and now for something completely...

53
And now for something completely And now for something completely different Kieron Burke & many friends UC I i Ph i d Ch it UC Irvine Ph ysics and Chemistry http://dft uci edu May 23, 2012 IPAM 1 http://dft.uci.edu

Upload: others

Post on 24-Jun-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: And now for something completely differenthelper.ipam.ucla.edu/publications/plws4/plws4_10633.pdf · A major ultimate aim: E XC[n] • Explains why gradient expansion needed to be

And now for something completely And now for something completely different

Kieron Burke & many friends

UC I i Ph i d Ch i tUC Irvine Physics and Chemistry

http://dft uci edu

May 23, 2012 IPAM 1

http://dft.uci.edu

Page 2: And now for something completely differenthelper.ipam.ucla.edu/publications/plws4/plws4_10633.pdf · A major ultimate aim: E XC[n] • Explains why gradient expansion needed to be

Value of approximationsValue of approximations

h l d l• In any event, the result is extraordinarily powerful, for it enables us to calculate (approximate) allowed energies without ever solving the Schrödinger equation, by simply evaluating one integral. The wave function itself has dropped out of sight.

• Griffiths Quantum Mechanics about• Griffiths, Quantum Mechanics, about semiclassical approximations. 

May 23, 2012 IPAM 2

Page 3: And now for something completely differenthelper.ipam.ucla.edu/publications/plws4/plws4_10633.pdf · A major ultimate aim: E XC[n] • Explains why gradient expansion needed to be

Nature of the beastNature of the beastTh t diffi lt bl I’ k d• The most difficult problem I’ve ever worked on

• Possible payoffs– Understanding of asymptotic approximationsUnderstanding of asymptotic approximations– Complete transformation of society

• Explains many things about many areas– Semiclassical expansions– DFT and approximations like Thomas‐Fermi

• Ties together• Ties together – Math– Physics– Chemistry– Engineering and materials

May 23, 2012 IPAM 3

Page 4: And now for something completely differenthelper.ipam.ucla.edu/publications/plws4/plws4_10633.pdf · A major ultimate aim: E XC[n] • Explains why gradient expansion needed to be

Thomas/Fermi Theory 1926/ y• Around since 1926, before QM• Exact energy: E0 = T + Vee + V

– T = kinetic energyV = electron electron repulsion– Vee = electron‐electron repulsion

– V = All forces on electrons, such as nuclei and external fields

• Thomas‐Fermi Theory (TF):Thomas Fermi Theory (TF):– T ≈ TTF = 0.3 (3)2/3∫dr n5/3(r)– Vee≈ U = Hartree energy = ½ ∫dr ∫dr’ n(r) n(r’)/|r‐r’|– V = ∫dr n (r) v(r)– Minimize E0[n]  for fixed N

• Properties:– Exact for neutral atoms as Z gets large (Lieb+Simon, 73)

Typical error of order 10%– Typical error of order 10%– Teller’s unbinding theorem:  Molecules don’t bind.

May 23, 2012 4IPAM

Page 5: And now for something completely differenthelper.ipam.ucla.edu/publications/plws4/plws4_10633.pdf · A major ultimate aim: E XC[n] • Explains why gradient expansion needed to be

Lieb and Simon

May 23, 2012 IPAM 5

Page 6: And now for something completely differenthelper.ipam.ucla.edu/publications/plws4/plws4_10633.pdf · A major ultimate aim: E XC[n] • Explains why gradient expansion needed to be

Modern Kohn Sham eraModern Kohn-Sham era

• 40’s and 50’s: John Slater began doing calculations with orbitals for kinetic energy gyand an approximate density functional for E [n] (called Xα)Exc[n] (called Xα)

• 1964:  Hohenberg‐Kohn theorem proves  an ( )exact E0[n] exists (later generalized by Levy)

• 1965: Kohn‐Sham produce formally exact1965: Kohn Sham produce formally exact procedure and suggest LDA for Exc[n]

May 23, 2012 IPAM 6

Page 7: And now for something completely differenthelper.ipam.ucla.edu/publications/plws4/plws4_10633.pdf · A major ultimate aim: E XC[n] • Explains why gradient expansion needed to be

Kohn Sham equations (1965)Kohn-Sham equations (1965)

rrr iiis n

][v

21 2

2ground‐state density of 

interacting system N

in 2rr =

r'n

interacting system i

in1

rr =

rrrr

rrr ][v''

vv ndns xcext

rr

nEn xc

][vxc][0 nEUVTE XCS rn

May 23, 2012 7IPAM

Page 8: And now for something completely differenthelper.ipam.ucla.edu/publications/plws4/plws4_10633.pdf · A major ultimate aim: E XC[n] • Explains why gradient expansion needed to be

Difference between T and EDifference between Ts and EXC• Pure DFT in principle gives E directly from n(r)Pure DFT in principle gives E directly from n(r)

– Original TF theory of this type– Need to approximate TS very accuratelyNeed to approximate TS very accurately– Thomas‐Fermi theory of this type– Modern orbital‐free DFT questModern orbital free DFT quest– Misses quantum oscillations such as atomic shell structure

• KS theory uses orbitals, not pure DFT– Made things much more accurate– Made things much more accurate– Much better density with shell structure in there.– Only need approximate E [n]– Only need approximate EXC[n].

May 23, 2012 IPAM 8

Page 9: And now for something completely differenthelper.ipam.ucla.edu/publications/plws4/plws4_10633.pdf · A major ultimate aim: E XC[n] • Explains why gradient expansion needed to be

A little exerciseA little exercise

• Ignore e‐e interaction – focus on Ts• Reduce from 3d to 1d – can use WKBReduce from 3d to 1d  can use WKB• Eliminate Coulomb singularities – smooth 

i lpotentials• Use box boundary conditions – avoid turning y gpoints and evanescent regions

May 23, 2012 IPAM 9

Page 10: And now for something completely differenthelper.ipam.ucla.edu/publications/plws4/plws4_10633.pdf · A major ultimate aim: E XC[n] • Explains why gradient expansion needed to be

One particle in 1dOne particle in 1d

May 23, 2012 IPAM 10

Page 11: And now for something completely differenthelper.ipam.ucla.edu/publications/plws4/plws4_10633.pdf · A major ultimate aim: E XC[n] • Explains why gradient expansion needed to be

N fermions in 1dN fermions in 1d

May 23, 2012 IPAM 11

Page 12: And now for something completely differenthelper.ipam.ucla.edu/publications/plws4/plws4_10633.pdf · A major ultimate aim: E XC[n] • Explains why gradient expansion needed to be

Rough sumsRough sums

May 23, 2012 IPAM 12

Page 13: And now for something completely differenthelper.ipam.ucla.edu/publications/plws4/plws4_10633.pdf · A major ultimate aim: E XC[n] • Explains why gradient expansion needed to be

InversionInversion

May 23, 2012 IPAM 13

Page 14: And now for something completely differenthelper.ipam.ucla.edu/publications/plws4/plws4_10633.pdf · A major ultimate aim: E XC[n] • Explains why gradient expansion needed to be

Higher ordersHigher orders

May 23, 2012 IPAM 14

Page 15: And now for something completely differenthelper.ipam.ucla.edu/publications/plws4/plws4_10633.pdf · A major ultimate aim: E XC[n] • Explains why gradient expansion needed to be

Wavy boxesWavy boxes

May 23, 2012 IPAM 15

Page 16: And now for something completely differenthelper.ipam.ucla.edu/publications/plws4/plws4_10633.pdf · A major ultimate aim: E XC[n] • Explains why gradient expansion needed to be

Semiclassical density for 1d boxSemiclassical density for 1d box

TF

Classical momentum:

Classical phase:

Fermi energy:gy

Classical transit time:

May 23, 2012 IPAM 16

Elliott, Cangi, Lee, KB, PRL 2008

Page 17: And now for something completely differenthelper.ipam.ucla.edu/publications/plws4/plws4_10633.pdf · A major ultimate aim: E XC[n] • Explains why gradient expansion needed to be

Density in bumpy boxDensity in bumpy box

• Exact density:– TTF[n]=153.0

• Thomas‐Fermi density:density:– TTF[nTF]=115

• Semiclassicaldensity:– TTF[nsemi]=151.4– N < 0.2%

May 23, 2012 17IPAM

Page 18: And now for something completely differenthelper.ipam.ucla.edu/publications/plws4/plws4_10633.pdf · A major ultimate aim: E XC[n] • Explains why gradient expansion needed to be

U l tiUsual continua

• Scattering states:– For a finite system, E > 0y ,

• Solid‐state: Thermodynamic limitSolid state: Thermodynamic limit– For a periodic potential, have continuum bands 

May 23, 2012 IPAM 18

Page 19: And now for something completely differenthelper.ipam.ucla.edu/publications/plws4/plws4_10633.pdf · A major ultimate aim: E XC[n] • Explains why gradient expansion needed to be

A new continuumA new continuum

C id i l bl h i• Consider some simple problem, e.g., harmonic oscillator.

• Find ground‐state for one particle in well.• Add a second particle in first excited state, but p ,divide ħ by 2, and resulting density by 2.

• Add another in next state, and divide ħ by 3, andAdd another in next state, and divide ħ by 3, and density by 3

• …• →∞

May 23, 2012 IPAM 19

Page 20: And now for something completely differenthelper.ipam.ucla.edu/publications/plws4/plws4_10633.pdf · A major ultimate aim: E XC[n] • Explains why gradient expansion needed to be

Classical Continuum limitClassical Continuum limitLeading corrections to local approximations Attila Cangi, 

h llDonghyung Lee, Peter Elliott, and Kieron Burke, Phys. Rev. B 81, 235128 (2010).

May 23, 2012 IPAM 20Attila Cangi

Page 21: And now for something completely differenthelper.ipam.ucla.edu/publications/plws4/plws4_10633.pdf · A major ultimate aim: E XC[n] • Explains why gradient expansion needed to be

Example of utility of formulasExample of utility of formulas

• Worst case (N=1)• Note accuracyNote accuracy outside of turning pointsturning points

• No evanescent contributions in formulaformula

May 23, 2012 IPAM 21

Page 22: And now for something completely differenthelper.ipam.ucla.edu/publications/plws4/plws4_10633.pdf · A major ultimate aim: E XC[n] • Explains why gradient expansion needed to be

Kieron’s trail of tearsSemiclassics in  Include iKieron s trail of tearsCoulomb 

potentialturning points

V‐>0 at ∞ 1d particles in wavy boxBohr atoms:

V =0

TF theoryLieb et al

Include exchange

Vee 0

Langer uniformization WKBLieb et al

Atoms

HF atoms Arbitrary 3d 

WKB

Include correlation

potential

All electronic structure l l i

Real  atoms

May 23, 2012 IPAM 22

calculations

Page 23: And now for something completely differenthelper.ipam.ucla.edu/publications/plws4/plws4_10633.pdf · A major ultimate aim: E XC[n] • Explains why gradient expansion needed to be

What we’ve done so farWhat we ve done so farSemiclassicaldensity, Elliott, PRL 2008Bohr atoms, 

Snyder, in prep

Corrections to local approx, Cangi, PRB 2010PFT, Cangi and 

Gross, PRL 2011

Derivation of B88, Elliott, Can J Chem, 2009

,

PBEsol, Perdew et 

Slowly varying densities, with P d PRL 2006

Ionization in large Z li i C i

2009

Exact conditions on TS, D. Lee et al, PRA, 

May 23, 2012 IPAM 23

al, PRL 2008.Perdew, PRL 2006 limit, Constantin,  JCP, 2010

S2009

Page 24: And now for something completely differenthelper.ipam.ucla.edu/publications/plws4/plws4_10633.pdf · A major ultimate aim: E XC[n] • Explains why gradient expansion needed to be

Back toward realityBack toward reality

May 23, 2012 IPAM 24

Page 25: And now for something completely differenthelper.ipam.ucla.edu/publications/plws4/plws4_10633.pdf · A major ultimate aim: E XC[n] • Explains why gradient expansion needed to be

Classical limit for neutral atomsClassical limit for neutral atoms

• For interacting systems in 3d, increasing Z in anincreasing Z in an atom, keeping it neutral, approaches , ppthe classical continuum, i.e. 

ħsame as ħ→0• Can study Ex as 

Z→ fi d i lZ→∞, find universal limit

May 23, 2012 IPAM 25

Page 26: And now for something completely differenthelper.ipam.ucla.edu/publications/plws4/plws4_10633.pdf · A major ultimate aim: E XC[n] • Explains why gradient expansion needed to be

A major ultimate aim: E [n]A major ultimate aim: EXC[n]

• Explains why gradient expansion needed to be generalized (Relevance of the slowly‐varying electron gas to atoms, molecules, and solids J. gP. Perdew, L. A. Constantin, E. Sagvolden, and K. Burke, Phys. Rev. Lett. 97, 223002 (2006).)

• Derivation of  parameter in B88 (Non‐empirical 'derivation' of B88 exchange functional P. Elliott and K. Burke, Can. J. Chem. 87, 1485 (2009).).

• PBEsol Restoring the density‐gradient expansion for exchange in solids and surfaces J.P. Perdew, A. Ruzsinszky, 

G I C k O A V d G E S i L A C t ti X Zh d K B k Ph R L tt 100 136406 (2008)G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, and K. Burke, Phys. Rev. Lett. 100, 136406 (2008)) 

– explains failure of PBE for lattice constants and fixes it at cost of good thermochemistryfixes it at cost of good thermochemistry

May 23, 2012 IPAM 26

Page 27: And now for something completely differenthelper.ipam.ucla.edu/publications/plws4/plws4_10633.pdf · A major ultimate aim: E XC[n] • Explains why gradient expansion needed to be

pStructural and Elastic Properties

i LDA/GGA(PBE) DFT t d l tti t t di LDA/GGA(PBE) DFT t d l tti t t dErrors in LDA/GGA(PBE)-DFT computed lattice constants and bulk modulus with respect to experimentErrors in LDA/GGA(PBE)-DFT computed lattice constants and bulk modulus with respect to experiment

→ Fully converged results(basis set, k-sampling,supercell size)

→ Fully converged results(basis set, k-sampling,supercell size)

→ Error solely due to xc‐functional

→ Error solely due to xc‐functional

→ GGA does not outperform→ GGA does not outperform→ GGA does not outperformLDA

→ characteristic errors of<3% in lat. const.

→ GGA does not outperformLDA

→ characteristic errors of<3% in lat. const.< 30% in elastic const.

→ LDA and GGA provide bounds to exp. data→ provide “ab initio

< 30% in elastic const.→ LDA and GGA provide

bounds to exp. data→ provide “ab initio→ provide ab initio

error bars” → provide ab initio

error bars”

Blazej Grabowski, Dusseldorf

Inspection of several xc-functionals is critical to estimate predictive power and error bars! May 23, 2012 27IPAM

Page 28: And now for something completely differenthelper.ipam.ucla.edu/publications/plws4/plws4_10633.pdf · A major ultimate aim: E XC[n] • Explains why gradient expansion needed to be

What about energy differences?

• wikipediaMay 23, 2012 IPAM 28

Page 29: And now for something completely differenthelper.ipam.ucla.edu/publications/plws4/plws4_10633.pdf · A major ultimate aim: E XC[n] • Explains why gradient expansion needed to be

I along first rowI along first rows group p‐groups‐group p group

Ne

Li

alk

Nob

May 23, 2012 IPAM 29

alis

ble gases

Page 30: And now for something completely differenthelper.ipam.ucla.edu/publications/plws4/plws4_10633.pdf · A major ultimate aim: E XC[n] • Explains why gradient expansion needed to be

I along first and second rowsI along first and second rowss group p‐groups‐group p group

Ar

Na

alk

Nob

May 23, 2012 IPAM 30

alis

ble gases

Page 31: And now for something completely differenthelper.ipam.ucla.edu/publications/plws4/plws4_10633.pdf · A major ultimate aim: E XC[n] • Explains why gradient expansion needed to be

Ionization as Z→∞Ionization as Z→∞

U i d fUsing code of Eberhard Engel,do HF for upto3000 electrons3000 electrons

May 23, 2012 IPAM 31

Lucian Constantin

Page 32: And now for something completely differenthelper.ipam.ucla.edu/publications/plws4/plws4_10633.pdf · A major ultimate aim: E XC[n] • Explains why gradient expansion needed to be

I along last rowI along last rows group p‐groups‐group p group

First row

Second row

Infinith row

alk

Nob

May 23, 2012 IPAM 32

alis

ble gases

Page 33: And now for something completely differenthelper.ipam.ucla.edu/publications/plws4/plws4_10633.pdf · A major ultimate aim: E XC[n] • Explains why gradient expansion needed to be

I along last rowI along last rows group p‐groups‐group p group

HF

alk

Nob

May 23, 2012 IPAM 33kalis

ble gases

Page 34: And now for something completely differenthelper.ipam.ucla.edu/publications/plws4/plws4_10633.pdf · A major ultimate aim: E XC[n] • Explains why gradient expansion needed to be

I along last rowI along last rows group p‐groups‐group p group

HF

alk

Nob

May 23, 2012 IPAM 34kalis

ble gases

Page 35: And now for something completely differenthelper.ipam.ucla.edu/publications/plws4/plws4_10633.pdf · A major ultimate aim: E XC[n] • Explains why gradient expansion needed to be

I along last rowI along last rows group p‐groups‐group p group

XC

HF

alk

Nob

May 23, 2012 IPAM 35kalis

ble gases

Page 36: And now for something completely differenthelper.ipam.ucla.edu/publications/plws4/plws4_10633.pdf · A major ultimate aim: E XC[n] • Explains why gradient expansion needed to be

I along last rowI along last rows group p‐groups‐group p group

XC

HF

ETF

alk

Nob

May 23, 2012 IPAM 36kalis

ble gases

Page 37: And now for something completely differenthelper.ipam.ucla.edu/publications/plws4/plws4_10633.pdf · A major ultimate aim: E XC[n] • Explains why gradient expansion needed to be

Z→∞ limit of ioniza on poten alZ→∞ limit of ioniza on poten al• Shows even energy 

differences can be found• Looks like LDA exact for EX

as Z‐>∞as Z >  .• Looks like finite EC

corrections• Looks like extended TF 

(treated as a potential functional) gives some sort ) gof average.

• Lucian Constantin, John Snyder JP Perdew and KBSnyder, JP Perdew, and KB, JCP (2010).

May 23, 2012 IPAM 37

Page 38: And now for something completely differenthelper.ipam.ucla.edu/publications/plws4/plws4_10633.pdf · A major ultimate aim: E XC[n] • Explains why gradient expansion needed to be

Ionization density for large ZIonization density for large Z

May 23, 2012 IPAM 38

Page 39: And now for something completely differenthelper.ipam.ucla.edu/publications/plws4/plws4_10633.pdf · A major ultimate aim: E XC[n] • Explains why gradient expansion needed to be

Ionization density as Z→∞Ionization density as Z→∞

May 23, 2012 IPAM 39

Page 40: And now for something completely differenthelper.ipam.ucla.edu/publications/plws4/plws4_10633.pdf · A major ultimate aim: E XC[n] • Explains why gradient expansion needed to be

Potential functional theoryPh R L tt 106 236404 (2011)Potential functional theoryPhys. Rev. Lett. 106, 236404 (2011) 

May 23, 2012 IPAM 40

Page 41: And now for something completely differenthelper.ipam.ucla.edu/publications/plws4/plws4_10633.pdf · A major ultimate aim: E XC[n] • Explains why gradient expansion needed to be

New results in PFTNew results in PFT

• Universal functional of v(r):

• Direct evaluation of energy:

May 23, 2012 IPAM 41

Page 42: And now for something completely differenthelper.ipam.ucla.edu/publications/plws4/plws4_10633.pdf · A major ultimate aim: E XC[n] • Explains why gradient expansion needed to be

Coupling constant:Coupling constant:

• New expression for F:

May 23, 2012 IPAM 42

Page 43: And now for something completely differenthelper.ipam.ucla.edu/publications/plws4/plws4_10633.pdf · A major ultimate aim: E XC[n] • Explains why gradient expansion needed to be

Variational principleVariational principle

• Necessary and sufficient condition for same lresult:

May 23, 2012 IPAM 43

Page 44: And now for something completely differenthelper.ipam.ucla.edu/publications/plws4/plws4_10633.pdf · A major ultimate aim: E XC[n] • Explains why gradient expansion needed to be

All you need is n[v](r)All you need is n[v](r)

• Any approximation for the non‐interacting density as a functional of v(r) produces y ( ) pimmediate self‐consistent KS potential and densitydensity

May 23, 2012 IPAM 44

Page 45: And now for something completely differenthelper.ipam.ucla.edu/publications/plws4/plws4_10633.pdf · A major ultimate aim: E XC[n] • Explains why gradient expansion needed to be

Evaluating the energyEvaluating the energy

• With a pair TsA[v] and nsA[v](r), can get E two ways:y

• Both yield same answer ify

May 23, 2012 IPAM 45

Page 46: And now for something completely differenthelper.ipam.ucla.edu/publications/plws4/plws4_10633.pdf · A major ultimate aim: E XC[n] • Explains why gradient expansion needed to be

Coupling constant formula for energy

• Choose any reference (e.g., v0(r)=0) and write

• Do usual Pauli trick

• Yields  Ts[v] directly from n[v]:

May 23, 2012 IPAM 46

Page 47: And now for something completely differenthelper.ipam.ucla.edu/publications/plws4/plws4_10633.pdf · A major ultimate aim: E XC[n] • Explains why gradient expansion needed to be

Different kinetic energy density• CC formula gives 

DIFFERENT kinetic energy density (f l(from any usual definitions)

• But approximation much more accurate globally and point‐wise than with didirect approximation

May 23, 2012 IPAM 47

Page 48: And now for something completely differenthelper.ipam.ucla.edu/publications/plws4/plws4_10633.pdf · A major ultimate aim: E XC[n] • Explains why gradient expansion needed to be

Getting to real systemsGetting to real systems

• Include real turning points and evanescent regions, using Langer uniformizationg , g g

• Consider spherical systems with Coulombicpotentials (Langer modification)potentials (Langer modification)

• Develop methodology to numerically calculate corrections for arbitrary 3d arrangements

May 23, 2012 IPAM 48

Page 49: And now for something completely differenthelper.ipam.ucla.edu/publications/plws4/plws4_10633.pdf · A major ultimate aim: E XC[n] • Explains why gradient expansion needed to be

Bohr atomBohr atom

• Atoms with e‐e repulsion made infinitesimal

x=Z1/3r,Z=28

May 23, 2012 IPAM 49

Page 50: And now for something completely differenthelper.ipam.ucla.edu/publications/plws4/plws4_10633.pdf · A major ultimate aim: E XC[n] • Explains why gradient expansion needed to be

Orbital-free potential-functional for C density (Dongyung Lee)

4r2n(r)

r•I(LSD)=11.67eV• I(PFT)=11.43 eV

May 23, 2012 IPAM 50

r ( )•I(expt)=11.26eV

Page 51: And now for something completely differenthelper.ipam.ucla.edu/publications/plws4/plws4_10633.pdf · A major ultimate aim: E XC[n] • Explains why gradient expansion needed to be

Essential questionEssential question

• When do local approximations become relatively exact for a quantum system?y q y

• What is nature of expansion?Wh l di i ?• What are leading corrections?

May 23, 2012 IPAM 51

Page 52: And now for something completely differenthelper.ipam.ucla.edu/publications/plws4/plws4_10633.pdf · A major ultimate aim: E XC[n] • Explains why gradient expansion needed to be

Need helpNeed help

• Asymptotic analysis• Semiclassical theory, including periodic orbitsSemiclassical theory, including periodic orbits• Boundary layer theory• Path integrals• Green’s functions for many‐body problemsGreen s functions for many body problems• Random matrix theory

May 23, 2012 IPAM 52

Page 53: And now for something completely differenthelper.ipam.ucla.edu/publications/plws4/plws4_10633.pdf · A major ultimate aim: E XC[n] • Explains why gradient expansion needed to be

Conclusions• All work in progress – Rome was not burnt in a dayy

• For EXC: – Already have bits and piecesAlready have bits and pieces– Beginning assault on EX[n]

• For T :• For TS:– Strongly suggests orbital‐free calculations should use potential not densitypotential not density

– Now have improved formula for getting T directly from any n[v](r)from any n[v](r)

– Developing path‐integral formulation• Thanks to students collaborators and NSFThanks to students, collaborators, and NSFMay 23, 2012 IPAM 53