anesthésie et chirurgies ophtalmiques · context sensitivity of fluid volume kinetics is offered,...

56
Anesthésie et chirurgies ophtalmiques Gilles Lacroix, M.D., FRCPC Professeur adjoint Université Laval Février 2014

Upload: others

Post on 19-Oct-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

  • Anesthésie et chirurgies ophtalmiques

    Gilles Lacroix, M.D., FRCPC

    Professeur adjoint

    Université Laval

    Février 2014

  • Présentation de cas

    Anatomie

    Pression intra-oculaire

    Considérations anesthésiques

    Options anesthésiques

    Principales interventions chirurgicales

    Plan

  • Nous ne discuterons pas des considérations:

    1. pédiatriques

    2. personnes âgées

    Plan

  • CUO Centre Universitaire d’Ophtalmologie

  • 30 ophtalmologistes

    Interventions: cataracte, rétine et cornée

    35 salles d’examen: 72 000 consultations/année

    5 salles d’opération: 10 000 chirurgies/année

    Recherche et enseignement

    CUO Centre Universitaire d’Ophtalmologie

  • Présentation de cas

    Anatomie

    Pression intra-oculaire

    Considérations anesthésiques

    Options anesthésiques

    Principales interventions chirurgicales

    !

  • Homme de 62 ans est passé sous son tracteur en fin d’après-midi. À l’urgence, le patient est conscient avec des douleurs à l’inspiration et une hémodynamie stable. L’investigation:

    volet thoracique avec hémothorax: drain thoracique par l’urgentologue

    massif facial: chirurgie prévue, intubation trans-pelvi-mandibulaire, durée minimale de 4 hres

    œil ouvert: examen et exploration par l’ophtalmologiste, durée 1-2 hres

    Nommer et discuter des considérations anesthésiques

    Présentation Cas clinique

  • Présentation Cas clinique

  • Présentation de cas

    Anatomie

    Pression intra-oculaire

    Considérations anesthésiques

    Options anesthésiques

    Principales interventions chirurgicales

    !

  • orbite

    œil

    muscles

    Paupières

    Système lacrymal

    Anatomie Plan

  • Anatomie Orbite

  • Anatomie Muscles oculaires

  • Anatomie

  • Anatomie

  • Présentation de cas

    Anatomie

    Pression intra-oculaire

    Considérations anesthésiques

    Options anesthésiques

    Principales interventions chirurgicales

    !

  • 2/3 corps ciliaire

    transport de Na actif

    anhydrase carbonique

    2 μl/min

    1/3 filtration passive

    PIO Formation de l’humeur aqueuse

  • entre 10 et 21 mmHg

    variations quotidiennes

    Élevé au matin

    PIO Variations

  • Pressions

    tonus musculaire

    congestion veineuse

    tumeur

    Compliance de la sclère

    Changement du contenu

    humeur aqueuse

    vaisseaux de la choroïde

    tumeur

    PIO Variations

  • Congestion veineuse

    trendelenburg

    collier cervical

    toux

    vomissements

    Augmentation TA

    laryngoscopie

    douleur

    PIO Variations

  • OPaq pression osmotique de l’humeur aqueuse

    OPpl pression osmotique plasmatique

    Pc pression capillaire

    PIO Pression osmotique

  • Débit de réabsorption de l’humeur aqueuse A :

    r rayon de l’espace de Fontana

    Piop pression intraoculaire

    Pv pression veineuse

    η viscosité de l’humeur aqueuse

    l longueur de l’espace de Fontana

    PIO Humeur aqueuse

  • PIO Abaissée

    !agents d’inhalation

    thiopental

    propofol

    étomidate *

    narcotiques

    benzodiazépines

    neuroleptiques

  • !!

    hyperventilation

    hypothermie *

    osmotiques: mannitol

    acétazolamide

    PIO Abaissée

  • !!

    Kétamine: controverse

    Atropine I.V.

    PIO Inchangée

  • PIO Pancuronium

  • PIO Succinylcholine

  • PIO Succinylcholine

    Augmentation de la PIO

    débute après 1 min

    pic d’action de 9 mmHg à 6 min

    !

    Extrusion du vitré

    quelques cas ?

    anesthésie légère

    nécessite une énucléation

    Mécanisme d’action

    dilatation des vaisseaux de la

    choroïde

    baisse transitoire du drainage de

    l’humeur aqueuse

    pas de relation avec les muscles

    oculaires *

  • PIO Succinylcholine

    Avantages

    rapidité

    conditions d’intubation

    ventilation au masque de courte durée

    Réduire l’augmentation PIO

    lidocaïne

    narcotiques

    pré-curarisation

    nitro, nidédipine, propanolol

  • Présentation de cas

    Anatomie

    Pression intra-oculaire

    Considérations anesthésiques

    Options anesthésiques

    Principales interventions chirurgicales

    !

  • Approche sécuritaire

    Éviter d’augmenter la PIO

    Éviter les pressions extra-oculaires

    Intervention sans mouvement

    Considérations

    Analgésie

    Surveiller le réflexe oculocardiaque (OCR)

    Minimiser les saignements

    Émergence en douceur

  • Considérations Approche sécuritaire

  • Considérations Éviter d’augmenter la PIO

    choix des médicaments

    hypercarbie

    contrôle de la TA

    osmolarité

    hydratation

  • Considérations Éviter d’augmenter la PIO

    Intraoperative fluids: how much is too

    much?

    M. Doherty1* and D. J. Buggy

    1,2

    1 Department of Anaesthesia, Mater Mis

    ericordiae University Hospital, Universi

    ty College Dublin, Ireland

    2 Outcomes ResearchConsortium, Clevela

    nd Clinic, OH, USA

    * Corresponding author. E-mail: marga

    [email protected]

    Editor’s key points

    † Both too little and excessive fluid

    during the intraoperative period can

    adversely affect patient outcome.

    † Greater understandingof fluid

    kinetics at the endothelial glycocalyx

    enhances insight into bodily fluid

    distribution.

    † Evidence is mountingthat fluid

    therapy guided by flow based

    haemodynamic monitors improve

    perioperative outcome.

    † It is unclear whethercrystalloid or

    colloid fluids or a combination of both

    produce the optimal patient outcome

    and in what clinical context.

    Summary. There isincreasing evidenc

    e that intraoperative fluid therapy

    decisions may influence postoperativ

    e outcomes. In the past, patients

    undergoing majorsurgery were ofte

    n administered large volumes of

    crystalloid, basedon a presumption

    of preoperative dehydration and

    nebulous intraoperative ‘third space’ flu

    id loss. However, positive perioperative

    fluid balance, withpostoperative fluid-

    based weight gain,is associated with

    increased major morbidity. The conce

    pt of ‘third space’fluid loss has been

    emphatically refuted, and preopera

    tive dehydrationhas been almost

    eliminated by reduced fasting times a

    nd use of oral fluids up to 2 h before

    operation. A ‘restrictive’ intraoperative

    fluid regimen, avoiding hypovolaemia

    but limiting infusion to the minimu

    m necessary, initially reduced majo

    r

    complications aftercomplex surgery, bu

    t inconsistencies indefining restrictive

    vs liberal fluid regimens, the type o

    f fluid infused, and in definitions of

    adverse outcomeshave produced co

    nflicting results inclinical trials. The

    advent of individualized goal-directed

    fluid therapy, facilitated by minimally

    invasive, flow-based cardiovascular m

    onitoring, for example, oesophageal

    Doppler monitoring, has improved

    outcomes in colorectal surgery in

    particular, and this monitor has b

    een approved byclinical guidance

    authorities. In thecontrasting clinical

    context of relatively low-risk patients

    undergoing ambulatory surgery, high-

    volume crystalloidinfusion (20–30 m

    l

    kg21) reduces postoperative nausea a

    nd vomiting, dizziness, and pain. This

    review revises relevant physiology of

    body water distribution and capillary-

    tissue flow dynamics, outlines the

    rationale behind the fluid regimens

    mentioned above,and summarizes t

    he current clinicalevidence base for

    them, particularlythe increasing use

    of individualized goal-directed fluid

    therapy facilitatedby oesophageal Do

    ppler monitoring.

    Keywords: fluid therapy; fluids, i.v.

    Fluid therapy is fundamental to the prac

    tice of intraoperative

    anaesthesia, but the precise type, amo

    unt, and timing of its

    administration is still the subject of exte

    nsive debate. Almost

    all patients presenting for general ana

    esthesia will be admi-

    nistered some formof i.v. fluid. Evidenc

    e is increasing that

    perioperative fluid therapy can affect im

    portant longer-term

    postoperative outcomes. Traditional pra

    ctice involving intra-

    operative administration of large cry

    stalloid fluid volumes

    to all patients arebeing challenged b

    y recent evidence-

    based, individualized goal-directed the

    rapy (GDT). Although

    many research questions about the b

    alance of crystalloid

    and colloid fluid remain unanswered, cu

    rrent research is fo-

    cusing on gaining greater understandin

    g of fluid movement

    at the vascular barrier and how surg

    ery and anaesthetic

    interventions can influence it in the int

    raoperative period.

    This review revisesthe relevant physio

    logy underpinning

    body fluid distribution and capillary fl

    ow dynamics. It also

    discusses the current evidence-based

    rationale for using

    various volumes and types of fluid ther

    apy in different intra-

    operative clinical contexts. Discussion

    of preoperative fluid

    resuscitation and continuing postoper

    ative fluid therapyis

    outside the scope of this review.

    Physiology

    Body water distribution

    Water comprises 60% of the lean body

    mass, !42 litres in a

    70 kg man. Of this, about two-thirds

    are intracellular (28

    litres); therefore, extracellular volume

    (ECV) comprises 14

    litres. The extracellular compartment ca

    n be further divided

    into interstitial (11litres) and plasma

    (3 litres) with small

    amounts of transcellular fluids, for e

    xample, intraocular,

    gastrointestinal secretion, and cerebros

    pinal fluid completing

    the distribution (Fig. 1). These transcell

    ular fluids are consid-

    ered anatomically separate and not av

    ailable for water and

    solute exchange.1

    British Journal of Anaesthesia 109 (1): 6

    9–79 (2012)

    Advance Access publication 1 June 20

    12 . doi:10.1093/bja/aes171

    & The Author [2012]. Published by Oxfo

    rd University Presson behalf of the Bri

    tish Journal of Anaesthesia. All rights

    reserved.

    For Permissions, please email: journals.

    [email protected]

    by guest on September 27, 2013

    http://bja.oxfordjournals.org/D

    ownloaded from

    by guest on Septem

    ber 27, 2013

    http://bja.oxfordjournals.org/D

    ownloaded from

    by guest on Septem

    ber 27, 2013

    http://bja.oxfordjournals.org/D

    ownloaded from

    by guest on Septem

    ber 27, 2013

    http://bja.oxfordjournals.org/D

    ownloaded from

    by guest on Septem

    ber 27, 2013

    http://bja.oxfordjournals.org/D

    ownloaded from

    by guest on Septem

    ber 27, 2013

    http://bja.oxfordjournals.org/D

    ownloaded from

    by guest on Septem

    ber 27, 2013

    http://bja.oxfordjournals.org/D

    ownloaded from

    by guest on Septem

    ber 27, 2013

    http://bja.oxfordjournals.org/D

    ownloaded from

    by guest on Septem

    ber 27, 2013

    http://bja.oxfordjournals.org/D

    ownloaded from

    by guest on Septem

    ber 27, 2013

    http://bja.oxfordjournals.org/D

    ownloaded from

    by guest on Septem

    ber 27, 2013

    http://bja.oxfordjournals.org/D

    ownloaded from

    Revised Starling equation and the glycocalyx modelof transvascular fluid exchange: an improved paradigmfor prescribing intravenous fluid therapyT. E. Woodcock 1* and T. M. Woodcock 21 Critical Care Service, Southampton University Hospitals NHS Trust, Tremona Road, Southampton SO16 6YD, UK2 The Australian School of Advanced Medicine, Macquarie University, NSW 2109, Australia

    * Corresponding author. E-mail: [email protected]

    Editor’s key points

    † The classic Starlingprinciple does not holdfor fluid resuscitation inclinical settings.

    † The endothelialglycocalyx layer appearsto have a major role influid exchange.

    † A revision of Starlingincorporating theglycocalyx modelappears to explain betterthe responses seenclinically.

    Summary. I.V. fluid therapy does not result in the extracellular volume distribution expectedfrom Starling’s original model of semi-permeable capillaries subject to hydrostatic andoncotic pressure gradients within the extracellular fluid. Fluid therapy to support thecirculation relies on applying a physiological paradigm that better explains clinical andresearch observations. The revised Starling equation based on recent research considersthe contributions of the endothelial glycocalyx layer (EGL), the endothelial basementmembrane, and the extracellular matrix. The characteristics of capillaries in varioustissues are reviewed and some clinical corollaries considered. The oncotic pressuredifference across the EGL opposes, but does not reverse, the filtration rate (the ‘noabsorption’ rule) and is an important feature of the revised paradigm and highlights thelimitations of attempting to prevent or treat oedema by transfusing colloids. Filtered fluidreturns to the circulation as lymph. The EGL excludes larger molecules and occupies asubstantial volume of the intravascular space and therefore requires a new interpretationof dilution studies of blood volume and the speculation that protection or restoration ofthe EGL might be an important therapeutic goal. An explanation for the phenomenon ofcontext sensitivity of fluid volume kinetics is offered, and the proposal that crystalloidresuscitation from low capillary pressures is rational. Any potential advantage of plasmaor plasma substitutes over crystalloids for volume expansion only manifests itself athigher capillary pressures.

    Keywords: fluid therapy; intensive care

    Twenty-five years ago, Twigley and Hillman announced ‘theend of the crystalloid era’. Using a simplified diagram ofplasma, interstitial and intracellular fluid compartments,and their anatomic volumes, they argued that colloidscould be used to selectively maintain the plasma volume.1

    Plasma volume being about 20% of the extracellular fluid(ECF), it was presumed that the volume equivalence for re-suscitation from intravascular hypovolaemia would be ofthe order of 20 ml colloid to 100 ml isotonic salt solution(ISS). Moreover, it was presumed from Starling’s principlethat transfusion of hyperoncotic colloid solutions wouldabsorb fluid from the interstitial fluid (ISF) to the intravascu-lar volume. This simple concept of colloid for plasma volumeand ISS for ECF replacement has been continued and devel-oped.2 – 4 Two trials in critically ill patients have found thatover the first 4 days of fluid resuscitation, 100 ml ISS is as ef-fective as 62–76 ml human albumin solution5 or 63–69 mlhyperoncotic plasma substitute.6 In blunt trauma patientsduring the first day of resuscitation, 100 ml ISS was as effect-ive as 97 ml isosmotic plasma substitute, while in gunshot orstabbing victims, 100 ml was as effective as 67 ml.7 A trial ofpaediatric resuscitation practices in resource-poor facilities in

    Africa demonstrated no advantages of bolus therapy withalbumin compared with ISS, and a survival advantage forslow ISS resuscitation without bolus therapy.8 A series ofvolume kinetics experiments have demonstrated that thecentral volume of distribution of ISS is much smaller thanthe anatomic ECF volume,9 and an editorial had to concludethat ‘Fluid therapy might be more difficult than you think’.10

    This review attempts to reconcile clinical trial data andbedside experience of fluid therapy with recent advances inmicrovascular physiology to improve our working paradigmfor rational prescribing.

    Starling’s principleFrom experiments injecting serum or saline solution into thehindlimb of a dog, Starling deduced that the capillaries andpost-capillary venules behave as semi-permeable mem-branes absorbing fluid from the interstitial space.11 Thework of Krooh and colleagues12 developed Starling’s principlein human physiology. With adoption of reflection coeffi-cient13 and pore theories,14 the familiar paradigm of raisedvenous pressure and reduced plasma protein concentration

    British Journal of Anaesthesia 108 (3): 384–94 (2012)Advance Access publication 29 January 2012 . doi:10.1093/bja/aer515

    & The Author [2012]. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved.For Permissions, please email: [email protected]

  • Considérations Intervention sans mouvement

    2046 réclamations 1974-1987

    3% (71) oculaires

    30% (21) mouvement lors d’une chx ophtalmique

    76% (16) anesthésie générale

    24% (5) narcose

    100% (21) cécité permanente

  • Considérations Réflexe oculo-cardiaque

    Définition:

    ↓ RC de 10-20%

    > 5 secondes

    Déclenché:

    traction des muscles

    ↑ PIO

    pression sur le globe

    Prévention ?

    anticholinergiques

    anest. régionale

  • Considérations Réflexe oculo-cardiaque

    Incidence accrue:

    hypercarbie

    hypoxémie

    pédiatrie

    Traitement ?

    cesser la stimulation

    répétition entraîne une fatigue

    atropine ou glycopyrrolate I.V.

    lidocaïne infiltration

  • Présentation de cas

    Anatomie

    Pression intra-oculaire

    Considérations anesthésiques

    Options anesthésiques

    Principales interventions chirurgicales

    !

  • Options

    Anesthésie locale

    Anesthésie régionale

    rétrobulbaire

    péribulbaire

    sub-Tenon

    Anesthésie générale

  • Options Locale ou topique

    Chirurgie de la cataracte

    60% topique

    Anesthésie topique: simple

    Légère sédation

    Désavantages

    mouvements de l’œil

    anxiété et inconfort du patient

    Feu & oxygène Anesthesia Patient Safety Foundation www.apsf.org/resources_video.php

    http://www.apsf.org/resources_video.php

  • Options Rétrobulbaire

    !

    Caractéristiques

    anesthésie très intense

    petit volume

    début rapide

    akinésie

  • Options Rétrobulbaire

    Caractéristiques

    aiguille 1¼ po

    aiguille tranchante vs mousse

    position œil en nasale

    Complications

    hématome

    réflex oculo-cardiaque

    Trauma nerf optique

  • Options Rétrobulbaire

    !

    Complications

    rachi totale

    injection artérielle

    occlusion artère rétinienne

    ponction du globe en postérieur

    Écho

    sécuritaire

    œil axe > 26 mm

  • Options Péribulbaire

    !

    Caractéristiques

    plus facile

    peu de complications

    injection moins souffrante

    grand volume

    début plus lent

    Anesthésiologistes

    effectuent les blocs

    efficience

    péribulbaire un bon choix

  • Options Sub-Tenon

    Anesthésie

    injection espace épisclérale

    injection non douloureuse

    rapide

    aiguille ou canule mousse

    peu de complication

  • Options Anesthésie générale

    Indications

    pédiatrie

    collaboration difficile

    immaturité

    claustrophobie

    bouge beaucoup

    durée > 90 minutes

    Intubation vs LMA

    Awareness

  • Présentation de cas

    Anatomie

    Pression intra-oculaire

    Considérations anesthésiques

    Options anesthésiques

    Principales interventions chirurgicales

    !

  • Interventions Extraction de cataracte

    Technique extracapsulaire

    anesthésie topique

    incision 3 mm

    phacoémulsification

    portion postérieur de la capsule intacte

    lentille pliable (silicone ou acrylique)

    durée 15-60 minutes

  • Interventions Transplantation de cornée

    Allogreffe

    anesthésie générale

    prélèvement < 18hres

    cornée préservée 2 sem

    œil ouvert

    durée 90-120 minutes

  • Interventions Trabéculectomie

    Glaucome

    échec du traitement médical

    sub-Ténon anesthésie

    fistule pour ↓ PIO

    chambre antérieure vers

    espace sous conjonctival

    durée 30-60 minutes

  • Interventions Énucléation

    Variantes:

    éviscération

    exentération

    Autres

    implant après l’hémostase

    durée 60 minutes

    Souffrant

  • Interventions Vitrectomie

    Décollement rétine

    diabète

    myopie

    trauma

    extraction cataracte

    Vitrectomie

    ↓ traction sur la rétine

    extraire le sang et les débris

  • Interventions Cerclage

    Cerclage (Buckle)

    Bulle de gase

    SF6: 10-14 jours

    C3F8: 5-7 semaines

    danger du N2O

    porter un bracelet

  • !Présentation Cas clinique

  • Homme de 62 ans est passé sous son tracteur en fin d’après-midi. À l’urgence, le patient est conscient avec des difficultés respiratoire et une hémodynamie stable

    volet thoracique avec hémothorax

    massif facial

    œil ouvert

    Présentation Cas clinique

  • Questions