L4l.

ZVI "J * t 0 9 L.- - - - -ii * % 0-0ft .&X0- * ~I .4 -- 4 %4 5'

-0 JJlb . .'( MILL '. 4 ~-4 ..4J 0 1 - 4t1J

o40 44W U. ** - -4 Oa.t ft..4 * 4 oO *. *

wJ. -.. uJU .LL 4a.X. 00-4P a U. ..JIL oto. Zu.zzl*40 W- O z NZ 04 -4 OW.U. z .U.1 '%b "J 04f

C;1 'Z Q -,w G - 4)(Af0G Od.. -4%j C0. Um an cz A*4r.. fLra a a __U. 4 VISILUN

* UDIJ~ -. . a ~ ' 0 -A 1- 04& "~ a U a _jI-uj:Dt- O'n- JQU.1wWeUJ - 04-4 .J z

OtV* X0- (%J -L49 s -0 If 61 I-X (-X XAa -1- 049- 445tb4 XJ( O(M NO 1-4 4-4

(11 -0 0 Z 0 446 4L4 .J.45J~~~fttv %J wLQ "MIf 04 IM# 4 440tN..N

0U 0i '.J (LcxtJ I LU - L-. - CLQLLG - " . ... 004 - I- "tl. "a44 '%UCL AL44 CO. aUo- t..w Vl t.(

2 QJ J Z .4 V) I- 4WW'4~J..4f t IJ ~ '3 12 "(7- 6- -j ia ac.LU..0.. -4 A -4 f-

- - - -4o Z n 0-4 ANW<~ -s-.IIu - LUG, LU- LUmS WeS- - 4 < LU (A) X 1 I-O.N. -4"-OL.-.- ; XLL UQ L4.U

* 0 *64 .9 LU JC LUCL~f~4~1)'lMQ~ It' 'fl tni 4-4 a - ..J .4.a04cf0c 0 0- -I- -IGO, GOA) eL) MPZ ftm A MJ JWac~i d. QC j JU.1JU U

U_ 3- (J- a-Lao" I'm L 4A. -U QW 0

LU0 r- UJU 00 ti..J 0i "P .t4I- ).-44JJ I.W0%O oo .0 '-4 '9 - Z I-440. zl--s I.- 4 4* S..-10-0 0-0 10- C 0 LUCL- A-. w f~L)-UU0

(-a C..4 Q Q;< P3ZfZ- .ZOWW. AA=%=AxI-CGLW C0.W CGW LU 0 0 U. l- - 0a.i m ,aj .. a*wa*.* ,

_#.- I- I ot c.CL ^>%%a.a a %.J a .. .0 a& aft ofto*.4'OW oe".OWU SaoW'4W.L% a 4b 0 0 WJZ -XXMX~xc-AXX

UJZ z231 ZON ZiZ. 0 fta ."JMNNj- NNNIdN@ *MNNNCSINNIN

.4" JZU'4 v 4 .4 U LU*(a a.a...9..b

* u P jw" 0a QIA RS 40 1- 1-1 1. 1((((~(''~ '''.-'('((t('I-(I-'I.-4A 4W 4 4 4 ot 4q A 194~~ 4

6J. L6IS UJ6ju. UJU U. U. IJ-~W A. U. L6 aW

'T U ~ l4) (T caZ .J"-0 0n --- 00- m0

ccWo Zco 0 00 00 0a0 0

282I U .. UUUU

Page 290: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

U.0 4U.

aJ 0

-4x ** e *a66L 0 Ic

9#IC6

W,-,a 0 o ' ',

-4.0- alf111N l...41 f1

.a -

*41U~f 't sina- -

4"1U. Q-=a LA %r'%% % %l4 l

aMUO "Ne a U0 afw m 0140 ad~~aaaaa~~aO aaa~a L

0.. aN II I UU UU I ItH Nl I IIII(am

-q- a-C aaaaaa 4az z aaaaa~

maga cc

.30 0m(~ a(U. -NJ('NC~4. us

a a aa a a a a -a2a3

Page 291: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

COCA00 3 04-U

3.i.. LU

44 Zj VI~. c '-. 4%

. .4 .20Z C

L1 94 _u z a$UZILU %I- '43. S. 90 a

0.4 I- 0. a X "*L4 (X4 .-. ju a.i(

QW Q Ir- '- Q J

O-W -4. -< C3- 44L Aw4o3. a .. 0.. L-LU ~

06 -CC g X .a:: a..36 J%-?UC 49Q X= QU .UJ L

Z(Jvlt4 49- O* or; i

.UJt 1 4- r3.% of- mnu XiL4. Z 0--9. I- m -4 ac

IqU)94 -Mlo No 0 .4 aU

-4 UOr- #, 04x - .1U A u

4 'XU9UU0 CCQc rJ5 L4 j -8 c UZ .1-40 .0,% 9-.g 4. -4 W

JQ lo 11_*6'W~l%fc4LU ..J44 N0. D z 90 0 \O~

LU?.- .CrX . -3 34 0.(4 j UJfL x a9 0 U' LU 4nm-*.. .. L~w%% " 4 '3W- OW "/ 'a '-4I~a- 00

wo 0c= 2LI L& 03 .4 4i-~ 4 -LU- I~-P- U- NN-t- .

NXLj W"J .ZLc ~ VIZ S-) (J 4 04

:Du 0LU)WOO =W Z " 3 t&0' cO4..jU~.3QM.% ZW'Q(tJ'. U*4LN 0 0 LZ43-J.rg'.4NlZ - (I4 '.J 4 Z 0 0. LU.-49

'4%. ~ ~ ~ ~ ~ ~ ~ (O 0WOd&~9-l ~ L ~ 4 * lU

~0Z~ O i9- 4 U' 0 ,~ g.-e ~284 L

Page 292: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

$A oo Uo -,o o'o oou It""o ,oo o oo -WinQulALk~%nl~uILU#%lgLIALL4l&UU~ittAUIUUUI1JQQm j4

LUa.

V) t N

4z ~ LUQ P( )Az L

U e .4 :3ft--cJ:

v+44- a- .Z* 1313P. -

r40 ft'1= Q =4-0-J-a G. $AnW _c ~ a9tJI:lAJ ftI9o(.w j

(2 rt lj ft3 zU:Q 4 u . CL" W;4J -4 C I

(-lt L i; aaLg "I aX I. -3swpQU . u ;pw JU4,0 -u

U% CL U w MMtJ0 0 m- M

z 285

Page 293: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

~~0O00O0000.0- e3 00000 00 00 00 (00 0

X -4

, as" N 001 -0 U-. - 2-t O - * .4 -

-q - 0-0 *'-4 '-. '11 1%a -.C; tnui U. 14.4a %a 1.9 0 *

-U Ij M. 001'- 'r 0 '-4 JU -UZ

;t~ 05'3-Q , N- Z IfW -O L -4 Z -W -I,- OAJ

"CC. 10 %. -4 . - -- f '%. %cl~l I .'%

t3 - iI a 4 L U.0LU - a z

'LI 0-- N- X~ CAO-IN I N0 L.fi .4

LI ( ~ o* -4(f0 OL..z-40 C. &jJ a &Z WA

w LU w A l4)jJ )( - U.1 a 4J ZqIu cz ax 4. "14I-41(1 0340- 1- jJCLX-U.qu co a n4('J0VI4

"l. J-4,1. U *jt.J *--4.X -4-4s-J7 .JP** - ('L (QX U-J4 .41 - 4 - -q

Q 4* n z .14 t o t-W~'- wJ4 - - - - -&zpw-

Z --3 A< iso3. a0~uw jj - 11 . to- do-

<> 5'- (A XU- ~I 1--C361-4 U.,CCL-4- LUZ . L~CJ~.UXI-QU : -U l < .J .NLU -tQ( Jl W&..eX -(LF .4 -4-4

li ;lj U J -i -i ti) LY t9-A 1,- 1-- 1-.JJ') Not I'tr$)

W)- - ;W zo _14 -QCCLWX4 a.U9 .- uJ. U4W LJ- LU U."a~otp "a - 44LU (' I-OLi4. -4UJI .O49 JW U W'J

Lu* L 00 La 0 -1 .u. V) i-ua. ~~, o~'.

.0~~I. .0 .0.J. .j 1.-4 -.11-uth I.-

:X- U-a ,- s.-. s- w Wua 4OU1wq- Pl-cLU3u9 :LCLqz

,&. -. J. F JU 1- 0%o L w>%w -a f- w a a w0 tl w a 0 w .494%L OftoJ' 6W *-LU" w' 0'g (A I- Luz I- xm xx xa- 5-x x

x Qto Q z Q 04w W L f a000 . 0 0a 0 AQaa0 0 00.Zc.4 "W ot4'~(~ v4(1tI -4 . 4 --

000 0 000 0

OLJU

286

Page 294: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

o',o o '~o',o 0ooo o .,o,,

UW~tfI6W~'J'4J

'4,,L ug4UD''O' 14'U 4

a %0 aO Q O O O Q( 0000a0

*W X ~ K X X X )X - N

o. . taaWa."nI%-nta-a a a t!QCA3-u a t

'4W. a-I-u*

VIO-

%A6 U.W

IZ287

Page 295: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

AD A 12 4 4 PRELIMINARY PROPELLER SELECTION USING THE NAGENI NGEN C/I

B-SCREW SERIES AND A GENERAL PURPOSE NON-LINEAROPTIMIZER(U) NAVAL POSTGRADUATE SCHOOL MONTEREY CA

lN A'',F YFD M P SMITH JUN 81 F/G 13/10 NL

mhon omMEN

hi homohLon

oniiMillliMiiIIIIIIIIIIII

Page 296: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

32.

iiiii'-E 11112.2L

1.25 1.4

MICROCOPY RESOLUTION TEST CHART

NATIONAL BU EAU OF STANARDS -D963 -A

I

i

-~ I -~-'- - .,-

Page 297: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

APPENDIX G

CONTROL CARD IMAGES--DESIGN CASE NO. 2

z

-Oj Zm

- .i L

4i in e .-404 ,

-"9z 4OX0 cc *Q J.--4- a4 -4 .4 0-4 -4 -4 0..4 o-4-4 '. -

LL'- 46~ 4U

Ln L 04C ~

WQN0 4z 0 4 00 l(3 C'.I 0 J.4 .4 04 *.-4 0- Q4 o-lu out4 0-44 i

I-w I--0cf u. 30LUZ (Lo O. 04 z

zc

4W~0 0- 0 0 0

iZ -4 NN 0 6 0 * 0 * 0 0 0 0a L 00 .Ji U. M Z4 4 4 4 '-4 -4 .-4 .0 z

4* 1 .A I I I I I I I i~U

288

Page 298: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

-44 1 _

0. -

L4 - 0 0 a

V) U 04-4-

LU e-J Z 0 : -1 00 0 0. 0 0 0 0 0-49 -. ej u 40-00 :,Po 0o~& Q +-. w . 0- > 0 .1 -. 4 0# 4 4 - 4 -j 4 - 4 4 -

~J -4 N 404 -4

U. .

28

Page 299: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

*a 1

-4 ..4N l

009

Page 300: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

APPENDIX H

COPES OUTPUT--DESIGN CASE NO. 2

ei q

hd -•

- -291

eq - eq* eq -

Page 301: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

-

.. .52 .

29

Page 302: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

4--- -

2000

a . =010001

ve 20 -ococc

2 ~ ec 4 040

01 .402 410000*4 0 00-

x64 zz 4 f

493*00-1 a .s- ..

I 0 X0 40 44 44

- *.*t..293

Page 303: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

*040

4

-C

S.Ca

294

Page 304: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

oe-%

- ~ ~ - -W Kan~S a C

-0... 2**US** NZwl a......& -a..UtS..- U..

41

S.

4295

Page 305: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

+3

.3

Q e, 1,,04, ql4 3

• • 4.3

t • ao

• : --3+

'e o Q

o 0-

9 S,,t 3

* . C +SaC "%* -I ,*C* ,,4*

• +: l- -

i~~ +- +"-

296

L_ - J

Page 306: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

r

0

0

00

04(a a

0

(a@ 4

a*4 -- 0P~

oe £ --ii a

o 00

* w aa -(a. - a* .*7? ~; 2 0

v. a a -o ~- -- 4 04(a 00* 4V -* -P - a a - --

e ZE'. .a -- - -- 044e-a a a...- *44 'a. ~ - a (U4 - - a3 *aM'aa *

a ft'S ~ - 4

* ~ ~- z'..I .. a ...0 - a -- - ew C at - - -

a*a~ a(ae C - al.

- C CS *(U US a.-.. -p. -- - - *~ - a - - a 4- * C ,P 4 aS - -

U S Sa at CS --a - a a Z4aa* .9 - srW U - 4 J -a a aa S Sa

297

L J

Page 307: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

In..ddJ

2o .~... oaaoao~.oo

* Ca-* p040CC OQ@ aoaam.a~.*

.~ *..-u

~ ~p.- o.aomaaoa.auII,,*,.uI

i ~j~-CC£

* S - -

2 5 na-. I.- ,. *1

(

298

L j

Page 308: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

I -0~ 3S~9~3 ~:Z9 ~sm ~ 00~

0~4cnn -r.-.o .40 *ec..0-. .. ~n4.C00h~ '~Ofl'r~.R4.4 ~., *~ 20 U,0@400*f 404W0 OU~* -. * 0...~ *04~ ~J.- -J 46. 0'1 @04 6W0 .40o - - .fl Ofl

* -" 00

.... 6 ****** **g ggS**** ***6***** **

-u .4 -ta 2

* U~ ~= 6.aa *S~~ -4 .. 4~2 ~. U -2 ~au~0 4.461..4 ~ ~ U, -a- .4~ a U,

* a a. - .4.Ca a - aa - *-4 -2.a2- *b. - - -U, ~ 0 U,.4 - A.4! .4W~K .4W~ 4. IS -C..4 _ ___ ., - a =

- -- 0.fl a a u 4* %O It - U,a .- * a = a=c ~2flJ2 SAA. -

.4.4 flJ1 4U tS £6.aaaa- - ~.4- gd24fl~. . - .4 =* aflig.- a.4fl4 4--' 4n.au 424

-~ * ~ q2w~ - !4~A 4 4 *0 S4S. 4~ 0 -042 ~.-aZSC 224 ~ ~IS4~&4 z~u

* -. U,

U, a

~ -: - U,-. .., C - a - -- -- - 2 .9a .~ C 4 5 -'- - S - a4 C - C C.4 - - S P -

a 2* at a 5- 2 4 .4 - 4

U .4

0 .4 20

299 j

Page 309: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

300

Page 310: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

A A1t44

A A A 4 ZA A A aA A A - -

a a a s -

- - a C - 4.

a S S CI C

a - sea4.4.4.4. a4. 4. 4.C ~4.

4. 0. 4.

tA.4.4.CL4. ~j~Z 5-

a C C

aaccacc a

Ca a

'aOWU&3CW 'a

'a 'a C'a La C aLa 'a '3a 'a 4' 4'a 'a ItJ.aaJ~AJIa

301

ft am)

Page 311: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

41 V

-- - -

ZE'4.0 A4

a -O0C*-C"--Qqao zz 0 0 0 0 0 0 0 a 0 0

.40 00 Z a

302

t_ a

Page 312: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

aa

33603 A Q -=O

222

000 2000000

1- . 000

40 ~ 524S a 2 20 -~ 33-00500

3 ai Li3 I3A

* fl64 Sif'-

~ 303

Page 313: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

*0

aCO

4

a

304

Page 314: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

auG.40 ~ *09O a040 * a- -

. ... .. .. - .4 * .. .....'j ...fl a -. . . ... o

- dj

a c zz - Xf z

8.e~- 305

Page 315: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

0

0

* *0

N - 40Po

* - . C CI• t4.

* 4 o.10

44 0 C

* m * 0

* ,.J,"

t_ _3 00..%S

Page 316: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

2

22

0

0

.40 -'40 4

'US .5SN -

0 'U'U" 5

50 4 --I, 2

0 N~'40 00

O .4.4

NO 40

4* Vt'44 - a

2 400 -- ~ 2

4,4 - 'U

o 0~- -- ~t 0400* .441 - 'U .J- C..IN4 0~4

an. - 2 .4s~ -*~

*= .4 4 - 41 .5 0

2

-~ .- ~ -

.45 CAd 0 'a-Wi* - .4 -C- 2Se~

- *.4*J -Ad'4 -c - .- - - 4*9 a~ - a - - a -

a. 4C4 - C* 24C*S'U "~'4~

C-.., ~5 5 4541

~

307

I

Page 317: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

000 00

308

Page 318: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

I -.3 A a

*~44~ ~O aa *

d~Qooaq 4-a4.,.'d~a ~,.41 - - - *...Qs~w. ~fl3qJ fl~~J ~Qq3~ 2.41

ISSUE *sSS.. I.. U SE U.S

z

~U a-fl~ .*.4flt - 42E -

4~~O *s~fl~J- - -.3 A441a~ ~

a *~.b a,34a ~ - a4 S.j 4flOt3~ .44 - - - 4

Q~z. a - - *~ ~s~cg a. - 4 *...3- a-a *-c.aaa..s ca. 4.

A4M.4. ~S 4~aa4a~~ *~ *3 * .444.a .4.3

I =04~2 4-4200 224 ~

a..20. ,4a..~0a.44 *22

a 4 -

A 44 a - 4

a - * 4

aa 44 a - 4ii S. a - aa a -.0 .5 20 a 4

) 309

J

Page 319: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

L 310j

Page 320: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

- ~-

a *4 Sa - - .3

.4 4

2 a -- a £a a 4 2 -

- a a. S - 4.- a.. - -a a a a *a.a~ a

a - a -

6. 4. 4.~

~ ~a -a4. 4. 4.4. 4. 4.Z -4.4.4.4.4.4.4. - - a

a a a

a - S S

a, - aD

a a' *a.. aJ 2 a

a aa a, a 4a a £

311

J

Page 321: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

... . . . . ..2

a "<

i i 9 i i i__"

Z4 . . . . . . . . . . .. •

22312

4 .00.

-s 4 S-C _

21

* -- ! i *

-J '20

Page 322: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

25.oc .'. .. . -.-....

12 ....... .$c~. ' , ............

. ~. z - _ .. ...........

. ~ ~ ~ ~ ~ ~ d - . - .....

zI z

wx

313

L _ 40

Page 323: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

314

Page 324: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

* ~ °., -. 3.- *°4.°l

2 3.

cc 2

2 o

4 .W2 .A .

± .. _4 -

Page 325: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

00'0

0~~0W

00

- ONo 20.u -3 0.~0 04(3 .3~0 0~- -o ~J0

* * No 00

* 3 4~o NO

* 0 -* ~* 0 0

~* - 00

- *10* 0 JO

* 3* - (JO

-a - -* 3 0 00

* 0 0~~2 0 ~JtJ

* a a .1

* - C ~0~4* a ann

* 3* a. S..

aGO

* (I* 0 00

* -l I* I* 0 ~00

* *0I, £tJ

~ 0

j 316

I

Page 326: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

+S.

o S. -

20

00 *4d0

- - -,LA2 20 ---,r 2

k --- 4

Page 327: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

-.400 00~0000

me*

Ja cc000

Moo cc 1

a

2 ,aooa ?o?,o?o~oo1* . "-..2 000...........

- . 0,t. n, 0

200 0a0000

24JWJUMJSAJ

Page 328: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

.. . ... . .. .... J l .. J.... .... ... '

- -4-

4. .. 4~Z %zo U z.r

NI NWC 14.4

2b4 -

.4 M% 3M ME

3~ ~'~Z 319

Page 329: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

-1 320

Page 330: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

A A - A

0 A A

2

-J e C

S C

.u - - ~D C

0. 0.2 .4t.

0. -,

0. 0. -0.0.o.CAA.&

3 S -3 3 2

- S S S A

.JI3oC~O4

.4 .4

.4 .4

.4 .4

*.4 .4.4 .4

321

__ j

Page 331: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

-0 ---- -

22322

Page 332: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

SN 1, 01S0 04

400

-Cooo ~~4. 4.. .

x 000 oooooe

14 0 0o0000

0 ..300000

10 0 -

0 0 C; :;C 1. 3- *00'10030

44 . I 4 o 0 0 00-- S, 1- X"00 .0'0000'0

---.-- * S*.n OO O O O O

*4 .3-0. 31

3 - A323

Page 333: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

am-

* -.o.-*

4-9 .,cm -z *innd'mc4a. C c'

19 a, 51 0 4 N

o 324

Page 334: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

20

?o

* ,S5 0

o - *0

* - * 0 0

• 2 * .4.* * 0 A

a C 2CM.

* - * 4 m

~!~3 * .44'

* ISO.

Page 335: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

00q??

4 -C

* ..*-, . .

- " - d

III

- Na- JP

Page 336: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

2200000 0 00 4

-"CMwOOe ... .°...

4. 04 4 4 4.

uZ........ .- . :

327

Page 337: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

4.400. 4000C 2'00 0WW~~ 40fl04*0O [email protected] 00.0 .40 .. s. *4O 440.0 04040b0 N0ddO 040 ~%.W0. 440 ~~'~04 or..

*04N 4..0 00 20 040000.0 ~0~400 2.0..

a.J - OWS J103,'Afl .,,404 *~ ~4,J0

* - raw, - t.r.~~4% 04 -

* dii *S* idES *iiiiiii *ii

40-. 0

- - *m&~is. 4b* 4.-.. 4.- '.a,2

'42 4~4004 ~JO 0J .4 *

.0 S~ -

* .4. - UtJit* - - 4.a LJ0 -. 004.S. ). - - -441 4 0 - .4 4. 4.42 J~0b4. a a.46~ a

- -- a .. ~ - .4 -- 020 40 4.C0t I 0. - 4% 1%U

00 04. - 4.004.'0 Oil. - -%O~.J t2 .40W "00 44.004. fl~ 0-'a a o.4..4~ .ab4. - - 0

* 4'flL... fla4.464 S'4 0=04.4.4 oaa! .4 a,.4 40W... 04.4 41 4 00 '0SS4% 4-M0* 7 -COC d200 224 *flOCO 1Ah004.4 201

I 0

- 4.2- 414O 0 .4

a 4. a 0* 41 41 4

a a 4

- 02- .41 4 04 72 04 0 4

3 a 0- - - II. .4- .40 44. .. 2 0 4 0-J 00 4 4' a

328

L J

Page 338: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

1 329J

Page 339: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

APPENDIX I

ANALIZ CODES--DESIGN CASE NO. 3

O~0OOOOO0OO'.7OO3 .O0 O 6eeOOO O~O0 "J f-oo

-J -r-

4 -

-n %4 .

3d .

UM- 4- z fU- a4 C2uJ

4J: 34.-4" Oz i-U

-9 1(fO 00 Z 0

1-9 400U ix - . ZLj M~.4 6 41L'IV WXU L 4- Ui .30U

Ca C3 -1 U4 -,q - Q L

-4.U-4 qL~- Z V VIL .4- 0l(A La 0--u3 - - -* j ~ r

.4Q n"3 -Q.3 - ,, -)0 '-

-lJ%, uxLUULJ QU XW ac"-~ -ZflO -:M<< I- CI .4 U

-W0 <- -AW_ Id) X _

<Q -40-00 -40 0 < L -

Q DVmww"04-- 04X LULW I'- t-j M- 4 3U)6a. *w P-'n -iA . LU I-

-4 .t I,- 0Z KX-4 3-1- Q-. 4 - 4r uo -~ 4 Q .4 Ln 4M v

0:; o4-Md o 0 - at Qz - Q -J N a LU 0040.3 4 Cr 0- (al I-) I- -n- 4 -

4 ft 3 J(30l-xp W" -q L4 4 C U %(3 LLuix~ 0.3verc 04 - LU -v 't ( j0%- .4 1A 0~ 0 .Z

.3 0 icLU U 9.4uJ "nic "C3 (3 10i L 1 0*0 A A J06

4- -SOr4 "A.3 34 0.4q -1* 0~ -.4 If 4v - o

:04 14-3 U) Q3 In3 -4 -- 4 1. CL C14of3%4

u- -oL3s ~ w-t 1uv--qc a i.- L0" (Z fQ2I 4 wJ 4 .J 0. * r 4 a

"I XarJ - 4 (3 -q L U L e a P~- C ac -j kcxl"

(3(4-4 (34U )I I9 OE: V1 4 1-- 0(4 I6 0. 4C6 J. tfLUZ )C

OLD* 'f~44> WI')< C3 I- ( 3q00 N

4O4u4-0(344 XQ-9zIfWu44 -41- N-4.O LULU4z o6)44f4 aIL30 X - LL1 Z -U.I. L 4 S*44 0 '

vtJ"*Uc U =36.L- #-X -0 ao"C .E- . * .j .O~.

*W4lh.M( 4'%I9'%,1 .4 40 4.~ JI~- 4 44 14S 9

4-LU 4 0 3 .4- UQ QQ QQQ ~ 4 I4 34(4(Jj UL

OLU'T~~~~~QQ QQWl 0 f - O.0 'O .. S-ZL U

0~LJ04 I- 330

Page 340: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

Q0 LI L.3J3(30 LLIIL (JL (

-QL

r-

LA I

LaLU m -4M 0

I-J O - L,

M.~~ ~ ~ 6LQU OJ --

LI~~ X 1

3 ei 01:0-It 4 * * - 0 4 0

LM W7C( 0 P <J rq* * -4

m laA -4 04 0L'ft"I % )q w 30

,Euw- *Q -t MI.-* W

z Z* x* *% a

4 ni f M Jq -w L "**-0 LU I-- I*Lj ww I "I PMA (Ut

-ql J(fl ft -~a 0 . t

%%j -4 wL ")tu uw 4%'04

0Vt" -4 30-.Lf tj LI Li.-l w W. 0LL-UL

x"aA- 4 Mi P" ~ .JI c (11-i'% I 0C c.C L

-J>40 U ? LI- 4a'~%0Lr P- ci--.**-'Z6 X4w -4

,U Z r0OL flZ4*

(3 - .0- LA.J-' MaO~' Z)

(.3 - 0~l-

C QI~ 21 .S)L *-5 s- Uf-1

~~7 V .t.9 ~ U fLJ.9 ~3314 -Srd

Page 341: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

r-03 0.4~4t ~ 04Ot. 30

-U -4. -40C; OW.6 0* ~ * %

t 3 -I If0 N * d -

-4 ~ ~ -4 LL. '-4 % 4'0 ~ :Dn - 0'~

1.03 -t -4oz -4. 0qc Q

Cf. ah '\4 * 00W .0 . xp...Q Pn. OW -4m44

CL4.- N. -4Ut. Z O . .-4U.4 J -- L44-40 JX -- j 4%

In 0 .3c' c -O.I-.1-4 (*

0 U.S -k CCL L.O 4 u l- . 4. -

I. -- ,J NJL):) I-U .)U . x.2Oc3J - .44(fQX 'OUJ~..e 4 4

La IS~ L4.' I- o kU.C3z*I _j.'. %X jj%%LW-qa."iu

>-C3 ~ w XI w4.'.N'-W LU

No 141j ;1 11- -. - ""POCCOZ L-j< I-.

OVI QWJ 'q ZUW .04~ ->L( U L. L

qJd (-- Z4U0I)UJQ -j

L 0 03 0 00 - g4 XZc U-om .~I i-- -I-3 1.- P- t4.I '% JO LLC 4. qw' "Q IqV1CJ L

-2 -r. .r cr - 1-4 0' Q - w) = fCJ~ -. r-I-.U X

0L 00 0L 0" 1/0 - -LU I)" .J. .

C.J t 004/01I 004/014 0*4/) t *Old Z 00 V) CD LU . -.J .. MLX0.WW i1/1 J j~ J~ (j - *(. Ad - U -LJI.LUJJZ .

wA .0m 5m 03 5m X-4 0 5- -- " -td)0C%(. NN41IN. 4 5- .

0os zU 4Uow o 4U. 44' U 00.q".4 W- uDL".JL 4LS-a. 'Ux . 4

P- 0.W 0 0 P .L LU 0~r 001 44 - . ..t'- 0

.C *OI * 'lU ZOW *l..O 4 e- .fl W . q-WWI '4p44 QW.O MM_3j - -"

A04 ow".4 ow"~ QQ"4 IJ7I Q4W ZlZW -j o- F - .J . ..

LJUo' xL~ LuJU U.1.6 U.L UJ. LL.JW(34.J4 DJ'~ USL.-. C3Q w0.J U.IZ.3Z- .J 1- - I- - g

00 coUoDOD0 00 03 0 0

332 L.LU U .U

Page 342: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

~~Q~-N ~ 0~ fl4~ Nfl~.-4'

4L. 1;

-- 4~ ~ ~ -40--U-L

-4a4 NJ4A U -0 0

-.J1 LZA . - -4 U-WI%-( ( f-. II 0- 4.

o -- - a-.%0 In aA-O. 0 U111, it - it O 4 j If - -j 1

a "a a% a.j -a. I U -. W%3. 1 a 0-61 %

I ft% 0 -0.4cL W. 04% 1 %,N

0 0 a0 0~~. *a -4J j%.4 .4L-(l4 r 0 It%

owIU 0 1a a ft LU -. " On

aX X A- - X .j .a . fu ir . -- 4 L0. N

cu;. uja a c a .j a * 0% au a a a a I a 0 'Ain (A %a~

a1, . .. J , at-an 'Q %% *%%'~' %~ %% a U. '. L

a a aj XI a a-< aaa a 90 VIQIJ X

4'fl0Ng~r'J C0.t4.I-.-tte 1-A 1.0 4. a-i

-~~~~~ %Jr a 4-.4.a..... .4 Q" *U -44.-a

-~vlt - u.' ;)a. ~ a

a - '(- -)C.> ,a a 0.a. . --.. a.4 * a

u-.. 1j us .. I~s I I .CJ.) . .O af

7- Xw~ X. AL .. x(3 (Z)0 ~04~% 0.3 0. flA *'z

LL . U -U.L *uaz.- L6 g

a a % a % a .aaa%7 a~aaaaaa Z*% at a1 aN a4

333,

Page 343: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

APPENDIX J

CONTROL CARD IMAGES--DESIGN CASE NO. 3

-4n-

C. U J-

4 -4zJ00JU oo

4-4 %1-4j

'-.1- CL' 0- 4.0i "-. 9 *W 0 0 0 0 0 S 9 0 6_i 0 0~i J.4-4 Q 4 C3 . 0 -. 2 C2 '-4 -4 3 - 3 0~ . -L(J UI I i

0.

".3 0 -O: 0 CIO- .- 4-0-44 a a0 0'. 0 0 *.1040 -0 " U 0 ".4 U

0. U-4 Vo U0A - 4li) -

UJC4J Z0-4 Ja Q C.- < 40E0 ( 0L I- >0* 1. 0.J 0 . . .4 0.0- .4 .(, +~4*

O~UJ C.0.4 0 00lii Q .1 4 4 f

~h-400.~-0000000000004,4 444

Z U 0. LU LL 0z

4 334j

Page 344: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

335

Page 345: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

APPENDIX K

COPES OUTPUT--DESIGN CASE NO. 3

A A A Z ,

A A 336

A 4J

Page 346: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

- -4 - - - - - - -

33"/

.0 00 0 _ 0 0 0-00 0

4 00 000 ~ 000

- 23 4

Page 347: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

:: 0.... ......

4=2 Z

;t0o0a 000 f 0Q00

- - 0 000OS

JOQ-. x 0C34JaO

C;

X0

o - - - cc 4000,oooo,

it. ... .. di. ..a..

o338

O-- 2-- £

I . 0 0 4 00 4 0 0

338.

-t4 COC

Page 348: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

.42

4

g3

1u

0

0

~

339

L J

Page 349: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

o 'a

on e go 400 4.Cl° 00 0 A A1

.m41 JI Qwnm 400 wtttJa O UtO fl0 eeJ Mt.l

340

t.OF

Page 350: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

_00

*..

* 3 'N

CEQQ*

• O - O O

" z .- J- ?2

Zoo °

341

Page 351: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

- 0, 0

2 -0

- ~0 - - 04

C -, 0 4

42 20~0 00-0,'4 '"1 .0

3~ ~ 4 4 '0

4 244-4

- 4242 4 4

342

J

Page 352: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

-o020

azoo.,.. 2200

302

'"3CO

Ofl Ca3~' -- 00 0000000002 !*~* aA-C 200000000000

000 O000%JOOC0000

* 2umi.M.s.au.waJs,

~JCNA 2002 *.t

* 42200C 000000000000

- .*. 4C*fltIC**4

2 000000000000ad

,e*000000va01j

a 2 A2 3

;ai

~

3 ~t .4- ~ 50 4

:~ 5 Z 0

a ~ c..u0-n- ,o A -

343

4-J

Page 353: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

+a .. 0.o.-o

*+ . : -.* N*.O0 . - + . - *** -" 2.,%• o -.o e..i .• ...- . d" NN 02

! II I I II I A - ,i 2 -

4 '-42 4 412 - - -

-*3 0.S .II.S aa *+ &.. ,,. -,

2 0 44444, .4 - s4

- •..n -0.- fV 0l I

Page 354: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

z

* *-~.

3

(

~~*j45 j

Page 355: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

4, 4, 4, A4, .4 0

K - -

.4 U C X -

-5 - a a - 4.

a a a a a--- a a

a 4, a -

a a. at ata 4. 0a 4. 0.4 - £4. a 4.4. 4. a - S -aaaaaaa 4,

S S £

Is. S

- A at)WtJUCCtJ -

'a a a'a U K a

'a a a

(

'C ~~346 J-v

Page 356: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

*4-_

3**

t..-

Page 357: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

a c co -000a

a

-- - ,0O N C

,g ' Z OO

on &a -

V.;. .. .. .. ..

a 241,.

Ir-r

Mr.==; ____

- 2. - ~ * if-* * a - -

- sd a . aa *. ~ a *g~tI348

Page 358: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

a

~04-

4

ago

ii

d -

.1

a

IL4

i3& a

7 C) 349

__ J

Page 359: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

*2 IAJA -* 0

0@. 40 da@ 04104 ~A *414* ~ ~4 a *0 4IA~

~0- M..0 00 20 4@@~40 - ~@~M0MA'~04 004 0 *~4* - J.r~0 * ... C....S * fl* 0

aCJ a0 -- 4st .IJ M a4DOO 4 -- -A - - - -4*-a 0'. '41 4100

* - -- 0a

S.... SSS6~t S** U S SS*SSSW*SSC

a

42 2

a.. -a -- - - a -* j~JAa ~t4

* -- a.2 a a4 .48-4 - - S

412'a ,n- ~, - a : i -

a 41 - a £ -

U - -- - aJCCS a - - 2 3a 2.aM -oaa:- *M - 2 -~ - 02

-- -- ~ - - a-

- - O2~ 2 2 40 t1 - AS .~a ta ~ - 4412 ~ A Ca -44 * 4 45M SA Lao.- 0 a - 'a5 'a l.a.-a a b0l%..a.S aSa - - 14 - 4 - Cfl410 *IVt 4a4.aC 2a C 440a4 434142 .. a4 4W31U 0CM II 40 - 41~*M~SS%14 4 '4 A IOM a .0443 3-2200 224 aa*oa ~ 22W22a2~ 223 *4 234

0

2AC SI

- - - A

- wa C 41 0 3* - 4 4 a a -

a - - = -£ 4 = - 4 4 S -a - a C S

- I a 2 2 5* ~ a a - 0 - -

.5 2 C - - 4 a20 - 2 a

S 0* a a - a- -- a a , A a- A C a 0 a 0 2a '4* 2 '4a a- £ a ~, a a

(350

C __

Page 360: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

0Ooo

20oa

* ..

* *too Nt

C..

O Cz S SW

Ca-: a . @0 -* . -- It

:3S

- S -- ,

Page 361: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

en-

.• am

4. -

4.. -

- ci

Page 362: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

.,oo

.o.o9coOO

.. ... .....,.

90OO O O O 0*COO

0 .

353

*

4 43000000000000

Page 363: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

o M i9 ! - 3cli " 1 -1-** A .. II .

1. C -

.9 till" 4. 5dC.4.~. gs is 4 0.. a 70 .E2CC 0. ~ 0

*z =a4*O

*-,*t. - . S ASl a . A.t J.

44 24

cm.C 2LAS O W Z 4, r

e L g ,sU

'2~ CId1 .9iL

.j t~ 4 AA S .354

Page 364: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

35

rt

Page 365: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

LIST OF REFERENCES

1. van Lameren, W.P.A., van Manen, J.D. and Oosterweld,M.W.C., "The Wageningen B-Screw Series", TransactionsS.N.A.M.E., v. 77, p. 269-317, 1969.

2. Oosterweld, M.W.C. and van Oossanen, P., "Further Computer-Analyzed Data of the Wageningen B-Screw Series",International Shipbuilding Progress, v. 22, no. 251,p. 251-262, July 1975.

3. Triantafyllou, M.S., "Computer-Aided Propeller PreliminaryDesign Using the B-Series", Marine Technology, v. 16,no. 4, p. 381-391, October 1979.

4. Markussen, P.A., "On the Optimum Wageningen B-SeriesPropeller Problem with Cavitation-Limiting Restraint",Journal of Ship Research, v. 23, no. 2, p. 108-114,June 1979.

5. NASA Ames Research Center Technical Memorandum NASATMX-62 282, CONMIN--A FORTRAN Program for ConstraintMinimization User's Manual, by G.N. Vanderplaats, August1973.

6. Vanderplaats, G.N., CONMIN User's Manual Addendum, May1978.

7. Naval Postgraduate School Publication NPS69-81-003,COPES--A FORTRAN Control Program for EngineeringSynthesis, by L.E. Madsen and G.N. Vanderplaats, March1982.

8. Schoenherr, K.E., "Formulation of Propeller BladeStrength", Transactions S.N.A.M.E., v. 71, p. 81-119,1963.

9. Fox, R.L., Optimization Methods for Engineering Design,Addison-Wesley Publishing Company, 1971.

10. Fiacco, A.V. and McCormick, G.P., Non-Linear Programming:Sequential Unconstrained Minimization Techniques,John Wiley and Sons, 1969.

11. Hinmnelblau, D.M., Applied Non-Linear Programming,McGraw Hill Company, 1972.

12. Vanderplaats, G.N., "Structural Optimization--Past,Present and Future", AIAA Journal, v. 20, no. 7, p. 992-1000, July 1982.

356

tU

Page 366: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

13. Fletcher, R. and Reeves, C.M., "Function Minimizationby Conjugate Directions", Computer Journal, v. 7, no. 2,p. 149-154, 1964.

14. Zoutendijk, G.G., Methods of Feasible Directions,Elsevier Publishing Co., 1960.

15. Vanderplaats, G.N. and Moses, F., "Structural Optimiza-tion by Methods of Feasible Directions", Journal ofComputers and Structures, v. 3, p. 739-755, 1973.

16. Comstock, J.P. (Ed.), Principles of Naval Architecture,The Society of Naval Architects & Marine Engineers, 1967.

17. O'Brien, T.P., The Design of Marine Screw Propellers,Hutchinson and Company, Ltd. (UK), 1962.

18. Vassilopoulos, L., "Formulation and Computer-AidedSolution of a Class of Propeller Design Problems",International Shipbuilding Progress, v. 23, no. 257,p. 10-29, January 1976.

19. Netherlands Ship Model Basin Report 132a, Fundamentalsof Ship Resistance and Propulsion Part B: Propulsion,by Dr. Ir. J.D. van Manen, 1955.

20. Lerbs, H.W., "On the Scale and Roughness of Free RunningPropellers", Journal of the American Society of NavalEngineers, v. 63, no. 1, p. 58-94, 1952.

21. Triantafyllou, M.S., Development of Analytical Methodsin the B-Series Propeller Design for Application inComputer Programs, S.M. Thesis, Massachusetts Instituteof Technology, Cambridge, 1977.

22. Taylor, D.W., The Speed and Power of Ships: A Manualfor Marine Propulsion, Randsdell, Inc., 1933.

23. Rosingh, W.H.C.E., "Design and Strength Calculatio .:orHeavily Loaded Propellers", Schip en Werf, 1937.

24. Hancock, N., "Blade Thickness of Wide-Bladed Propellers",Transactions R.I.N.A., v. 83, 1942.

25. Romson, J., "Propeller Strength Calculation", The MarineEngineer and Naval Architect, n. 2-3, 1952.

26. David W. Taylor Model Basin, Report 919, An AproximateMethod of Obtaining Stress in a Propeller Blade, byW.B. Morgan, October 1954.

357t C_ .

Page 367: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

27. Arnoldus, W. and Keyser, R., "Strength Calculation ofMarine Propellers", International Shipbuilding Progress,v. 6, no. 53, p. 20-36, January 1959.

28. Conn, J.F.C., "Marine Propeller Blade Deflection",Transactions R.I.N.A., 1943.

29. Netherlands Research Center TNO for Shipbuilding andNavigation, Deflt, Report 21S, On Stress Calculationsin Hellicoidal Shells and Propeller Blades, by J.W.Cohen, July 1955.

30. Connolly, J.E., "Strength of Propellers", TransactionsR.I.N.A., v. 103, no. 2, p. 139-160, April 1961.

31. General Applied Science Laboratory, Inc., Report 283,Propeller Blade Vibration and Stress Analysis Program,by E. Lieberman, June 1963.

32. General Applied Science Laboratory, Inc., Report 466,Extension of Propeller Blade Stress Program, by E.Lieberman, 1964.

33. Atkinson, P., "On the Choice of Method for Calculationof Stress in Marine Propellers", Transactions R.I.N.A.,v. 110, no. 4, p. 447-463, October 1968.

34. Sontvedt, Terje, "Propeller Blade Stresses--An Applicationof Finite Element Methods", Computers and Structures,v. 4, no. 1, p. 193-204, January 1974.

35. Naval Ship Research and Development Center Departmentof Structural Mechanics Research & Development, Report3397, Elastic Strength of Propellers--An Analysis byMatrix Methods (Including a Programmer's Manual and aUser's Manual), by Paris Genalis, July 1970.

36. Hamilton Standard Company, A Division of United Technolo-gies, Final Technical Report, HS-01-033072, ExpandedComputer Program for Structural Analysis of MarinePropellers, by W.W. Westervelt and A.S. Dale, December1972.

37. Atkinson, P., "Prediction of Marine Propeller Distortionand Stresses Using a Super-Parametric Thick-Shell FiniteElement Model", Transactions R.I.N.A.--SupplementaryPapers, v. 115, p. 359-375,November 1973.

38. Araldsen, P.O. and Egeland, 0., "General Descriptionof SESAM-69 (Super Element Analysis Modules", EuropeanShipbuilding, v. 2, 1971.

358

o wJ

Page 368: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

39. Atkinson, P., A Practical Stress Analysis Procedure forMarine Propellers Using Curved Finite Elements, paperpresented at S.N.A.M.E. Propellers '75 Sympojsium, 6th,Philadelphia, Pennsylvania, July 1975.

40. Ma, J.H., Schnobrick, W.C. and Stuber, C.B., PropellerStress Calculation Using Curved Finite Elements, paperpresented at S.N.A.M.E. Propellers '75 Symposium, 1st,Philadelphia, Pennsylvania, July 1975.

41. Beek, G.H.M., "Calculation of Propeller Blade Stresesand Comparison with Test Results", InternationalShipbuilding Progress, v. 24, no. 277, p. 225-236,September 1977.

42. Beek, G.H.M., Hub-Blade Interaction in Propeller Strength,paper presented at S.N.A.M.E. Propellers '78 Symposium,19th, Virginia Beach, Virginia, 25 May 1978.

43. Naval Ship Research and Development Center StructuresDepartment Research and Development Report, DTNSRDC-78/016, Curved Finite Elements Computer Program--PBLADEUser's Manual, by J.H. Ma, April 1978.

44. Naval Ship Research and Development Center StructuresDepartment Research and Development Report, No. 4057,Stress Analysis of Complex Components by a NumericalProcedure Using Curved Finite Elements, by J.H. Ma,July 1973.

45. David W. Taylor Naval Ship Research and DevelopmentCenter Ship Performance Department Report, SPD-595-01,A Lifting Line Computer Program for Preliminary Designof Propelers, by J.A. Diskin and T.A. LaFone, November1975.

46. Saunders, H.E., Hydrodynamics in Ship Design, Volume II,The Society of Naval :.rchitects and Marine Engineers,1957.

47. Vanderplaats, G.N., Sugimoto, H. and Sprague, C.M.,"ADS-l A New General Purpose Optimization Algorithm",Proceedings 24th AIAA/ASME/ASCE/AHS S-ructures, StructuralDynamics and Materials Conference, Lake Tahoe, Nevada,May 1983.

C359

L _ _ _ _ _ - J

Page 369: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2Cameron StationAlexandria, Virginia 22314

2. Library, Code 0142 2Naval Postgraduate SchoolMonterey, California 93940

3. Department Chairman, Code 69Mx 1Department of Mechanical EngineeringNaval Postgraduate SchoolMonterey, California 93940

4. Professor G.N. Vanderplaats, Code 69Vn 3Department of Mechanical EngineeringNaval Postgraduate SchoolMonterey, California 93940

5. LCDR Michael R. Maixner, Code 69Mq 2Department of Mechanical EngineeringNaval Postgraduate SchoolMonterey, California 93940

6. LT Michael P. Smith II, USNR 4c/o Mr. & Mrs. Michael P. Smith12 Linmouth RoadMalverne, New York 11565

7. Professor Michael G. Parsons 2ChairmanDepartment of Naval Architecture& Marine Engineering

The University of MichiganAnn Arbor, Michigan 48109

8. Professor T. Francis Ogilvie 2ChairmanDepartment of Ocean EngineeringRoom 5-225The Massachusetts Institute of

TechnologyCambridge, Massachusetts 02139

9. Professor Michael S. Triantafyllou 1Department of Ocean Engineering, Room 5-225The Massachusetts Institute of Technology

(Cambridge, Massachusetts 02139

L ~360

Page 370: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

10. Dr. William B. MorganDavid W. Taylor Naval Ship Research& Development Center

Ship Performance Department (Code 15)Bethesda, Maryland 20084

11. Dr. Young T. ShenDavid W. Taylor Naval Ship Research& Development Center

Ship Performance DepartmentBethesda, Maryland 20084

12. Commander (NAVSEA-52)ATTN: CAPT G.M. LaChanceNaval Sea Systems CommandWashington, D.C. 20362

13. Commander (NAVSEA-3213)ATTN: Mr. David ByersNaval Sea Systems Command

Washington, D.C. 20362

14. Commander (NAVSEA-312)ATTN: Mr. S.F. "Frank" BurkeenNaval Sea Systems CommandWashington, D.C. 20362

15. Mr. Andy SzypulaSNAME HeadquartersOne World Trade Center, Suite 1369New York, New York 10048

16. Technical Library (Code 522.1)David W. Taylor Naval Ship Research& Development Center

Bethesda, Maryland 20084

17. Technical LibraryDavid W. Taylor Naval Ship Research

& Development CenterAnnapolis, Maryland 21402

18. Commander (NAVSEA-99612)ATTN: Library/D.R. EricksonNaval Sea Systems CommandWashington, D.C. 20362

19. LibrarianDepartment of Naval Architecture

& Offshore EngineeringThe University of CaliforniaBerkeley, California 94720

361

Page 371: AND A GENERAL SELECTION USING THE WAGENINGEN … · 2014. 9. 27. · 7aat32 414 preliminary propeller selection using the wageningen 4 f 6 screw series and a general purpose non-linear

'I

I

4tj

L