garnet.forming and garnet.eliminating reactions …rruff.info/doclib/cm/vol32/cm32_623.pdf ·...

13
623 The Canalinn Mineralo gist Vol. 32,pp. 623-635 (1994) GARNET.FORMING AND GARNET.ELIMINATING REACTIONS IN A OUARTZ DIORITE INTRUSION AT CAPO VATICANO. CALABRIA, SOUTHERN ITALY D. BARRIE CLARKE Departmznt of Earth Sciences, Dalhowie University, Halifax, Nova Scotia B3H 3J5 ALESSANDROROTITIRA Dipartimentodi Scienze Mineralogiche,Universitd di Bolagna, I-40126Bologna, Italy ABSTRACT Late Hercynian peraluminous granitoids (quartz diorite, tonalite, and granodiorite)intrude amphibolite-granutte-facies countryrocks in the CapoVaticanoarea, Calabria, southem Italy. Small (l cm in diameter) grainsof garnet occurin kinzigitic gneisses and amphibolites in the country rocks,but they are rare to absent in the intrusive rocks, except for one quartzdiorite pluton that contains \p to IsEomodal gamet.Field relations,textural relations,compositional ftmges, and chemical zonation profiles of the garnetgrains indicatehow these grainsnucleated, grew, and eventuallydisappeared. Within the quartzdiorite pluton, garnetoccursin metasedimentary enclaves, particularlyin the leucosomes associated with their apparent partial melting,suggestingaformationreactionofthetype:Pl+Bt+Crd+Als+Pl+Qtz=L+Grt!Kfs.Thisreactionmayor may not havebegunwith pre-existing nuclei of gametin the metasedimentary rocks.With subsequent disintegration and assimilation of these enclaves into the magma,the garnet grains occur as large (up to 4 cm diameter),discrete,euhedral crystals,apparently in chemical equilibrium with the melt fraction. Most garnetassociated with metasedimentary material,or isolatedin the quartzdiorite, has similar Mn profiles (higher concentrations in the coresand rims than between the core and rim). Elsewhere in the quartzdiorite, garnetcrystalsoccur as irregular grainswith a wide coronaof biotite and tschermakite, suggesting an elimination reactionof the type: Gfl + L + Bt + Ts. Although garnet $ains in other granitoid rocks may be entirely of xenocrystic or magmatic origin, their occurrence in the Capo Vaticano quartzdiorite demonstrates formation principally througha melting reactionin metasedimentary enclaves. The later elimination of this gametoccus at a peritectic reaction resultingfrom open-system assimilation of the anatectic melt andgarnet in the largerbody of quartz dioritic magoa. Keywords: gamet, xenolith,magmatic, quartzdiorite, partial melting,tschermakite, Capo Vaticano,Calabria, Italy. SomannB Une suite de roches granitiques hyperalumineuses (diorite quartzifere, tonalite et granodiorite) a 6t6 mise en placedans des roches h6tes recristallisdes dans le faciesamphibolite - granulitedans la rdgion de CapoVaticano,en Calabre, Italie. De petits grains de grenat(1 cm de diambtre) sont pr6sents dansle gneiss kinzigitique et I'amphibolite desroches h6tes,mais ils sont rares, voire m6meabsents dansles roches intrusives, h l'exception desroches d'un petit pluton de diorite quartzifbre, qui contientjusqu'e 157o de grenat par volume. l,es relations de terrain, les textures, I'ensemble des compositions et le profil des cristaux zon6s rdvdlent certains ddtails d proposde la nucl6ation, la croissance, et la disparition de ces cristaux.Au sein du pluton de diorite quartzifore, le grenatse trouve dansdesenclaves mdtas6dimentaires, et particulibrement dansle leucosome, r6sultat apparent de la fusion partielle. Sa pr6sence suggbre une r6action du genrePl + Bt + Crd + Als + Pl + Qtz -.. L + Grt t Kfs. Cette rdaction pounait (ou non) avoir ddbut6 avecdesnucl6us de grenat dans les enclaves m6tas6dimentaires. Avec la d6sint6gration et l'assimilation 6ventuelle de cesenclaves dansle magm4 les grains de grenatapparaissent sous forme de cristauxidiomorphes distincs et grossiers (usqu'tr 4 cm) qui seraient en 6quilibrechimiqueavec la fraction liquide. La plupart descristauxde grenat associ6s au matdriau m6tas6dimentaire, ou isol6sdansla diorite, font preuved'un profil semblable dans la r6partitiondu Mn (teneur plus 61ev6e dans le coeuret la bordure que dans 1es parries interm6diaires). Ailleun dans la diorite quartzifbre, les cristaux de grenatse pr6sentent en grains irr6guliers ayant une couronne volumineuse de biotite et de tschermakite, ce qui t6moiguerait d'une r6action du type Grt + L -+ Bt + Ts. Quoique les grains de grenat dans les autres massifs granitiques pourraient bien avoir une origine entierement x6nocristique ou magmatique, leur pr6sence dansla diorite quartzifere de Capo Vaticano d6montre un mode de formation par r6action de fusion des enclaves m6tas6dimentaires. La disparition6ventuelle du grenat impliquerait une r6ction p6ritectique d6coulant de l'assimilation en systdme ouvert du liquide anatectique et du grenat dans le volume plus important de magma dioritique quartzifore. (Traduitpar la R6daction) Mots-cl€s: grenat, xdnolithe, magmatique, diorite quartzifore, fusion partielle,tschermakite, Capo Vaticano,Calabre, Italie.

Upload: nguyenkhue

Post on 28-Aug-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: GARNET.FORMING AND GARNET.ELIMINATING REACTIONS …rruff.info/doclib/cm/vol32/CM32_623.pdf · Keywords: gamet, xenolith, magmatic, quartz diorite, partial melting, tschermakite, Capo

623

The Canalinn Mine ralo gistVol. 32, pp. 623-635 (1994)

GARNET.FORMING AND GARNET.ELIMINATING REACTIONSIN A OUARTZ DIORITE INTRUSION

AT CAPO VATICANO. CALABRIA, SOUTHERN ITALY

D. BARRIE CLARKE

Departmznt of Earth Sciences, Dalhowie University, Halifax, Nova Scotia B3H 3J5

ALESSANDRO ROTITIRA

Dipartimento di Scienze Mineralogiche, Universitd di Bolagna, I-40126 Bologna, Italy

ABSTRACT

Late Hercynian peraluminous granitoids (quartz diorite, tonalite, and granodiorite) intrude amphibolite-granutte-faciescountry rocks in the Capo Vaticano area, Calabria, southem Italy. Small (l cm in diameter) grains of garnet occur in kinzigiticgneisses and amphibolites in the country rocks, but they are rare to absent in the intrusive rocks, except for one quartz dioritepluton that contains \p to IsEo modal gamet. Field relations, textural relations, compositional ftmges, and chemical zonationprofiles of the garnet grains indicate how these grains nucleated, grew, and eventually disappeared. Within the quartz dioritepluton, garnet occurs in metasedimentary enclaves, particularly in the leucosomes associated with their apparent partialmelt ing,suggestingaformationreactionofthetype:Pl+Bt+Crd+Als+Pl+Qtz=L+Grt!Kfs.Thisreactionmayormay not have begun with pre-existing nuclei of gamet in the metasedimentary rocks. With subsequent disintegration andassimilation of these enclaves into the magma, the garnet grains occur as large (up to 4 cm diameter), discrete, euhedralcrystals, apparently in chemical equilibrium with the melt fraction. Most garnet associated with metasedimentary material, orisolated in the quartz diorite, has similar Mn profiles (higher concentrations in the cores and rims than between the core andrim). Elsewhere in the quartz diorite, garnet crystals occur as irregular grains with a wide corona of biotite and tschermakite,suggesting an elimination reaction of the type: Gfl + L + Bt + Ts. Although garnet $ains in other granitoid rocks may beentirely of xenocrystic or magmatic origin, their occurrence in the Capo Vaticano quartz diorite demonstrates formationprincipally through a melting reaction in metasedimentary enclaves. The later elimination of this gamet occus at a peritecticreaction resulting from open-system assimilation of the anatectic melt and garnet in the larger body of quartz dioritic magoa.

Keywords: gamet, xenolith, magmatic, quartz diorite, partial melting, tschermakite, Capo Vaticano, Calabria, Italy.

SomannB

Une suite de roches granitiques hyperalumineuses (diorite quartzifere, tonalite et granodiorite) a 6t6 mise en place dans desroches h6tes recristallisdes dans le facies amphibolite - granulite dans la rdgion de Capo Vaticano, en Calabre, Italie. De petitsgrains de grenat (1 cm de diambtre) sont pr6sents dans le gneiss kinzigitique et I'amphibolite des roches h6tes, mais ils sontrares, voire m6me absents dans les roches intrusives, h l'exception des roches d'un petit pluton de diorite quartzifbre, quicontientjusqu'e 157o de grenat par volume. l,es relations de terrain, les textures, I'ensemble des compositions et le profil descristaux zon6s rdvdlent certains ddtails d propos de la nucl6ation, la croissance, et la disparition de ces cristaux. Au sein dupluton de diorite quartzifore, le grenat se trouve dans des enclaves mdtas6dimentaires, et particulibrement dans le leucosome,r6sultat apparent de la fusion partielle. Sa pr6sence suggbre une r6action du genre Pl + Bt + Crd + Als + Pl + Qtz -.. L +Grt t Kfs. Cette rdaction pounait (ou non) avoir ddbut6 avec des nucl6us de grenat dans les enclaves m6tas6dimentaires. Avecla d6sint6gration et l'assimilation 6ventuelle de ces enclaves dans le magm4 les grains de grenat apparaissent sous forme decristaux idiomorphes distincs et grossiers (usqu'tr 4 cm) qui seraient en 6quilibre chimique avec la fraction liquide. La plupartdes cristaux de grenat associ6s au matdriau m6tas6dimentaire, ou isol6s dans la diorite, font preuve d'un profil semblable dansla r6partition du Mn (teneur plus 61ev6e dans le coeur et la bordure que dans 1es parries interm6diaires). Ailleun dans la dioritequartzifbre, les cristaux de grenat se pr6sentent en grains irr6guliers ayant une couronne volumineuse de biotite et detschermakite, ce qui t6moiguerait d'une r6action du type Grt + L -+ Bt + Ts. Quoique les grains de grenat dans les autresmassifs granitiques pourraient bien avoir une origine entierement x6nocristique ou magmatique, leur pr6sence dans la dioritequartzifere de Capo Vaticano d6montre un mode de formation par r6action de fusion des enclaves m6tas6dimentaires. Ladisparition 6ventuelle du grenat impliquerait une r6ction p6ritectique d6coulant de l'assimilation en systdme ouvert du liquideanatectique et du grenat dans le volume plus important de magma dioritique quartzifore.

(Traduit par la R6daction)

Mots-cl€s: grenat, xdnolithe, magmatique, diorite quartzifore, fusion partielle, tschermakite, Capo Vaticano, Calabre, Italie.

Page 2: GARNET.FORMING AND GARNET.ELIMINATING REACTIONS …rruff.info/doclib/cm/vol32/CM32_623.pdf · Keywords: gamet, xenolith, magmatic, quartz diorite, partial melting, tschermakite, Capo

624 TIIE CANADIAN MINERALOGIST

INTnooucnon

Garnet can occur in both metaluminous and oer-aluminous granitoid rocks, but usually only ai anaccessory phase. Its stability is a complex function oftemperature and pressure (Abbott & Clarke 1979, duBray 1988, Green 1977, Clemens & Wall 1981), andmany compositional parameters, including Al-over-saturation, Mn content, flH2O), flO ), and flD (Abbott1981, Clarke 1981, Miller & Stoddard 1981, Zen1988, 1989). As a result, the origins of garnet ingranites include: restitic (Stone 1988), xenocrystic(Allan & Clarke 1981, Pattison et al. 1982, Plimer &Moazez-Lesco 1980), anatectic (Clark & Lyons 1986,Hogan & Dickenson 1986, Hartel et aL 1990), prima-ry nmgmatic (Miller & Stoddard 1981, du Bray 1988),fluido-magmaric (Baldwin & von Knorring 1983,Manning 1983), metasomatic (Calzetti & Zeda 1980,Kontak & Corey 1988), and evenpostmagmatic rneta-morphic in some varieties of orthogneiss.

In the Capo Vaticano area, some of tle basementrocks (kinzigitic gneisses and amphibolites), and manyof the granitoid rocks (quartz diorite, tonalite, andgranodiorite), contain gamet in highly variable modalproportions (up to 15 volume 7o), and with variabletextural features and chemical compositions (Rotturaet al. 1986, 1991,1993).In this paper, we examine therange of garnet types in both the granitoid rocks andtheir xenoliths, and compare their occurrence, tex-fures, and compositions with garnet from the kinzigitic(bt-sil-gt) gneisses and amphibolitic basement rocksto determine the history of garnet formation at CapoVaticano. In some of the granitoid rocks, the garnetgrains have extensive coronas of biotite and amphi-bole. We contend that most of the sarnet formed

during melting of paragneiss xenoliths, and thatmagma mixing resulted in a reaction relationshipwhich then began to eliminate the garnet.

Gpor-ocrcat Selm{c

The Capo Vaticano Promontory belongs to theCalabrian Arc, an Alpine belt of stacked nappes link-ing the Apennines and the Maghrebian chain of Sicily(Fig. l). Within this arc is a segment of the Hercynianof southwestern Europe that contains metamorphosed(very low grade to granulite facies) basement rocks ofPaleozoic to Precambrian age (e.g., Amodio Morelliet al. 1976, Scandone 1982). The Late Hercynian(ca.295 Ma) Capo Vaticano granitoids intrude thisbasement, and crop out discontinuously beneath aMiocene-Quaternary cover over an area of ca.270 km2. Their modal compositions include quartzdiorite, tonalite, and granodiorite, and their chemicalcompositions range from metaluminous to per-aluminous.

In the S. Maria - Ioppolo area, quaflz diorite occunin a fault block (Fig. 1), but elsewhere in the regionquartz diorite forms a marginal facies of the granitoidplutons (Caggianelli & Di Florio 1989). Two types ofquartz diorite occur in this area: the frst type is domi-nantly plagioclase-rich (Anq-sz, 64 vol. Vo), withinterstitial biotite, quartz, magnesian cummingtonite -tschermakite pairs, and minor accessories, and thesecond fype consists of small biotite-rich (45 vol. Vo)masses and pods occurring mainly in the tonalites,with plagioclase (Ana6_66i ca. 40 vol. Vo), minorquartz, and magnesian cummingtonite - magnesianhornblende intergrowths (Rottura et al. 1990). T\efirst type of quartz diorite contains centimeter- to

q@ L--.J Upper Miocene- Quatemary cover

ffi Two-mica, Al-silicate-bearingporphyritic granodlorites

Nl aiotit" t Homblende.bearingtonalites

I Gamet-bearing quarE dioritesand tonalites

Fl Kinzigitic (bt-!il€ri) gneisses,/Faults

X1, D1,

Ftc. 1. Geological map of the Capo Vaticano area showing the distribution of basementrocks, granitoid plutons, ard sampling localities.

Page 3: GARNET.FORMING AND GARNET.ELIMINATING REACTIONS …rruff.info/doclib/cm/vol32/CM32_623.pdf · Keywords: gamet, xenolith, magmatic, quartz diorite, partial melting, tschermakite, Capo

GARNET-FORMING AND GARNET.ELIMINATING REACT]ONS

Ftc. 2. Field occurences of garnet il the Capo Vaticano area. A. Necklace of garnet graias around a metapelitic xenolithin quartz diorite at locality Xl. B. Isolated euhedral garnet grains spallirg off xenolith into melt phase at locality Xl.C. Garnet-rich leucosomes in pelitic xenoliths at locality Xl. D. Gamet with leucocratic halo in melt fraction containingstrongly reacted enclaves at locality X2.

625

meter-sized xenoliths of amphibolite and metapelitic(40Vo pl,24Vo bt" L2Vo qtz,3Vo crd, <3.5Vo sil, <47oand, <3Vo sq Fig. 2) xenoliths related to the upper partof the Serre lower crustal section (Maccanone et al.1983, Schenk 1984, 1989).

Abundant large crystals of garnet occur in theplagioclase-rich quartz diorite, commonly in closespatial association with the metapelitic xenoliths. Thegrains of garnet in the quartz diorite are normallyeuhedral, but some have a corona of biotite andamphibole; those in the metapelitic xenoliths generallyhave a leucocratic halo of plagioclase with minorquartz and biotite.

TExru'nal ClassmcenoN oF GARr.{ET

On the basis of sample location and textural type,seven types of garnet occur in the Capo Vaticano area(Table 1): two belong to the basement rocks (81, B2),two occur in metapelitic xenoliths in the quartz dioritehost (X1, X2), and three occur as isolated grains in

the quafiz diorite without accompanying xenoliths[D1, D2, D3).

Figure 3 shows hand specimens and photomicro-graphs of each type of garnet. The garnet grains in thekinzigitic gneisses and amphibolite are generallysubhedral and contain few inclusions. whereas thoseassociated with the quartz diorite, either in xenolithsor as isolated crystals, are subhedral to euhedral andcommonly have more inclusions in their core than intheir rim. Inclusions in garnet of the basement rocksare anhedral; inclusions in garnet of the xenoliths andquartz diorite are commonly lobate.

Cnrvrcar CHanacrsp.rsrrcs oF TltE GAnr{sr

Analytical technique

Garnet compositions were deterrnined by combinedwavelength- (Mn) and energy-dispersion analysis (allother elements) on a JEOL733 electron microprobeusing an accelerating voltage of 15 kV, a beam current

Page 4: GARNET.FORMING AND GARNET.ELIMINATING REACTIONS …rruff.info/doclib/cm/vol32/CM32_623.pdf · Keywords: gamet, xenolith, magmatic, quartz diorite, partial melting, tschermakite, Capo

626 THE CANADIAN MINERALOGIST

Frc. 3. Hand-specimen photographs and photomicrographs of garnet types at Capo Vaticano. Refer to Table 1 for detaileddescriptions. A, B. Kinzigite (locatity B1). C,D. Amphibolite (locality B2). E.F. Metapelite (locality Xl).

of 12 nA, and counting times of 10-20 seconds.Precision on MnO determinations was +0.O3Voabsolute at the 1 wt%o level.

Chemical compositions of garnet

Table 2 presents some typical garnet compositions,and Figure 44 shows that all grains of garnet from theCapo Vaticano region are almandine-rich. Figure 4B

shows that garnet compositions in the kinzigitic gneiss(B1) and amphibolite (B2) basement rocks do notoverlap, and thus represent independent lithologicalsources. Gamet grains associated with the metapeliticxenoliths (X1, X2) generally show extensive composi-tional variation, much of which is internal zoningwithin individual crystals Grg. 4C). Garnet occurringas separate crystals in the quartz diorite @1, D2,D3)also show extensive compositional variation related

Page 5: GARNET.FORMING AND GARNET.ELIMINATING REACTIONS …rruff.info/doclib/cm/vol32/CM32_623.pdf · Keywords: gamet, xenolith, magmatic, quartz diorite, partial melting, tschermakite, Capo

GARNET-FORMING AND GARNET-ELIMINATING REACTIONS 627

Rc. 3 (continued). G,H. Euhedral gamet in quaxtz diorite (locality D1). I,J. Gaxnet with biotite rim in quartz diorite (localityD2). KL. Gamet with reaction rim of biotite and tschermakite (locality D3). All hand-specimen photographs taken at thesame scale (nearly complete gamet in G is 2.5 cm in diameter).

mainly to internal zoning in individual grains(Fig. D). The few Mn-poor unzoned grains of garnetin quartz diorite (D1, D2) could be derived from base-ment rocks, or they could just represent sectionsthrough outer parts of zoned grains that do not inter-sect the Mn-rich core. The Ca-Mn-poor parts of allzoned grains of garnet in the xenoliths and quartzdiorite (X1, X2, Dl) overlap in composition withthose from the basement rocks (81, B2), but these

low-Ca-Mn compositions are not found inthe core ofthe garnet grains, such that basement garnet is notlikely the nucleus for garnet in the quartz diorite. Twogroups of gamet grains (D2, D3) have compositionsthat do not overlap with Bl garnet grains at theMn-poor end; if they ever had such Mn-poor composi-tions, then either homogenization or loss of theMn-poor rim through reaction has occurred. However,the high-Mn cores of D3 garnet grains suggest that

Page 6: GARNET.FORMING AND GARNET.ELIMINATING REACTIONS …rruff.info/doclib/cm/vol32/CM32_623.pdf · Keywords: gamet, xenolith, magmatic, quartz diorite, partial melting, tschermakite, Capo

628 THE CANADIAN MINERALOGIST

TABLE 1. g.ASSIFICATION AND CHARACTERIS]rcS OF GARNET IIROM THE CAFO VATICANO AREA

Fi€ldlzbet SampleNunbersldap Ircdiotr

KI|IZG C{:91,9-2-1,9-2-2BI kL2

AMPHB 6t9-G1,9-6292

GlOB

TMGQD CV:GI1,G15,G18,Dl G22G23,9:t:7,

9-',1-t2

TI\4GRB CVg?-lD2

roaq lobate inclusions ofpl, tf, qtz

isolaod euhednlgarnsts hquaft diotite dToreS. Maia beach (Fig. 3Ci$); some grains nearlyftee ofinclusions, ctren with lobate pl, bt,opaqugs

isohed gam€a wilh bioie rims in qurtz dioriteaf Tde S. Mariaoes6-G8.3CI

Perological D€scription(nineral abbreviations after Kretz 1983)

kinzigilic (ff + sil + g!t) paragneiss fton ViboVabntia and near S. Pisho di Bivona (Fig.3Ap);inclusiom ofbt, pl, and SE io grt

garnet-bearing anphibolib fron a fauft mne atCap Vdicano (Fig. 3C,D); inolusioos ofplagioclase and opaques

TMGIvD( CV:601, 605, Gl2, garreb associaed wifr metapelitic xenoliths atXl G2O G25a, G25b, G26, Tone S. ivfaria beach (Fig. 3E F); inclusiors of

G29,y7-3,y74, bf,ctd, andqE concetr@edincol€andcm@Ernc m nms

PIO/IX CV:GIA" GlB, G2, G3, garnet-rich leucosomes in nignntiticX2 G4 G5, G8, G104" lr@sedimE&ry xeaolitbs o,n Panaia - Iomolo

Mles Gon€ralStyleofCh€micalZooingC= Co&,M=Midwayto Rim, R- Rin

U - U-shsped profile, W = W*baped godleG-GatuaL S - Senaied

lIF = MgO/0rgOr!'tuCrFeO) (wt%o)

tl II&(U'G):c0.5, M0.75,R1.0MF(G):C0.3,R025(Fa.5A)

? MnO: C 2.5, R0.15MF:C0.25,R0.10(Fis.5B)

14 MnO($S): C 0.5 R 1.0MF(s): c 0.28 R0.15(Fig.5c)

13 Mnqw,s):C1.1,M0.9,R2.0MF(U,9: C 0.15 R025(Fie.5D)

11 lvInO($S):C2.0,M1.1,R3.0MF(s): c 033 R0.15(Fig.58)

3 Idnq%S):CMF($:Cr.5,Mr.QR2.5

P MnO(%S): C 4.0, M2.0'R4.0MF(S): C 05 R0.r5(Fic.5F)

9-7-9

PIGRA CV:G6,G7AA,G?AB, isoledgat]leawi&aftphibolerimsinquartzD3 c7c,8g8A diortteonPamia-Iopolomod(Fig.3Kl);

inclusions ofbt pl, qtz

homogenization did not occur even at magmatic tem-peratures.

Table 3 shows the results of a multivariate discrimi-nant function test for chemical similarity among theseven garnet groupings. If garnet compositions fromeach of the sample populations (B1, B.2,Xl, etc.) werc

unique, all data would fall on the diagonal from upperleft to lower right. Instead, those that fall off thediagonal represent grains that have closer chemicalaffinities with some other population. Input data forthe discriminant function analysis were tfie concen-trations of FeO, MnO, MgO, and CaO, transformed by

TABLE 2. AVERAGE COMPOSMONS OF GARNET FROM TIIE CAPO VATICANO AREA

Sample

T]T€

Position

n

siqTio,Ato,Fdt

MO

Mgo

CaO

Total

Atl

BT

70

38

0

1t

1

6

I

100

Ct25a

x1Core

9

J I

0

2l

I

7

99

G25a

xl

Rim

J

360

2L3424

2I

G7a

D3

Rim

7

2l

)42

100

All

92

Gls G15 Gt5 G1a Gla

DI Dl DI D3 D3

Core Nfid. Rin Core l!fid.

1 1 1 1 5 1 1 7

21 22 22 2L 2231 31 3 t 29 312 2 2 4 26 6 6 6 62 2 2 3 2

38t t383837

021)z

)2

99

Electron-niorcprobe data (wt 7o)

100 101

Page 7: GARNET.FORMING AND GARNET.ELIMINATING REACTIONS …rruff.info/doclib/cm/vol32/CM32_623.pdf · Keywords: gamet, xenolith, magmatic, quartz diorite, partial melting, tschermakite, Capo

GARNET-FORMING AND GARNET-ELIMINATING REACTIONS 629

EAllCapoVatimoGm€$ e

\ nM n o / \,",. /-,

, / ' t " @ &

, / , \ ' ./ . . '

3

o

I

03

MnO

Ftc. 4. Chemical compositions (n wt. Vo) of the seven types of garnet. Garnet grains in the basement rocks form discretegroups; much of the compositional variation in gamet grains in the xenoliths and granitoid rocks is due 16 hrcrnal 2eningwithin single crystals.

0 1 2 3 4 5 6MnO

7 3 4 i 6

MnO

the expression ln[(Oxide wtTo)/(100-SiO)] to com-pensate for closure and any possible non-normaldistributions. The results show the following: (i) thegarnet from kinzigitic rocks (B1) is distinctive inthe Capo Vaticano area; (ii) the compositions of garnetfrom amphibolitic basement (82) also represent a

TATLE 3. RFSIJLTS OF DISGIMI|\IAM FUNSTION ANALYSIS

reasonably distinctive grouping, but some of its mem-bers have compositions that classify in other goups;(iii) the garnet grains closely associated with xenolithsat Torre S. Maria (Xl) do not form a cleady definablepopulation, but rather resemble the X2 and Dl groups:(iv) the garnet grains associated with xenohths (X2)along the Panaia - Ioppolo road form a reasonably dis-tinct group, although they have strong affinities withBl, 82, and Xl; (v) isolated grains of garnet in thequartz diorite (Dl) at Torre S. Maria represent areasonably distinct population, but with about half itsmembers classifying in other groups; (vi) the samplesof garnet grains with reaction rims of biotite in thequartz diorite (D2) overlap strongly with Dl; and (vii)the isolated grains of garnet with amphibole coronasfrom the Panaia - Ioppolo road (D3) also form areasonably distinctive group, but have strong affinitiesto the other isolated grains of garnet in the granitoidhosts (Dl, D2). In general, discriminant functionanalysis only correctly classifies 49.5Vo of the CapoVaticano garnet grains (only 4l.2Vo not including the

Bem6t Rocks (B l+pen, B2clos€d)

EI

rFa

l i

ffi,. "

xenolirhs (xl-x, x2+)

l:".*k*tx

;,f#fi-&I;."#qfu+4* r

Gmitoids @1+pen, D2-half, D3dosed)

o o a@ o

^ t- 1 o a o a r

"'?ffid$l'.. ""

oo'" o

hediaed Gmp Mubenhip

BI E x x D I D: Tolr %CoE

B] 68 0 0 2 0 0 0 70 q7

I I I 45 '7r

x 8 u 9 20 34 5 l5 tu2 9x I I 50 4 0 0 96 52D 8 E 4 3 39 14 u2 4tD 7 z l0 2 3D: 0 ) 0 0 7 7 35 54 ot

T@ tv2 EO 27 76 95 a l 475

Page 8: GARNET.FORMING AND GARNET.ELIMINATING REACTIONS …rruff.info/doclib/cm/vol32/CM32_623.pdf · Keywords: gamet, xenolith, magmatic, quartz diorite, partial melting, tschermakite, Capo

630 THE CANADIAN MINERAIOGIST

distinctive B1 group), suggesting strong similaritiesamong the others and indicating possible commonorigins.

Compositional profiles across the gamet

Compositional profiles for garnet from the base-ment rocks Gigs. 5A,B) show weak smooth zonationin Mn. Garnet grains from all other associations(xenoliths at localities Xl and X2" and all quartz

diorite samples at localities Dl and D3) show variousdegrees of "normal" zoning, from a Mn-rich core toMn-poor intermediate positions, and then "reverse"zoning toward a Mn-rich rim @gs. 5C-F). (As men-tioned above. the absolute concentration of Mn in the"core" depends on whether the polished thin sectionpasses through the body center of the crystal.) Alsoimportant is the serrated Mn pattern that characterizesmany of the grains associated with the quartz diorite.These serrated and "W-shaped" Mn profiles, together

a

7

6

5

g .t

3

2

I

o

t O O l o 2 O O n A , ! S OFodb!

Type X2 - leucosome

cvGlob

to 160 t6 m

Type Dl - Qucrrfz Dlorile

cvctS

! 1 0 1 2Ytu Uo(rrr|)

Type D3 - Reoctlon

l4 t6 t0Xtu odt{nn)

6 8 l O 1 2 1 4 1 6Fo{dbo

s t @ l nP&

6

? 4:3

2

I

o

Ftc. 5. Typical rim+o-rim chemical zonation profi.les (in wt. Vo). A.Knziglte (Bl). B. Amphibolite (B2). C. Metapelite CXl).D. Garnet-rich leucosome (X2). E. Euhedral garnet in quartz diorite (D1). F. Garnet with reaction rim of biotite andtschermakite @3). Spacing between analysis points on tle compositional profiles is 0.1 mm, except where intemrpted byalteration, cracks, or inclusions. Refer also to abbreviated chemical data in Table 1.

Page 9: GARNET.FORMING AND GARNET.ELIMINATING REACTIONS …rruff.info/doclib/cm/vol32/CM32_623.pdf · Keywords: gamet, xenolith, magmatic, quartz diorite, partial melting, tschermakite, Capo

GARNET-FORMING AND GARNE"I-ELIMINATING REACTIONS 63r

with the textural similarity of inclusions in the cores,indicate that many of these grains associated witlt thequartz diorite have a similar history, and suggest acommon origin, as discussed below.

EvoltmoNanv Hrsronms oF THE,Cepo VerceNo GARNET TYPFS

Garnet in the metarutrphic rocla

Garnet occurring in the kinzigitic gneisses isalmandine-rich, with low Mn and Ca contents. Thegrains show a large homogeneous core, with a narrowzoned rim (Figs. 5A,B), and a systematic variationin the stratigraphic sequence of metapelites, frommagnesium-rich compositions at the base (Xrran = 0.38)to more iron-rich compositions at the top (Xrrai = 0.19)(Schenk 1990). In the metabasites intercalated-with thekinzigitic gneisses, garnet (Alm60Prp3rGrsr) occurs inassociation with anthophyllite (Ioppolo et al.1978),whereas garnet and hornblende are mutually exclu-sive. Figure 5 and Table 3 show that the garnet ofthekinzigitic gneisses (B1), and that of the amphibolites(82), ue compositionally distinct from gamet in theganitoid rocks, and thus garnet in the granitoid rocksis unlikely to represent xenocrysts derived from thebasement rocks.

Gamet grains with "W-shnped" Mn profiles

Figure 6 is the experimentally determined,pseudoternary phase diagram at 5 kbar under conditions of Xun = 0.5, excess H2O, and saturation inquartz (VielZeuf & Holloway 1988). The metasedi-mentary xenoliths at Capo Vaticano probably had aprimary regional metamorphic assemblage of Pl + Btt Qtz t Als t Crd. The number of phases now presentdepends on the bulk compositions and the degree ofreaction, but plagioclase and biotite invariably arepresent. Heating of the initially garnet-free metasedi-mentary enclaves by the quartz diorite magma mayhave produced some melt and eliminated Als by thereaction Bt + Als + Qtz = Crd + Kfs + L at invariantpoint I-l (Fig. 6). With turther heating, the composi-tion of the liquid would migrate along the L t Crd t Btcotectic to invariant point I-2, where garnet firstappears by the reaction Bt + Crd + QtzSGnt t Kfs + L.If the melt fraction were still low at this stage, or if theoriginal metasedimentary assemblage were Als-free,the early garnet may contain many inclusions andshow a pattern of normal zoning. This main meltingreaction at I-2 probably lies close to the fluid-absentinvariant point (Vielzeuf & Holloway 1988): Pl + Bt +Crd + Als + Qtz = L + Grt * Kfs, located at 850'Cand 5 kbar in a plagioclase-free system.

With finther melting, further growth of garnet, andeventual disintegration of the metapelite, the garnetgrains became surrounded by the local anatectic melt,

Kfs

Frc. 6. Relat ionship in the pseudoternary systemAls-Kfs-Opx (after Vielzeuf & Holloway 1988). Gametappears as a product of melting of the metapelitic xeno-liths at invariant point I-2 (see text for detailed explana-tion). The shaded area defines all bulk compositions withthe assemblage Als-Bt-Crd that approximate the initialgarnelfree assemblage in the metapelitic xenoliths beforemelting.

and their euhedral outlines (e.9., Fig. 3E) suggest thatthey were in chemical equilibrium with this silicatemelt. Furthermore" their reverse zonation outward to amore Mn-rich rim suggests either continued growthfrom a melt as Mn/(Mg+Mn+Fe) increased in theevolving local melt (Fig. 5) (Allan & Clarke 1981,Miller & Stoddard 1981), equilibration at lower tem-perature, competition for Fe-Mg with some later-stagephase such as biotite, or some combination of thesecauses.

The distinctive serrated Mn profiles of many of thegrains of garnet in the xenoliths and quartz diorite maybe the result of local breakdown of Mn-bearing phases(such as Mn-rich ilmenite; see reaction 3 of PatiioDouce & Johnston 1991) during melting, producing ashort-lived flux of Mn (depending on diffirsivity andpermeability in the increasing melt phase) that thenearby growing garnet readily consumed. Of interest,too, is the failure of the host quartz diorite magma tohomogenize these serrations.

Destruction of the Capo Vaticano gamet

Just as the formation of garnet is a complex func-tion of T-P-X so is its incipient elimination at samplelocalities D2 and D3. Falling temperature, or ascent ofthe magma and decreasing pressure, may take the bulkcomposition out of the stability field of garnet in T-P

opx

Page 10: GARNET.FORMING AND GARNET.ELIMINATING REACTIONS …rruff.info/doclib/cm/vol32/CM32_623.pdf · Keywords: gamet, xenolith, magmatic, quartz diorite, partial melting, tschermakite, Capo

632 THE CANADIAN MINERALOGIST

space (Fig. 4 of Clemens & Wall 1981). Likewise,fractional crystallization may change the bulk compo-sition of the magma so that it evolves beyond thestability field of garnet in X space. In practice, thesethree factors may be inseparable.

Garnet grains at D2 have a thin corona of biotire(Figs. 3I-J), and those at D3 have a wider reaction rimof biotite + tschermakite (Figs. 3K-L). Plimer &Moazez-Lesco (1980) have described a similar occur-rence in Iran of (xenocrystic) garnet grains replaced bybiotite and amphibole. The question now becomes:why are tlese minerals the reaction products? Perhapswith falling temperature and increasingf(H2O), aretrograde reaction in D2 occurred to produce biotite.This may be, in part, the reverse of the progradereaction that produced garnet initially: L + Grt + Kfsi=Pl + Bt + Crd r Qtz, with L + Grt=Bt dominatingthe reaction. The tschermakite rim on garnet grains at

the D3 locality may result from a continuation of theabove reaction. The appearance of biotite already sug-gests increasing flHzO) in the melt, and this produc-tion of biotite consumes limited potassium from thequartz diorite magma. Thus, with high /(H2O), lowK2O, and high CaO, the garnet-melt reaction maychange to produce a highly aluminous calcic arnphi-bole instead: L + Grt -- Ts, again emphasizing onlythe dominant components. Figure 7 permits a compari-son of coexisting Grt-Bt(-Ts) assemblages in thecountry rocks, xenoliths, and quartz diorite.

The schematic summary of the phase relations(Fig. 7F) offers two possibitties for the eliminationof the garnet. First, closed-system fractional crystal-l ization of the magma [decreasing 100*MgO/(MgOtMnO+FeO, temperature, and perhaps pressureldrives the melt from a cotectic equilibrium L + Bt +Grt to a peritectic L + Grt --. Bt + Ts, but the reaction

ol

< o

q l

u

&l

Type Bt - KMglte

cv9-2-2

Type Dl - Quork Dbrtle

ot

{ q

Type Xl - Xenollih Typo D3- Reocflon

{ q

4l

q l

< o

Ftc. 7. Comparison of garnet-biotite(-tschermakite) assemblages in Capo Vaticano metamorphic and igneous rocks. Mineralcompositions for kinzigite @l) are distinct from those in the reacting xenoliths (Xl, X2) and cotecric quartz diorite (Dl).A reaction relationship of the ty'pe L! + Grt -- Bt + Ts in the quartz diorite (D3) replaces colectic crystallization Lu ;= Bt +Grt in the anatectic melt from the xenoliths (D1). The estimated composition of the anatectic melt (Lu) is peraluminous andhas a higher Fe/Mg ratio than its coexisting solid phases, whereas the estimated composition of the reacting quartz dioriticmelt (Lr) is metaluminous and has a lower, more primitive, Fe/Mg ratio. A: mol (AlrO, - CaO - NqO - K2O).

,#,#"*;,'I F T I

f f h l " I

4 l

q

@

q

ot

@

G

d A

$ o t

lan&o/OrsGffi)

I t - |f l on l t r |

4 l

q

*ri.j# cvcls

,-<-l / --------r-..

rr<*l

Page 11: GARNET.FORMING AND GARNET.ELIMINATING REACTIONS …rruff.info/doclib/cm/vol32/CM32_623.pdf · Keywords: gamet, xenolith, magmatic, quartz diorite, partial melting, tschermakite, Capo

GARNET-FORMING AND GARNET.ELIMINATING REACTIONS 633

Ftc. 8. Schematic profile tirough a flpical D3 gamet. Thegrain shows normal zoning from the core to about halfway to the rim, representing largely solid-state growth,then reverse zoning out to the rim, representing peritecticor cotectic growth in equilibrium with a silicate meltphase. The corona of biotite and tschermakite probablyrepresents a peritectic relationship in which the gametreacts with a metaluminous quartz dioritic magma.

does not proceed to completion because the productsrim the garnet. What makes this mechanism unlikelyis that the normal course of closed-system fractionalcrystallization drives metaluminous melts towardincreasing {CNK, vrith the elimination of amphiboleand the appearance of the characteristic minerals ofperaluminous granitoids (garnet, aluminosilicates). Asecond possible mechanism to account for the destruc-tion of garnet is an open-system interaction betweenthe clearly peraluminorls melt produced by heating ofthe xenoliths and the regional metaluminous melt(quartz diorite) that provided the heat. As long as theperaluminous melt with its contained garnet did notmix extensively with the metaluminous melt, thegrains of garnet retained their euhedral outline.

However, when the peraluminous melt began to mixwith the more voluminous quartz diorite magma, thecrystals of garnet began to react. The trend in garnetmorphologies in the sequence Dl -+ D2 -+D3 reflectsprogressive interaction with the quartz diorite magma,i.e.,Dl represents no interaction, D2 shows the initialstages of degradation of the garnet grains, and D3shows an advanced interaction. Figure 8 summarizes apossible history of a D3 gamet.

Suruanv AND CoNCLUSIoNS

Garnet in granitoid rocks may be restitic, xeno-crystic, magmatic, anatectic, fluido-magmatic, ormetasomatic, spanning a wide range of cognate orf.oreign, and primary or secondary, origins. At CapoVaticano, the field relations (spatial association ofgarnet grains with metasedimentary xenolithsn and theclose association of garnet with former pods of melt orleucosomes) suggest that many grains of garnet origi-nated in a melting reaction such as: Pl + Bt + Crd +Qtz = L + Grt + Kfs. The Mn- and inclusion-richcores suggest that nucleation of garnet began withrising temperature when the melt fraction was verylow. The Mn-poorer and largely inclusion-free inter-mediate zones and rims are consistent with continuedgowth from the anatectic melt with falling tempera-tures. The Mn-rich rim on many grains of gamet in thegranitoid rocks suggests late-stage growth as concen-trations of Mn increased relative to Fe and Mg in theresidual magmas. Some apparently unzoned grains inthe quartz diorite may be xenocrysts from thekinzigitic gneisses or the amphibolites. Coronas ofbiotite, and biotite + tschermakite, around garnetgrains, particularly from locality D3, suggest a reac-tion relationship between early garnet and a metalumi-nous quartz diorite melt to eliminate the garnet fromthe equilibrium mineral assemblage.

Ac NOWI-EDGEMEI.{TS

We acknowledge the Natural Sciences andEngineering Research Council of Canada (DBC)and the Italian Ministry of University Scientific andTechnological Research (AR) for financial support inaid of this research. We also thank R.M. MacKayand L.R. Richard for their assistance in the electron-microprobe laboratory at Dalhousie University. R.N.Abbott, Jr., C.F. Miller, and J.A. Speer providedvaluable comments on a previous version of thismanuscript, and D.R.M. Pattison and M.R. St-Ongeprovided extremely helpful reviews.

RSFERENcES

Annor"r, R.N., Jn. (1981): AFM liquidus projections forgranitic magmas, with special reference to homblende,biotite and gamet. Can. Mineral. 19, 103-110.

Garnet CoreGROWTH

r t

Pt+BfiCld+Qz+ L+€rt+/-fbmalt reacllon

Garnet RimGROWIH

T Jfo,t G)

Reaction RimDESTRUCTION

TJaH.o taqoJ

L+Pl + Grt+ Bl L+ 6rt+I0 r Bl

I colectic

DcBA

Page 12: GARNET.FORMING AND GARNET.ELIMINATING REACTIONS …rruff.info/doclib/cm/vol32/CM32_623.pdf · Keywords: gamet, xenolith, magmatic, quartz diorite, partial melting, tschermakite, Capo

634 TIIE CANADIAN MINERAIOGIST

& Cr-enrs, D.B. (1979): Hypothetical liquidusrelationships in the subsystem Al2O3-FeO-MgO pro-jected from quartz, alkali feldspar and plagioclase fora(HzO) < l. Can. Mineral.17,549-560.

ALLAN, B.D. & CI-{Rrc, D.B. (1981): Occunence and originof gamets in the South Mountain batholith, Nova Scotia.Can. M ine ral. 19. 19-24.

AMoDro MoREur, L., BoNanor, G., CoLoNNA, V., DrExRrcH,D., GruMA, G., IppoLno, F., Lrcuonr, V., Lonrvoxr, S.,PAGLroNrco, A., PERRoNE, V., PICCARRETA, G., Russo,M., Scarooue, P., Zamrrn LonsNzol,,rr, E. & Zwpsrra,A. (1976): L'Arco Calabro-Peloritano nell'orogeneappenninico-maghrebide. ,Soc. Geol. hal., Mem 17, 7-60.

Belown, J.R. & voN Kr,roRRrNc, O. (1983): Compositionalrange of Mn-garnet in zoned granitic pegmatites. Can.Mineral.21. 683-688.

Ceccrernu, A. & Dr FrcRro, M.R. (1989): Trondhjemiticevolution caused by compaction of a crystal mush: anexample from southern Calabria (Italy). Per. Mineral.58,9-23.

CarzErrr, L. & ZBoe,, O. (1980): On the coexistence ofdifferent phases in almandine from pegmatites of theCentral-Eastern Alps. Mineral. Petrogr. Acta ?,4. 95-106.

CLARK, R.G. & LvoNs, J.B. (1986): Petrogenesis of theKinsman intrusive suite: peraluminous granitoids ofwestem New Hampslrlre. J. Petrol. n,865-1393.

CLARKE, D.B. (1981): The mineralogy of peraluminousgranites: a review. Can Mineral. 19,3-17 .

CLENGr.rs, J.D. & WelL V.J. (1981): Origin and crysralliza-tion of some peraluminous (S{ype) granitic magmas.Can. MineraL. 19, I I l-131.

Du Bnav, E.A. (1988): Gamet compositions and their use asindicators of peraluminous granitoid petrogenesis -southeastern Arabian Slneld. Contrib. Mineral. Petrol.100.205-212.

GnesN, T.H. (1977): Gnnet in silicic liquids and its possibleuse as a P-T indicator. Contrib. Mineral. Petrol. 65,59-67.

HARTEL, T.H.D., ParrrsoN, D.R.M., Hpr-urns, H. &MaasraNr, P. (1990): Primary granitoid-compositioninclusions in garnet from granulite facies metapelite:direct evidence for the presence of melt? Geol. Assoc.Can. - Mineral. Assoc. Can., Program Abstr. "1"5, A54-A55.

HocAN, J.P. & DrcKENsoN, M.P. (1986): Application of reac-tion space to the crystallization of muscovite - biotitegarnet ganites. Geol. Soc. Am", Abstr. Programs 18, 638.

Ioppol-o, S., Rornrna, A. & Russo, S. (1978): le metabasitidi alto grado dell'area Vibo Valentia - Fiumara Angitola(Calabria Meridionale). Soc. GeoI. Ital., Boll. 97 ,73-92.

KoN'rAK, D.J. & Coxsv, M. (1988): Metasomatic origin ofspessartine-rich garnet in the South Mountain Batholith,Nova Scotia. Can Mineral. 26. 315-334.

KRETz, R. (1983): Symbols for rock-forming minerals. Aru.Mineral.68,277-279.

MAccARoNE, E., PAcLIoNtco, A., PIcCARRETA, G. &Rorrune, A. (1983): Granulite-amphibolite faciesmetasediments from the Sene (Calabria, southern ltaly):their protolitls and the processes controlling their chem-istry. Lirhos 16, 95-1 1 1.

MANNnrc, D.A.C. (1983): Chemical variation in garnets fromaplites and pegmatites, peninsular Thailand. Mineral.Mag.47,353-358.

Muen, C.F. & SrolneRD, E.F. (1981): The role of man-ganese in the paragenesis of magmatic gamel an exam-ple from the Old Woman - Piute Range, Califomia. J.GeoL.89.233-246.

PArriro DoucE, A.E. & JouNsrou, A.D. (1991): Phaseequilibria and melt productivity in the pelitic system:implications for the origin of peraluminous ganitoids andaluminous granulites. Contrib. Mineral. Petrol. 107,202-218.

PA'r'nsoN, D.R.M., CARMICHAEL, D.M. & Sr-ONcn, M.R.(1982): Geothennometry and geobarometry applied toearly Proterozoic "S-type" granitoid plutons, WopmayOrogen, Northwest Territories, Canada. Contrib. Mineral.Petrol.79.3944M.

H-nrsn, I.R. & MoAaz-LEsco, Z. (1980): Gamet xenocrystsin the Mashad granite, NE lran. Geol. Rundschau 69,801-810.

Rorruna, A., Arzoru, P., BARcossr, G.M., DEL Mono, A.,Gnassr, G., LAURENZ, M.A., MACCARRoNE, E., MACERA,P., PAcLroMco, A., PsrRnil, R., Pnzzwo, A., Hccannrre,G. & PoLr, G. (1986): The Late Hercynian granitoidsfrom Southem Sector of Calabrian Arc (southem Italy).Annual Field Meeting of "Granitologues", Guidebook,7o pp.

MACCARRoNE, E., MACERA, P., PAcLIoNIco, A., PE.tRtr\I,R., PrccARRErA, G. & Port, G. (1990): Petrogenesis ofcontrasting Hercynian ganitoids from the Calabrian Arc,southem Italy. Litho s 7"4, 97 - | 19.

CaccraNsr-Lr, A., Ca/pANA, R. & Dn Mono, A.(1993): Petrogenesis of Hercynian peraluminous granitesfrom the Calabrian Arc, Italy. Eur. J. Mineral. 5,737-754.

, DEL MoRo, A., PINARELLI, L., Perntxt, R.,PEccERrLLo, A., CeccreNullr, A., BARcossI, G.M. &PrccARRErA, G. (1991): Relationships between inter-mediate and felsic rocks in orogenic granitoid suites:petrological, geochemical and isotopic (Sr, Nd, Pb) datafrom Capo Vaticano (southem Calabria, ltaly). Chem.Geol. 92. 153-176.

Page 13: GARNET.FORMING AND GARNET.ELIMINATING REACTIONS …rruff.info/doclib/cm/vol32/CM32_623.pdf · Keywords: gamet, xenolith, magmatic, quartz diorite, partial melting, tschermakite, Capo

GARNET-FORMING AND GARNET-ELIMINATINGREACTIONS 635

SceNooNr, P. (1982): Structure and evolution of the SroNE, M. (1988): The significance of almandine garnets inCalabrian Arc. Earth Evolution Sci, 3, 172-180. the Lundy and Dartmoor granites. Mineral. Mag. 52,

651-658.ScHENK, V. (1984): Petrology of felsic granuli tes,

metapelites, metabasics, uhamafics, and metacarbonates VIELzrr:r, D. & Hot-t-owav, J.R. (1988): Experimental deter-from southem Calabria (Italy): prograde metamorphism, mination of the fluid-absent melting relations in theuplift and cooling of a former lower crust. J. Petrol.25, pelitic system - consequences for crustal differentiation.255-298. Contrib. Mineral. Petrot.98.257-n6.

(1989): P-T-t path of the lower crust in the ZsN, E-AN (1988): Phase relations of peraluminous gmniticHercynian fold belt of southern Calabria. /z Evolution of rocks and their petrogenetic implications. Annu. Rev.Metamorphic Belts (J.S. Daly, R.A. Cliff & B.W.D. EarthPlanet.s,ci.16,21,-51.Yardley, eds.). Geol. Soc., Spec. Pub|.43,337-342.

(1989): Wet and dry AFM mineral assemblages of- (1990): The exposed crustal cross-section ofsouth- strongly peraluminous granites. Trans. Am. Geophys.

ern Calabria ltaly: structure and evolution of a segment Union(Eos) 70, 110-111 (abstr.).of Hercynian crust. 1n Exposed Cross-Sections of theContinental Crust: Proc. NATO Advalced Study Instituteon Exposed Cross-Sections of the Continental Crust(Killarney, Ontario, 1988) (M.H. Salisbury & D.M.Fountain, eds.). /{AIO ASI, Ser. C 317,2142. Kluwet Received June 9, 1993, revised manuscript acceptedAcademic Publishers, Dordrecht, The Netherlands. January 14, 1994.