anomalies and entanglement entropy · 2016. 2. 9. · 1 entanglement entropy in qft 2 weyl...

77
Anomalies and Entanglement Entropy Tatsuma Nishioka (University of Tokyo) based on a work with A. Yarom (Technion) (to appear) T. Nishioka (Tokyo) Sep 10, 2015 @ Tohoku 1 / 35

Upload: others

Post on 22-Jan-2021

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Anomalies and Entanglement Entropy · 2016. 2. 9. · 1 Entanglement entropy in QFT 2 Weyl anomalies 3 Consistent gravitational anomalies 4 Other anomalies T.Nishioka (Tokyo) Sep

Anomalies and Entanglement Entropy

Tatsuma Nishioka (University of Tokyo)

based on a work with A. Yarom (Technion)(to appear)

T.Nishioka (Tokyo) Sep 10, 2015 @ Tohoku 1 / 35

Page 2: Anomalies and Entanglement Entropy · 2016. 2. 9. · 1 Entanglement entropy in QFT 2 Weyl anomalies 3 Consistent gravitational anomalies 4 Other anomalies T.Nishioka (Tokyo) Sep

Roles of entanglement entropy in QFT

An order parameter for various phase transitionsConfinement/deconfinement (like Polyakov loop) [TN-Takayanagi

06, Klebanov-Kutasov-Murugan 07, · · · ]

Classification of phases [Calabrese-Cardy 04, Kitaev-Preskill 06, Levin-Wen 06,

· · · ]

Reconstruction of bulk geometry from entanglementSimilarity between MERA and AdS space [Swingle 09,

Nozaki-Ryu-Takayanagi 12, · · · ]

1st law of entanglement and linearized Einstein equation of GR[Bhattacharya-Nozaki-Takayanagi-Ugajin 12, Blanco-Casini-Hung-Myers 13,

Nozaki-Numasawa-Prudenziati-Takayanagi 13, Lashkari-McDermott-Raamsdonk 13,

Faulkner-Guica-Hartman-Myers-Raamsdonk 13, · · · ]

T. Nishioka (Tokyo) Sep 10, 2015 @ Tohoku 2 / 35

Page 3: Anomalies and Entanglement Entropy · 2016. 2. 9. · 1 Entanglement entropy in QFT 2 Weyl anomalies 3 Consistent gravitational anomalies 4 Other anomalies T.Nishioka (Tokyo) Sep

Roles of entanglement entropy in QFT

An order parameter for various phase transitionsConfinement/deconfinement (like Polyakov loop) [TN-Takayanagi

06, Klebanov-Kutasov-Murugan 07, · · · ]

Classification of phases [Calabrese-Cardy 04, Kitaev-Preskill 06, Levin-Wen 06,

· · · ]

Reconstruction of bulk geometry from entanglementSimilarity between MERA and AdS space [Swingle 09,

Nozaki-Ryu-Takayanagi 12, · · · ]

1st law of entanglement and linearized Einstein equation of GR[Bhattacharya-Nozaki-Takayanagi-Ugajin 12, Blanco-Casini-Hung-Myers 13,

Nozaki-Numasawa-Prudenziati-Takayanagi 13, Lashkari-McDermott-Raamsdonk 13,

Faulkner-Guica-Hartman-Myers-Raamsdonk 13, · · · ]

T. Nishioka (Tokyo) Sep 10, 2015 @ Tohoku 2 / 35

Page 4: Anomalies and Entanglement Entropy · 2016. 2. 9. · 1 Entanglement entropy in QFT 2 Weyl anomalies 3 Consistent gravitational anomalies 4 Other anomalies T.Nishioka (Tokyo) Sep

Roles of entanglement entropy in QFT

An order parameter for various phase transitionsConfinement/deconfinement (like Polyakov loop) [TN-Takayanagi

06, Klebanov-Kutasov-Murugan 07, · · · ]

Classification of phases [Calabrese-Cardy 04, Kitaev-Preskill 06, Levin-Wen 06,

· · · ]

Reconstruction of bulk geometry from entanglementSimilarity between MERA and AdS space [Swingle 09,

Nozaki-Ryu-Takayanagi 12, · · · ]

1st law of entanglement and linearized Einstein equation of GR[Bhattacharya-Nozaki-Takayanagi-Ugajin 12, Blanco-Casini-Hung-Myers 13,

Nozaki-Numasawa-Prudenziati-Takayanagi 13, Lashkari-McDermott-Raamsdonk 13,

Faulkner-Guica-Hartman-Myers-Raamsdonk 13, · · · ]

T. Nishioka (Tokyo) Sep 10, 2015 @ Tohoku 2 / 35

Page 5: Anomalies and Entanglement Entropy · 2016. 2. 9. · 1 Entanglement entropy in QFT 2 Weyl anomalies 3 Consistent gravitational anomalies 4 Other anomalies T.Nishioka (Tokyo) Sep

Roles of entanglement entropy in QFT

An order parameter for various phase transitionsConfinement/deconfinement (like Polyakov loop) [TN-Takayanagi

06, Klebanov-Kutasov-Murugan 07, · · · ]

Classification of phases [Calabrese-Cardy 04, Kitaev-Preskill 06, Levin-Wen 06,

· · · ]

Reconstruction of bulk geometry from entanglementSimilarity between MERA and AdS space [Swingle 09,

Nozaki-Ryu-Takayanagi 12, · · · ]

1st law of entanglement and linearized Einstein equation of GR[Bhattacharya-Nozaki-Takayanagi-Ugajin 12, Blanco-Casini-Hung-Myers 13,

Nozaki-Numasawa-Prudenziati-Takayanagi 13, Lashkari-McDermott-Raamsdonk 13,

Faulkner-Guica-Hartman-Myers-Raamsdonk 13, · · · ]

T. Nishioka (Tokyo) Sep 10, 2015 @ Tohoku 2 / 35

Page 6: Anomalies and Entanglement Entropy · 2016. 2. 9. · 1 Entanglement entropy in QFT 2 Weyl anomalies 3 Consistent gravitational anomalies 4 Other anomalies T.Nishioka (Tokyo) Sep

Renormalization group and entanglement entropy

Entanglement entropy as a measure of degrees of freedom

Construct a monotonic function c(Energy) of the energy scaleEntropic c-theorem in two dimensions [Casini-Huerta 04]

F -theorem in three dimensions [Jafferis-Klebanov-Pufu-Safdi 11,

Myers-Sinha 10, Liu-Mezei 12, Casini-Huerta 12]

T.Nishioka (Tokyo) Sep 10, 2015 @ Tohoku 3 / 35

Page 7: Anomalies and Entanglement Entropy · 2016. 2. 9. · 1 Entanglement entropy in QFT 2 Weyl anomalies 3 Consistent gravitational anomalies 4 Other anomalies T.Nishioka (Tokyo) Sep

Renormalization group and entanglement entropy

Entanglement entropy as a measure of degrees of freedom

RG flow

UV fixed point

IR fixed point

Construct a monotonic function c(Energy) of the energy scaleEntropic c-theorem in two dimensions [Casini-Huerta 04]

F -theorem in three dimensions [Jafferis-Klebanov-Pufu-Safdi 11,

Myers-Sinha 10, Liu-Mezei 12, Casini-Huerta 12]

T.Nishioka (Tokyo) Sep 10, 2015 @ Tohoku 3 / 35

Page 8: Anomalies and Entanglement Entropy · 2016. 2. 9. · 1 Entanglement entropy in QFT 2 Weyl anomalies 3 Consistent gravitational anomalies 4 Other anomalies T.Nishioka (Tokyo) Sep

Renormalization group and entanglement entropy

Entanglement entropy as a measure of degrees of freedom

RG flow

UV fixed point

IR fixed point1/Energy

c

cUV

cIR

Construct a monotonic function c(Energy) of the energy scaleEntropic c-theorem in two dimensions [Casini-Huerta 04]

F -theorem in three dimensions [Jafferis-Klebanov-Pufu-Safdi 11,

Myers-Sinha 10, Liu-Mezei 12, Casini-Huerta 12]

T.Nishioka (Tokyo) Sep 10, 2015 @ Tohoku 3 / 35

Page 9: Anomalies and Entanglement Entropy · 2016. 2. 9. · 1 Entanglement entropy in QFT 2 Weyl anomalies 3 Consistent gravitational anomalies 4 Other anomalies T.Nishioka (Tokyo) Sep

Renormalization group and entanglement entropy

Entanglement entropy as a measure of degrees of freedom

RG flow

UV fixed point

IR fixed point1/Energy

c

cUV

cIR

Construct a monotonic function c(Energy) of the energy scaleEntropic c-theorem in two dimensions [Casini-Huerta 04]

F -theorem in three dimensions [Jafferis-Klebanov-Pufu-Safdi 11,

Myers-Sinha 10, Liu-Mezei 12, Casini-Huerta 12]

T.Nishioka (Tokyo) Sep 10, 2015 @ Tohoku 3 / 35

Page 10: Anomalies and Entanglement Entropy · 2016. 2. 9. · 1 Entanglement entropy in QFT 2 Weyl anomalies 3 Consistent gravitational anomalies 4 Other anomalies T.Nishioka (Tokyo) Sep

Universal terms

Conformal anomalies in even d dimensions: [cf. Myers-Sinha 10]

SA =cd−2

εd−2+ · · ·+ c0 log ε+ · · · , c0 ∼ central charges

Relation to sphere partition function F ≡ (−1)d−12 logZ[Sd]:

[Casini-Huerta-Myers 11]

SA =cd−2

εd−2+ · · ·+ (−1)

d−12 F

T.Nishioka (Tokyo) Sep 10, 2015 @ Tohoku 4 / 35

Page 11: Anomalies and Entanglement Entropy · 2016. 2. 9. · 1 Entanglement entropy in QFT 2 Weyl anomalies 3 Consistent gravitational anomalies 4 Other anomalies T.Nishioka (Tokyo) Sep

Universal terms

Conformal anomalies in even d dimensions: [cf. Myers-Sinha 10]

SA =cd−2

εd−2+ · · ·+ c0 log ε+ · · · , c0 ∼ central charges

Relation to sphere partition function F ≡ (−1)d−12 logZ[Sd]:

[Casini-Huerta-Myers 11]

SA =cd−2

εd−2+ · · ·+ (−1)

d−12 F

T.Nishioka (Tokyo) Sep 10, 2015 @ Tohoku 4 / 35

Page 12: Anomalies and Entanglement Entropy · 2016. 2. 9. · 1 Entanglement entropy in QFT 2 Weyl anomalies 3 Consistent gravitational anomalies 4 Other anomalies T.Nishioka (Tokyo) Sep

Universal terms

Conformal anomalies in even d dimensions: [cf. Myers-Sinha 10]

SA =cd−2

εd−2+ · · ·+ c0 log ε+ · · · , c0 ∼ central charges

Relation to sphere partition function F ≡ (−1)d−12 logZ[Sd]:

[Casini-Huerta-Myers 11]

SA =cd−2

εd−2+ · · ·+ (−1)

d−12 F

T.Nishioka (Tokyo) Sep 10, 2015 @ Tohoku 4 / 35

Page 13: Anomalies and Entanglement Entropy · 2016. 2. 9. · 1 Entanglement entropy in QFT 2 Weyl anomalies 3 Consistent gravitational anomalies 4 Other anomalies T.Nishioka (Tokyo) Sep

More universal terms?

Gravitational anomaly in CFT2 with cL 6= cR[Wall 11, Castro-Detournay-Iqbal-Perlmutter 14]

(Holography: [Guo-Miao 15, Azeyanagi-Loganayagam-Ng 15])

T.Nishioka (Tokyo) Sep 10, 2015 @ Tohoku 5 / 35

Page 14: Anomalies and Entanglement Entropy · 2016. 2. 9. · 1 Entanglement entropy in QFT 2 Weyl anomalies 3 Consistent gravitational anomalies 4 Other anomalies T.Nishioka (Tokyo) Sep

More universal terms?

Anomalies are robust against perturbation, which may be detectedthrough entanglement entropy

Gravitational anomaly in CFT2 with cL 6= cR[Wall 11, Castro-Detournay-Iqbal-Perlmutter 14]

(Holography: [Guo-Miao 15, Azeyanagi-Loganayagam-Ng 15])

T.Nishioka (Tokyo) Sep 10, 2015 @ Tohoku 5 / 35

Page 15: Anomalies and Entanglement Entropy · 2016. 2. 9. · 1 Entanglement entropy in QFT 2 Weyl anomalies 3 Consistent gravitational anomalies 4 Other anomalies T.Nishioka (Tokyo) Sep

More universal terms?

Anomalies are robust against perturbation, which may be detectedthrough entanglement entropy

Gravitational anomaly in CFT2 with cL 6= cR[Wall 11, Castro-Detournay-Iqbal-Perlmutter 14]

(Holography: [Guo-Miao 15, Azeyanagi-Loganayagam-Ng 15])

T.Nishioka (Tokyo) Sep 10, 2015 @ Tohoku 5 / 35

Page 16: Anomalies and Entanglement Entropy · 2016. 2. 9. · 1 Entanglement entropy in QFT 2 Weyl anomalies 3 Consistent gravitational anomalies 4 Other anomalies T.Nishioka (Tokyo) Sep

More universal terms?

Anomalies are robust against perturbation, which may be detectedthrough entanglement entropy

Gravitational anomaly in CFT2 with cL 6= cR[Wall 11, Castro-Detournay-Iqbal-Perlmutter 14]

(Holography: [Guo-Miao 15, Azeyanagi-Loganayagam-Ng 15])

How about chiral and (mixed-)gravitational anomalies in otherdimensions?

T.Nishioka (Tokyo) Sep 10, 2015 @ Tohoku 5 / 35

Page 17: Anomalies and Entanglement Entropy · 2016. 2. 9. · 1 Entanglement entropy in QFT 2 Weyl anomalies 3 Consistent gravitational anomalies 4 Other anomalies T.Nishioka (Tokyo) Sep

Outline

1 Entanglement entropy in QFT

2 Weyl anomalies

3 Consistent gravitational anomalies

4 Other anomalies

T.Nishioka (Tokyo) Sep 10, 2015 @ Tohoku 6 / 35

Page 18: Anomalies and Entanglement Entropy · 2016. 2. 9. · 1 Entanglement entropy in QFT 2 Weyl anomalies 3 Consistent gravitational anomalies 4 Other anomalies T.Nishioka (Tokyo) Sep

Outline

1 Entanglement entropy in QFT

2 Weyl anomalies

3 Consistent gravitational anomalies

4 Other anomalies

T.Nishioka (Tokyo) Sep 10, 2015 @ Tohoku 7 / 35

Page 19: Anomalies and Entanglement Entropy · 2016. 2. 9. · 1 Entanglement entropy in QFT 2 Weyl anomalies 3 Consistent gravitational anomalies 4 Other anomalies T.Nishioka (Tokyo) Sep

Definition of entanglement entropy

Divide a system to A and B = A: Htot = HA ⊗HB

A

B

DefinitionSA = −trAρA log ρA

T.Nishioka (Tokyo) Sep 10, 2015 @ Tohoku 8 / 35

Page 20: Anomalies and Entanglement Entropy · 2016. 2. 9. · 1 Entanglement entropy in QFT 2 Weyl anomalies 3 Consistent gravitational anomalies 4 Other anomalies T.Nishioka (Tokyo) Sep

Definition of entanglement entropy

Divide a system to A and B = A: Htot = HA ⊗HB

A

B

DefinitionSA = −trAρA log ρA

T.Nishioka (Tokyo) Sep 10, 2015 @ Tohoku 8 / 35

Page 21: Anomalies and Entanglement Entropy · 2016. 2. 9. · 1 Entanglement entropy in QFT 2 Weyl anomalies 3 Consistent gravitational anomalies 4 Other anomalies T.Nishioka (Tokyo) Sep

Replica trick

Rewrite the definition

SA = limn→1

1

1− nlog trAρnA

trAρnA =1

(Z1)n

φA1

φA2

φA2

φA3

φAn

φA1

n copies ≡ Zn

(Z1)n

T.Nishioka (Tokyo) Sep 10, 2015 @ Tohoku 9 / 35

Page 22: Anomalies and Entanglement Entropy · 2016. 2. 9. · 1 Entanglement entropy in QFT 2 Weyl anomalies 3 Consistent gravitational anomalies 4 Other anomalies T.Nishioka (Tokyo) Sep

Replica trick

Rewrite the definition

SA = limn→1

1

1− nlog trAρnA

trAρnA =1

(Z1)n

φA1

φA2

φA2

φA3

φAn

φA1

n copies ≡ Zn

(Z1)n

T.Nishioka (Tokyo) Sep 10, 2015 @ Tohoku 9 / 35

Page 23: Anomalies and Entanglement Entropy · 2016. 2. 9. · 1 Entanglement entropy in QFT 2 Weyl anomalies 3 Consistent gravitational anomalies 4 Other anomalies T.Nishioka (Tokyo) Sep

Replica trick

Entanglement entropy

SA = limn→1

Wn − nW1

n− 1

Wn = − logZ[Mn]: the Euclidean partition function

Mn: the n-fold cover with a surplus angle 2π(n− 1) aroundthe entangling surface Σ ≡ ∂A

T.Nishioka (Tokyo) Sep 10, 2015 @ Tohoku 10 / 35

Page 24: Anomalies and Entanglement Entropy · 2016. 2. 9. · 1 Entanglement entropy in QFT 2 Weyl anomalies 3 Consistent gravitational anomalies 4 Other anomalies T.Nishioka (Tokyo) Sep

The n-fold cover Mn

Suppose A is a semi-infinite line in two dimensions

A = 0 ≤ r < ∞, τ = 0

Mn =r = 0 A

r = ∞

τ ∼ τ + 2πn

T.Nishioka (Tokyo) Sep 10, 2015 @ Tohoku 11 / 35

Page 25: Anomalies and Entanglement Entropy · 2016. 2. 9. · 1 Entanglement entropy in QFT 2 Weyl anomalies 3 Consistent gravitational anomalies 4 Other anomalies T.Nishioka (Tokyo) Sep

Strategy

Use a partition function W reproducing flavor and(mixed-)gravitational anomalies

Evaluate W on the n-fold cover Mn that is an S1 fibrationover an entangling region A

τ

A

Calculate the variation of the entanglement entropy with W

T.Nishioka (Tokyo) Sep 10, 2015 @ Tohoku 12 / 35

Page 26: Anomalies and Entanglement Entropy · 2016. 2. 9. · 1 Entanglement entropy in QFT 2 Weyl anomalies 3 Consistent gravitational anomalies 4 Other anomalies T.Nishioka (Tokyo) Sep

Strategy

Use a partition function W reproducing flavor and(mixed-)gravitational anomalies

Evaluate W on the n-fold cover Mn that is an S1 fibrationover an entangling region A

τ

A

Calculate the variation of the entanglement entropy with W

T.Nishioka (Tokyo) Sep 10, 2015 @ Tohoku 12 / 35

Page 27: Anomalies and Entanglement Entropy · 2016. 2. 9. · 1 Entanglement entropy in QFT 2 Weyl anomalies 3 Consistent gravitational anomalies 4 Other anomalies T.Nishioka (Tokyo) Sep

Strategy

Use a partition function W reproducing flavor and(mixed-)gravitational anomalies

Evaluate W on the n-fold cover Mn that is an S1 fibrationover an entangling region A

τ

A

Calculate the variation of the entanglement entropy with W

T.Nishioka (Tokyo) Sep 10, 2015 @ Tohoku 12 / 35

Page 28: Anomalies and Entanglement Entropy · 2016. 2. 9. · 1 Entanglement entropy in QFT 2 Weyl anomalies 3 Consistent gravitational anomalies 4 Other anomalies T.Nishioka (Tokyo) Sep

Outline

1 Entanglement entropy in QFT

2 Weyl anomalies

3 Consistent gravitational anomalies

4 Other anomalies

T.Nishioka (Tokyo) Sep 10, 2015 @ Tohoku 13 / 35

Page 29: Anomalies and Entanglement Entropy · 2016. 2. 9. · 1 Entanglement entropy in QFT 2 Weyl anomalies 3 Consistent gravitational anomalies 4 Other anomalies T.Nishioka (Tokyo) Sep

Weyl anomaly

CFT is classically invariant under the Weyl rescalingδσgµν = 2σgµν because of Tµ

µ = 0:

δσW =1

2

∫ddx

√g σ Tµ

µ = 0

The Weyl anomalies in even d dimensions:

Tµµ = 2(−1)d/2 aE −

∑i

ci Ii

E: the Euler density, Ii: Weyl invariants in d dimensionsa, ci: central charges

T.Nishioka (Tokyo) Sep 10, 2015 @ Tohoku 14 / 35

Page 30: Anomalies and Entanglement Entropy · 2016. 2. 9. · 1 Entanglement entropy in QFT 2 Weyl anomalies 3 Consistent gravitational anomalies 4 Other anomalies T.Nishioka (Tokyo) Sep

Weyl anomaly

CFT is classically invariant under the Weyl rescalingδσgµν = 2σgµν because of Tµ

µ = 0:

δσW =1

2

∫ddx

√g σ Tµ

µ = 0

The Weyl anomalies in even d dimensions:

Tµµ = 2(−1)d/2 aE −

∑i

ci Ii

E: the Euler density, Ii: Weyl invariants in d dimensionsa, ci: central charges

T.Nishioka (Tokyo) Sep 10, 2015 @ Tohoku 14 / 35

Page 31: Anomalies and Entanglement Entropy · 2016. 2. 9. · 1 Entanglement entropy in QFT 2 Weyl anomalies 3 Consistent gravitational anomalies 4 Other anomalies T.Nishioka (Tokyo) Sep

Weyl anomaly in entanglement entropy

The Weyl rescaling of entanglement entropy:

δσSA = limn→1

δσWn − nδσW1

n− 1

The contribution localizes to the entangling surface Σ ≡ ∂A:[Fursaev-Solodukhin 95, Fursaev-Patrushev-Solodukhin 13]

T.Nishioka (Tokyo) Sep 10, 2015 @ Tohoku 15 / 35

Page 32: Anomalies and Entanglement Entropy · 2016. 2. 9. · 1 Entanglement entropy in QFT 2 Weyl anomalies 3 Consistent gravitational anomalies 4 Other anomalies T.Nishioka (Tokyo) Sep

Weyl anomaly in entanglement entropy

The Weyl rescaling of entanglement entropy:

δσSA = limn→1

δσWn − nδσW1

n− 1

The contribution localizes to the entangling surface Σ ≡ ∂A:[Fursaev-Solodukhin 95, Fursaev-Patrushev-Solodukhin 13]

T.Nishioka (Tokyo) Sep 10, 2015 @ Tohoku 15 / 35

Page 33: Anomalies and Entanglement Entropy · 2016. 2. 9. · 1 Entanglement entropy in QFT 2 Weyl anomalies 3 Consistent gravitational anomalies 4 Other anomalies T.Nishioka (Tokyo) Sep

Weyl anomaly in entanglement entropy

The Weyl rescaling of entanglement entropy:

δσSA = limn→1

δσWn − nδσW1

n− 1

The contribution localizes to the entangling surface Σ ≡ ∂A:[Fursaev-Solodukhin 95, Fursaev-Patrushev-Solodukhin 13]

r = 0

r

τ

Cone

r = δ

Regularized cone

T.Nishioka (Tokyo) Sep 10, 2015 @ Tohoku 15 / 35

Page 34: Anomalies and Entanglement Entropy · 2016. 2. 9. · 1 Entanglement entropy in QFT 2 Weyl anomalies 3 Consistent gravitational anomalies 4 Other anomalies T.Nishioka (Tokyo) Sep

Weyl anomaly in entanglement entropy

The Weyl rescaling of entanglement entropy:

δσSA = limn→1

δσWn − nδσW1

n− 1

The contribution localizes to the entangling surface Σ ≡ ∂A:[Fursaev-Solodukhin 95, Fursaev-Patrushev-Solodukhin 13]

δσWn − nδσW1 =1

2

∫Mn

σ [〈Tµµ〉Mn − 〈Tµ

µ〉M1 ]

= (n− 1)σ

∫Σf(a, ci, gµν) +O

((n− 1)2

)because locally Mn ' M1 away from Σ

T.Nishioka (Tokyo) Sep 10, 2015 @ Tohoku 15 / 35

Page 35: Anomalies and Entanglement Entropy · 2016. 2. 9. · 1 Entanglement entropy in QFT 2 Weyl anomalies 3 Consistent gravitational anomalies 4 Other anomalies T.Nishioka (Tokyo) Sep

Weyl anomaly in entanglement entropy

In even dimension:

δσSA = σ c0 , c0 =

∫Σf(a, ci, gµν)

It gives the logarithmic divergence: [Holzhey-Larsen-Wilczek 94,

Ryu-Takayanagi 06, Solodukhin 08, Myers-Sinha 10]

SA = · · ·+ c0 log(L/ε)

L: typical size of A scaling as L → eσL

T.Nishioka (Tokyo) Sep 10, 2015 @ Tohoku 16 / 35

Page 36: Anomalies and Entanglement Entropy · 2016. 2. 9. · 1 Entanglement entropy in QFT 2 Weyl anomalies 3 Consistent gravitational anomalies 4 Other anomalies T.Nishioka (Tokyo) Sep

Weyl anomaly in entanglement entropy

In even dimension:

δσSA = σ c0 , c0 =

∫Σf(a, ci, gµν)

It gives the logarithmic divergence: [Holzhey-Larsen-Wilczek 94,

Ryu-Takayanagi 06, Solodukhin 08, Myers-Sinha 10]

SA = · · ·+ c0 log(L/ε)

L: typical size of A scaling as L → eσL

T.Nishioka (Tokyo) Sep 10, 2015 @ Tohoku 16 / 35

Page 37: Anomalies and Entanglement Entropy · 2016. 2. 9. · 1 Entanglement entropy in QFT 2 Weyl anomalies 3 Consistent gravitational anomalies 4 Other anomalies T.Nishioka (Tokyo) Sep

Outline

1 Entanglement entropy in QFT

2 Weyl anomalies

3 Consistent gravitational anomalies

4 Other anomalies

T.Nishioka (Tokyo) Sep 10, 2015 @ Tohoku 17 / 35

Page 38: Anomalies and Entanglement Entropy · 2016. 2. 9. · 1 Entanglement entropy in QFT 2 Weyl anomalies 3 Consistent gravitational anomalies 4 Other anomalies T.Nishioka (Tokyo) Sep

Gravitational anomaly

CFT2 with central charges cL 6= cR has a gravitationalanomaly

∇µTµν = (cL − cR)X

ν 6= 0

The boost (rotation) of the line A is not a symmetry

r = 0

A Rotation by θ−−−−−−−−→r = 0

T.Nishioka (Tokyo) Sep 10, 2015 @ Tohoku 18 / 35

Page 39: Anomalies and Entanglement Entropy · 2016. 2. 9. · 1 Entanglement entropy in QFT 2 Weyl anomalies 3 Consistent gravitational anomalies 4 Other anomalies T.Nishioka (Tokyo) Sep

Gravitational anomaly

CFT2 with central charges cL 6= cR has a gravitationalanomaly

∇µTµν = (cL − cR)X

ν 6= 0

The boost (rotation) of the line A is not a symmetry

r = 0

A Rotation by θ−−−−−−−−→r = 0

T.Nishioka (Tokyo) Sep 10, 2015 @ Tohoku 18 / 35

Page 40: Anomalies and Entanglement Entropy · 2016. 2. 9. · 1 Entanglement entropy in QFT 2 Weyl anomalies 3 Consistent gravitational anomalies 4 Other anomalies T.Nishioka (Tokyo) Sep

Covariant and consistent gravitational anomalies

Covariant anomaly:

Xν ∝ ενρ∂ρR

The stress tensor is covariant

Consistent anomaly:

Xν ∝ gνρ∇λ

[εαβ∂αΓ

λρβ

]Satisfies the Wess-Zumino consistency condition

T.Nishioka (Tokyo) Sep 10, 2015 @ Tohoku 19 / 35

Page 41: Anomalies and Entanglement Entropy · 2016. 2. 9. · 1 Entanglement entropy in QFT 2 Weyl anomalies 3 Consistent gravitational anomalies 4 Other anomalies T.Nishioka (Tokyo) Sep

Covariant and consistent gravitational anomalies

Covariant anomaly:

Xν ∝ ενρ∂ρR

The stress tensor is covariant

Consistent anomaly:

Xν ∝ gνρ∇λ

[εαβ∂αΓ

λρβ

]Satisfies the Wess-Zumino consistency condition

T.Nishioka (Tokyo) Sep 10, 2015 @ Tohoku 19 / 35

Page 42: Anomalies and Entanglement Entropy · 2016. 2. 9. · 1 Entanglement entropy in QFT 2 Weyl anomalies 3 Consistent gravitational anomalies 4 Other anomalies T.Nishioka (Tokyo) Sep

Anomaly polynomials and WZ consistency condition

The variation of W is given by descent relation

δW =

∫Ω2k

2k-form Ω2k is fixed by 2k + 2-form anomaly polynomialsP2k+2

P2k+2 = dI2k+1 , δI2k+1 = dΩ2k

I2k+1: Chern-Simons 2k + 1-form

T.Nishioka (Tokyo) Sep 10, 2015 @ Tohoku 20 / 35

Page 43: Anomalies and Entanglement Entropy · 2016. 2. 9. · 1 Entanglement entropy in QFT 2 Weyl anomalies 3 Consistent gravitational anomalies 4 Other anomalies T.Nishioka (Tokyo) Sep

Anomaly polynomials and WZ consistency condition

The variation of W is given by descent relation

δW =

∫Ω2k

2k-form Ω2k is fixed by 2k + 2-form anomaly polynomialsP2k+2

P2k+2 = dI2k+1 , δI2k+1 = dΩ2k

I2k+1: Chern-Simons 2k + 1-form

T.Nishioka (Tokyo) Sep 10, 2015 @ Tohoku 20 / 35

Page 44: Anomalies and Entanglement Entropy · 2016. 2. 9. · 1 Entanglement entropy in QFT 2 Weyl anomalies 3 Consistent gravitational anomalies 4 Other anomalies T.Nishioka (Tokyo) Sep

Anomaly inflow mechanism

Decompose W into gauge-invariant and anomalous parts

W = Wgauge-inv +Wanom

The consistent anomaly for Wanom can be fixed by theanomaly inflow mechanism [Callan-Harvey 85, Jensen-Loganayagam-Yarom 12]

δWanom = i δ

∫∂−1M

ICS

Given anomaly polynomials, one can write down (arepresentative of) Wanom!

T.Nishioka (Tokyo) Sep 10, 2015 @ Tohoku 21 / 35

Page 45: Anomalies and Entanglement Entropy · 2016. 2. 9. · 1 Entanglement entropy in QFT 2 Weyl anomalies 3 Consistent gravitational anomalies 4 Other anomalies T.Nishioka (Tokyo) Sep

Anomaly inflow mechanism

Decompose W into gauge-invariant and anomalous parts

W = Wgauge-inv +Wanom

The consistent anomaly for Wanom can be fixed by theanomaly inflow mechanism [Callan-Harvey 85, Jensen-Loganayagam-Yarom 12]

δWanom = i δ

∫∂−1M

ICS

Given anomaly polynomials, one can write down (arepresentative of) Wanom!

T.Nishioka (Tokyo) Sep 10, 2015 @ Tohoku 21 / 35

Page 46: Anomalies and Entanglement Entropy · 2016. 2. 9. · 1 Entanglement entropy in QFT 2 Weyl anomalies 3 Consistent gravitational anomalies 4 Other anomalies T.Nishioka (Tokyo) Sep

Anomaly inflow mechanism

Decompose W into gauge-invariant and anomalous parts

W = Wgauge-inv +Wanom

The consistent anomaly for Wanom can be fixed by theanomaly inflow mechanism [Callan-Harvey 85, Jensen-Loganayagam-Yarom 12]

δWanom = i δ

∫∂−1M

ICS

Given anomaly polynomials, one can write down (arepresentative of) Wanom!

T.Nishioka (Tokyo) Sep 10, 2015 @ Tohoku 21 / 35

Page 47: Anomalies and Entanglement Entropy · 2016. 2. 9. · 1 Entanglement entropy in QFT 2 Weyl anomalies 3 Consistent gravitational anomalies 4 Other anomalies T.Nishioka (Tokyo) Sep

Anomalous partition function in 2d

Anomaly polynomial in 2d

P2d = cgtr(R∧R)

Chern-Simons form, P2d = dICS :

ICS = cg tr[Γ ∧ dΓ +

2

3Γ ∧ Γ ∧ Γ

]Variation of the partition function:

δWn = i

∫Mn

cg(∂µξν)dΓµ

ν(δgµν = (Lξg)µν , Γµ

ν ≡ Γµνλdx

λ)

T.Nishioka (Tokyo) Sep 10, 2015 @ Tohoku 22 / 35

Page 48: Anomalies and Entanglement Entropy · 2016. 2. 9. · 1 Entanglement entropy in QFT 2 Weyl anomalies 3 Consistent gravitational anomalies 4 Other anomalies T.Nishioka (Tokyo) Sep

Anomalous partition function in 2d

Anomaly polynomial in 2d

P2d = cgtr(R∧R)

Chern-Simons form, P2d = dICS :

ICS = cg tr[Γ ∧ dΓ +

2

3Γ ∧ Γ ∧ Γ

]Variation of the partition function:

δWn = i

∫Mn

cg(∂µξν)dΓµ

ν(δgµν = (Lξg)µν , Γµ

ν ≡ Γµνλdx

λ)

T.Nishioka (Tokyo) Sep 10, 2015 @ Tohoku 22 / 35

Page 49: Anomalies and Entanglement Entropy · 2016. 2. 9. · 1 Entanglement entropy in QFT 2 Weyl anomalies 3 Consistent gravitational anomalies 4 Other anomalies T.Nishioka (Tokyo) Sep

Anomalous partition function in 2d

Anomaly polynomial in 2d

P2d = cgtr(R∧R)

Chern-Simons form, P2d = dICS :

ICS = cg tr[Γ ∧ dΓ +

2

3Γ ∧ Γ ∧ Γ

]Variation of the partition function:

δWn = i

∫Mn

cg(∂µξν)dΓµ

ν(δgµν = (Lξg)µν , Γµ

ν ≡ Γµνλdx

λ)

T.Nishioka (Tokyo) Sep 10, 2015 @ Tohoku 22 / 35

Page 50: Anomalies and Entanglement Entropy · 2016. 2. 9. · 1 Entanglement entropy in QFT 2 Weyl anomalies 3 Consistent gravitational anomalies 4 Other anomalies T.Nishioka (Tokyo) Sep

Replica space for a semi-infinite line

For a semi-infinite line

Mn : ds2 = dr2 + r2dτ2 , τ ∼ τ + 2πn

Rotation by θ on M1 = Rotation by nθ on Mn

r = 0

A

τ ∼ τ + 2πn

Mn

Rotation by θ−−−−−−−−→ r = 0

Anθ

Mn

T.Nishioka (Tokyo) Sep 10, 2015 @ Tohoku 23 / 35

Page 51: Anomalies and Entanglement Entropy · 2016. 2. 9. · 1 Entanglement entropy in QFT 2 Weyl anomalies 3 Consistent gravitational anomalies 4 Other anomalies T.Nishioka (Tokyo) Sep

Replica space for a semi-infinite line

For a semi-infinite line

Mn : ds2 = dr2 + r2dτ2 , τ ∼ τ + 2πn

Rotation by θ on M1 = Rotation by nθ on Mn

r = 0

A

τ ∼ τ + 2πn

Mn

Rotation by θ−−−−−−−−→ r = 0

Anθ

Mn

T.Nishioka (Tokyo) Sep 10, 2015 @ Tohoku 23 / 35

Page 52: Anomalies and Entanglement Entropy · 2016. 2. 9. · 1 Entanglement entropy in QFT 2 Weyl anomalies 3 Consistent gravitational anomalies 4 Other anomalies T.Nishioka (Tokyo) Sep

Einstein anomaly

For a diffeomorphism δξgµν = Lξgµν

δξSA = limn→1

δξWn − nδξW1

n− 1

where

δξWn = i

∫Mn

cg(∂µξν)dΓµ

ν

Rotation τ → τ + θ, ξτ = θ

Gravitational anomaly for a rotation by angle θ

δθSA = 4πi cg θ

T.Nishioka (Tokyo) Sep 10, 2015 @ Tohoku 24 / 35

Page 53: Anomalies and Entanglement Entropy · 2016. 2. 9. · 1 Entanglement entropy in QFT 2 Weyl anomalies 3 Consistent gravitational anomalies 4 Other anomalies T.Nishioka (Tokyo) Sep

Einstein anomaly

For a diffeomorphism δξgµν = Lξgµν

δξSA = limn→1

δξWn − nδξW1

n− 1

where

δξWn = i

∫Mn

cg(∂µξν)dΓµ

ν

Rotation τ → τ + θ, ξτ = θ

Gravitational anomaly for a rotation by angle θ

δθSA = 4πi cg θ

T.Nishioka (Tokyo) Sep 10, 2015 @ Tohoku 24 / 35

Page 54: Anomalies and Entanglement Entropy · 2016. 2. 9. · 1 Entanglement entropy in QFT 2 Weyl anomalies 3 Consistent gravitational anomalies 4 Other anomalies T.Nishioka (Tokyo) Sep

Anomalies in 4d

Anomaly polynomial:

P4d = cmF ∧ tr(R∧R)

Chern-Simons form:

ICS = A ∧ [(1− α)cmtr(R∧R)] + αcm F ∧ jGCS(Γ)

Ambiguity in CS form proportional to α

T.Nishioka (Tokyo) Sep 10, 2015 @ Tohoku 25 / 35

Page 55: Anomalies and Entanglement Entropy · 2016. 2. 9. · 1 Entanglement entropy in QFT 2 Weyl anomalies 3 Consistent gravitational anomalies 4 Other anomalies T.Nishioka (Tokyo) Sep

Anomalies in 4d

Anomaly polynomial:

P4d = cmF ∧ tr(R∧R)

Chern-Simons form:

ICS = A ∧ [(1− α)cmtr(R∧R)] + αcm F ∧ jGCS(Γ)

Ambiguity in CS form proportional to α

T.Nishioka (Tokyo) Sep 10, 2015 @ Tohoku 25 / 35

Page 56: Anomalies and Entanglement Entropy · 2016. 2. 9. · 1 Entanglement entropy in QFT 2 Weyl anomalies 3 Consistent gravitational anomalies 4 Other anomalies T.Nishioka (Tokyo) Sep

Anomalies in 4d

Anomaly polynomial:

P4d = cmF ∧ tr(R∧R)

Chern-Simons form:

ICS = A ∧ [(1− α)cmtr(R∧R)] + αcm F ∧ jGCS(Γ)

Ambiguity in CS form proportional to α

T.Nishioka (Tokyo) Sep 10, 2015 @ Tohoku 25 / 35

Page 57: Anomalies and Entanglement Entropy · 2016. 2. 9. · 1 Entanglement entropy in QFT 2 Weyl anomalies 3 Consistent gravitational anomalies 4 Other anomalies T.Nishioka (Tokyo) Sep

Variation of W

Suppose a product space

Mn = Cn ×N

Cn: two-dimensional cone, N : a (compact) two-manifold

The variation under the diffeomorphism:

δξWn = i

∫Cn

αcmΦ (∂µξν)dΓµ

ν

with Φ ≡∫NF

Same as the 2d gravitational anomaly with cg = αcmΦ

T.Nishioka (Tokyo) Sep 10, 2015 @ Tohoku 26 / 35

Page 58: Anomalies and Entanglement Entropy · 2016. 2. 9. · 1 Entanglement entropy in QFT 2 Weyl anomalies 3 Consistent gravitational anomalies 4 Other anomalies T.Nishioka (Tokyo) Sep

Variation of W

Suppose a product space

Mn = Cn ×N

Cn: two-dimensional cone, N : a (compact) two-manifold

The variation under the diffeomorphism:

δξWn = i

∫Cn

αcmΦ (∂µξν)dΓµ

ν

with Φ ≡∫NF

Same as the 2d gravitational anomaly with cg = αcmΦ

T.Nishioka (Tokyo) Sep 10, 2015 @ Tohoku 26 / 35

Page 59: Anomalies and Entanglement Entropy · 2016. 2. 9. · 1 Entanglement entropy in QFT 2 Weyl anomalies 3 Consistent gravitational anomalies 4 Other anomalies T.Nishioka (Tokyo) Sep

Variation of W

Suppose a product space

Mn = Cn ×N

Cn: two-dimensional cone, N : a (compact) two-manifold

The variation under the diffeomorphism:

δξWn = i

∫Cn

αcmΦ (∂µξν)dΓµ

ν

with Φ ≡∫NF

Same as the 2d gravitational anomaly with cg = αcmΦ

T.Nishioka (Tokyo) Sep 10, 2015 @ Tohoku 26 / 35

Page 60: Anomalies and Entanglement Entropy · 2016. 2. 9. · 1 Entanglement entropy in QFT 2 Weyl anomalies 3 Consistent gravitational anomalies 4 Other anomalies T.Nishioka (Tokyo) Sep

Mixed anomaly

Take a plane entangling surface

Mn =A

τ ∼ τ + 2πn

× ⊗ B

T2

Magnetic field B ≡ Fxy through the entangling surface

Mixed anomaly for a rotation by angle θ

δθSA = 4πi θ α cmB vol(T2)

T.Nishioka (Tokyo) Sep 10, 2015 @ Tohoku 27 / 35

Page 61: Anomalies and Entanglement Entropy · 2016. 2. 9. · 1 Entanglement entropy in QFT 2 Weyl anomalies 3 Consistent gravitational anomalies 4 Other anomalies T.Nishioka (Tokyo) Sep

Mixed anomaly

Take a plane entangling surface

Mn =A

τ ∼ τ + 2πn

× ⊗ B

T2

Magnetic field B ≡ Fxy through the entangling surface

Mixed anomaly for a rotation by angle θ

δθSA = 4πi θ α cmB vol(T2)

T.Nishioka (Tokyo) Sep 10, 2015 @ Tohoku 27 / 35

Page 62: Anomalies and Entanglement Entropy · 2016. 2. 9. · 1 Entanglement entropy in QFT 2 Weyl anomalies 3 Consistent gravitational anomalies 4 Other anomalies T.Nishioka (Tokyo) Sep

Anomalies in 6d

Six-dimensional theories have two types of gravitationalanomalies and a mixed gauge-gravitational anomaly:

P6d = cm F 2 tr(R2

)+ ca tr

(R2

)2+ cb tr

(R4

)Question:Is it always possible to extract coefficients cm, ca and cb fromthe entanglement entropy?

T.Nishioka (Tokyo) Sep 10, 2015 @ Tohoku 28 / 35

Page 63: Anomalies and Entanglement Entropy · 2016. 2. 9. · 1 Entanglement entropy in QFT 2 Weyl anomalies 3 Consistent gravitational anomalies 4 Other anomalies T.Nishioka (Tokyo) Sep

Anomalies in 6d

Six-dimensional theories have two types of gravitationalanomalies and a mixed gauge-gravitational anomaly:

P6d = cm F 2 tr(R2

)+ ca tr

(R2

)2+ cb tr

(R4

)Question:Is it always possible to extract coefficients cm, ca and cb fromthe entanglement entropy?

T.Nishioka (Tokyo) Sep 10, 2015 @ Tohoku 28 / 35

Page 64: Anomalies and Entanglement Entropy · 2016. 2. 9. · 1 Entanglement entropy in QFT 2 Weyl anomalies 3 Consistent gravitational anomalies 4 Other anomalies T.Nishioka (Tokyo) Sep

Extract cm and ca

Assume a product manifold

Mn = Cn ×N

The factorization of the anomaly polynomial:

P6d = tr(R2

) [cm F 2 + ca tr

(R2

)]Gravitational and mixed anomalies under the boost

δθSA = 4πi θ(αcmΦ− 24π2caτ [Σ]

)(Φ =

∫N F 2, τ [Σ] = − 1

24π2

∫N tr

(R2

))T.Nishioka (Tokyo) Sep 10, 2015 @ Tohoku 29 / 35

Page 65: Anomalies and Entanglement Entropy · 2016. 2. 9. · 1 Entanglement entropy in QFT 2 Weyl anomalies 3 Consistent gravitational anomalies 4 Other anomalies T.Nishioka (Tokyo) Sep

Extract cm and ca

Assume a product manifold

Mn = Cn ×N

The factorization of the anomaly polynomial:

P6d = tr(R2

) [cm F 2 + ca tr

(R2

)]Gravitational and mixed anomalies under the boost

δθSA = 4πi θ(αcmΦ− 24π2caτ [Σ]

)(Φ =

∫N F 2, τ [Σ] = − 1

24π2

∫N tr

(R2

))T.Nishioka (Tokyo) Sep 10, 2015 @ Tohoku 29 / 35

Page 66: Anomalies and Entanglement Entropy · 2016. 2. 9. · 1 Entanglement entropy in QFT 2 Weyl anomalies 3 Consistent gravitational anomalies 4 Other anomalies T.Nishioka (Tokyo) Sep

Extract cb?

On a general non-product manifold

ds2 = dr2 + r2(dτ + ω1(y

1)dy2 + ω2(y3)dy4

)2+

4∑i=1

(dyi)2

the coefficient cb appears in the variation of entanglemententropy

But there seems to be no corresponding entangling surface forthe manifold . . .

A rotating black hole possibly plays a role?

T.Nishioka (Tokyo) Sep 10, 2015 @ Tohoku 30 / 35

Page 67: Anomalies and Entanglement Entropy · 2016. 2. 9. · 1 Entanglement entropy in QFT 2 Weyl anomalies 3 Consistent gravitational anomalies 4 Other anomalies T.Nishioka (Tokyo) Sep

Extract cb?

On a general non-product manifold

ds2 = dr2 + r2(dτ + ω1(y

1)dy2 + ω2(y3)dy4

)2+

4∑i=1

(dyi)2

the coefficient cb appears in the variation of entanglemententropy

But there seems to be no corresponding entangling surface forthe manifold . . .

A rotating black hole possibly plays a role?

T.Nishioka (Tokyo) Sep 10, 2015 @ Tohoku 30 / 35

Page 68: Anomalies and Entanglement Entropy · 2016. 2. 9. · 1 Entanglement entropy in QFT 2 Weyl anomalies 3 Consistent gravitational anomalies 4 Other anomalies T.Nishioka (Tokyo) Sep

Extract cb?

On a general non-product manifold

ds2 = dr2 + r2(dτ + ω1(y

1)dy2 + ω2(y3)dy4

)2+

4∑i=1

(dyi)2

the coefficient cb appears in the variation of entanglemententropy

But there seems to be no corresponding entangling surface forthe manifold . . .

A rotating black hole possibly plays a role?

T.Nishioka (Tokyo) Sep 10, 2015 @ Tohoku 30 / 35

Page 69: Anomalies and Entanglement Entropy · 2016. 2. 9. · 1 Entanglement entropy in QFT 2 Weyl anomalies 3 Consistent gravitational anomalies 4 Other anomalies T.Nishioka (Tokyo) Sep

Higher dimensions

Anomaly polynomial in higher dimensions:

Pd =∑i

ci Fki∏n=1

tr(R2n

)min

where for each i, 2ki +∑

n 4nmin = d+ 2

Taking a product manifold Mn = Cn ×N

N = R2kj ×K3m1n−1 ×

∏n=2

(HPn)mjn

one can read off the coefficient cj

T.Nishioka (Tokyo) Sep 10, 2015 @ Tohoku 31 / 35

Page 70: Anomalies and Entanglement Entropy · 2016. 2. 9. · 1 Entanglement entropy in QFT 2 Weyl anomalies 3 Consistent gravitational anomalies 4 Other anomalies T.Nishioka (Tokyo) Sep

Higher dimensions

Anomaly polynomial in higher dimensions:

Pd =∑i

ci Fki∏n=1

tr(R2n

)min

where for each i, 2ki +∑

n 4nmin = d+ 2

Taking a product manifold Mn = Cn ×N

N = R2kj ×K3m1n−1 ×

∏n=2

(HPn)mjn

one can read off the coefficient cj

T.Nishioka (Tokyo) Sep 10, 2015 @ Tohoku 31 / 35

Page 71: Anomalies and Entanglement Entropy · 2016. 2. 9. · 1 Entanglement entropy in QFT 2 Weyl anomalies 3 Consistent gravitational anomalies 4 Other anomalies T.Nishioka (Tokyo) Sep

Outline

1 Entanglement entropy in QFT

2 Weyl anomalies

3 Consistent gravitational anomalies

4 Other anomalies

T.Nishioka (Tokyo) Sep 10, 2015 @ Tohoku 32 / 35

Page 72: Anomalies and Entanglement Entropy · 2016. 2. 9. · 1 Entanglement entropy in QFT 2 Weyl anomalies 3 Consistent gravitational anomalies 4 Other anomalies T.Nishioka (Tokyo) Sep

Gauge anomalies

U(1) polygon anomaly in d = 2m dimensions

P = cFm

For A → A+ dλ,

δλWn = ic λ

∫Mn

Fm

The external gauge field A satisfying the Zn replica symmetry

A(τ = 0) = A(τ = 2π) = · · · = A(τ = 2πn)

which yields∫Mn

Fm = n∫M1

Fm and δλSA = 0

T.Nishioka (Tokyo) Sep 10, 2015 @ Tohoku 33 / 35

Page 73: Anomalies and Entanglement Entropy · 2016. 2. 9. · 1 Entanglement entropy in QFT 2 Weyl anomalies 3 Consistent gravitational anomalies 4 Other anomalies T.Nishioka (Tokyo) Sep

Gauge anomalies

U(1) polygon anomaly in d = 2m dimensions

P = cFm

For A → A+ dλ,

δλWn = ic λ

∫Mn

Fm

The external gauge field A satisfying the Zn replica symmetry

A(τ = 0) = A(τ = 2π) = · · · = A(τ = 2πn)

which yields∫Mn

Fm = n∫M1

Fm and δλSA = 0

T.Nishioka (Tokyo) Sep 10, 2015 @ Tohoku 33 / 35

Page 74: Anomalies and Entanglement Entropy · 2016. 2. 9. · 1 Entanglement entropy in QFT 2 Weyl anomalies 3 Consistent gravitational anomalies 4 Other anomalies T.Nishioka (Tokyo) Sep

Gauge anomalies

U(1) polygon anomaly in d = 2m dimensions

P = cFm

For A → A+ dλ,

δλWn = ic λ

∫Mn

Fm

The external gauge field A satisfying the Zn replica symmetry

A(τ = 0) = A(τ = 2π) = · · · = A(τ = 2πn)

which yields∫Mn

Fm = n∫M1

Fm and δλSA = 0

T.Nishioka (Tokyo) Sep 10, 2015 @ Tohoku 33 / 35

Page 75: Anomalies and Entanglement Entropy · 2016. 2. 9. · 1 Entanglement entropy in QFT 2 Weyl anomalies 3 Consistent gravitational anomalies 4 Other anomalies T.Nishioka (Tokyo) Sep

Covariant gravitational anomalies

Repeating similar calculations for covariant gravitationalanomaly

δξW(cov)n = i

∫Mn

√g cg (∂µξ

ν)εµν∂νR

One gets the variation of entanglement entropy twice as largeas the consistent anomaly

T.Nishioka (Tokyo) Sep 10, 2015 @ Tohoku 34 / 35

Page 76: Anomalies and Entanglement Entropy · 2016. 2. 9. · 1 Entanglement entropy in QFT 2 Weyl anomalies 3 Consistent gravitational anomalies 4 Other anomalies T.Nishioka (Tokyo) Sep

Covariant gravitational anomalies

Repeating similar calculations for covariant gravitationalanomaly

δξW(cov)n = i

∫Mn

√g cg (∂µξ

ν)εµν∂νR

One gets the variation of entanglement entropy twice as largeas the consistent anomaly

T.Nishioka (Tokyo) Sep 10, 2015 @ Tohoku 34 / 35

Page 77: Anomalies and Entanglement Entropy · 2016. 2. 9. · 1 Entanglement entropy in QFT 2 Weyl anomalies 3 Consistent gravitational anomalies 4 Other anomalies T.Nishioka (Tokyo) Sep

Summary

Systematic treatment of anomalies in entanglement entropyusing the anomaly inflow mechanism

Our method is valid for any QFT

Can be applied as well in higher even dimensions (includingmixed anomalies), but how about other anomalies such asparity anomaly in odd dimensions?

T.Nishioka (Tokyo) Sep 10, 2015 @ Tohoku 35 / 35