anna rosa sprocati

18
Anna Rosa Sprocati Department for Sustainability, ENEA-Rome Co-authors: P.Casale 1 , F. Tasso 1 , G. Falasca 3 , T. El- Hasan 4 , K. Khleifat 4 , P. Paganin 2 , G. Migliore 1 , C. Alisi 1 , G.B. De Giudici 2 1 ENEA- Italian National Agency for New Technologies, Energy and Sustainable EconomicDevelopment, Rome 2 University of Cagliari, (Italy) 3 University of Rome, Sapienza (Italy) , 4 Mutah University –Jordan Enabling barley production in arid soils by only exploiting the indigenous microbial biodiversity

Upload: others

Post on 24-May-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Anna Rosa Sprocati

Anna Rosa SprocatiDepartment for Sustainability, ENEA-Rome

Co-authors: P.Casale1, F. Tasso1, G. Falasca3, T. El- Hasan4, K. Khleifat4, P. Paganin2, G. Migliore1, C. Alisi1, G.B. De Giudici2

1 ENEA- Italian National Agency for New Technologies, Energy and Sustainable EconomicDevelopment, Rome2 University of Cagliari, (Italy)3 University of Rome, Sapienza (Italy) , 4 Mutah University –Jordan

Enabling barley production in arid soils by only exploiting the indigenous microbial biodiversity

Page 2: Anna Rosa Sprocati

ERANETMED2-PROJECT SUPREME Developing tools for SUstainable food PRoduction in

mEditerranean area using MicrobEs

Page 3: Anna Rosa Sprocati

Tailoring a microbial formula to be used as a bioaugmentation agent for supporting the cultivation of barley (Hordeum vulgare L.) in the semi-arid soil of the

Al-Ghweir agricultural station in Jordan.

Page 4: Anna Rosa Sprocati

WORK-PLAN

Page 5: Anna Rosa Sprocati

RESULTS

• Microbial load 8 ∙ 10⁶ UFC ∙ g -1

• 42 colony-forming morphotypes

Phylogenetic Classes

Functional biodiversity: 94%

Percentage distribution of the different PGP functions

Page 6: Anna Rosa Sprocati

JOR31 Serratia odorifera

JOR21 Serratia odorifera

JOR32 Serratia odorifera

JOR36 Serratia odorifera

JOR17 Serratia odorifera

JOR22 Pantoea sp.

JOR33 Pantoea agglomerans

JOR2 Pantoea sp.

JOR29 Pseudomonas frederiksbergensis

JN11 Pseudomonas sp.

JOR6 Pseudomonas helmanticensis

JN7 Pseudomonas sp.

JOR25 Pseudomonas sp.

JOR14 Pseudomonas sp.

JOR11 Pseudomonas sp.

JOR9 Stenotrophomonas rhizophila

JOR19 Stenotrophomonas rhizophila

JOR20 Stenotrophomonas rhizophila

JN8 Variovorax paradoxus

JOR18 Rhizobium sp.

JN2 Rhizobium nepotum

JOR4 Bacillus simplex

JOR1 Bacillus simplex

JOR7 Bacillus simplex

JOR3 Bacillus pumilus

JOR24 Streptomyces spiroverticillatus

JN1 Nocardioides albus

JOR37 Nocardioides albus

JN9 Rhodococcus erythtopolis

JOR26 Microbacterium sp.

JOR16 Microbacterium murale

JN5 Microbacterium hydrocarbonoxydans

JN12 Curtobacterium flaccumfaciens

JOR5 Glutamicibacter arilaitensis

JOR27 Arthrobacter globiformis

JN10 Arthrobacter defluvii

JN14 Curtobacterium sp.

JOR35 Paenarthrobacter nitroguajacolicus

JN3 Pseudarthrobacter siccitolerans

JOR8 Paenarthrobacter nitrguajacolicus

JN15 Curtobacterium sp.

γ-P

RO

TEO

BA

CTE

RIA

PROTEOBACTERIA

FIRMICUTES

AC

TIN

OB

AC

TER

IA

Selection of the microbial formula

Page 7: Anna Rosa Sprocati

SIGLA Identificazione Classe filogenetica N-FIX O-CAS P-SOL AUX

JOR5 Arthrobacter sp. Actinobacteria + +++ + / - -

JN12 Curtobacterium flaccumfaciens Actinobacteria + - + -

JN14 Curtobacterium sp. Actinobacteria + - + / - +

JN15 Curtobacterium sp. Actinobacteria + - - +

JOR16 Microbacterium murale Actinobacteria + / - ++ + -

JOR8 Paenarthrobacter nitroguajacolicus Actinobacteria + + + / - -

JOR35 Paenarthrobacter nitroguajacolicus Actinobacteria + - - ++

JOR7 Bacillus simplex Bacilli + ++ + / - -

JOR2 Pantoea sp. Gammaproteobacteria + - + / - +

JOR22 Pantoea sp. Gammaproteobacteria + - ++ +

JOR33 Pantoea agglomerans Gammaproteobacteria + ++ ++ + / -

JOR11 Pseudomonas sp. Gammaproteobacteria + +++ + -

JOR29 Pseudomonas frederiksbergensis Gammaproteobacteria + - ++ -

JOR17 Serratia odorifera Gammaproteobacteria + +++ + -

JN2 Rhizobium nepotum Proteobacteria + - - ++

JOR18 Rhizobium sp. Proteobacteria + - - ++

JOR (microbial formula)

16 7 12 8

Page 8: Anna Rosa Sprocati

1ItalyENEA

2Jordan

Mutah University

Bioaugmentation inoculum: SUP-JOR 108CFU mL-1

3 TreatmentsControl (W) Chemical fertilizers (DAP) Bacteria (B)

2 Water levels

OPTIMAL* =100STRESS=25

3 Water levels

OPTIMAL* =100MID=50STRESS=25

*calculated on the water retention capacity of the soil

Pot experimentstillering phase

Page 9: Anna Rosa Sprocati

Pot experiment n.1With the kind collaboration with the University of Rome “Sapienza”

WHC (Wernitznig et al., 2014).

Barley (Hordeum vulgare L)

• 20 days• Room temperature (up to 25°C) • 70% H• Light/dark cycle 14/10 hours

Page 10: Anna Rosa Sprocati

25W 25W+DAP25W+B

100W+B 100W+DAP100W

Page 11: Anna Rosa Sprocati

0

200

400

600

800

1000

1200

0 1 2 3 4 5 6 7

OD

*100

0

incubation days

CLPP-AWCD

100W

100W+B

100W+DAP

25W

25W+B

25W+DAP

25W25W

+B

25W

+DAP

Functional

diversity(%)87 94 87

Page 12: Anna Rosa Sprocati

100W

100W

+B

100W

+DAP

25W

25W

+B

25W

+DAP

0.0

0.5

1.0

1.5

Peso fresco

trattamenti

gra

mm

i (g

)

Organi aerei

Apparato radicale

β

ε

α,β

δ ζ

α

Plant physiological parameters

Fresh weightANOVA test

Student's t-testaerial parts

root system

Page 13: Anna Rosa Sprocati

100W

100W

+B

100W

+DAP

25W

25W

+B

25W

+DAP

0

5

10

15

20

Numero medio di RA

trattamenti

n

β

α

α α

Average Number of A Roots Average Number of LR

ARLR

PR

AR Average length(cm)

Test ANOVA- Test Student’s t

Page 14: Anna Rosa Sprocati

Pot experiment n.2 at Mutah University –Jordan

Barley-(Hordeum vulgare L)(Nov16 –Jan14)

3 Water levels

OPTIMAL =100

MID=50

STRESS=25

3 Treatments

Control (W)

Chemical fertilizers (DAP)

Bacteria (B)

• 8 weeks• Room temperature (up to 25°C) • 65% H• Light/dark cycle 12/12 hours

DAP B W

Page 15: Anna Rosa Sprocati

Average values

Page 16: Anna Rosa Sprocati
Page 17: Anna Rosa Sprocati

CONCLUSIONSSUMMARY

• A tailor-made microbial formula (JOR) has been established and used as an alternative to chemical fertilizers (DAP) for supporting the growth of barley crop (Hordeum vulgare L) in the semi-arid soil of the Al-Ghweir agronomic station in Jordan.

• The formula is composed by 16 autochthonous performing PGPB strains

• The composition was designed to reflect as closely as possible the structure of the native bacterial community.

• The formula JOR was tested as agent of functional bioaugmentation to enhance the PGP functions of soil under water stress, in two pot experiments .

• Differences between the addition of bacteria and chemical fertilizers were monitored over the tillering phase.

• When optimal water was supplied, no major differences are observed, thus bacteria can replace chemical fertilizers

• Under water stress, the bacterial formula proved to be the only treatment enabling survival and healthy of barley plants .

• A “knowledge-based” bioaugmentation technique will be the key to develop new approaches towards the recovery of degraded soils , saving water and replacing chemicals.

• On these basis a two-year field trial is underway at the Al-Gweir station. Positive results obtained in the first cycle have to be confirmed in the next crop cycle.

Page 18: Anna Rosa Sprocati

THANK You for Your ATTENTIONby