ansys polyflow tutorial guide

424
ANSYS Polyflow Tutorial Guide Release 16.0 ANSYS, Inc. January 2015 Southpointe 2600 ANSYS Drive Canonsburg, PA 15317 ANSYS, Inc. is certified to ISO 9001:2008. [email protected] http://www.ansys.com (T) 724-746-3304 (F) 724-514-9494

Upload: cfdiranir

Post on 25-Jan-2016

2.099 views

Category:

Documents


591 download

DESCRIPTION

ANSYS Polyflow Tutorial Guide

TRANSCRIPT

Page 1: ANSYS Polyflow Tutorial Guide

ANSYS Polyflow Tutorial Guide

Release 16.0ANSYS, Inc.January 2015Southpointe

2600 ANSYS DriveCanonsburg, PA 15317 ANSYS, Inc. is

certified to ISO9001:2008.

[email protected]://www.ansys.com(T) 724-746-3304(F) 724-514-9494

Page 2: ANSYS Polyflow Tutorial Guide

Copyright and Trademark Information

© 2014-2015 SAS IP, Inc. All rights reserved. Unauthorized use, distribution or duplication is prohibited.

ANSYS, ANSYS Workbench, Ansoft, AUTODYN, EKM, Engineering Knowledge Manager, CFX, FLUENT, HFSS, AIMand any and all ANSYS, Inc. brand, product, service and feature names, logos and slogans are registered trademarksor trademarks of ANSYS, Inc. or its subsidiaries in the United States or other countries. ICEM CFD is a trademarkused by ANSYS, Inc. under license. CFX is a trademark of Sony Corporation in Japan. All other brand, product,service and feature names or trademarks are the property of their respective owners.

Disclaimer Notice

THIS ANSYS SOFTWARE PRODUCT AND PROGRAM DOCUMENTATION INCLUDE TRADE SECRETS AND ARE CONFID-ENTIAL AND PROPRIETARY PRODUCTS OF ANSYS, INC., ITS SUBSIDIARIES, OR LICENSORS. The software productsand documentation are furnished by ANSYS, Inc., its subsidiaries, or affiliates under a software license agreementthat contains provisions concerning non-disclosure, copying, length and nature of use, compliance with exportinglaws, warranties, disclaimers, limitations of liability, and remedies, and other provisions. The software productsand documentation may be used, disclosed, transferred, or copied only in accordance with the terms and conditionsof that software license agreement.

ANSYS, Inc. is certified to ISO 9001:2008.

U.S. Government Rights

For U.S. Government users, except as specifically granted by the ANSYS, Inc. software license agreement, the use,duplication, or disclosure by the United States Government is subject to restrictions stated in the ANSYS, Inc.software license agreement and FAR 12.212 (for non-DOD licenses).

Third-Party Software

See the legal information in the product help files for the complete Legal Notice for ANSYS proprietary softwareand third-party software. If you are unable to access the Legal Notice, please contact ANSYS, Inc.

Published in the U.S.A.

Page 3: ANSYS Polyflow Tutorial Guide

Table of Contents

Using This Manual ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix1. The Contents of This Manual ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix2. The Contents of the ANSYS Polyflow Manuals ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix3. Contacting Technical Support ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

I. Introduction to using Polyflow in Workbench . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11. ANSYS Polyflow in ANSYS Workbench Tutorial: 3D Extrusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1. Introduction .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.2. Prerequisites .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.3. Problem Description .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.4. Setup and Solution .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4.1. Preparation .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51.4.2. Creating a Fluid Flow Analysis System in ANSYS Workbench .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61.4.3. Preparing the Geometry in ANSYS DesignModeler ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111.4.4. Meshing the Geometry in the ANSYS Meshing Application .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131.4.5. Setting Up the CFD Simulation in ANSYS Polydata .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241.4.6. Solution .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281.4.7. Postprocessing .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291.4.8. Exploring Additional Solutions .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

1.5. Summary .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49II. Extrusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

1. 2.5D Axisymmetric Extrusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531.1. Introduction .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531.2. Prerequisites .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531.3. Problem Description .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531.4. Preparation .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 561.5. Setup and Solution .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

1.5.1. Project and Mesh .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 571.5.2. Define a Task .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 591.5.3. Material Data .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 611.5.4. Boundary Conditions .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 631.5.5. Remeshing .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 681.5.6. Stream Function .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 711.5.7. Outputs .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 731.5.8. Save and Exit Polydata .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 731.5.9. Solution .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 751.5.10. Postprocessing .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

1.6. Summary .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 882. Fluid Flow and Conjugate Heat Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

2.1. Introduction .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 892.2. Prerequisites .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 892.3. Problem Description .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 892.4. Setup and Solution .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

2.4.1. Preparation .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 912.4.2. Project and Mesh .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 922.4.3. Create a Task for the Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 922.4.4. Fluid Sub-Task 1 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 932.4.5. Die Sub-Task .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1012.4.6. Save and Exit Polydata .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1042.4.7. Solution .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1052.4.8. Postprocessing .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

iiiRelease 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Page 4: ANSYS Polyflow Tutorial Guide

2.5. Summary .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1143. Non-Isothermal Flow Through a Cooled Die . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

3.1. Introduction .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1153.2. Prerequisites .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1153.3. Problem Description .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1153.4. Setup and Solution .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

3.4.1. Preparation .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1183.4.2. Project and Mesh .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1183.4.3. Create a Task for the Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1193.4.4. Fluid Sub-Task 1 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1193.4.5. Die Sub-Task .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1313.4.6. Numerical Parameters ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1343.4.7. Outputs .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1343.4.8. Save and Exit Polydata .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1353.4.9. Solution .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1353.4.10. Postprocessing .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

3.5. Summary .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1473.6. Appendix: Nonlinearity and Evolution .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

4. 3D Extrusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1494.1. Introduction .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1494.2. Prerequisites .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1494.3. Problem Description .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1494.4. Preparation .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1514.5. Setup and Solution .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

4.5.1. Project and Mesh .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1524.5.2. Define a Task .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1524.5.3. Material Data .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1544.5.4. Boundary Conditions .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1564.5.5. Remeshing .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1584.5.6. Save and Exit Polydata .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1614.5.7. Solution .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1624.5.8. Postprocessing .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

4.6. Summary .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1765. Direct Extrusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

5.1. Introduction .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1775.2. Prerequisites .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1775.3. Problem Description .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1775.4. Setup and Solution .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

5.4.1. Preparation .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1795.4.2. Project and Mesh .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1805.4.3. Create a Task for the Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1805.4.4. Material Data .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1815.4.5. Boundary Conditions .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1825.4.6. Remeshing .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1845.4.7. Numerical Parameters ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1865.4.8. Outputs .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1875.4.9. Save and Exit Polydata .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1875.4.10. Solution .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1875.4.11. Postprocessing .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

5.5. Summary .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1985.6. Appendix .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

5.6.1. Power Law .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.iv

Tutorial Guide

Page 5: ANSYS Polyflow Tutorial Guide

5.6.2. Optimesh Remeshing Technique .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1995.6.3. Evolution Scheme .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1995.6.4. IGES Output .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

6. Inverse Extrusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2016.1. Introduction .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2016.2. Prerequisites .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2016.3. Problem Description .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2016.4. Setup and Solution .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

6.4.1. Preparation .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2036.4.2. Project and Mesh .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2046.4.3. Create a Task for the Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2046.4.4. Material Data .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2056.4.5. Boundary Conditions .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2066.4.6. Remeshing .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2096.4.7. Numerical Parameters ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2116.4.8. Outputs .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2126.4.9. Save and Exit Polydata .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2126.4.10. Solution .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2136.4.11. Postprocessing .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

6.5. Summary .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2256.6. Appendix .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

6.6.1. Power Law .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2256.6.2. Evolution Scheme .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2256.6.3. Remeshing Technique .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2266.6.4. Optimesh Remeshing Technique .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2266.6.5. IGES Output .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

7. Flow of Two Immiscible Fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2277.1. Introduction .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2277.2. Prerequisites .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2277.3. Problem Description .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2277.4. Setup and Solution .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

7.4.1. Preparation .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2307.4.2. Project and Mesh .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2307.4.3. Create a Task for the Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2317.4.4. Fluid 1 Sub-Task .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2317.4.5. Fluid 2 Sub-Task .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2387.4.6. Save and Exit Polydata .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2427.4.7. Solution .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2437.4.8. Postprocessing .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

7.5. Summary .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2498. Flow of Two Immiscible Fluids by Species Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

8.1. Introduction .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2518.2. Prerequisites .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2518.3. Problem Description .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2518.4. Setup and Solution .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

8.4.1. Preparation .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2548.4.2. Project and Mesh .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2558.4.3. Create a Task for the Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2558.4.4. Species and Species Transport Sub-task .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2558.4.5. Fluids Sub-task .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2608.4.6. Save and Exit Polydata .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2658.4.7. Solution .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

vRelease 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Tutorial Guide

Page 6: ANSYS Polyflow Tutorial Guide

8.4.8. Postprocessing .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2668.5. Summary .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

III. Blow Molding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2751. 3D Thermoforming of a Blister . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

1.1. Prerequisites .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2771.2. Problem Description .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2771.3. Setup and Solution .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

1.3.1. Preparation .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2801.3.2. Project and Mesh .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2811.3.3. Mold Sub-Task .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2811.3.4. Film Sub-Task .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2861.3.5. Postprocessing Sub-Tasks .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2911.3.6. Numerical Parameters ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2931.3.7. Outputs .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2941.3.8. Save and Exit Polydata .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2941.3.9. Solution .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2951.3.10. Postprocessing .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

1.4. Summary .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3071.5. Further Improvements .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3081.6. Appendix .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

1.6.1. Contact Boundary Conditions .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3091.6.2. Remark on the Penalty Coefficient .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3101.6.3. Remeshing .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310

2. 2D Axisymmetric Blow Molding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3112.1. Introduction .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3112.2. Prerequisites .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3112.3. Problem Description .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3122.4. Setup and Solution .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313

2.4.1. Preparation .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3142.4.2. Project and Mesh .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3142.4.3. Create a Task for the Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3142.4.4. Material Data .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3172.4.5. Boundary Conditions .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3192.4.6. Remeshing .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3222.4.7. Numerical Parameters ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3232.4.8. Outputs .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3252.4.9. Thickness Postprocessor .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3262.4.10. Save and Exit Polydata .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3272.4.11. Solution .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3272.4.12. Postprocessing .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327

2.5. Summary .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3392.6. Appendix .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339

2.6.1. Remeshing Technique .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3402.6.2. Time Marching Scheme .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340

3. Plug-Assisted Thermoforming of a Blister . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3413.1. Prerequisites .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3413.2. Problem Description .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3413.3. Setup and Solution .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344

3.3.1. Preparation .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3443.3.2. Project and Mesh .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3453.3.3. Mold Sub-Task .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3453.3.4. Plug Sub-Task .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.vi

Tutorial Guide

Page 7: ANSYS Polyflow Tutorial Guide

3.3.5. Blister Sub-Task .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3543.3.6. Numerical Parameters ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3613.3.7. Outputs .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3623.3.8. Save and Exit Polydata .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3623.3.9. Solution .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3623.3.10. Postprocessing .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363

3.4. Summary .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3743.5. Appendix .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375

3.5.1. Contact Boundary Conditions .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3753.5.2. Remark on the Penalty Coefficient .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3753.5.3. Remeshing .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376

4. 3D Blow Molding of a Bottle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3774.1. Prerequisites .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3774.2. Description .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3774.3. Setup and Solution .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379

4.3.1. Preparation .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3794.3.2. Project and Mesh .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3804.3.3. Right Mold .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3804.3.4. Left Mold .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3854.3.5. Parison Sub-Task .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3884.3.6. Numerical Parameters ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3964.3.7. Outputs .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3974.3.8. Save and Exit Polydata .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3974.3.9. Solution .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3974.3.10. Postprocessing .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398

4.4. Summary .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4074.5. Further Improvements .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4084.6. Appendix .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409

4.6.1. Contact Boundary Conditions .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4094.6.2. Remark on the Penalty Coefficient .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4104.6.3. Remeshing .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4104.6.4. Evolutions .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410

viiRelease 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Tutorial Guide

Page 8: ANSYS Polyflow Tutorial Guide

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.viii

Page 9: ANSYS Polyflow Tutorial Guide

Using This Manual1. The Contents of This Manual

The Polyflow Tutorial Guide contains a number of example problems with complete detailed instructions,commentary, and postprocessing of results.

2. The Contents of the ANSYS Polyflow Manuals

The manuals listed below form the ANSYS Polyflow product documentation set. They include descriptionsof the procedures, commands, and theoretical details needed to use ANSYS Polyflow products.

• The Polyflow User's Guide explains how to use ANSYS Polydata and ANSYS Polyflow to set up and solvea problem.

• The Polyflow Tutorial Guide contains a number of example problems with complete detailed instructions,commentary, and postprocessing of results.

• The Polyflow in Workbench User's Guide explains how to use the ANSYS Polyflow application withinANSYS Workbench.

• The Polymat User's Guide explains how to use the ANSYS Polymat module for material property evalu-ation.

• The Polystat User's Guide explains how to set up a MIXING task in ANSYS Polydata and how touse the ANSYS Polystat module for statistical postprocessing of results.

• The ANSYS Polyflow Examples Manual provides overviews of solutions to a variety of problem typesand is available on the ANSYS Customer Portal by searching for Polyflow Examples Manual.

• The GAMBIT manuals teach you how to use the GAMBIT preprocessor for geometry creation and meshgeneration.

• The CFD-Post User's Guide explains how to use CFD-Post to examine your results.

For details on how to access the ANSYS Polyflow manuals, see ANSYS Polyflow Documentation in theseparate Polyflow User's Guide.

3. Contacting Technical Support

Technical Support for ANSYS, Inc. products is provided either by ANSYS, Inc. directly or by one of ourcertified ANSYS Support Providers. Please check with the ANSYS Support Coordinator (ASC) at yourcompany to determine who provides support for your company, or go to www.ansys.com and selectContacts> Contacts and Locations.

If your support is provided by ANSYS, Inc. directly, Technical Support can be accessed quickly and effi-ciently from the ANSYS Customer Portal, which is available from the ANSYS Website (www.ansys.com)under Support > Customer Portal. The direct URL is: support.ansys.com.

One of the many useful features of the Customer Portal is the Knowledge Resources Search, which canbe found on the Home page of the Customer Portal. To use this feature, enter relevant text (errormessage, etc.) in the Knowledge Resources Search box and click the magnifying glass icon. These

ixRelease 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Page 10: ANSYS Polyflow Tutorial Guide

Knowledge Resources provide solutions and guidance on how to resolve installation and licensing issuesquickly.

NORTH AMERICA

All ANSYS Products except Esterel, Apache and Reaction Design products

Web: Go to the ANSYS Customer Portal (http://support.ansys.com) and select the appropriate option.

Toll-Free Telephone: 1.800.711.7199 (Please have your Customer or Contact ID ready.)

Support for University customers is provided only through the ANSYS Customer Portal.

GERMANY

ANSYS Mechanical Products

Telephone: +49 (0) 8092 7005-55 (CADFEM)

Email: [email protected]

All ANSYS Products

Web: Go to the ANSYS Customer Portal (http://support.ansys.com) and select the appropriate option.

National Toll-Free Telephone: (Please have your Customer or Contact ID ready.)

German language: 0800 181 8499

English language: 0800 181 1565

Austria: 0800 297 835

Switzerland: 0800 546 318

International Telephone: (Please have your Customer or Contact ID ready.)

German language: +49 6151 152 9981

English language: +49 6151 152 9982

Email: [email protected]

UNITED KINGDOM

All ANSYS Products

Web: Go to the ANSYS Customer Portal (http://support.ansys.com) and select the appropriate option.

Telephone: Please have your Customer or Contact ID ready.

UK: 0800 048 0462

Republic of Ireland: 1800 065 6642

Outside UK: +44 1235 420130

Email: [email protected]

Support for University customers is provided only through the ANSYS Customer Portal.

JAPAN

Mechanical Products

Telephone: +81-3-5324-8333

Email:

Mechanical: [email protected]

Fluids Products

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.x

Using This Manual

Page 11: ANSYS Polyflow Tutorial Guide

Telephone: +81-3-5324-7305

Email:

Fluent: [email protected];

CFX: [email protected];

Polyflow: [email protected];

Icepak

Telephone: +81-3-5324-7444

Email: [email protected]

Licensing and Installation

Email: [email protected]

INDIA

All ANSYS Products

Web: Go to the ANSYS Customer Portal (http://support.ansys.com) and select the appropriate option.

Telephone: +91 1 800 209 3475 (toll free) or +91 20 6654 3000 (toll) (Please have your Customer orContact ID ready.)

Support for University customers is provided only through the ANSYS Customer Portal.

FRANCE

All ANSYS Products

Web: Go to the ANSYS Customer Portal (http://support.ansys.com) and select the appropriate option.

Toll-Free Telephone: +33 (0) 800 919 225 Toll Number: +33 (0) 170 489 087 (Please have your Customeror Contact ID ready.)

Email: [email protected]

BELGIUM

All ANSYS Products

Web: Go to the ANSYS Customer Portal (http://support.ansys.com) and select the appropriate option.

Telephone: +32 (0) 10 45 28 61

Email: [email protected]

Support for University customers is provided only through the ANSYS Customer Portal.

SWEDEN

All ANSYS Products

Web: Go to the ANSYS Customer Portal (http://support.ansys.com) and select the appropriate option.

Telephone: +46 (0) 10 516 49 00

Email: [email protected]

SPAIN and PORTUGAL

All ANSYS Products

Web: Go to the ANSYS Customer Portal (http://support.ansys.com) and select the appropriate option.

xiRelease 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Contacting Technical Support

Page 12: ANSYS Polyflow Tutorial Guide

Telephone: +34 900 933 407 (Spain), +351 800 880 513 (Portugal)

Email: [email protected], [email protected]

Support for University customers is provided only through the ANSYS Customer Portal.

ITALY

All ANSYS Products

Web: Go to the ANSYS Customer Portal (http://support.ansys.com) and select the appropriate option.

Telephone: +39 02 89013378

Email: [email protected]

Support for University customers is provided only through the ANSYS Customer Portal.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.xii

Using This Manual

Page 13: ANSYS Polyflow Tutorial Guide

Part I: Introduction to using Polyflow in Workbench

The following Workbench tutorial is available:

1. ANSYS Polyflow in ANSYS Workbench Tutorial: 3D Extrusion

Page 14: ANSYS Polyflow Tutorial Guide
Page 15: ANSYS Polyflow Tutorial Guide

Chapter 1: ANSYS Polyflow in ANSYS Workbench Tutorial: 3DExtrusion

1.1. Introduction

This tutorial illustrates how to use ANSYS Polyflow fluid flow systems in ANSYS Workbench to set upand solve a 3D extrusion problem with a variety of inlet flow rates. This tutorial is designed to introduceyou to the ANSYS Workbench tool set using a similar geometry to that used in 3D Extrusion (p. 149). Inthis tutorial, you will import the geometry and generate a computational mesh using the geometry andmeshing tools within ANSYS Workbench. Then you will use ANSYS Polydata to modify an imported datafile, solve the CFD problem using ANSYS Polyflow, and view the results in the CFD-Post postprocessingtool. Finally, you will use the Parameter and Design Points view in ANSYS Workbench to calculateresults for multiple design points that represent different inlet flow rates.

This tutorial demonstrates how to do the following:

• Launch ANSYS Workbench.

• Create an ANSYS Polyflow fluid flow analysis system in ANSYS Workbench.

• Import and edit geometry using ANSYS DesignModeler.

• Create a computational mesh for the geometry using the ANSYS Meshing application.

• Import a data file, and modify it using ANSYS Polydata to include a user-defined template for the die inletflow rate.

• Calculate a solution using ANSYS Polyflow.

• View the initial results and create an output parameter for the maximum velocity of the extrudate in CFD-Post.

• Generate results for multiple design points using the Parameter and Design Points view, and chart howthe outflow velocity varies with the inlet flow rate.

1.2. Prerequisites

This tutorial assumes that you have little to no experience with ANSYS DesignModeler, ANSYS Meshing,ANSYS Polyflow, CFD-Post, or the Parameter and Design Points view of ANSYS Workbench, and soeach step will be explicitly described.

1.3. Problem Description

This problem deals with the flow of a Newtonian fluid through a three-dimensional die. Due to thesymmetry of the problem (the cross-section of the die is a square), the computational domain is definedfor a quarter of the geometry and two planes of symmetry are defined.

3Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Page 16: ANSYS Polyflow Tutorial Guide

The melt enters the die as shown in Figure 1.1: Problem Description (p. 4) at an initial flow rate of

cm3/s (this flow rate is a quarter of that for the complete physical system) and the extrudate isobtained at the exit. It is assumed that the extrudate is fully deformed at the end of the computationaldomain, and that it will not deform any further (that is, subdomain 2 is long enough to account for allthe deformation of the extrudate).

Figure 1.1: Problem Description

The incompressibility and momentum equations are solved over the computational domain. The domainfor the problem is divided into two subdomains (as shown in Figure 1.1: Problem Description (p. 4))so that a remeshing algorithm can be applied only to the portion of the mesh that will be deformed.Subdomain 1 represents the die where the fluid is confined. Subdomain 2 corresponds to the extrudatethat is in contact with the air and can deform freely. The calculation will determine the location of thefree surface (the skin of the extrudate), as well as the velocity of the extrudate at the exit.

The boundary set for the problem is shown in Figure 1.2: The Boundary Set for the Problem (p. 5), andthe conditions at the boundaries of the domains are:

• inlet: flow inlet, initial volumetric flow rate cm3/s

• die wall: zero velocity

• free surface: free surface

• symmetry 1: symmetry plane

• symmetry 2: symmetry plane

• outlet: flow exit

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.4

ANSYS Polyflow in ANSYS Workbench Tutorial: 3D Extrusion

Page 17: ANSYS Polyflow Tutorial Guide

Figure 1.2: The Boundary Set for the Problem

1.4. Setup and Solution

The following sections describe the setup and solution steps for this tutorial:1.4.1. Preparation1.4.2. Creating a Fluid Flow Analysis System in ANSYS Workbench1.4.3. Preparing the Geometry in ANSYS DesignModeler1.4.4. Meshing the Geometry in the ANSYS Meshing Application1.4.5. Setting Up the CFD Simulation in ANSYS Polydata1.4.6. Solution1.4.7. Postprocessing1.4.8. Exploring Additional Solutions

1.4.1. Preparation

1. Copy the file ext3d-workbench.zip to your working directory. To access this file, begin by pointingyour web browser to

• For Windows:

path\ANSYS Inc\v160\polyflow\polyflow16.0. \help\index.htm

• For Linux:

path/ansys_inc/v160/polyflow/polyflow16.0. /help/index.htm

where path is the directory in which ANSYS Polyflow has been installed and represents the ap-propriate number for the release (for example, 0 for polyflow16.0.0).

5Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 18: ANSYS Polyflow Tutorial Guide

If, for example, you are using Internet Explorer as your browser, select the File > Open... menuitem and click the Browse button to browse through your directories to find the file.

When opened, the file displays the ANSYS Polyflow documentation “home" page. Click the Downloadlink under the ANSYS Polyflow in ANSYS Workbench Tutorial heading, and then copy the ext3d-workbench.zip file that is saved to your computer to your working directory.

Note

This zipped file can also be downloaded from the ANSYS Customer Portal, https://sup-port.ansys.com/training.

2. Unzip ext3d-workbench.zip.

The extracted files include the geometry file ext3d.x_t, the data file polyflow.dat, and asolution_files folder that contains the solution files created during the preparation of the tutorial.

Note

This tutorial is prepared using ANSYS Polyflow on a Windows system. The screen shots andgraphic images that follow may be slightly different than the appearance on your system,depending on the operating system or graphics card.

1.4.2. Creating a Fluid Flow Analysis System in ANSYS Workbench

1. From the Windows Start menu, select Start > All Programs > ANSYS 16.0 > Workbench 16.0 to startANSYS Workbench.

The ANSYS Workbench application window will open, containing the Toolbox on the left and theProject Schematic on the right. The Toolbox lists the various supported analyses and applications,and the Project Schematic provides a space to display the components of the analysis systems youselect.

Note

When you first start ANSYS Workbench, the Getting Started message window is dis-played, offering assistance through the online help for using the application. You cankeep the window open, or close it by clicking the red ‘X’ icon in the upper right corner.If you need to access the online help at any time, use the Help menu, or press the F1key.

2. Create a new fluid flow analysis system by double-clicking the Fluid Flow (Polyflow) option under Ana-lysis Systems in the Toolbox.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.6

ANSYS Polyflow in ANSYS Workbench Tutorial: 3D Extrusion

Page 19: ANSYS Polyflow Tutorial Guide

Figure 1.3: Selecting the Fluid Flow (Polyflow) Analysis System in ANSYS Workbench

Extra

You can also create a new fluid flow analysis system by dragging-and-dropping theanalysis system into the Project Schematic: a green dotted outline will indicate a potentiallocation in the Project Schematic for the new system, which will turn into a red boxwhen you attempt to drop it.

A new ANSYS Polyflow-based fluid flow analysis system will be displayed in the Project Schematic.

7Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 20: ANSYS Polyflow Tutorial Guide

Figure 1.4: ANSYS Workbench with a New ANSYS Polyflow-Based Fluid Flow Analysis System

Note

The ANSYS Polyflow-based fluid flow analysis system is composed of various cells(Geometry, Mesh, and so on) that represent the work flow for performing the analysis.ANSYS Workbench is composed of multiple data-integrated (for example, ANSYS Polyflow)and native applications into a single, seamless project flow, where individual cells canobtain data from and provide data to other cells. ANSYS Workbench provides visual in-dications of a cell’s state at any given time via icons on the right side of each cell. Becauseof the constant flow of data, a cell’s state can quickly change. Brief descriptions of thevarious states are provided below. For more information about cell states, see the ANSYSWorkbench online help.

• Unfulfilled ( ) indicates that required upstream data does not exist. For example, when you firstcreate a new Fluid Flow (Polyflow) analysis system, all cells downstream of the Geometry cell appearas Unfulfilled because you have not yet specified a geometry for the system.

• Refresh Required ( ) indicates that upstream data has changed since the last refresh or update. Forexample, after you assign a geometry to the Geometry cell in your new Fluid Flow (Polyflow) analysissystem, the Mesh cell appears as Refresh Required since the geometry data has not yet been passedfrom the Geometry cell to the Mesh cell.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.8

ANSYS Polyflow in ANSYS Workbench Tutorial: 3D Extrusion

Page 21: ANSYS Polyflow Tutorial Guide

• Attention Required ( ) indicates that the current upstream data has been passed to the cell, however,you must take some action to proceed. For example, after you launch ANSYS Polydata from the Setupcell in a Fluid Flow (Polyflow) analysis system that has a valid mesh, the Setup cell appears as AttentionRequired because additional data must be entered in ANSYS Polydata before you can calculate asolution.

• Update Required ( ) indicates that local data has changed and the output of the cell must be regen-erated. For example, after you launch ANSYS Meshing from the Mesh cell in a Fluid Flow (Polyflow)analysis system that has a valid geometry, the Mesh cell appears as Update Required because theMesh cell has all the data it requires to generate an ANSYS Polyflow mesh file, but the ANSYS Poly-flow mesh file has not yet been generated.

• Up-to-Date ( ) indicates that an update has been performed on the cell and no failures have occurred(or an interactive calculation has been completed successfully). For example, after ANSYS Polyflow finishesperforming the number of necessary solver iterations, the Solution cell appears as Up-to-Date.

• Interrupted ( ) indicates that you have interrupted an update (or stopped an interactive calculation

that is in progress). For example, if you select the stop button ( ) in the Progress Monitor of ANSYSWorkbench at a point where ANSYS Polyflow has generated results but has not yet completed the cal-culation (such as during a transient simulation), then verify the action in the dialog box that opens,ANSYS Polyflow is immediately stopped and the Solution cell appears as Interrupted.

• Input Changes Pending ( ) indicates that the cell is locally up-to-date, but may change when nextupdated as a result of changes made to upstream cells. For example, if you change the Mesh in an Up-to-Date Fluid Flow (Polyflow) analysis system, the Setup cell appears as Refresh Required, and theSolution and Results cells appear as Input Changes Pending.

• Pending ( ) indicates that a batch or asynchronous solution is in progress. This icon will only appearwhen the Solution cell is in background mode.

• Refresh Failed, Refresh Required ( ) indicates that the last attempt to refresh cell input data failed,and so the cell must be refreshed.

• Update Failed, Update Required ( ) indicates that the last attempt to update the cell and calculateoutput data failed, and so the cell must be updated. For example, if you update the Solution cell andthe solver diverges during the calculation, the Solution cell appears as Update Failed, Update Required.

• Update Failed, Attention Required ( ) indicates that the last attempt to update the cell and calculateoutput data failed, and so the cell requires attention.

3. Name the analysis.

a. Double-click the Fluid Flow (Polyflow) label underneath the analysis system.

b. Enter ext3d for the name of the analysis system.

4. Save the project.

a. Select the Save option under the File menu in ANSYS Workbench.

9Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 22: ANSYS Polyflow Tutorial Guide

File → Save

The Save As dialog will open, where you can browse to a specific directory and enter a specificname for the ANSYS Workbench project.

b. In your working directory, enter ext3d-wb as the project File name and click the Save button tosave the project. ANSYS Workbench saves the project with a .wbpj extension, as well as supportingfiles for the project.

5. View the files generated by ANSYS Workbench, by enabling the Files option under the View menu.

View → Files

The Files view is displayed in the Project Schematic.

Figure 1.5: Displaying the Files View after Adding an ANSYS Polyflow-Based Fluid FlowAnalysis System

ANSYS Workbench allows you to easily view the files associated with your project using the Files view.You can see the name and type of file, the ID of the cell the file is associated with, the size of the file,the location of the file, and other information. For more information about the Files view, see the sep-arate Polyflow in Workbench User's Guide and the ANSYS Workbench online help.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.10

ANSYS Polyflow in ANSYS Workbench Tutorial: 3D Extrusion

Page 23: ANSYS Polyflow Tutorial Guide

1.4.3. Preparing the Geometry in ANSYS DesignModeler

In the following steps you will import a previously created geometry file, modify the geometry withANSYS DesignModeler, then review the list of files generated by ANSYS Workbench.

Note

ANSYS DesignModeler is licensed separately from ANSYS Polyflow. If you do not have accessto ANSYS DesignModeler, you can instead import a geometry file that does not need to bemodified, as noted in step 1.c.

1. Import the geometry file.

a. Right-click the Geometry cell in the ext3d fluid flow analysis system (cell A2 in the ANSYS Workbench Project Schematic).

b. Move your pointer over Import Geometry in the context menu that opens, and click Browse....

c. Use the Open dialog box to browse to the folder you unzipped in a previous step, select ext3d.x_t,and click Open.

Note

If you do not have access to ANSYS DesignModeler, select PFL.agdb in the Opendialog box instead, then skip to Meshing the Geometry in the ANSYS Meshing Ap-plication (p. 13).

The state of the Geometry cell becomes Up-to-Date, indicating that there is a geometry now associatedwith the fluid flow analysis system.

2. Start ANSYS DesignModeler.

Double-click the Geometry cell in the ext3d fluid flow analysis system to launch the ANSYSDesignModeler application.

Extra

You can also launch ANSYS DesignModeler by right-clicking the Geometry cell to displaythe context menu then selecting the Edit Geometry... option.

3. Finish importing the geometry file by clicking Generate in the ANSYS DesignModeler toolbar. The geometrywill be displayed in the Graphics window.

11Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 24: ANSYS Polyflow Tutorial Guide

Figure 1.6: The Imported Geometry in the ANSYS DesignModeler Application

Note that the scale at the bottom of the Graphics window can be used to confirm that the overalllength of the domain is 0.6 m.

4. Modify the geometry so that the separate domains ("bodies") are treated as a single entity (a "part"), byperforming the following actions in the Tree Outline.

By uniting the multiple bodies of the geometry into a single part, you will create a conformal meshbetween the separate domains of the bodies.

a. Expand the 2 Parts, 2 Bodies node.

b. Click 1 so that it is highlighted.

c. Hold the Ctrl key and click 2 so that it is highlighted as well.

d. Right-click the highlighted objects and click Form New Part in the menu that opens.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.12

ANSYS Polyflow in ANSYS Workbench Tutorial: 3D Extrusion

Page 25: ANSYS Polyflow Tutorial Guide

The Tree Outline will list the geometry as 1 Part, 2 Bodies.

5. Close ANSYS DesignModeler.

You can simply close the ANSYS DesignModeler application. ANSYS Workbench automatically savesthe geometry and updates the Project Schematic accordingly.

6. View the files generated by ANSYS Workbench, as displayed in the Project Schematic.

Note the addition of the geometry file (PFL.agdb, where PFL indicates a Polyflow-based fluid flowsystem) to the list of files.

1.4.4. Meshing the Geometry in the ANSYS Meshing Application

Now that you have prepared the extrusion geometry, you need to generate a computational meshthroughout the flow volume. In the following steps you will use the ANSYS Meshing application tocreate a mesh for your CFD analysis, then review the list of files generated by ANSYS Workbench.

1. Open the ANSYS Meshing application.

Double-click the Mesh cell in the ext3d fluid flow analysis system (cell A3) to launch the ANSYSMeshing application with the extrusion geometry already loaded.

Extra

You can also right-click the Mesh cell to display the context menu where you can selectthe Edit... option.

13Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 26: ANSYS Polyflow Tutorial Guide

Figure 1.7: The ANSYS Meshing Application with the Extrusion Geometry Loaded

2. Group the faces and create named selections to match the boundary set shown in Figure 1.2: TheBoundary Set for the Problem (p. 5).

a. Rotate the view to get your display similar to that shown in Figure 1.8: Rotated View (p. 15), byholding the center mouse button and moving your pointer in the geometry window. (You can also

manipulate the view by clicking in the ANSYS Meshing toolbar and dragging the model).

Tip

Look at the orientation of the axis triad, , to assist when rotating theview.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.14

ANSYS Polyflow in ANSYS Workbench Tutorial: 3D Extrusion

Page 27: ANSYS Polyflow Tutorial Guide

Figure 1.8: Rotated View

b. Click Mesh under Project/Model in the Outline tree.

Information will be displayed about the mesh in the Details view below the Outline tree view.

Note

Note that since the ANSYS Meshing application automatically detects that you aregoing to perform a CFD fluid flow analysis, CFD is selected from the Physics Pref-erence drop-down list.

c. Select the face that will represent the inlet, as shown highlighted in green in Figure 1.9: Selectingthe Inlet Face (p. 16).

Ensure is enabled in the ANSYS Meshing toolbar, for face selection.

d. Right-click and select the Create Named Selection option (from the menu that opens) to open theSelection Name dialog box.

15Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 28: ANSYS Polyflow Tutorial Guide

Figure 1.9: Selecting the Inlet Face

e. Enter inlet for the name in the Selection Name dialog box, and click OK.

f. Hold down the Ctrl key, select the 2 faces that will represent the zero velocity boundary (as highlightedin green in Figure 1.10: The Zero Velocity Faces Selected (p. 17)), then create a selection named diewall in a manner similar to the previous steps.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.16

ANSYS Polyflow in ANSYS Workbench Tutorial: 3D Extrusion

Page 29: ANSYS Polyflow Tutorial Guide

Figure 1.10: The Zero Velocity Faces Selected

g. Hold down the Ctrl key, select the 2 faces that will represent the free surface boundary (as highlightedin green in Figure 1.11: The Free Surface Faces Selected (p. 18)), and create a selection named freesurface in a manner similar to the previous steps.

17Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 30: ANSYS Polyflow Tutorial Guide

Figure 1.11: The Free Surface Faces Selected

h. Rotate the view to get your display to be similar to that shown in Figure 1.12: Rotated View (p. 18),by holding the center mouse button and moving your pointer in the geometry window.

Figure 1.12: Rotated View

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.18

ANSYS Polyflow in ANSYS Workbench Tutorial: 3D Extrusion

Page 31: ANSYS Polyflow Tutorial Guide

i. Hold down the Ctrl key, select the 2 faces that will represent one of the symmetry boundaries (ashighlighted in green in Figure 1.13: The First Pair of Symmetry Faces Selected (p. 19)), and create aselection named symmetry 1 in a manner similar to the previous steps.

Figure 1.13: The First Pair of Symmetry Faces Selected

j. Hold down the Ctrl key, select the 2 faces that will represent the other of the symmetry boundaries(as highlighted in green in Figure 1.14: The Second Pair of Symmetry Faces Selected (p. 20)), andcreate a selection named symmetry 2 in a manner similar to the previous steps.

19Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 32: ANSYS Polyflow Tutorial Guide

Figure 1.14: The Second Pair of Symmetry Faces Selected

k. Select the face that will represent the flow exit boundary (as highlighted in green in Figure 1.15: TheFlow Exit Face Selected (p. 21)), and create a selection named outlet in a manner similar to theprevious steps.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.20

ANSYS Polyflow in ANSYS Workbench Tutorial: 3D Extrusion

Page 33: ANSYS Polyflow Tutorial Guide

Figure 1.15: The Flow Exit Face Selected

3. Set the appropriate meshing parameters for the ANSYS Meshing application in the Details view.

a. Confirm that Polyflow is selected from the Solver Preference drop-down list under Defaults.

b. Expand the Sizing node to reveal additional sizing parameters.

21Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 34: ANSYS Polyflow Tutorial Guide

c. Select Off from the Use Advanced Size Function drop-down list.

4. Generate the mesh.

a. Right-click Mesh in the Outline tree view, and select Update in the context menu.

The geometry window will display the generated mesh.

Note

Using the Generate Mesh option from the Mesh context menu creates the mesh,but does not actually create the relevant mesh files for the project and is optionalif you already know that the mesh is acceptable. Using the Update option automat-ically generates the mesh and creates the relevant mesh files for your project andupdates the ANSYS Workbench cell that references this mesh.

b. Refine the mesh.

i. Enter 80 for Relevance under Defaults in the Details view.

ii. Right-click Mesh in the Outline tree view, and select Update in the context menu.

The geometry window will display the refined mesh.

Extra

After the mesh is generated, you can view the mesh statistics by expanding the Statisticsnode in the Details view to reveal information about the number of nodes, the numberof elements, and other details.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.22

ANSYS Polyflow in ANSYS Workbench Tutorial: 3D Extrusion

Page 35: ANSYS Polyflow Tutorial Guide

Figure 1.16: The Computational Mesh for the Extrusion Geometry

5. Close the ANSYS Meshing application.

When you close the ANSYS Meshing application, ANSYS Workbench automatically saves the meshand updates the Project Schematic accordingly (the state of the Mesh cell changes from RefreshRequired to Up-to-Date, indicating that there is a mesh now associated with the fluid flow analysissystem).

6. View the files generated by ANSYS Workbench, as displayed in the Project Schematic.

Note the addition of the mesh files (PFL.1.poly and PFL.mshdb) to the list of files. ThePFL.1.poly file was created when you updated the mesh, and the PFL.mshdb file was generatedwhen you closed the ANSYS Meshing application.

23Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 36: ANSYS Polyflow Tutorial Guide

1.4.5. Setting Up the CFD Simulation in ANSYS Polydata

1. Import the data file (polyflow.dat).

The data file you will import has already been set up for a 3D extrusion simulation with a single inletflow rate. For details on how to set up a similar data file in ANSYS Polydata, see 3D Extrusion (p. 149).

a. Right-click the Setup cell in the ext3d fluid flow analysis system, and click Import Polyflow Dat ...in the context menu that opens.

b. Use the Open dialog box to browse to the folder you unzipped in a previous step, select poly-flow.dat, and click Open.

The state of the Setup cell remains Refresh Required, indicating that even though there is adata file now associated with the fluid flow analysis system, you still must perform an update forthe cell.

c. Right-click the Setup cell and click Update in the context menu that opens.

After ANSYS Polydata checks for coherence between the mesh and data files, the state for theSetup cell becomes Up-to-Date. At this point it would be possible to run the ANSYS Polyflow solverfor your simulation; however, for this tutorial you will first modify the data file.

2. View the files generated by ANSYS Workbench, as displayed in the Project Schematic.

Note the addition of the data file (polyflow.dat) to the list of files.

3. Start ANSYS Polydata.

Double-click the Setup cell in the ext3d fluid flow analysis system.

Extra

You can also launch ANSYS Polydata by right-clicking the Setup cell and clicking Edit...in the context menu that opens.

Note

The mesh is automatically loaded and displayed in the Graphics Display window bydefault.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.24

ANSYS Polyflow in ANSYS Workbench Tutorial: 3D Extrusion

Page 37: ANSYS Polyflow Tutorial Guide

Figure 1.17: The ANSYS Polydata Application

4. View the mesh information, in order to verify the unit that should be used for length when definingyour inputs for the simulation.

It is a good practice to always perform this step with new meshes. Polydata and Polyflow do not considerunits when calculating a solution, so it is your responsibility to ensure that you enter values for the ve-locity, material data, and other settings that are consistent with each other and with the mesh.

a. Click the Mesh tab at the bottom of the Polydata window.

b. Click the Info button to open a panel that displays the mesh information.

c. Verify that the Length Unit used to create the mesh was meters and that the dimensions of theBounding Box (which surrounds the mesh) are 0.1 x 0.1 x 0.6.

It is therefore recommended that you use meters for the length unit when specifying the inputs forthe simulation. Note that if you decided that you would rather work with a different length unit,you could scale the mesh using Polyfuse, as described in the Polyflow User's Guide.

25Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 38: ANSYS Polyflow Tutorial Guide

d. Close the panel and click the Menus tab at the bottom of the Polydata window.

5. Modify the data file so that the inlet flow rate is flagged as modifiable in a user-defined template (UDT).

Note

UDTs are considered input parameters by ANSYS Workbench.

a. Select the task that must be modified.

F.E.M. Task 1

b. Select the sub-task of F.E.M. Task 1 to modify.

3D die swell

3D die swell is the name that was given to the sub-task for the flow problem when the data filewas created.

c. Modify the boundary conditions.

Flow boundary conditions

d. Select Inflow along INLET in the Flow boundary conditions menu and click Modify.

e. Click the UPDT button at the top of the ANSYS Polydata application window, to enable templateinputs.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.26

ANSYS Polyflow in ANSYS Workbench Tutorial: 3D Extrusion

Page 39: ANSYS Polyflow Tutorial Guide

f. Click Inflow in the Flow boundary condition along INLET menu.

g. Retain the selections of Automatic and Volumetric flow rate in the Inflow calculation on

INLET menu, and note that the flow rate is already set to 1 x 10-5 (which, since you are using

meters for your length unit, is equal to 10 cm3/s—that is, the initial flow rate proposed inProblem Description (p. 3)). Then click Upper level menu.

h. Click Create a new template entry in the Create template entry menu.

i. Click the UPDT button again at the top of the ANSYS Polydata application window, to disable templateinputs.

j. Click Upper level menu four times to return to the main Polydata menu.

6. Verify the system of units that will be passed to CFD-Post for postprocessing.

It is a good practice to always perform this step before running a new simulation, to ensure consistencywith the mesh and the units you used when defining the velocity, material data, and other settings.

Outputs

a. Note that the Current output(s) in the Outputs menu indicate that CFD-Post is currently selectedas the intended postprocessor.

b. Click Set units for CFD-Post, Ansys Mapper or Iges.

c. Note that meter, kilogram, and second are currently selected for Length, Mass, and Time, respect-ively (which is consistent with the values used in setting up the data file).

d. Click Upper level menu twice to return to the main Polydata menu.

7. Save the data file and close ANSYS Polydata.

Save and exit

a. Click Accept in the Field Management menu.

b. Click Continue in the File Management menu.

A Parameters cell will be added to the ext3d fluid flow analysis system in the ANSYS Workbench Project Schematic (cell A7). Also, a Parameter Set bar will be added below the system with an inboundarrow, indicating that an input parameter has been created.

8. View the files generated by ANSYS Workbench, as displayed in the Project Schematic.

27Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 40: ANSYS Polyflow Tutorial Guide

Note the addition of the template file (templates.upd) to the list of files.

1.4.6. Solution

1. Start ANSYS Polyflow.

In the ANSYS Workbench Project Schematic, right-click the Solution cell in the ext3d fluid flowanalysis system (cell A5), and click Update in the context menu that opens.

The ANSYS Polyflow solver will begin running. When the calculation is complete, the state for theSolution cell becomes Up-to-Date.

2. View the files generated by ANSYS Workbench, as displayed in the Project Schematic.

Note the addition of the listing file (polyflow.lst), the ANSYS Polyflow results file (res), the outputmesh file (res.msh), the CFD-Post file (cfx.res), and the automatically generated probe files (.prb)to the list of files. For more information about ANSYS Polyflow (and the files associated with it), see FilesWritten and Read by ANSYS Polydata and ANSYS Polyflow in the Polyflow User's Guide.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.28

ANSYS Polyflow in ANSYS Workbench Tutorial: 3D Extrusion

Page 41: ANSYS Polyflow Tutorial Guide

1.4.7. Postprocessing

In the following steps you will use ANSYS CFD-Post to view the results of your initial simulation, createan expression that can be used as an output parameter for ANSYS Workbench, then review the list offiles generated by ANSYS Workbench.

1. Start ANSYS CFD-Post.

In the ANSYS Workbench Project Schematic, double-click the Results cell in the ext3d fluid flowanalysis system (cell A6).

Extra

You can also start ANSYS CFD-Post by right-clicking the Results cell and selecting theEdit... option in the context menu that opens.

The ANSYS CFD-Post application will launch with the extrusion geometry already loaded (displayed inoutline mode). Note that ANSYS Polyflow results are also automatically loaded into ANSYS CFD-Post.

Figure 1.18: The Extrusion Geometry Loaded into ANSYS CFD-Post

29Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 42: ANSYS Polyflow Tutorial Guide

2. Obtain the view shown in Figure 1.19: Rotating the View (p. 30).

a. Rotate the view, by holding the center mouse button and moving your pointer in the viewer area.

b. Reduce the magnification of the view by clicking the Zoom icon at the top of the viewer area ( ),holding the left mouse button, and moving your pointer in the viewer area.

Figure 1.19: Rotating the View

3. Display contours of velocity magnitude on the boundaries (Figure 1.20: Contours of Velocity Mag-nitude (p. 33)).

a. Open the Insert Contour dialog box.

Insert → Contour

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.30

ANSYS Polyflow in ANSYS Workbench Tutorial: 3D Extrusion

Page 43: ANSYS Polyflow Tutorial Guide

b. Retain the default entry of Contour 1 for Name and click OK to close the dialog box.

Information about Contour 1 will be displayed in the Details view below the Tree view in ANSYSCFD-Post. The Details view contains all of the settings for a contour object.

c. Open the Location Selector dialog box by clicking the location editor button ( ) next to theLocations drop-down list in the Geometry tab.

31Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 44: ANSYS Polyflow Tutorial Guide

i. Select all of the boundaries listed under ext3d by clicking the first one in the list(PART_1_1_SOL_DIE_WALL), holding the Shift key, and clicking the last one in the list(PART_1_2_SOL_SYMMETRY_2).

ii. Click OK to close the Location Selector dialog box.

d. Select VELOCITIES from the Variable drop-down list.

e. Click Apply.

The velocity is 0 along the die wall (as expected) and there is a fully developed profile at the inlet of thedie. At the die outlet, the velocity profile changes to become constant throughout the extrudate cross-section. The transition between these two states can be seen in the first third of the extrudate.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.32

ANSYS Polyflow in ANSYS Workbench Tutorial: 3D Extrusion

Page 45: ANSYS Polyflow Tutorial Guide

Figure 1.20: Contours of Velocity Magnitude

4. Display contours of velocity in cross-sections (Figure 1.21: Velocity Profiles at cross-sections (p. 38)).

a. Disable Contour 1 under User Locations and Plots in the Outline tab of the Tree view.

33Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 46: ANSYS Polyflow Tutorial Guide

b. Create a cross-section plane at =0.0 m.

i. Select Plane from the Location drop-down menu, located in the toolbar.

ii. Retain the default entry of Plane 1 for Name in the Insert Plane dialog box that opens, andclick OK.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.34

ANSYS Polyflow in ANSYS Workbench Tutorial: 3D Extrusion

Page 47: ANSYS Polyflow Tutorial Guide

Information about Plane 1 will be displayed in the Details view.

iii. Retain the default selection of XY Plane for Method in the Geometry tab of the Details viewfor Plane 1.

iv. Retain the default entry of 0.0 m for Z.

v. Click Apply

c. In a similar manner, create cross-section planes at =0.08 m, 0.15 m, and 0.45 m named Plane 2,Plane 3, and Plane 4 respectively. Note that you will retain the default selection of XY Plane forMethod and enter appropriate values for Z in the Details view.

d. Disable Plane 1, Plane 2, Plane 3, and Plane 4 under User Locations and Plots in the Outline tabof the Tree view, so that the planes are no longer colored gray in the viewer area.

e. Open the Insert Contour dialog box.

Insert → Contour

35Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 48: ANSYS Polyflow Tutorial Guide

f. Retain the default entry of Contour 2 for Name and click OK to close the dialog box.

Information about Contour 2 will be displayed in the Details view below the Tree view.

g. Open the Location Selector dialog box by clicking the location editor button ( ) next to theLocations drop-down list in the Geometry tab.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.36

ANSYS Polyflow in ANSYS Workbench Tutorial: 3D Extrusion

Page 49: ANSYS Polyflow Tutorial Guide

i. Select all of the planes listed under User Locations and Plots by clicking Plane 1, holding theShift key, and clicking Plane 4.

ii. Click OK to close the Location Selector dialog box.

h. Select VELOCITIES from the Variable drop-down list.

i. Click Apply.

Velocity profiles at the flow inlet, the flow outlet, and planes just before and just after the die exit aredisplayed. Compare the velocity profile within the die to the velocity profile just after the die exit at theend of the computational domain. In the die the flow is fully developed. The velocity profile is flat (thatis, all the particles in the cross-section are at the same velocity) in the extrudate, far away from the dieexit. In the transitional zone just beyond the die exit, the velocity profile is reorganized. The velocityprofile on the plane =0.15 m is no longer fully developed, but it is not yet flat either. The velocity re-arrangement is the source of the deformation of the extrudate.

37Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 50: ANSYS Polyflow Tutorial Guide

Figure 1.21: Velocity Profiles at cross-sections

5. Create an expression for the maximum velocity at the flow exit, which can be used as an output parameterin ANSYS Workbench.

a. Click the Expressions tab in the Tree view.

b. Right-click anywhere in the Expressions tab and click New in the menu that opens to create a newexpression.

The New Expression dialog box will open.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.38

ANSYS Polyflow in ANSYS Workbench Tutorial: 3D Extrusion

Page 51: ANSYS Polyflow Tutorial Guide

i. Enter maxvelocity for Name.

ii. Click OK to close the New Expression dialog box.

c. Right-click in the Definition tab of the Details view, move your pointer over Functions, move yourpointer over CFD-Post, and click maxVal, to specify that the function in the expression obtains themaximum value.

d. Make sure that the cursor is between the parentheses of maxVal()@, right-click in the Details viewagain, move your pointer over Variables, and click VELOCITIES, to specify that the variables obtainedin the expression are velocities.

39Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 52: ANSYS Polyflow Tutorial Guide

e. Move the cursor so that it is after the @ symbol of maxVal (VELOCITIES)@, right-click in the Detailsview again, move your pointer over Locations, and click PART_1_2_SOL_OUTLET, to specify thatthe variables are obtained for the expression at the flow exit.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.40

ANSYS Polyflow in ANSYS Workbench Tutorial: 3D Extrusion

Page 53: ANSYS Polyflow Tutorial Guide

f. Click Apply.

The expression in the Definition tab of the Details view will be defined as maxVal (VELOCITIES)@

PART_1_2_SOL_OUTLET with a Value of approximately 7.8 x 10-4 m/s, and maxvelocity willbe added to the list in the Expressions tab of the Tree view, as shown in Figure 1.22: Creating anExpression for an Output Parameter (p. 42).

41Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 54: ANSYS Polyflow Tutorial Guide

Figure 1.22: Creating an Expression for an Output Parameter

g. Right-click maxvelocity in the Expressions tab of the Tree view and select Use as WorkbenchOutput Parameter in the context menu that opens.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.42

ANSYS Polyflow in ANSYS Workbench Tutorial: 3D Extrusion

Page 55: ANSYS Polyflow Tutorial Guide

An outbound arrow will be added from the Parameters cell to the Parameter Set bar in theProject Schematic, indicating that an output parameter has been created.

6. Close the ANSYS CFD-Post application.

Note

Note that the ANSYS CFD-Post state files are automatically saved when you exit ANSYSCFD-Post and return to ANSYS Workbench.

7. Save the ext3d-wb project in ANSYS Workbench.

File → Save

8. View the files generated by ANSYS Workbench, as displayed in the Project Schematic.

43Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 56: ANSYS Polyflow Tutorial Guide

Figure 1.23: Displaying the Files View after Viewing Results in ANSYS CFD-Post

Note the addition of the ANSYS CFD-Post state file (ext3d.cst) to the list of files. For more informationabout ANSYS CFD-Post (and the files associated with it), see the ANSYS CFD-Post documentation.

1.4.8. Exploring Additional Solutions

At this point you have run the simulation with an initial inlet flow rate. In the following steps you willcreate multiple design points for various inlet flow rates, solve them with a single action, then reviewthe list of files generated by ANSYS Workbench.

Note

ANSYS DesignXplorer is licensed separately from ANSYS Polyflow. If you do not have accessto ANSYS DesignXplorer, you will not be able to perform some of the steps that follow, suchas computing multiple design points or plotting results in a chart.

1. Open the Parameters Set tab, which contains the Parameters and Design Points view (Figure 1.24: TheParameters and Design Points View (p. 45)).

In the ANSYS Workbench Project Schematic, double-click the Parameter Set bar below the ext3dfluid flow analysis system.

Extra

You can also open the Parameters and Design Points view by right-clicking the Para-meter Set bar and selecting the Edit... option in the context menu that opens.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.44

ANSYS Polyflow in ANSYS Workbench Tutorial: 3D Extrusion

Page 57: ANSYS Polyflow Tutorial Guide

Figure 1.24: The Parameters and Design Points View

If you do not see the panes shown in the previous figure, make them visible by enabling Outline,Properties, Table, and Chart from the View menu.

2. Run the calculation again with a new inlet flow rate for the current design point.

a. Enter 8E-6 under P1 - flow rate for the DP0 (Current) design point (cell B3) in the Table ofDesign Points.

An Update Required icon will be added to the cell under P2- maxvelocity for the DP0 (Current)design point (cell C3).

b. Right-click the cell under P2 - maxvelocity for the DP0 (Current) design point and select UpdateSelected Design Points in the context menu that opens, to generate the maximum velocity at theflow exit with the revised inlet flow rate.

Extra

You can also update the design point by clicking Update All Design Points in theANSYS Workbench toolbar.

45Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 58: ANSYS Polyflow Tutorial Guide

A dialog box may open to inform you that some open editors may close during this process. ClickOK to proceed.

ANSYS Polydata will update the data file based on the revised inlet flow rate and ANSYS Polyflow willrun again. When the calculation is complete, the Table of Design Points will display a new value of

approximately 6.2 x 10-4 m/s under P2 - maxvelocity for the DP0 (Current) design point.

3. Create a chart for the updated current design point.

a. Click P1 under Input Parameters (cell A4) in the Outline of All Parameters.

The ANSYS Workbench Toolbox will display options for Parameter Charts.

b. Double-click Parameters Chart P1 vs ? in the Toolbox to open the Properties of Outline A11:0window at the bottom of the Parameters Set tab.

The Properties of Outline A11:0 window will display an initial setup for Parameter Chart 0,in which P1 - flow rate is selected from the X-Axis (Bottom) drop-down list.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.46

ANSYS Polyflow in ANSYS Workbench Tutorial: 3D Extrusion

Page 59: ANSYS Polyflow Tutorial Guide

c. Select P2 - maxvelocity from the Y-Axis (Left) drop-down list in the Properties of Outline A11:0window.

The current design point will be plotted in Parameter Chart 0 (Figure 1.25: The Chart of the CurrentDesign Point (p. 47)).

Figure 1.25: The Chart of the Current Design Point

4. Create more design points for a range of inlet flow rates.

a. Enter 1E-5 for P1 - flow rate in the row beneath the DP0 (Current) design point (cell B*) inthe Table of Design Points, so that a new row is added (4) with DP 1 as the Name.

47Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 60: ANSYS Polyflow Tutorial Guide

b. In a similar manner, create additional design points DP 2 and DP 3 with a P1 - flow rate of1.1E-5 and 1.2E-5, respectively.

Extra

By default, Workbench only saves the calculated data for the design point in therow labeled Current. You can specify that the data generated for any other designpoints is saved within the project by enabling the Retain option in column D. Afterthe design points are updated, you can then right-click a design point in the Tableof Design Points and select Set as Current to access the data.

5. Generate the values for the maximum velocity at the flow exit for all of the new design points.

Click Update All Design Points in the ANSYS Workbench toolbar.

ANSYS Polydata will update and ANSYS Polyflow will run repeatedly to solve for each of the designpoints. As each calculation completes, the Table of Design Points (Figure 1.26: Displaying Values forAll of the Design Points (p. 48)) and Parameter Chart 0 (Figure 1.27: The Chart of All of the DesignPoints (p. 49)) will be updated.

Figure 1.26: Displaying Values for All of the Design Points

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.48

ANSYS Polyflow in ANSYS Workbench Tutorial: 3D Extrusion

Page 61: ANSYS Polyflow Tutorial Guide

Figure 1.27: The Chart of All of the Design Points

6. Save the ext3d-wb project in ANSYS Workbench.

File → Save

7. Return to the Project Schematic view by clicking the Project tab above the ANSYS Workbench toolbar.

8. View the files generated by ANSYS Workbench, as displayed in the Project Schematic.

Figure 1.28: Displaying the Files View after Exploring Solutions

Note that the list of files shows that the design point file (designPoint.wbdp) was updated. Formore information about the files associated with ANSYS Workbench, see the ANSYS Workbench docu-mentation.

1.5. Summary

In this tutorial, portions of ANSYS Workbench were used to simulate a 3D extrusion and to comparethe flow exit velocities associated with a range of inlet flow rates.

ANSYS DesignModeler was used to prepare the geometry, ANSYS Meshing was used to create a compu-tational mesh, ANSYS Polydata was used to set up the simulation, ANSYS Polyflow was used to calculatethe fluid flow throughout the geometry using the computational mesh, and CFD-Post was used to

49Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Summary

Page 62: ANSYS Polyflow Tutorial Guide

analyze the results. In addition, the Parameters and Design Points view of ANSYS Workbench wasused to add additional design points and compare their associated flow exit velocities on a chart.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.50

ANSYS Polyflow in ANSYS Workbench Tutorial: 3D Extrusion

Page 63: ANSYS Polyflow Tutorial Guide

Part II: Extrusion

The following extrusion tutorials are available:

1. 2.5D Axisymmetric Extrusion2. Fluid Flow and Conjugate Heat Transfer3. Non-Isothermal Flow Through a Cooled Die4. 3D Extrusion5. Direct Extrusion6. Inverse Extrusion7. Flow of Two Immiscible Fluids8. Flow of Two Immiscible Fluids by Species Method

Page 64: ANSYS Polyflow Tutorial Guide
Page 65: ANSYS Polyflow Tutorial Guide

Chapter 1: 2.5D Axisymmetric Extrusion

This tutorial is divided into the following sections:1.1. Introduction1.2. Prerequisites1.3. Problem Description1.4. Preparation1.5. Setup and Solution1.6. Summary

1.1. Introduction

This tutorial illustrates the setup and solution of a 2.5D axisymmetric extrusion problem. The problemcorresponds to a simplified 2D simulation of a swirling flow that occurs around the head of an extrusionscrew. The fluid is forced through the die and exits the extruder after a short die land. The model involvesa free surface, the position of which is unknown.

In this tutorial you will learn how to:

• Create a project in ANSYS Workbench.

• Start Polydata from ANSYS Workbench.

• Create a new task.

• Create a sub-task.

• Set material properties and boundary conditions for a 2.5D axisymmetric extrusion problem.

• Select a remeshing method.

• Specify output for CFD-Post.

1.2. Prerequisites

This tutorial assumes that you have little experience with Polyflow and its associated modules.

1.3. Problem Description

The problem to be considered is shown schematically in Figure 1.1: Problem Schematic (p. 54). The

fluid enters the domain at a flow rate of 10 cm3/s. The screw rotates at an angular velocity of 2 rad/s.In the upper part of the domain, a free surface is used to model the extrudate going out of the extrusiondie. The position of the free surface is unknown. A portion of the mesh is affected by this unknownboundary. A remeshing technique will be applied on this part of the mesh.

53Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Page 66: ANSYS Polyflow Tutorial Guide

Figure 1.1: Problem Schematic

Since the problem involves a free surface, the domain is divided into two subdomains: one for the regionnear the free surface and the other for the rest of the domain, as shown in Figure 1.2: Subdomains andBoundary Sets for the Problem (p. 55)

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.54

2.5D Axisymmetric Extrusion

Page 67: ANSYS Polyflow Tutorial Guide

Figure 1.2: Subdomains and Boundary Sets for the Problem

The boundary sets for the problem are also shown in Figure 1.2: Subdomains and Boundary Sets for theProblem (p. 55), and the conditions at the boundaries of the domains are:

• BS1: flow inlet

• BS2: outer wall

• BS3: free surface

• BS4: flow exit

• BS5: symmetry axis

55Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Problem Description

Page 68: ANSYS Polyflow Tutorial Guide

• BS6: rotating screw

1.4. Preparation

To prepare for running this tutorial:

1. Prepare a working folder for your simulation.

2. Go to the ANSYS Customer Portal, https://support.ansys.com/training.

Note

If you do not have a User Name and Password, you can register by clicking CustomerRegistration on the Log In page.

3. Enter the name of this tutorial into the search bar.

4. Narrow the results by using the filter on the left side of the page.

a. Click ANSYS Polyflow under Product.

b. Click 16.0 under Version.

5. Select this tutorial from the list.

6. Click Files to download the input and solution files.

7. Unzip the 25-Axi-Extrusion_R160.zip file you have downloaded to your working folder.

The mesh file ext2d.msh can be found in the unzipped folder.

8. Start Workbench from Start > All Programs > ANSYS 16.0 > Workbench 16.0.

1.5. Setup and Solution

The following sections describe the setup and solution steps for this tutorial:1.5.1. Project and Mesh1.5.2. Define a Task1.5.3. Material Data1.5.4. Boundary Conditions1.5.5. Remeshing1.5.6. Stream Function1.5.7. Outputs1.5.8. Save and Exit Polydata1.5.9. Solution1.5.10. Postprocessing

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.56

2.5D Axisymmetric Extrusion

Page 69: ANSYS Polyflow Tutorial Guide

1.5.1. Project and Mesh

Note

If you create the mesh in GAMBIT or a third-party CAD package, you need to convert it beforeyou read it into Polydata. In this tutorial, the mesh file has already been converted. So youcan read the mesh file directly into Polydata.

1. Create a Fluid Flow (Polyflow) analysis system by drag and drop in ANSYS Workbench.

a. Rename the project name to Tutorial 1 by double-clicking and editing the text Fluid Flow (Poly-flow).

b. Save the ANSYS Workbench project using File → Save.

c. Enter 2.5-axi-extrusion as the name of the ANSYS Workbench project.

This will create a 2.5-axi-extrusion.wbpj file and a folder named 2.5-axi-extru-sion_files in the working directory. To reopen this project in a later ANSYS Workbench session,use File → Open.

2. Import the mesh file for the Polydata session.

Right-click the Mesh cell, hover over Import Mesh File… and click Browse....

57Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 70: ANSYS Polyflow Tutorial Guide

a. Select ext2d.msh.

b. Click Open.

3. Double-click the Setup cell to start Polydata and read in the mesh. When Polydata starts, the Create a newtask menu item appears in bold text, and the geometry for the problem is displayed in the Graphics Displaywindow.

Note

At this point (when Create a new task appears in bold text) if you realize that you haveread the wrong mesh file, click STOP at the top of the Polydata menu and repeat theprocess to access the correct mesh file.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.58

2.5D Axisymmetric Extrusion

Page 71: ANSYS Polyflow Tutorial Guide

1.5.2. Define a Task

In the following steps you will first define a new task representing the 2.5D axisymmetric steady-state model.Then you will define a sub-task for the isothermal flow calculation.

1. Create a task for the model.

Create a new task

a. Select the following options:

• F.E.M. task

• Steady-state problem(s)

• 2D 1/2 axisymmetric geometry

The Current setup (above the selected options) will be updated to reflect the selection. In anyproblem solved using Polyflow, first an F.E.M. task is defined to calculate the flow field. If inform-ation regarding the trajectories is necessary, specify a MIXING task after solving the problemwith the F.E.M. task specification and obtaining the results file. Then solve the problem onceagain. 3D velocity components (u,v,w) are prescribed in a 2D cylindrical reference frame (r,z), so2D 1/2 axisymmetric geometry has been chosen. A steady-state condition is assumed for thisproblem.

b. Click Accept the current setup.

59Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 72: ANSYS Polyflow Tutorial Guide

The Create a sub-task menu item appears in bold text.

Note

At this point (when Create a sub-task appears in bold text) if you realize that youhave made a mistake in the creation of the task and you need to return to that menu,do the following:

i. Click Upper level menu to return to the top-level Polydata menu.

ii. Select Redefine global parameters of a task and make the necessary changes.

iii. Click Accept the current setup when you are satisfied with the corrected settings.

iv. Select F.E.M. Task 1.

2. Create a sub-task for the isothermal flow.

Create a sub-task

a. Select Generalized Newtonian isothermal flow problem.

A small dialog box appears asking for the title of the problem.

b. Enter die swell as the New value and click OK.

The Domain of the sub-task menu item appears in bold text.

Note

At this point (when Domain of the sub-task appears in bold text) if you realize thatyou have made a mistake in the creation of the sub-task and you need to return tothat menu, do the following:

i. Click Upper level menu.

ii. Select Redefine global parameters of a sub-task and make the necessary changes.

iii. Click Upper level menu.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.60

2.5D Axisymmetric Extrusion

Page 73: ANSYS Polyflow Tutorial Guide

iv. Select die swell at the bottom of the existing menu.

The Domain of the sub-task menu item appears in bold text.

3. Define the domain where the sub-task applies.

Since this flow involves a free surface, the domain is divided into two subdomains: one for the regionnear the free surface and the other for the rest of the domain. Here, the sub-task applies to bothsubdomains (the default condition).

Domain of the sub-task

Accept the default selection of both subdomains by clicking Upper level menu.

The Material data menu item appears in bold text.

1.5.3. Material Data

Polydata indicates the material properties that are relevant for your sub-task by dimming the irrelevantproperties. In this case, viscosity, density, inertia terms, and gravity are available for specification. For thismodel, define only the viscosity of the material. Inertia effects are neglected and density is specified onlywhen inertia, gravity, heat convection, or natural convection is taken into account. Since gravitational effectsare not included in the model, the default value of zero is retained for gravity.

Material data

61Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 74: ANSYS Polyflow Tutorial Guide

1. Click Shear-rate dependence of viscosity.

2. Click Cross law.

The viscosity is given by the Cross law:

(1.1)

where:

= zero-shear-rate viscosity = 85000

= natural time = 0.2

= Cross law index = 0.3

= shear rate

3. Specify the value , referred to as “fac” in the graphical user interface (compare the equation at the top

of the Cross law menu to Equation 1.1 (p. 62)).

Modify fac

Enter 85000 [units: poise] as the New value and click OK.

4. Specify the value for , referred to as “tnat” in the graphical user interface.

Modify tnat

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.62

2.5D Axisymmetric Extrusion

Page 75: ANSYS Polyflow Tutorial Guide

Enter 0.2 [units: s] as the New value and click OK.

5. Specify the value for , referred to as “expom” in the graphical user interface.

Modify expom

Enter 0.3 as the New value and click OK.

6. Check whether the values of the constants are correct, and repeat the previous steps if you need tomodify the constants again.

7. Click Upper level menu three times to leave the Material Data specification.

The Flow boundary conditions menu item appears in bold text.

1.5.4. Boundary Conditions

The following steps will show you how to set the conditions at each of the boundaries of the domain.When a boundary set is selected, its location appears in bold text in red in the graphics window.

Flow boundary conditions

63Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 76: ANSYS Polyflow Tutorial Guide

1. Set the conditions at the flow inlet (BS_1).

a. Select Zero wall velocity (vn=vs=0) along BS_1 and click Modify.

b. Click Inflow.

c. Click Modify volumetric flow rate.

Polydata prompts you for the volumetric flow rate.

d. Enter 10 [units: cm3/s] as the New value and click OK.

e. Select Automatic and click Upper level menu.

When the Automatic option is selected, Polydata chooses the most appropriate method to computethe inflow. In this case, Polydata will use a 1D finite-element technique to compute a 1D fully-developed

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.64

2.5D Axisymmetric Extrusion

Page 77: ANSYS Polyflow Tutorial Guide

velocity profile, based on the specified material properties and flow rate. Moreover, the inflowboundary condition requires that the computational domain be built in such a way that the basicassumptions of fully-developed flow are satisfied. In axisymmetric geometries, the inflow section mustbe perpendicular to the axial direction.

2. Set the conditions at the outer wall (BS_2).

The fluid is assumed to stick to the wall, since at a solid-liquid interface the velocity of the liquid is thatof the solid surface. This is commonly known as the no-slip assumption because the liquid is assumedto adhere to the wall, and therefore has no velocity relative to the wall.

Retain the default condition Zero wall velocity (vn=vs=0) along BS_2.

3. Set the conditions at the free surface (BS_3).

In a steady-state problem, the velocity field must be tangential to a free surface, since no fluidparticles go out of the domain through the free surface. This constraint is called the kinematiccondition, = 0. This equation requires an initial condition at the starting point of the free surface,which in this case is located at the intersection of BS_2 and BS_3.

a. Select Zero wall velocity (vn=vs=0) along BS_3 and click Modify.

b. Click Free surface.

c. Click Boundary conditions on the moving surface.

Note

Do not select the Outlet option. It is only applicable for die design problems.

d. Select No condition along BS_2 and click Modify.

As mentioned above, the starting point of the free surface is at the intersection of BS_2 and BS_3.

e. Click Position imposed.

f. Click Upper level menu.

g. Click Upper level menu to return to the Kinematic condition menu.

h. Retain the default settings for the Normal force and Direction of motion.

i. Click Upwinding in the kinematic equation.

j. Click Upper level menu to return to the Flow boundary conditions menu.

4. Set the conditions at the flow exit (BS_4).

It is reasonable to consider that a uniform velocity profile is obtained at the exit. In most cases, a bulkflow is obtained and thus no force is acting, so the selection of zero normal and tangential forces is ap-propriate. In situations involving pulling velocity or force or gravity, the corresponding boundary conditionshould be selected.

a. Select Zero wall velocity (vn=vs=0) along BS_4 and click Modify.

65Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 78: ANSYS Polyflow Tutorial Guide

b. Click Normal and tangential forces imposed (fn, fs).

c. Accept the default value of 0 for the normal force by clicking Upper level menu.

d. Accept the default value of 0 for the tangential force by clicking Upper level menu.

e. Click No when prompted to confirm that the rotational velocity ( ) is 0.

The rotational force is 0, not the rotational velocity.

f. Click 'w' force imposed.

g. Select 'w' force = constant.

h. Accept the default value of 0 by clicking OK.

i. Click Yes to confirm that the rotational force is 0.

5. Retain the default condition at the symmetry axis (Axis of symmetry along BS_5).

For axisymmetric models, the axis of symmetry is always the y axis. Polydata determines the axis ofsymmetry from the mesh file, and automatically imposes the symmetry condition along the line r=0(x=0).

6. Set the conditions at the boundary of the rotating screw (BS_6).

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.66

2.5D Axisymmetric Extrusion

Page 79: ANSYS Polyflow Tutorial Guide

Since the screw is rotating with angular velocity = 2 = 6.2832 rad/s, the rotational velocity alongthis boundary is prescribed to increase linearly with ( = 6.2832 ). In the equation for , X denotesthe direction and Y denotes the direction. Since the fluid sticks to the wall, = 0 = .

a. Select Zero wall velocity (vn=vs=0) along BS_6 and click Modify.

b. Click Normal and tangential velocities imposed (vn,vs).

c. Accept the default value of 0 for the normal velocity ( ) and tangential velocity ( ) by selecting Upperlevel menu twice.

d. Click No when prompted to confirm that the rotational velocity ( ) is 0.

e. Click Velocity w imposed and select 'w' velocity = linear function of coordinates.

f. Accept the default value of 0 [units: cm/s] for the constant A by clicking OK.

67Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 80: ANSYS Polyflow Tutorial Guide

g. Enter 6.2832 [units: rad/s] as the New value for the constant B and click OK.

h. Accept the default value of 0 [units: rad/s] for the constant C by clicking OK.

i. Click Yes to confirm the "w" velocity equation.

j. Click Upper level menu at the top of the Flow boundary conditions menu.

The Global remeshing menu item appears in bold text.

1.5.5. Remeshing

This model involves a free surface for which the position is unknown. A portion of the mesh is affected bythis unknown boundary. Hence a remeshing technique is applied on this part of the mesh. The free surfaceis entirely contained within subdomain 2, and hence only subdomain 2 will be affected by the relocation ofthe free surface.

Global remeshing

1. Specify the region where the remeshing is to be performed (SD_2).

In some cases, when the mesh is geometrically complex, it may be necessary to split it into additionalsubdomains in order to define a specific remeshing method on each of them. For this purpose, Polydataallows you to create several local remeshings. For the current problem, a single local remeshing is sufficient.

1-st local remeshing

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.68

2.5D Axisymmetric Extrusion

Page 81: ANSYS Polyflow Tutorial Guide

a. Select SD_1 and click Remove.

SD_1 is moved from the top list to the bottom list, indicating that only SD_2 will be remeshed.

If you accidentally remove the wrong subdomain, select it and click Add to restore it. Then, followthe instructions to remove the correct subdomain.

69Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 82: ANSYS Polyflow Tutorial Guide

b. Click Upper level menu.

The Method of Spines menu item appears in bold text.

2. Define the parameters for the system of spines.

The purpose of the remeshing technique is to relocate internal nodes according to the displacement ofboundary nodes due to the motion of the free surface. Mesh nodes are organized along lines ofremeshing (spines), which are collections of nodes logically arranged in a one-dimensional manner. Thistechnique is most suited for 2D extrusion problems. Polydata requires the specification of the first andlast spines that the fluid encounters (inlet of spines and outlet of spines, respectively).

In this case, the inlet of spines is the intersection of subdomain 2 with subdomain 1, and the outlet ofspines is the intersection of subdomain 2 with the flow exit (boundary 4).

Method of Spines

a. Specify the inlet for the system of spines.

Select Intersection with SD_1 and click Confirm.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.70

2.5D Axisymmetric Extrusion

Page 83: ANSYS Polyflow Tutorial Guide

b. Specify the outlet for the system of spines.

Select Intersection with BS_4 and click Confirm.

c. Click Upper level menu twice.

At this point, if you realize that you have made a mistake in global remeshing, click die swell at thebottom of the menu and perform this Step again.

1.5.6. Stream Function

Once the velocity field is known, Polyflow calculates the stream function automatically. This calculation requiresyou to specify the point where the stream function vanishes. Polydata imposes a vanishing value at thenodal point closest to the specified position.

Assign the stream function

1. Select Condition on the stream function for field 1. Click No in the window that pops up.

71Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 84: ANSYS Polyflow Tutorial Guide

2. Enter 5 [units: cm] as the New value of X.

3. Retain the default value of 0 [units: cm] for Y.

4. Click Upper level menu twice.

If you have made a mistake in assigning the stream function, click F.E.M. Task 1 to get into that menuand then repeat this Step.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.72

2.5D Axisymmetric Extrusion

Page 85: ANSYS Polyflow Tutorial Guide

1.5.7. Outputs

After Polyflow calculates a solution, it can save the results in several different formats. Choose the formatthat is appropriate for your postprocessor. In this case, save the outputs in the default format for ANSYSCFD-Post.

Outputs

1. Select Listing: max.

2. Accept the default output option for CFD-Post by clicking Upper level menu.

When exiting the menu, Polydata asks you to confirm the current system units and fields that are to besaved to the results file for postprocessing.

3. Specify the system of units for the simulation.

a. Click Modify system of units.

b. Select Set to metric_cm/g/s/A+Celsius.

c. Click Upper level menu twice.

If you do not enter the menu Outputs, Polydata will ask you to confirm the current system units atthe end of the session, if it is a new session.

1.5.8. Save and Exit Polydata

Save and exit.

If this was not yet done before (see above), Polydata asks you to confirm the current system units. It willalso ask to confirm fields that are to be saved to the results file for postprocessing.

73Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 86: ANSYS Polyflow Tutorial Guide

1. Click Accept.

This confirms that the default Current field(s) are correct.

2. Click Continue.

This accepts the default names for graphical output files (cfx.res) that are to be saved for postpro-cessing, and for the Polyflow format results file (res).

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.74

2.5D Axisymmetric Extrusion

Page 87: ANSYS Polyflow Tutorial Guide

1.5.9. Solution

Run Polyflow to calculate a solution for the model you just defined using Polydata.

1. Run Polyflow by right-clicking the Solution cell of the simulation and selecting Update from the shortcutmenu.

This executes Polyflow using the data file as standard input, and writes information about the problemdescription, calculations, and convergence to a listing file (polyflow.lst).

2. Check for convergence in the listing file.

a. Right-click the Solution cell and select Listing Viewer….

ANSYS Workbench opens the View listing file dialog box, which displays the listing file.

b. In the View listing file dialog box, disable the Show only last 200 lines option and click the Manualrefresh button. Then find the SOLVER section that relates to F.E.M. Task 1; at the end of thissection, a message Convergence assumed is displayed. This indicates that the solution has con-verged. See the Polyflow User's Guide for more information on convergence.

1.5.10. Postprocessing

ANSYS CFD-Post has similar interfaces for UNIX and Windows, the postprocessing steps are illustrated forWindows.

1. Double-click the Results cell in the ANSYS Workbench analysis and read the results files saved by Polyflow.

75Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 88: ANSYS Polyflow Tutorial Guide

ANSYS CFD-Post reads the solution fields that were saved to the results file.

2. Align the view.

a. Right-click a blank area anywhere in the graphical window, hover over Predefined Camera in thecontext menu, and select View From +Z.

The central mouse button allows you to zoom in and zoom out. The left mouse button allows rotatingthe image. The right mouse button allows you zoom to an area.

b. Also, right-click a blank area anywhere in the graphical window and deselect Ruler, if needed.

3. Display contours of pressure.

a. Click the Insert menu and select Contour or click the Contour button ( ).

b. Click OK to accept the default name (Contour 1) and open the details view below the Outline tab.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.76

2.5D Axisymmetric Extrusion

Page 89: ANSYS Polyflow Tutorial Guide

c. In the details view for Contour 1, specify the following settings under Geometry:

i. Next to Locations, click the ellipsis button ( ) on the right and select SD_1_surf and SD_2_surf(use Ctrl to select multiple items).

Click OK to close the Location Selector dialog box.

ii. Select PRESSURE from the Variable drop-down list, or click the ellipsis button ( ) on the rightand select PRESSURE.

iii. Click Apply.

77Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 90: ANSYS Polyflow Tutorial Guide

Figure 1.3: Contours of Static Pressure

d. Rotate about the Y axis to view a true cross-section of the results.

i. Double-click Default Transform in the Outline tab.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.78

2.5D Axisymmetric Extrusion

Page 91: ANSYS Polyflow Tutorial Guide

The details view of Default Transform will open below the Outline tab.

ii. In the details view of Default Transform, disable Instancing Info From Domain.

iii. Increase Number of Graphical Instances to 2.

iv. Select Y from the Axis drop-down list in the Axis Definition group box.

v. Decrease the Number of Passages to 2 in the Instance Definition group box.

vi. Retain the rest of the default settings.

vii. Click Apply.

79Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 92: ANSYS Polyflow Tutorial Guide

e. Annotate the display.

i. Click the Insert menu and select Text or click the button.

ii. Click OK to accept the default name (Text 1) and open the details view below the Outline tab.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.80

2.5D Axisymmetric Extrusion

Page 93: ANSYS Polyflow Tutorial Guide

iii. Enter Polyflow Results for Text String in the Definition tab of the details view.

iv. In the Location tab, select Top for Y Justification.

v. Possibly check the Appearance tab.

vi. Click Apply.

81Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 94: ANSYS Polyflow Tutorial Guide

Figure 1.4: Contours of Static Pressure after Applying Rotation

4. Display velocity vectors.

a. Deselect Contour 1.

b. Click the Insert menu and select Vector or click the Vector button ( ).

c. Click OK to accept the default name (Vector 1) and open the details view below the Outline tab.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.82

2.5D Axisymmetric Extrusion

Page 95: ANSYS Polyflow Tutorial Guide

d. Perform the following steps in the details view of Vector 1:

i. In the Geometry tab, click the ellipsis button ( ) next to Locations, select SD_1_surf andSD_2_surf (use Ctrl to select multiple items), and click OK.

ii. Select VELOCITIES from the Variable drop-down list, or click the ellipsis button ( ) on the rightand select VELOCITIES.

iii. Click Apply.

iv. Define the attributes of vectors: in the Symbol tab, set Symbol to Arrow3D and Symbol Size to3.

v. Click Apply.

e. Remove the annotation.

i. Deselect Text 1 in the Outline tab, under User locations and plots.

83Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 96: ANSYS Polyflow Tutorial Guide

Figure 1.5: Velocity Vectors

f. Modify the view to better visualize the velocity vectors.

i. Rotate to the isometric view by clicking the cyan-blue dot in the axis triad (bottom right of thegraphics window).

This allows you to better visualize the magnitude of the velocity vectors.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.84

2.5D Axisymmetric Extrusion

Page 97: ANSYS Polyflow Tutorial Guide

ii. Enable Normalize Symbols in the Symbol tab of the details view for Vector 1.

This allows you to better visualize the direction of the velocity vectors.

85Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 98: ANSYS Polyflow Tutorial Guide

The velocity vectors take all components of the velocity into account. Along the screw tip, therotational component is important, leading to long vectors that are not in the xy plane. After thedie exit, a rearrangement of the velocity field takes place. The flow slows down along the axis ofsymmetry and accelerates on the outside. This makes the particles go toward the free surface,creating the swelling.

g. Display the mesh.

i. In the Outline tab, select SD_1_surf and double-click.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.86

2.5D Axisymmetric Extrusion

Page 99: ANSYS Polyflow Tutorial Guide

ii. Under Render tab, deselect Show Faces and select Show Mesh Lines.

iii. Under Color tab, click the ellipsis ( ), select the color white and click OK.

iv. Click Apply.

v. Repeat operations (i) to (iii) for SD_2_surf.

h. Make the mesh lines more visible.

i. Double-click Vector 1 under User Locations and Plots in the Outline tab.

ii. Under the Symbol tab, deselect Normalize Symbols.

iii. Click Apply.

i. Right-click a blank area in the graphics window, hover over Predefined Camera in the context menu,and select View from +Z.

87Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 100: ANSYS Polyflow Tutorial Guide

Figure 1.6: Velocity Vectors with Mesh

j. Rotate the whole figure.

i. Move the mouse to the left-hand border of the graphic window until the cursor suggests a rotationalong a vertical line.

ii. Click and move the mouse slowly to the right-hand side.

1.6. Summary

This tutorial demonstrated how to set up and solve a 2.5D axisymmetric extrusion problem. It showedhow to set up a free surface problem and the associated remeshing, and demonstrated the use of CFD-Post to examine the flow behavior associated with the problem.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.88

2.5D Axisymmetric Extrusion

Page 101: ANSYS Polyflow Tutorial Guide

Chapter 2: Fluid Flow and Conjugate Heat Transfer

This tutorial is divided into the following sections:2.1. Introduction2.2. Prerequisites2.3. Problem Description2.4. Setup and Solution2.5. Summary

2.1. Introduction

This tutorial illustrates the setup and solution of a problem involving heat transfer between a Newtonianfluid and a cooled circular die. Along with a good die design, rheological and thermo physical propertiesof the melt and the thermal settings in the die are very important in obtaining a geometrically well-defined polymer product. The heat transfer calculation is important when temperature-sensitive polymersare shaped and when product surface qualities are of critical importance. The temperature field at thedie exit influences the swelling and drawing behavior of the product.

In this tutorial, you will solve the non-isothermal flow problem for the fluid and the heat conductionin the die, making some assumptions regarding the rheological and thermo physical properties of themelt.

In this tutorial you will learn how to:

• Start Polydata from Workbench.

• Create a new task.

• Create multiple sub-tasks.

• Define a Newtonian non-isothermal flow problem.

• Define a Heat conduction problem.

• Set material properties and boundary conditions for a fluid-solid heat conduction and flow problem.

2.2. Prerequisites

This tutorial assumes that you are familiar with the menu structure in Polydata and Workbench andthat you have solved or read 2.5D Axisymmetric Extrusion (p. 53). Some steps in the set up procedurewill not be shown explicitly.

2.3. Problem Description

This tutorial examines the coupled problem of non-isothermal flow of a Newtonian fluid and heatconduction in an axisymmetric steel die. As shown in Figure 2.1: A Schematic Diagram of the Fluid andthe Circular Die (p. 90), the melt enters the domain at a fixed temperature and a given flow rate of

89Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Page 102: ANSYS Polyflow Tutorial Guide

= 180˚C and =0.6e−06 m3/s, respectively. The problem involves flow, heat transfer by conductionand convection, and heat generation by viscous dissipation. Energy, momentum, and incompressibilityequations are solved in the fluid domain. The energy equation for heat conduction is solved in thesolid domain.

To solve the coupled problem, two sub-tasks are defined: one for the fluid (sub-task 1) and the otherfor the solid (sub-task 2). Each sub-task will contain a particular model, domain of definition, materialproperties, and boundary conditions, including interface conditions with the other sub-task. The sub-tasks are coupled, because the global solution of the problem depends on the values of the solutionvariables at the intersection of the fluid and solid domains.

Figure 2.1: A Schematic Diagram of the Fluid and the Circular Die

The material properties for the fluid are as follows:

• = density (950 kg/m3)

• = Newtonian viscosity (2500 Pa•s)

• = heat capacity per unit mass (2300 J/kg-˚C)

• = thermal conductivity (0.5 W/m-˚C)

Viscous heating is taken into account. For the solid region, the thermal conductivity is 35 W/m-˚C.

The boundary sets for the problem are shown in Figure 2.2: Boundaries and Sub-domains (p. 91), andthe conditions at the boundaries of the domains are as follows:

• boundary 1: flow inlet, = 180°C, = 0.6 × 10−6 m3/s

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.90

Fluid Flow and Conjugate Heat Transfer

Page 103: ANSYS Polyflow Tutorial Guide

• intersection of subdomain 1 and subdomain 2: interface

• boundary 2: insulated

• boundary 3: = 100°C

• boundary 4: insulated

• boundary 5: flow exit

• boundary 6: symmetry axis

Figure 2.2: Boundaries and Sub-domains

2.4. Setup and Solution

The following sections describe the setup and solution steps for this tutorial:2.4.1. Preparation2.4.2. Project and Mesh2.4.3. Create a Task for the Model2.4.4. Fluid Sub-Task 12.4.5. Die Sub-Task2.4.6. Save and Exit Polydata2.4.7. Solution2.4.8. Postprocessing

2.4.1. Preparation

To prepare for running this tutorial:

1. Prepare a working folder for your simulation.

91Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 104: ANSYS Polyflow Tutorial Guide

2. Go to the ANSYS Customer Portal, https://support.ansys.com/training.

Note

If you do not have a User Name and Password, you can register by clicking CustomerRegistration on the Log In page.

3. Enter the name of this tutorial into the search bar.

4. Narrow the results by using the filter on the left side of the page.

a. Click ANSYS Polyflow under Product.

b. Click 16.0 under Version.

5. Select this tutorial from the list.

6. Click Files to download the input and solution files.

7. Unzip the Fluid-Solid_R160.zip file you have downloaded to your working folder.

The mesh file flusol.msh can be found in the unzipped folder.

8. Start Workbench from Start > All Programs > ANSYS 16.0 > Workbench 16.0.

2.4.2. Project and Mesh

1. Create a Fluid Flow (Polyflow) analysis system by drag and drop in Workbench.

2. Save the ANSYS Workbench project using File → Save, entering fluid_solid as the name of the project.

3. Import the mesh file (flusol.msh).

4. Double-click the Setup cell to start Polydata.

When Polydata starts, the Create a new task menu item is highlighted, and the geometry for theproblem is displayed in the Graphics Display window.

2.4.3. Create a Task for the Model

The flow problem for the fluid and the heat conduction in the solid is solved in two different sub-tasks.However, the task attributes are the same for both the sub-tasks, so define a single task for the coupledproblem.

1. Create a task for the model.

Create a new task

2. Select the following options:

• F.E.M. task

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.92

Fluid Flow and Conjugate Heat Transfer

Page 105: ANSYS Polyflow Tutorial Guide

• Steady-state problem(s)

• 2D axisymmetric geometry

Since the problem involves an axisymmetric steel die, the computational domain for the problem ischosen to be a 2D cylindrical reference frame (r,z) with r=0 as the axis of symmetry, and involves twovelocity components (u,v); hence 2D axisymmetric geometry has been chosen. A Steady-state conditionis assumed for the problem.

3. Click Accept the current setup.

The Create a sub-task menu item is highlighted.

2.4.4. Fluid Sub-Task 1

In the following steps you will define the flow problem, identify the domain of definition, set the relevantmaterial properties for the Newtonian fluid, and define boundary conditions along its boundaries.

1. Create the sub-task for the fluid flow.

Create a sub-task

a. Select Generalized Newtonian non-isothermal flow problem.

Note

Be sure you are selecting the non-isothermal flow problem.

A dialog box appears asking for the title of the problem.

b. Enter fluid as the New value and click OK.

The Domain of the sub-task menu item is highlighted.

2. Define the domain where the sub-task applies.

To solve the coupled problem, the computational domain is divided into two sub-domains with acommon intersection. A sub-task with its own model, material properties, and boundary conditionsis defined on each of the non-overlapping subdomains. Sub-task 1 is defined for SUBDOMAIN_1,

93Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 106: ANSYS Polyflow Tutorial Guide

since SUBDOMAIN_1 represents the fluid (as shown in Figure 2.2: Boundaries and Sub-do-mains (p. 91)).

Domain of the sub-task

a. Select SUBDOMAIN_2 and click Remove.

SUBDOMAIN_2 is moved from the top list to the bottom list, indicating that subtask 1 is definedon SUBDOMAIN_1.

b. Click Upper level menu at the top of the panel.

The Material data menu item is highlighted.

3. Specify the material properties for the fluid.

Polydata indicates which material properties are relevant for your sub-task by graying out the irrelevantproperties. In this sub-task, Polyflow solves energy, incompressibility and momentum equations, so youhave to define viscosity, density, thermal conductivity, heat capacity per unit mass, and viscous heating.For a non-isothermal flow problem, the viscosity can depend on both shear rate and temperature. Inthis case, the viscosity is constant, so it depends on neither of them.

Material Data

a. Click Shear-rate dependence of viscosity.

Since the fluid flow is Newtonian, specify a constant value for the viscosity.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.94

Fluid Flow and Conjugate Heat Transfer

Page 107: ANSYS Polyflow Tutorial Guide

i. Click Constant viscosity.

ii. Specify the value for , referred to as “fac” in the graphical user interface.

Modify fac

Polydata prompts for the new value of .

iii. Enter 2500 [units: Pa•s] as the New value and click OK.

iv. Click Upper level menu two times to continue the Material Data specification.

b. Select Temperature dependence of viscosity.

i. Select No temperature dependence.

Polydata displays the following message, confirming that there is no temperature dependencefor the viscosity.

95Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 108: ANSYS Polyflow Tutorial Guide

ii. Click OK.

iii. Click Upper level menu to continue the Material Data specification.

c. Click Density.

In this problem, specify a constant value for the density.

Modification of density

i. Enter 950 [units: kg/m3] as the New value and click OK.

ii. Click Upper level menu to continue the Material Data specification.

d. Click Thermal conductivity.

As shown at the top of the menu, the thermal conductivity is defined as a nonlinear function ofthe temperature:

(2.1)

where is the temperature and is a reference temperature.

In this problem, the thermal conductivity is assumed to be a constant for the fluid so only theconstant coefficient is modified.

Modify a

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.96

Fluid Flow and Conjugate Heat Transfer

Page 109: ANSYS Polyflow Tutorial Guide

i. Enter 0.5 [units: W/m-˚C] as the New value and click OK.

ii. Click Upper level menu to continue with the Material Data specification.

e. Click Heat capacity per unit mass.

As shown at the top of the menu, the heat capacity per unit mass is defined as a nonlinear functionof temperature:

(2.2)

where is the temperature and is a reference temperature.

The temperature variation of differs with the nature of the polymer melts. In this problem, isassumed to be constant, so only the constant coefficient is modified.

Modify a

i. Enter 2300 [units: J/kg-˚C] as the New value and click OK.

ii. Click Upper level menu to continue with the Material Data specification.

f. Click Viscous heating.

When shearing occurs in a flow, the friction of the different fluid layers generates heat. When thefluid is highly viscous and/or the shear rate is high, the heating of the fluid caused due to thisphenomenon must be taken into account.

i. Select Viscous heating will be taken into account.

ii. Click Upper level menu to return to the Material Data specification.

g. Click Upper level menu to return to the fluid menu.

The Flow boundary conditions menu item is highlighted.

4. Specify the flow boundary conditions for SUBDOMAIN_1.

Flow boundary conditions

97Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 110: ANSYS Polyflow Tutorial Guide

a. Set the conditions along the intersection of SUBDOMAIN_1 and SUBDOMAIN_2.

The intersection acts as a wall for the fluid, and since the fluid is assumed to stick to the wall, zeronormal and tangential velocities is imposed along this boundary.

i. Retain the default condition Zero wall velocity (vn=vs=0) along SUBDOMAIN_2.

b. Set the conditions at the flow inlet (BOUNDARY_1).

i. Select Zero wall velocity (vn=vs=0) along BOUNDARY_1 and click Modify.

ii. Click Inflow.

iii. Retain the default settings, Automatic and Volumetric flow rate.

iv. Click Modify volumetric flow rate.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.98

Fluid Flow and Conjugate Heat Transfer

Page 111: ANSYS Polyflow Tutorial Guide

v. Enter 0.6e-06 [units: m3/s] as the New value in the dialog box that appears, and click OK.

The flow rate of the melt is very low due to the highly viscous nature of the melt.

When the Automatic option is selected, Polydata automatically chooses the most appropriatemethod to compute the inflow condition.

vi. Click Upper level menu.

c. Set the conditions at the flow exit (BOUNDARY_5).

It is assumed that a fully developed velocity profile is reached at the exit, so the outflow conditionis appropriate. This condition imposes a zero normal force, (which includes a pressure term),

and zero tangential velocity, .

i. Select Zero wall velocity (vn=vs=0) along BOUNDARY_5 and click Modify.

ii. Click Outflow.

d. Retain the default, Axis of symmetry along BOUNDARY_6.

For axisymmetric models, Polydata recognizes the axis of symmetry from the mesh file, and auto-matically imposes the symmetry condition along the line r=0. This condition imposes a zero normalvelocity and zero tangential force along this boundary.

e. Click Upper level menu at the top of the Flow boundary conditions menu to return to the fluidmenu.

The Thermal boundary conditions menu item is highlighted.

5. Specify the thermal boundary conditions for SUBDOMAIN_1.

For non-isothermal problems, specify either the temperature or the heat flux on each boundary segment.The temperature along a given boundary can be a constant or a prescribed function of coordinates.

Thermal boundary conditions

99Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 112: ANSYS Polyflow Tutorial Guide

a. Set the conditions at the intersection of SUBDOMAIN_1 and SUBDOMAIN_2.

An interface condition is set at the intersection of subdomain 1 and subdomain 2. This conditionensures continuity of the temperature field and of the heat flux along the interface. Since you aresolving a coupled problem, this condition of continuity is essential for the global solution of thetemperature and heat flux variables.

i. Select Temperature imposed along SUBDOMAIN_2 and click Modify.

ii. Click Interface.

iii. Click Upper level menu to accept the default setting (continuous heat flux along the interface).

In the case of an interface condition, both the heat flux and temperature are usually continuousalong the interface. It is possible to specify a nonzero value for the heat flux jump ( ), butthis is mainly used in problems where internal radiation is simulated. Here, accept the defaultvalue for the definition of heat flux discontinuity, = 0.

b. Set the conditions at the flow inlet (BOUNDARY_1).

A constant value for the temperature is imposed along this boundary.

i. Select Temperature imposed along BOUNDARY_1 and click Modify.

ii. Click Temperature imposed.

iii. Select Constant.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.100

Fluid Flow and Conjugate Heat Transfer

Page 113: ANSYS Polyflow Tutorial Guide

Polydata prompts you for the new value of the constant temperature.

iv. Enter 180 [units: ˚C] as the New value and click OK.

v. Click Upper level menu to return to the Thermal boundary conditions menu.

c. Set the conditions at the flow outlet (BOUNDARY_5).

A zero conductive heat flux is imposed along this boundary.

i. Select Temperature imposed along BOUNDARY_5 and click Modify.

ii. Click Outflow.

d. Retain the default, Axis of symmetry along BOUNDARY_6.

e. Click Upper level menu twice to return to the F.E.M. Task 1 menu.

2.4.5. Die Sub-Task

In the following steps you will define the heat conduction problem, identify the domain of definition, set therelevant material properties for the solid, and define the boundary conditions along its boundaries.

1. Create a sub-task for the solid.

Create a sub-task

a. Polydata asks if you want to copy data from an existing sub-task.

101Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 114: ANSYS Polyflow Tutorial Guide

b. Click No, since this sub-task has different parameters associated with it.

c. Click Heat conduction problem.

A small dialog box appears asking for the title of the problem.

d. Enter solid as the New value and click OK.

The Domain of the sub-task menu item is highlighted.

2. Define the domain where the sub-task applies (SUBDOMAIN_2).

Domain of the sub-task

a. Select SUBDOMAIN_1 and click Remove.

b. Click Upper level menu.

The Material data menu item is highlighted.

3. Specify the material properties for the solid.

Material Data

In this problem, specify a constant value for the thermal conductivity .

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.102

Fluid Flow and Conjugate Heat Transfer

Page 115: ANSYS Polyflow Tutorial Guide

a. Click Thermal conductivity.

In this problem, thermal conductivity is assumed to be a constant, so only the constant coefficient is modified.

i. Select Modify a.

ii. Enter 35 [units: W/m-˚C] as the New value and click OK.

b. Click Upper level menu two times to return to the solid menu.

4. Specify the thermal boundary conditions for SUBDOMAIN_2.

In this step, set the conditions at each of the boundaries of the domain. When a boundary set isselected, it is highlighted in red in the graphics window.

Thermal boundary conditions

a. Set the conditions at the intersection of SUBDOMAIN_1 and SUBDOMAIN_2.

An interface condition is set at the intersection of the sub-domains.

i. Select Temperature imposed along SUBDOMAIN_1 and click Modify.

ii. Click Interface.

iii. Click Upper level menu to accept the default option for continuity of temperature and heatflux.

b. Set the conditions at the bottom boundary of the solid (BOUNDARY_2).

A zero conductive heat flux is imposed along this boundary.

i. Select Temperature imposed along BOUNDARY_2 and click Modify.

ii. Click Insulated boundary / symmetry.

c. Set the conditions at the outer boundary of the solid (BOUNDARY_3).

103Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 116: ANSYS Polyflow Tutorial Guide

A constant value for the temperature is imposed along this boundary.

i. Select Temperature imposed along BOUNDARY_3 and click Modify.

ii. Click Temperature imposed.

iii. Select Constant.

Polydata prompts you for the new value of the constant temperature.

iv. Enter 100 [units: ˚C] as the New value and click OK.

v. Click Upper level menu to return to the Thermal boundary conditions menu.

d. Set the conditions at the top boundary of the solid (BOUNDARY_4).

A zero conductive heat flux is imposed along this boundary.

i. Select Temperature imposed along BOUNDARY_4 and click Modify.

ii. Click Insulated boundary / symmetry.

e. Click Upper level menu three times to return to the top-level Polydata menu.

2.4.6. Save and Exit Polydata

After defining your model in Polydata, save the data file.

Save and exit

Polydata asks you to confirm the current system units and fields that are to be saved to the results filefor postprocessing.

1. Click Modify system of Units.

2. Select Set to metric_MKSA+Celsius.

3. Click Upper level menu twice.

A dialog box appears, asking if you want to activate convergence strategy.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.104

Fluid Flow and Conjugate Heat Transfer

Page 117: ANSYS Polyflow Tutorial Guide

4. Click No.

In this instance, the convergence strategy will not assist Polyflow in reaching a solution as the problemis quasi-linear.

5. Click Accept.

This confirms that the default Current field(s) are correct.

6. Click Continue.

This accepts the default names for graphical output files (cfx.res) that are to be saved for postpro-cessing, and for the Polyflow format results file (res).

2.4.7. Solution

Run Polyflow to calculate a solution for the model you just defined using Polydata.

1. Run Polyflow by right-clicking the Solution cell of the simulation and selecting Update.

This executes Polyflow using the data file as standard input, and writes information about the problemdescription, calculations, and convergence to a listing file (polyflow.lst).

2. Check for convergence in the listing file.

a. Right-click the Solution cell and select Listing Viewer....

Workbench opens the View listing file dialog box, which displays the listing file.

b. It is a common practice to confirm that the solution proceeded as expected by looking for the followingprinted at the bottom of the listing file:

The computation succeeded.

2.4.8. Postprocessing

Use CFD-Post to view the results of the Polyflow simulation.

1. Double-click the Results cell in the Workbench analysis and read the results files saved by Polyflow.

CFD-Post reads the solution fields that were saved to the results file.

2. Align the view.

Right-click the Graphics window and select View from +Z under Predefined Camera.

(Or you can click +Z on the axis triad in the graphic window.)

3. Display contours of pressure.

a. Click the Insert menu and select Contour or click the Contour button ( ).

b. Click OK to accept the default name (Contour 1) and display the details view below the Outline tab.

105Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 118: ANSYS Polyflow Tutorial Guide

c. In the details view for Contour 1, specify the following settings under Geometry:

i. Next to Locations, click the ellipsis button ( ) on the right and select SUBDOMAIN_1_surfand SUBDOMAIN_2_surf (use Ctrl to select multiple items).

Click OK to close the Location Selector dialog box.

ii. Select PRESSURE from the Variable drop-down list, or click the ellipsis button ( ) on theright and select PRESSURE.

iii. Click Apply.

Most of the pressure drop occurs in the upper part of the die where the cross-section is smallest (Fig-ure 2.3: Pressure Contours (p. 107)). The pressure is linear except in the contraction zone. The isobars areperpendicular to the flow direction, as expected for the fully developed flow that occurs in the secondpart of the die.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.106

Fluid Flow and Conjugate Heat Transfer

Page 119: ANSYS Polyflow Tutorial Guide

Figure 2.3: Pressure Contours

4. Display contours of velocity.

a. In the details of Contour 1, select VELOCITIES from the Variable drop-down list.

b. Click Apply.

The velocity is higher in the second part of the die where the cross-section is smaller (Figure 2.4: VelocityDistribution (p. 108)). It reaches a maximum value in the center of the thin tube.

107Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 120: ANSYS Polyflow Tutorial Guide

Figure 2.4: Velocity Distribution

5. Display velocity vectors.

a. In the Outline tab, under User Locations and Plots, deselect Contour 1.

b. Define the vectors.

i. Click the Insert menu and select Vector or click the button.

ii. Click OK to accept the default name, Vector 1.

iii. In the Geometry tab of the details view of Vector 1, click the button next to Locations.

iv. Select the location SUBDOMAIN_1 and click OK to close the Location Selector dialog box.

v. In the Symbol tab, select Arrow 3D and increase the Symbol Size to 3.

vi. Click Apply.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.108

Fluid Flow and Conjugate Heat Transfer

Page 121: ANSYS Polyflow Tutorial Guide

Figure 2.5: Velocity Vectors

The flow is fully developed in the downstream part of the die (Figure 2.5: Velocity Vectors (p. 109)). Observethe classical parabolic velocity profile. The Poiseuille flow is rapidly reached after the contraction becauseinertia is not taken into account here.

6. Display of the temperature distribution in the solid and the fluid regions.

a. Deselect Vector 1 in the Outline tab under User Locations and plots.

b. Double-click Contour 1 (in the Outline tab under User Locations and plots.

c. In the details view for Contour 1, specify the following settings under Geometry:

i. Ensure SUBDOMAIN_1_surf and SUBDOMAIN_2_surf are selected for Locations, (click the

ellipsis button on the right to confirm).

Click OK to close the Location Selector dialog box.

109Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 122: ANSYS Polyflow Tutorial Guide

ii. Select Temperature from the Variable drop-down list, or click the ellipsis button ( ) on theright and select Temperature.

iii. Click Apply.

Figure 2.6: Temperature Distribution (Celsius)

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.110

Fluid Flow and Conjugate Heat Transfer

Page 123: ANSYS Polyflow Tutorial Guide

Figure 2.7: Temperature Distribution (Kelvin)

As expected, the temperature gradients are larger in the fluid than in the die, (the isolines are closertogether in the fluid than in the die—see Figure 2.6: Temperature Distribution (Celsius) (p. 110)). This isbecause the conductivity of the fluid is much lower than the conductivity of the solid. The temperatureisolines are perpendicular to the boundaries where the (normal) flux becomes zero. The heating of thefluid due to viscous dissipation can be clearly seen. In order to visualize contours in Kelvin, select theEdit/Options... menu item, click Units under Common, select K from the Temperature drop-downmenu, and click OK.

7. Plot the temperature along a line at y = 0.006 m.

a. Define the stating and ending points of the line.

i. Select Line from the Location drop-down menu ( ).

ii. Click OK to accept the default name (Line 1) and display the details view below the Outlinetab.

111Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 124: ANSYS Polyflow Tutorial Guide

iii. Retain the default of Two Points for Method.

iv. Enter 0,0.006, and 0 for Point 1 and enter 0.008,0.006, and 0 for Point 2.

Note

You will need to ensure that your unit of length is set to meter in CFD-Post.

v. Click Apply.

b. Create a plot.

i. Click the Insert menu and select Chart or click the Chart button ( ).

ii. Click OK to accept the default name (Chart 1) and display the details view below the Outlinetab tree.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.112

Fluid Flow and Conjugate Heat Transfer

Page 125: ANSYS Polyflow Tutorial Guide

iii. In the General tab, ensure XY is selected for the Chart Type and enter Temperature Profilefor the Title.

iv. In the Data Series tab, select Line 1 from the Location drop-down list.

v. In the X Axis tab, select X from the Variable drop-down list.

vi. In the Y Axis tab, select Temperature from the Variable drop-down list.

vii. Click Apply.

113Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 126: ANSYS Polyflow Tutorial Guide

Figure 2.8: Temperature Profile Along the Line Y = 0.006 m

The thermal boundary layer located along the die wall is clearly visible. This boundary layer is the resultof the low thermal conductivity and high heat capacity of the fluid. The temperature of the fluid at thecenter is not affected by the low temperature of the solid. The heat does not diffuse quickly enoughthrough the fluid layer to reach the axis of symmetry, before the fluid exits the die.

2.5. Summary

This tutorial introduced the coupling of sub-tasks of different types: a non-isothermal flow problem anda heat conduction problem in a solid. Coupled calculations like this are very useful in polymer processingapplications where thermal effects are critical (for example: extrusion, coating, fiber spinning). Couplingcan also be applied through fields other than temperature (for example: electrical potential and pressurein porous media).

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.114

Fluid Flow and Conjugate Heat Transfer

Page 127: ANSYS Polyflow Tutorial Guide

Chapter 3: Non-Isothermal Flow Through a Cooled Die

This tutorial is divided into the following sections:3.1. Introduction3.2. Prerequisites3.3. Problem Description3.4. Setup and Solution3.5. Summary3.6. Appendix: Nonlinearity and Evolution

3.1. Introduction

This tutorial examines the flow of a polymer melt through a die. The temperature of the melt increasesdue to viscous dissipation caused by the shearing taking place in the die. The temperature of the fluidis critical for the process. The viscosity of the fluid changes with temperature, which leads to themodification of the shape of the extrudate. The polymer might degrade if the temperature is too high,so a numerical simulation is of great interest to optimize the operating conditions.

In this tutorial, you will learn how to:

• Define an evolution problem.

• Create multiple sub-tasks to define a 2D axisymmetric contraction flow problem.

• Set material properties and boundary conditions for the contraction flow problem.

3.2. Prerequisites

This tutorial assumes that you are familiar with the menu structure in Polydata and Workbench andthat you have solved or read 2.5D Axisymmetric Extrusion (p. 53). Some steps in the set up procedurewill not be shown explicitly.

3.3. Problem Description

This tutorial examines the coupled problem of non-isothermal flow of a fluid and heat conduction inan axisymmetric steel die. As shown in Figure 3.1: Problem Description (p. 116), the melt enters the domain

at a fixed temperature, = 200°C and at a given flow rate, = 5 10−6m3/s. The problem involves flow,heat transfer by conduction and convection, and heat generation by viscous dissipation. Energy, mo-mentum, and incompressibility equations are solved in the fluid domain. The energy equation for heattransport problems is solved in the solid (die) domain.

In solving for the free surface location, the position variables are also coupled to the temperature, velocity,and pressure fields. To solve the coupled problem, you will define two sub-tasks: one each for the fluid(sub-task 1) and the solid (sub-task 2). Each sub-task contains a particular model, domain of definition,material properties, and boundary conditions, including interface conditions with the other sub-task.The sub-tasks are coupled because the global solution of the problem depends on the values of thesolution variables at the intersection of the fluid and solid domains.

115Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Page 128: ANSYS Polyflow Tutorial Guide

Figure 3.1: Problem Description

The high flow rate introduces strong nonlinearity in the problem, which can lead to a loss of convergencein the iterative scheme. In Polyflow an evolution scheme is available to solve such highly nonlinearproblems. In this problem, the evolution scheme is applied to the flow rate, which is increased from alow value to the desired value. This leads to a simultaneous increase of viscous dissipation and inertiaeffects.

The material properties of the generalized Newtonian fluid are:

= density (950 kg/m3)

= heat capacity per unit mass (2300 J/kg-°C)

= thermal conductivity (0.5 W/m-°C)

Viscous heating is taken into account and the shear-rate dependence of viscosity obeys the Bird-Carreaulaw. For the solid region, the thermal conductivity ( ) is 30 W/m-°C.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.116

Non-Isothermal Flow Through a Cooled Die

Page 129: ANSYS Polyflow Tutorial Guide

The boundary sets for the problem are shown in Figure 3.2: Boundaries and Subdomains (p. 117), andthe flow and thermal conditions for the fluid and the die at the boundaries of the domains are:

• intersection of SUBDOMAIN_1 and SUBDOMAIN_3: interface

• boundary 1: flow inlet ( =200°C, = 5 × 10-6 m3/s)

• boundary 2: symmetry axis

• boundary 3: insulated, zero force

• boundary 4: free surface with convective heat transfer to surroundings ( = 20 W/m2-°C, α= 20°C)

• boundary 5: convective heat transfer to surroundings ( = 20 W/m2-°C, α= 20°C)

• boundary 6: convective heat transfer to surroundings ( = 20 W/m2-°C, α= 20°C)

Figure 3.2: Boundaries and Subdomains

117Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Problem Description

Page 130: ANSYS Polyflow Tutorial Guide

3.4. Setup and Solution

The following sections describe the setup and solution steps for this tutorial:3.4.1. Preparation3.4.2. Project and Mesh3.4.3. Create a Task for the Model3.4.4. Fluid Sub-Task 13.4.5. Die Sub-Task3.4.6. Numerical Parameters3.4.7. Outputs3.4.8. Save and Exit Polydata3.4.9. Solution3.4.10. Postprocessing

3.4.1. Preparation

To prepare for running this tutorial:

1. Prepare a working folder for your simulation.

2. Go to the ANSYS Customer Portal, https://support.ansys.com/training.

Note

If you do not have a User Name and Password, you can register by clicking CustomerRegistration on the Log In page.

3. Enter the name of this tutorial into the search bar.

4. Narrow the results by using the filter on the left side of the page.

a. Click ANSYS Polyflow under Product.

b. Click 16.0 under Version.

5. Select this tutorial from the list.

6. Click Files to download the input and solution files.

7. Unzip the Non-Iso-Flow_R160.zip file you have downloaded to your working folder.

The mesh file die.msh can be found in the unzipped folder.

8. Start Workbench from Start > All Programs > ANSYS 16.0 > Workbench 16.0.

3.4.2. Project and Mesh

1. Create a Fluid Flow (Polyflow) analysis system by drag and drop in Workbench.

2. Save the ANSYS Workbench project using File → Save, entering non-iso-flow as the name of theproject.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.118

Non-Isothermal Flow Through a Cooled Die

Page 131: ANSYS Polyflow Tutorial Guide

3. Import the mesh file (die.msh).

4. Double-click the Setup cell to start Polydata.

When Polydata starts, the Create a new task menu item is highlighted, and the geometry for theproblem is displayed in the Graphics Display window.

3.4.3. Create a Task for the Model

The flow problem for the generalized Newtonian fluid and the heat conduction problem in the solid aresolved in two different sub-tasks. However, the task attributes are the same for both sub-tasks, so define asingle task for the coupled problem.

1. Create a task for the model.

Create a new task

Select the following options:

• F.E.M. task

• Evolution problem(s)

• 2D axisymmetric geometry

The Current setup (above the selected options) is updated to reflect your selections. Since theproblem involves an axisymmetric die, Polyflow uses a 2D cylindrical reference frame (r,z) with r=0as the axis of symmetry. The use of evolution inputs allows the flow rate to be slowly ramped up toensure that the solution converges.

2. Click Accept the current setup.

The Create a sub-task menu item is highlighted.

3.4.4. Fluid Sub-Task 1

In the following steps you will define the flow problem, identify the domain of definition, set the relevantmaterial properties for the fluid, and define boundary conditions along its boundaries.

1. Create a sub-task for the fluid.

Create a sub-task

a. Click Generalized Newtonian non-isothermal flow problem.

Note

Be sure you are selecting the non-isothermal flow problem.

A panel appears, asking for the title of the problem.

119Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 132: ANSYS Polyflow Tutorial Guide

b. Enter fluid as the New value and click OK.

The Domain of the sub-task menu item is highlighted.

2. Define the domain where the sub-task applies.

To solve the coupled problem, the computational domain is divided into three subdomains. There aretwo sub-tasks in this problem. Define a sub-task with its own model, material properties, and boundaryconditions for the fluid region. Since this problem involves a free surface, the domain for sub-task 1 isdivided into two subdomains: one for the region near the free surface (SUBDOMAIN_2) and the otherfor the rest of the fluid domain (SUBDOMAIN_1). In this problem, sub-task 1 applies to SUBDOMAIN_1and SUBDOMAIN_2.

Domain of the sub-task

a. Select SUBDOMAIN_3 and click Remove.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.120

Non-Isothermal Flow Through a Cooled Die

Page 133: ANSYS Polyflow Tutorial Guide

SUBDOMAIN_3 is moved from the top list to the bottom list, indicating that subtask 1 is definedon SUBDOMAIN_1 and SUBDOMAIN_2.

b. Click Upper level menu at the top of the Domain of the sub-task menu.

The Material data menu item is highlighted.

3. Specify the material properties for the fluid.

Polydata indicates the material properties that are relevant for your sub-task by graying out the irrelevantproperties. In this sub-task, Polyflow solves energy, incompressibility, and momentum equations. Hence,define viscosity, density, thermal conductivity, and heat capacity per unit mass. For a non-isothermalgeneralized Newtonian fluid, the viscosity depends on the shear rate and the temperature. Hence, definethe shear-rate dependence of viscosity and the temperature dependence of viscosity.

Material data

a. Specify the shear-rate dependence of viscosity.

Shear-rate dependence of viscosity

i. Select Bird-Carreau law.

Viscosity is defined by the Bird-Carreau law as

121Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 134: ANSYS Polyflow Tutorial Guide

(3.1)

where is the viscosity at zero shear rate, is the shear rate, is the Bird-Carreau law

index, and is the natural time.

ii. Specify the value , referred to as “fac” in the graphical user interface (compare the equation

at the top of the Bird-Carreau law menu to Equation 3.1 (p. 122)).

Modify fac

Enter 5000 [units: Pa•s] as the New value and click OK.

iii. Specify the value , referred to as “tnat” in the graphical user interface.

Modify tnat

Enter 0.4 [units: s] as the New Value and click OK.

iv. Specify the value for , referred to as “expo” in the graphical user interface.

Modify expo

Enter 0.41 as the New Value and click OK.

v. Click Upper level menu.

When you click Upper level menu, Polydata displays the following warning message:

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.122

Non-Isothermal Flow Through a Cooled Die

Page 135: ANSYS Polyflow Tutorial Guide

For this tutorial, you will use an evolution function for the flow rate (the third recommendedmethod).

vi. Click OK to continue.

vii. Click Upper level menu again to continue with the Material Data specification.

b. Specify the temperature dependence of viscosity.

Temperature dependence of viscosity

For this problem, assume that the dependence of viscosity on temperature follows the Arrheniuslaw.

i. Click Arrhenius law.

The Arrhenius law is given as

(3.2)

where is the ratio of the activation energy to the thermodynamic constant and is a ref-erence temperature for which = 1. The parameter denotes the absolute 0 temperaturein your selected temperature scale. It is set to 0, when and are absolute temperatures.In this example, specify the temperatures in Celsius, so enter a value of -273 for .

ii. Specify the value for , referred to as “alfa” in the graphical user interface (compare the equationat the top of the Temperature dependence of viscosity menu to Equation 3.2 (p. 123)).

Modify alfa

123Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 136: ANSYS Polyflow Tutorial Guide

Enter 2300 [units: 1/°C] as the New Value and click OK.

iii. Specify the value for , referred to as “talfa” by the graphical user interface.

Modify talfa

Enter 200 [units: °C] as the New Value and click OK.

iv. Specify the value for , referred to as “t0” by the graphical user interface.

Modify t0

Enter -273 [units: °C] as the New Value and click OK.

v. Click Upper level menu two times to continue with the Material Data specification.

c. Click Density.

Specify a constant value for density.

Modification of density

i. Enter 950 [units: kg/m3] as the New value and click OK.

ii. Click Upper level menu to continue with the Material Data specification.

d. Click Thermal conductivity.

Thermal conductivity is defined as a nonlinear function of the temperature:(3.3)

For this problem, the thermal conductivity of the fluid is assumed to be a constant. So only theconstant coefficient is modified.

Modify a

i. Enter 0.5 [units: W/m-°C] as the New Value and click OK.

ii. Click Upper level menu to continue with the Material Data specification.

e. Click Heat capacity per unit mass.

The heat capacity per unit mass is defined as a nonlinear function of temperature:

(3.4)

The temperature variation of depends on the nature of the polymer melt. For this problem,is assumed to be constant, so only the constant coefficient is modified.

Modify a

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.124

Non-Isothermal Flow Through a Cooled Die

Page 137: ANSYS Polyflow Tutorial Guide

i. Enter 2300 [units: J/kg-°C] as the New value and click OK.

ii. Click Upper level menu to continue with the Material Data specification.

f. Click Viscous heating.

When shearing occurs in a flow, the friction of the different fluid layers generates heat. When thefluid is highly viscous and/or the shear rate is high, the heating of the fluid caused by this phe-nomenon must be taken into account.

i. Select Viscous heating will be taken into account.

ii. Click Upper level menu to return to the Material Data specification.

g. Click Upper level menu to return to the fluid menu.

The Flow boundary conditions menu item is highlighted.

4. Specify the flow boundary conditions for the fluid.

Flow boundary conditions

a. Retain the default condition Zero wall velocity (vn=vs=0) along SUBDOMAIN_3 at the intersectionof SUBDOMAIN_1 and SUBDOMAIN_3.

The liquid is assumed to stick to the wall, since at a solid-liquid interface the velocity of the liquidis that of the solid surface. This is known as the no-slip assumption because the liquid is assumedto adhere to the wall, and hence, has no velocity relative to the wall.

By default, Polydata imposes = = 0 along all boundaries. No action is required to accept thedefault condition.

b. Set the conditions at the flow inlet (BOUNDARY_1).

i. Select Zero wall velocity (vn=vs=0) along BOUNDARY_1 and click Modify.

ii. Click EVOL at the top of the Polydata menu to enable the evolution inputs for the flow rate.

For information on nonlinearity and evolution, see Appendix: Nonlinearity and Evolution (p. 147).

iii. Click Inflow.

iv. Select Volumetric flow rate.

v. Select Modify volumetric flow rate.

Polydata prompts for the new value of the volumetric /mass flow rate.

Enter 5e-06 [units: m3/s] as the New Value and click OK.

vi. Select Automatic option.

125Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 138: ANSYS Polyflow Tutorial Guide

When the Automatic option is selected, Polydata automatically chooses the most appropriatemethod to compute the inflow condition.

vii. Click Upper level menu. Polydata prompts for the evolution function .

viii. Select f(S)=S.

The Current choice (at the top of the menu) is updated to reflect your selection.

ix. Click EVOL at the top of the Polydata menu to disable the evolution inputs.

x. Click Upper level menu to return to the Flow boundary conditions menu.

c. Retain the default condition, Axis of symmetry along BOUNDARY_2.

For axisymmetric models, Polydata recognizes the axis of symmetry from the mesh file, and auto-matically imposes the symmetry condition along the line = 0. This condition imposes a zerosurface normal velocity ( ) and zero tangential force ( ) along this boundary.

d. Set the conditions at the flow exit (BOUNDARY_3).

It is assumed that a uniform velocity profile is reached at the exit. The melt is not subjected to anyexternally applied stress at the exit, so the condition of zero normal and tangential forces is selected.

i. Select Zero wall velocity (vn=vs=0) along BOUNDARY_3 and click Modify.

ii. Click Normal and tangential forces imposed (fn, fs).

iii. Click Upper level menu to accept the default value of 0 [units: Pa] for .

iv. Click Upper level menu to accept the default value of 0 [units: Pa] for .

e. Set the conditions at the free surface (BOUNDARY_4).

In a steady-state problem, the velocity field must be tangential to a free surface, since no fluidparticles leave the domain through the free surface. This constraint is called the kinematic condition,

= 0. This equation requires an initial condition, which is the starting line of the free surface. Inthis problem, the starting line of the free surface is the intersection of BOUNDARY_4 and SUBDO-MAIN_3 (see Figure 3.2: Boundaries and Subdomains (p. 117)).

i. Select Zero wall velocity (vn=vs=0) along BOUNDARY_4 and click Modify.

ii. Click Free surface.

iii. Click Boundary conditions on the moving surface.

iv. Select No condition along SUBDOMAIN_3 and click Modify.

v. Click Position imposed.

vi. Click Upper level menu.

vii. Click Upper level menu to return to the Kinematic condition menu.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.126

Non-Isothermal Flow Through a Cooled Die

Page 139: ANSYS Polyflow Tutorial Guide

viii. Click Upwinding in the kinematic equation.

ix. Click Direction of motion.

x. Click No condition along whole surface and click Modify.

xi. Select Modify the constraint on the Y-component.

Polydata prompts for the new value of the Y-component of the direction-of-displacementvector.

xii. Retain the default value of 0 and click OK.

xiii. Click Accept the current condition.

xiv. Click Upper level menu to return to the Kinematic condition menu.

xv. Click Upper level menu to return to the Flow boundary condition menu.

f. Click Upper level menu to return to the fluid menu.

5. Specify the thermal boundary conditions for the fluid.

For non-isothermal problems, specify either the temperature or the heat flux on each boundary set.

Thermal boundary conditions

127Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 140: ANSYS Polyflow Tutorial Guide

a. Set the conditions at the intersection of SUBDOMAIN_1 and SUBDOMAIN_3.

Set an interface condition at the intersection of SUBDOMAIN_1 and SUBDOMAIN_3. This conditionensures the continuity of the temperature field and the heat flux along the interface. Since theproblem is coupled, the condition of continuity is essential for the global solution of the temperatureand heat flux variables.

i. Select Temperature imposed along SUBDOMAIN_3 and click Modify.

ii. Click Interface.

iii. Click Upper level menu to accept the default setting (continuous heat flux along the interface).

For an interface condition, both the heat flux and temperature are usually continuous alongthe interface. It is possible to specify a nonzero value for the heat flux jump ( ), but this ismainly used in problems where internal radiation is simulated. Accept the default value forthe definition of heat flux discontinuity ( =0).

b. Set the condition at the flow inlet (BOUNDARY_1).

i. Select Temperature imposed along BOUNDARY_1 and click Modify.

ii. Click Temperature imposed.

iii. Select Constant.

Polydata prompts for the value of the temperature.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.128

Non-Isothermal Flow Through a Cooled Die

Page 141: ANSYS Polyflow Tutorial Guide

iv. Enter 200 [units: °C] as the New Value and click OK.

v. Click Upper level menu to return to the Thermal boundary conditions menu.

c. Retain the default condition, Axis of symmetry along BOUNDARY_2.

d. Set the conditions at the flow exit (BOUNDARY_3).

i. Select Temperature imposed along BOUNDARY_3 and click Modify.

ii. Click Insulated boundary/symmetry.

e. Set the conditions at the free surface (BOUNDARY_4)

i. Select Temperature imposed along BOUNDARY_4 and click Modify.

ii. Click Flux density imposed.

If the heat transfer from radiation is neglected, the heat flux can be written as

(3.5)

where is the heat convection coefficient and is the reference temperature (in this case,the temperature of the air surrounding the extrudate).

iii. Specify the value of .

Modification of alpha

Enter 20 [units: W/m2-°C] as the New value and click OK.

iv. Specify the value of .

Modification of Talpha

Enter 20 [units: °C] as the New value and click OK.

v. Click Upper level menu to return to the Thermal boundary conditions menu.

f. Click Upper level menu to return to the fluid menu.

The Global remeshing menu item is highlighted.

6. Define remeshing for SUBDOMAIN_2.

This model involves a free surface for which the position is unknown. A portion of the mesh is affectedby the relocation of this boundary. Hence, a remeshing technique is applied on this part of the mesh.The free surface is entirely contained within SUBDOMAIN_2 and hence, only SUBDOMAIN_2 is affectedby the relocation of the free surface.

129Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 142: ANSYS Polyflow Tutorial Guide

Global remeshing

a. Specify the region where the remeshing is to be performed (SUBDOMAIN_2).

1-st local remeshing

i. Select SUBDOMAIN_1 and click Remove.

SUBDOMAIN_1 is moved from the top list to the bottom list, indicating that only SUBDOMAIN_2will be remeshed.

ii. Click Upper level menu.

The Method of spines menu item is highlighted.

b. Define the parameters for the system of spines.

The purpose of the remeshing technique is to relocate internal nodes according to the displacementof boundary nodes due to the motion of the free surface. Mesh nodes are organized along lines ofremeshing (spines), which are collections of nodes logically arranged in a one-dimensional manner.

Polydata requires the specification of the first and last spines (inlet and outlet) that the fluid en-counters. In this case, the inlet of spines is the intersection of SUBDOMAIN_2 with SUBDOMAIN_1,and the outlet of spines is the intersection of SUBDOMAIN_2 with the flow exit (BOUNDARY_3).

Method of Spines

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.130

Non-Isothermal Flow Through a Cooled Die

Page 143: ANSYS Polyflow Tutorial Guide

i. Specify the inlet for the system of spines by selecting Intersection with SUBDOMAIN_1 andclicking Confirm.

ii. Specify the outlet for the system of spines by selecting Intersection with BOUNDARY_3 andclicking Confirm.

iii. Click Accept the current setup in the Element distortion check menu.

The finite-element mesh can undergo great deformations. The Element distortion checkmenu deals with the detection of all possible distortions of the elements.

For this problem, accept the default options and proceed to the next step.

c. Click Upper level menu to return to the fluid menu.

7. Select a suitable discretization scheme to increase the accuracy of the calculation.

Interpolation

You can expect important temperature gradients in the calculation. Therefore, you can retain thequadratic interpolation (9 unknowns per element) for velocity and the linear interpolation (4 unknownsper element) for pressure, but it is recommended that you select the 4x4 interpolation for temperature.In the 4x4 discretization scheme, each finite element is divided into 16 sub-elements, with the temper-ature being linearly interpolated over each sub-element. This leads to 25 temperature unknowns perelement.

a. Scroll down to select 4x4 element for temperature in the Interpolation menu.

The Current setup (at the top of the menu) is updated to reflect your selection.

b. Click Upper level menu two times to return to the F.E.M. Task 1 menu.

3.4.5. Die Sub-Task

In the following steps you will define the heat conduction problem, identify the domain of definition, set therelevant material properties for the die, and define the boundary conditions along its boundaries.

1. Create a sub-task for the die.

Create a sub-task

a. Polydata asks if you want to copy data from an existing sub-task.

131Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 144: ANSYS Polyflow Tutorial Guide

b. Click No, since this sub-task has different parameters associated with it.

c. Select Heat conduction problem.

A panel appears, asking for the title of the problem.

d. Enter solid as the New Value and click OK.

The Domain of the sub-task menu item is highlighted.

2. Define the domain where the sub-task applies (SUBDOMAIN_3).

Domain of the sub-task

a. Select SUBDOMAIN_1 and click Remove.

b. Select SUBDOMAIN_2 and click Remove.

c. Click Upper level menu at the top of the Domain of the sub-task menu.

The Material data menu item is highlighted.

3. Specify the material properties for the die.

For this problem, specify a constant value for the thermal conductivity .

Material data

a. Select Thermal conductivity.

For this problem, thermal conductivity is assumed to be a constant, so only the constant coefficient is modified.

b. Select Modify a.

c. Enter 30 [units: W/m-°C] as the New value and click OK.

d. Click Upper level menu two times to return to the solid menu.

The Thermal boundary conditions menu item is highlighted.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.132

Non-Isothermal Flow Through a Cooled Die

Page 145: ANSYS Polyflow Tutorial Guide

4. Specify the thermal boundary conditions for the die.

Set the conditions at each of the boundaries of the domain. The selected boundary set will be highlighted(in red) in the graphics window as you select them..

Thermal boundary conditions

a. Set the conditions at the intersection of SUBDOMAIN_1 and SUBDOMAIN_3.

Set an interface condition at the intersection of the subdomains.

i. Select Temperature imposed along SUBDOMAIN_1 and click Modify.

ii. Click Interface.

iii. Click Upper level menu to accept the default option for continuity of temperature and heatflux.

b. Set the conditions on the outer boundary of the die (BOUNDARY_5).

i. Select Temperature imposed along BOUNDARY_5 and click Modify.

ii. Click Flux density imposed.

Take only the heat convection into account: see Equation 3.5 (p. 129).

iii. Specify the value of .

Modification of alpha

Enter 20 [units: W/m2-°C] as the New Value and click OK.

iv. Specify the value of .

Modification of Talpha

Enter 20 [units: °C] as the New Value and click OK.

v. Click Upper level menu to return to the Thermal boundary conditions menu.

c. Set the conditions at the inner boundary of the die (BOUNDARY_6).

i. Select Temperature imposed along BOUNDARY_6 and click Modify.

ii. Select Flux density imposed.

iii. Specify the value of .

Modification of alpha

Enter 20 [units: W/m2-°C] as the New value and click OK.

133Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 146: ANSYS Polyflow Tutorial Guide

iv. Specify the value of .

Modification of Talpha

Enter 20 [units: °C] as the New Value and click OK.

v. Click Upper level menu to return to the Thermal boundary conditions menu.

5. Click Upper level menu twice to return to the F.E.M. Task 1 menu.

3.4.6. Numerical Parameters

All information relevant to iterative schemes (for the F.E.M. task calculations) can be modified in theNumerical parameters menu.

Numerical parameters

1. Specify the parameters required for the evolution scheme.

Modify the evolution parameters

a. Define the initial value of (the evolution variable).

Modify the initial value of S

Enter 0.01 as the New value and click OK.

b. Define the starting solution for the iterative scheme in the calculation of the inflow condition.

Modify the initial value of delta-S

Retain the default of 0.01 by clicking OK.

2. Click Upper level menu three times to return to the top-level Polydata menu.

3.4.7. Outputs

Outputs

1. Set the system of units to output to CFD-Post.

Set units for CFD-Post, Ansys Mapper or Iges

a. Modify the current system of units.

Modify system of Units

b. Specify the new system of units.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.134

Non-Isothermal Flow Through a Cooled Die

Page 147: ANSYS Polyflow Tutorial Guide

Set to metric_MKSA+Celsius

2. Click Upper level menu three times to return to the top-level Polydata menu.

3.4.8. Save and Exit Polydata

Save and exit

A panel appears, asking if you want to activate convergence strategy.

Click No, as you have already defined an evolution strategy on the flow rate.

1. Click Accept.

This confirms that the default Current field(s) are correct.

2. Click Continue.

This accepts the default names for graphical output files (cfx.res) that are to be saved for postpro-cessing, and for the Polyflow format results file (res).

3.4.9. Solution

Run Polyflow to calculate a solution for the model you just defined using Polydata.

1. Run Polyflow by right-clicking the Solution cell of the simulation and selecting Update.

This executes Polyflow using the data file as standard input, and writes information about the problemdescription, calculations, and convergence to a listing file (polyflow.lst).

Ten CFD-Post files are created, corresponding to the ten evolution steps in the problem.

2. Check for convergence in the listing file.

a. Right-click the Solution cell and select Listing Viewer....

Workbench opens the View listing file panel, which displays the listing file.

b. It is a common practice to confirm that the solution proceeded as expected by looking for the followingprinted at the bottom of the listing file:

The computation succeeded.

135Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 148: ANSYS Polyflow Tutorial Guide

3.4.10. Postprocessing

Use CFD-Post to view the results of the Polyflow simulation.

1. Double-click the Results cell in the Workbench analysis and read the results files saved by Polyflow.

CFD-Post reads the solution fields that were saved to the results file.

2. Align the view.

In the graphical window, right-click, and select the option Predefined Camera.

a. Right-click in the graphical window and select View from +Z under Predefined Camera.

b. To remove the ruler right-click in the graphical window, select Viewer Options, and disable RulerVisibility.

3. Display contours of pressure in the fluid region (SUBDOMAIN_1 and SUBDOMAIN_2).

a. Click the Insert menu and select Contour or click the button.

b. In the panel that opens, click OK to accept the default name (Contour 1) display the details viewbelow the Outline tab.

c. Perform the following steps In the Geometry tab of the details view for Contour 1:

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.136

Non-Isothermal Flow Through a Cooled Die

Page 149: ANSYS Polyflow Tutorial Guide

i. Next to Locations, click the ellipsis button ( ) on the right and select SUBDOMAIN_1_surfand SUBDOMAIN_2_surf (use Ctrl to select multiple items).

Click OK to close the Location Selector dialog box.

ii. Select PRESSURE from the Variable drop-down list, or click the ellipsis button ( ) on theright and select PRESSURE.

iii. Click Apply.

137Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 150: ANSYS Polyflow Tutorial Guide

Figure 3.3: Contours of Pressure

4. Display contours of velocity in the fluid region.

a. In the details view of Contour 1, select VELOCITIES from the Variable drop-down list.

b. Click Apply.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.138

Non-Isothermal Flow Through a Cooled Die

Page 151: ANSYS Polyflow Tutorial Guide

Figure 3.4: Velocity Profile

The fluid experiences high velocity gradients in the narrow section of the die. This leads to importantviscous dissipation effects that cause the temperature of the melt to increase.

5. Display velocity vectors for the two fluid subdomains.

a. In the Outline tab under User Locations and Plots, disable Contour 1.

b. Click the Insert menu and select Vector or click the button.

c. Click OK to accept the default name (Vector 1) and open the details view below the Outline tab.

139Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 152: ANSYS Polyflow Tutorial Guide

d. Perform the following steps in the details view of Vector 1:

i. In the Geometry tab, click the button next to Locations to open the Location Selectordialog box.

ii. Select SUBDOMAIN_1_surf and SUBDOMAIN_2_surf (use Ctrl to select multiple items).

Click OK to close the Location Selector dialog box.

iii. In the Symbol tab, select Arrow3D and retain the default Symbol Size of 1.0.

iv. Click Apply.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.140

Non-Isothermal Flow Through a Cooled Die

Page 153: ANSYS Polyflow Tutorial Guide

Figure 3.5: Velocity Vectors

The velocity vectors in the wide section of the die are very small compared to those in the narrow sectionof the die (Figure 3.5: Velocity Vectors (p. 141)). Also, the important velocity re-arrangement takes placeat the die exit. This leads to the swelling of the extrudate.

6. Display the temperature distribution in the solid and the fluid regions.

a. In the Outline tab, under User Locations and Plots, disable Vector 1, and enable and double-clickContour 1.

b. In the details of Contour 1, define the temperature contours.

141Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 154: ANSYS Polyflow Tutorial Guide

i. Next to Locations, click the ellipsis button ( ) on the right and select SUBDOMAIN_1_surf,SUBDOMAIN_2_surf and SUBDOMAIN_3_surf (use Ctrl to select multiple items).

Click OK to close the Location Selector dialog box.

ii. Select TEMPERATURE from the Variable drop-down list.

iii. Click Apply.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.142

Non-Isothermal Flow Through a Cooled Die

Page 155: ANSYS Polyflow Tutorial Guide

Figure 3.6: Temperature Profile

143Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 156: ANSYS Polyflow Tutorial Guide

Figure 3.7: Temperature Profile Near the Die Exit

Figure 3.7: Temperature Profile Near the Die Exit (p. 144) shows a magnified view of the temperaturecontours near the die exit. The high velocity gradients near the die exit lead to an important viscousdissipation effect. The temperature of the polymer melt increases from the converging zone to the dielip. This increase in temperature must be monitored to avoid melt degradation. The simulation helpsoptimize the geometry of the die, the flow section for the cooling fluid, and other conditions in orderto maximize the flow rate and the extrudate speed.

7. Create a 2D plot on a cross-section of the die.

a. Verify that you have millimeters selected as your units for length in CFD-Post.

Edit → Options... → Units

b. Define the line for the plot with the points (0, 1, 0) and (15, 1, 0).

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.144

Non-Isothermal Flow Through a Cooled Die

Page 157: ANSYS Polyflow Tutorial Guide

i. Select Line from the Location menu ( ).

ii. Click OK to accept the default name (Line 1) and display the details view below the Outlinetab.

iii. Enter 0,1,0 for Point 1 and 15,1,0 for Point 2.

iv. Select the Cut option button under Line Type.

v. Click Apply.

c. Create a plot.

i. Click the chart button .

ii. Click OK to accept the default name (Chart 1) and display the details view below the Outlinetab.

145Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 158: ANSYS Polyflow Tutorial Guide

iii. In the General tab of the details view, ensure XY is selected for the chart Type and disableDisplay Title.

iv. In the Data Series tab, select Line 1 from the Locations drop-down list for Series 1.

v. In the X Axis tab, select X from the Variable drop-down list.

vi. In the Y Axis tab, select TEMPERATURE from the Variable drop-down list.

vii. With Series 1 (Line 1) enabled under the Line Display tab, select Rectangle from the Symbolsdrop-down list. Retain the default Symbol Color (green).

viii. Click Apply.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.146

Non-Isothermal Flow Through a Cooled Die

Page 159: ANSYS Polyflow Tutorial Guide

Figure 3.8: Temperature Profile Across the Die

3.5. Summary

In this tutorial, you solved the non-isothermal flow of a polymer melt through a cooled die. You set thematerial properties for the melt and supplied suitable boundary conditions. A specific interpolationscheme was used for the temperature in order to cope with the important gradients. You applied anevolution scheme to solve the convergence problems caused by the viscous dissipation coupled withthe temperature-dependent viscosity law.

3.6. Appendix: Nonlinearity and Evolution

The kinematic equation introduces nonlinear terms into the problem that might lead to convergencedifficulties. In Polyflow, an evolution scheme is available to solve such highly nonlinear problems. Thecalculation is started with a reduced value of the parameter(s) causing the nonlinearity. Starting fromthe first solution, Polyflow increments the parameter(s) causing the nonlinearity and computes a secondsolution. Starting from this new solution, Polyflow increments the parameter(s) again and computes athird solution. Thus, Polyflow increases the value of each parameter up to its nominal value.

In Polyflow, this procedure is fully automated. The increments are automatically adapted according tothe results of previous calculations. Polyflow uses an evolution variable ( ) that is incremented duringthe evolution scheme. starts at an initial value of and is increased up to a final value of . Each

parameter that you evolve is defined as .

147Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Appendix: Nonlinearity and Evolution

Page 160: ANSYS Polyflow Tutorial Guide

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.148

Page 161: ANSYS Polyflow Tutorial Guide

Chapter 4: 3D Extrusion

This tutorial is divided into the following sections:4.1. Introduction4.2. Prerequisites4.3. Problem Description4.4. Preparation4.5. Setup and Solution4.6. Summary

4.1. Introduction

This tutorial illustrates the simulation of a 3D extrusion process. Due to the velocity rearrangement thatoccurs at the die exit, the shape of the extrudate is usually different from the die lip cross-section.Polyflow is capable of handling 3D free surfaces, so it can predict the extrudate shape that correspondsto a given die geometry under prescribed operating conditions.

In this tutorial you will learn how to:

• Create a sub-task to define a 3D extrusion problem.

• Set material properties and boundary conditions for a 3D extrusion problem.

• Select a remeshing method.

4.2. Prerequisites

This tutorial assumes that you are familiar with the menu structure in Polydata and Workbench andthat you have solved or read 2.5D Axisymmetric Extrusion (p. 53). Some steps in the setup procedurewill not be shown explicitly.

4.3. Problem Description

This problem deals with the flow of a Newtonian fluid through a three-dimensional die. Due to thesymmetry of the problem (the cross-section of the die is a square), the computational domain is definedfor a quarter of the geometry and two planes of symmetry are defined.

The melt enters the die as shown in Figure 4.1: Problem Description (p. 150) at a flow rate of = 10

cm3/s (a quarter of the actual flow rate) and the extrudate is obtained at the exit. At the end of thecomputational domain, it is assumed that the extrudate is fully deformed and that it will not deformany further. It is assumed that subdomain 2 is long enough to account for all the deformation of theextrudate.

149Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Page 162: ANSYS Polyflow Tutorial Guide

Figure 4.1: Problem Description

The incompressibility and momentum equations are solved over the computational domain. The domainfor the problem is divided into two subdomains (as shown in Figure 4.1: Problem Description (p. 150))so that the remeshing algorithm can be applied only to the portion of the mesh that will be deformed.The subdomain 1 represents the die where the fluid is confined. The subdomain 2 corresponds to theextrudate that is in contact with the air and can deform freely. The main aim of the calculation is tofind the location of the free surface (the skin of the extrudate).

The boundary sets for the problem are shown in Figure 4.2: Boundary Sets for the Problem (p. 151), andthe conditions at the boundaries of the domains are as follows.

• boundary 1: flow inlet, volumetric flow rate = 10 cm3/s

• boundary 2: zero velocity

• boundary 3: symmetry plane

• boundary 4: symmetry plane

• boundary 5: free surface

• boundary 6: flow exit

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.150

3D Extrusion

Page 163: ANSYS Polyflow Tutorial Guide

Figure 4.2: Boundary Sets for the Problem

4.4. Preparation

To prepare for running this tutorial:

1. Prepare a working folder for your simulation.

2. Go to the ANSYS Customer Portal, https://support.ansys.com/training.

Note

If you do not have a User Name and Password, you can register by clicking CustomerRegistration on the Log In page.

3. Enter the name of this tutorial into the search bar.

4. Narrow the results by using the filter on the left side of the page.

a. Click ANSYS Polyflow under Product.

b. Click 16.0 under Version.

5. Select this tutorial from the list.

6. Click Files to download the input and solution files.

7. Unzip the 3D-Extrusion_R160.zip file you have downloaded to your working folder.

151Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Preparation

Page 164: ANSYS Polyflow Tutorial Guide

The mesh file ext3d.msh can be found in the unzipped folder.

8. Start Workbench from Start > All Programs > ANSYS 16.0 > Workbench 16.0.

4.5. Setup and Solution

The following sections describe the setup and solution steps for this tutorial:4.5.1. Project and Mesh4.5.2. Define a Task4.5.3. Material Data4.5.4. Boundary Conditions4.5.5. Remeshing4.5.6. Save and Exit Polydata4.5.7. Solution4.5.8. Postprocessing

4.5.1. Project and Mesh

1. Create a Fluid Flow (Polyflow) analysis system by drag and drop in Workbench.

2. Save the ANSYS Workbench project using File → Save, entering 3D-extrusion as the name of theproject.

3. Import the mesh file (ext3d.msh).

4. Double-click the Setup cell to start Polydata.

When Polydata starts, the Create a new task menu item is highlighted, and the geometry for theproblem is displayed in the Graphics Display window.

4.5.2. Define a Task

Define a new task representing the 3D steady-state model, then define a sub-task for the isothermalflow calculation.

1. Create a task for the model.

Create a new task

a. Retain the following (default) options:

• F.E.M. task

• Steady-state problem(s)

This problem is a 3D simulation of the extrusion process, that is, a three-dimensional geometry isassumed for the die. A Cartesian (x,y,z) reference frame is used for the 3D calculations. A steady-state condition is assumed for the problem.

b. Click Accept the current setup.

The Create a sub-task menu item is highlighted.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.152

3D Extrusion

Page 165: ANSYS Polyflow Tutorial Guide

2. Create a sub-task for the isothermal flow.

Create a sub-task

a. Select Generalized Newtonian isothermal flow problem.

A dialog box appears asking for the title of the problem.

b. Enter 3D die swell as the New value and click OK.

The Domain of the sub-task menu item is highlighted.

3. Define the domain where the sub-task applies.

Since this problem involves a free surface, the domain is divided into two subdomains; one for the regionnear the free surface (subdomain 2) and the other for the rest of the domain (subdomain 1). In thisproblem, the sub-task applies to both subdomains, which is the default condition.

Domain of the sub-task

153Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 166: ANSYS Polyflow Tutorial Guide

Accept the default selection of both subdomains (SUBDOMAIN_1 and SUBDOMAIN_2) by clickingUpper level menu.

The Material data menu item is highlighted.

4.5.3. Material Data

Polydata indicates which material properties are relevant for the sub-task by graying out the irrelevantproperties. In this case, viscosity, density, inertia terms, and gravity are available for specification. For thismodel you will only define the viscosity of the material.

Material Data

1. Click Shear-rate dependence of viscosity.

2. Click Cross law.

The Cross law exhibits shear-thinning (the decrease in viscosity as the shear rate increases) that is acharacteristic of many polymers. The viscosity in this tutorial is given by the Cross law:

(4.1)

where:

= zero shear-rate viscosity = 85000 poise

= natural time = 0.2 s

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.154

3D Extrusion

Page 167: ANSYS Polyflow Tutorial Guide

= Cross law index = 0.3

= shear rate

3. Specify the value , referred to as “fac” in the graphical user interface (compare the equation at the top

of the Cross law menu to Equation 4.1 (p. 154)).

Modify fac

Enter 85000 [units: poise] as the New value and click OK.

4. Specify the value for , referred to as “tnat” in the graphical user interface.

Modify tnat

Enter 0.2 [units: s] as the New value and click OK.

5. Specify the value for , referred to as “expom” in the graphical user interface.

Modify expom

155Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 168: ANSYS Polyflow Tutorial Guide

Enter 0.3 as the New value and click OK.

6. Select Upper level menu three times to return to the 3D die swell menu.

The Flow boundary conditions menu item is highlighted.

4.5.4. Boundary Conditions

In the following steps you will set the conditions at each of the boundaries of the domain. When a boundaryset is selected, its location is highlighted in red in the graphics window.

Flow boundary conditions

1. Set the conditions at the flow inlet (BOUNDARY_1).

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.156

3D Extrusion

Page 169: ANSYS Polyflow Tutorial Guide

a. Select Zero wall velocity (vn=vs=0) along BOUNDARY_1 and click Modify.

b. Click Inflow.

c. Retain the default settings, Automatic and Volumetric flow rate.

d. Click Modify volumetric flow rate.

Enter 10 [units: cm3/s] as the New Value and click OK.

When the Automatic option is selected, Polydata automatically chooses the most appropriatemethod to compute the inflow condition.

e. Click Upper level menu.

2. Retain the default condition Zero wall velocity (vn=vs=0) along BOUNDARY_2 at the wall of SUBDO-MAIN_1 (BOUNDARY_2).

At a solid-liquid interface, the velocity of the liquid is that of the solid surface. Hence the fluid is assumedto stick to the wall. This is known as the no-slip condition because the liquid is assumed to adhere tothe wall, and hence, has no velocity relative to the wall.

By default, Polydata imposes = = 0 along all boundaries. No action is required to accept the defaultcondition.

3. Set the conditions at the first symmetry plane (BOUNDARY_3).

In 2D axisymmetric problems, Polydata automatically identifies the axis of symmetry, but for 3D flows,you must manually identify a plane of symmetry.

The normal velocity ( ) and the tangential force ( ) are set to zero on a symmetry plane. A particle

cannot cross the plane ( = 0) due to the symmetry, so the particles flow at the same velocity on bothsides of the symmetry plane, leading to a zero tangential force.

a. Select Zero wall velocity (vn=vs=0) along BOUNDARY_3 and click Modify.

b. Click Plane of symmetry (fs=0, vn=0).

4. Set the conditions at the second symmetry plane (BOUNDARY_4).

a. Select Zero wall velocity (vn=vs=0) along BOUNDARY_4 and click Modify.

157Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 170: ANSYS Polyflow Tutorial Guide

b. Click Plane of symmetry (fs=0, vn=0).

5. Set the conditions at the free surface (BOUNDARY_5).

In a steady-state problem, the velocity field must be tangential to a free surface, since no fluid particlesgo out of the domain through the free surface. This constraint is called the kinematic condition, .This equation requires an initial condition, that is, the starting line of the free surface. In the currentproblem, the starting line of the free surface is the intersection of boundary 2 and boundary 5 (see Fig-ure 4.2: Boundary Sets for the Problem (p. 151)).

a. Select Zero wall velocity (vn=vs=0) along BOUNDARY_5 and click Modify.

b. Click Free surface.

c. Click Boundary conditions on the moving surface.

d. Select No condition along BOUNDARY_2 and click Modify.

e. Select Position imposed.

f. Click Upper level menu.

g. Click Upper level menu to return to the Kinematic condition menu.

h. Click Upper level menu to return to the Flow boundary conditions panel.

6. Set the conditions at the flow outlet (BOUNDARY_6).

It is assumed that a uniform velocity profile is reached at the exit. The melt is not subjected to any ex-ternally applied stress at the exit, so the condition of zero normal and tangential forces is selected.

a. Select Zero wall velocity (vn=vs=0) along BOUNDARY_6 and click Modify.

b. Click Normal and tangential forces imposed (fn, fs).

c. Accept the default value of 0 for the normal force, , by clicking Upper level menu.

d. Accept the default value of 0 for the tangential force, , by clicking Upper level menu.

e. Click Upper level menu at the top of the Flow boundary conditions panel.

4.5.5. Remeshing

This model involves a free surface, whose shape is unknown a priori, which will be calculated together withthe flow equations. A portion of the mesh is affected by the relocation of this boundary, so a remeshingtechnique is applied on this part of the mesh. The free surface is entirely contained within subdomain 2,therefore only subdomain 2 is affected by the relocation of the free surface.

Global remeshing

1. Specify the region where the remeshing is to be performed (SUBDOMAIN_2).

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.158

3D Extrusion

Page 171: ANSYS Polyflow Tutorial Guide

In general, only one local remeshing is required for direct extrusion simulations. It becomes necessaryto define multiple local remeshings for inverse extrusion simulations. A single local remeshing is sufficientfor this case.

1–st local remeshing

a. Select SUBDOMAIN_1 and click Remove.

SUBDOMAIN_1 is moved from the top list to the bottom list, indicating that only SUBDOMAIN_2will be remeshed.

b. Click Upper level menu.

2. Define the parameters for the remeshing method.

The purpose of the remeshing technique is to relocate internal nodes according to the displacement ofboundary nodes due to the motion of the free surface, since a part of the mesh is deformed. For 3Dextrusion problems where large deformations of the extrudate are expected, the optimesh remeshingtechnique is recommended

The optimesh remeshing technique requires the direction of extrusion to be parallel to the , , or axis, and all slices into which the remeshing domain is cut must be perpendicular to the extrusion axis.

The domain to be remeshed is cut into a series of 2D slices (planes) in a direction perpendicular to thedirection of extrusion, and each plane is remeshed independently. For this process, Polyflow requiresthe selection of the initial plane and the final plane. In this problem, the initial plane is the intersectionof subdomain 2 with subdomain 1, and the final plane is the intersection of subdomain 2 with the flowexit (boundary 6).

159Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 172: ANSYS Polyflow Tutorial Guide

Optimesh-3D (extrusion only)

a. Specify the initial plane for the optimesh remeshing technique, by selecting Intersection withSUBDOMAIN_1 and clicking Confirm.

b. Specify the final plane for the optimesh remeshing technique, by selecting Intersection withBOUNDARY_6 and clicking Confirm.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.160

3D Extrusion

Page 173: ANSYS Polyflow Tutorial Guide

Polydata asks if you want to change from the surface kinematic condition to the line kinematiccondition.

c. Click Yes to use the line kinematic condition.

The line kinematic condition is recommended for extrusion problems, and should be used in com-bination with the optimesh remeshing technique.

d. Click Upper level menu three times.

The top-level Polydata menu is displayed.

4.5.6. Save and Exit Polydata

Save and exit

161Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 174: ANSYS Polyflow Tutorial Guide

Polydata asks you to confirm the current system units and fields that are to be saved to the results file forpostprocessing.

1. Specify the system of units for the simulation.

a. Click Modify system of units.

b. Select Set to metric cm/g/s/A+Celsius

c. Click Upper level menu twice.

2. Click Accept.

This confirms that the default Current field(s) are correct.

3. Click Continue.

This accepts the default names for graphical output files (cfx.res) that are to be saved for postpro-cessing, and for the Polyflow format results file (res).

4.5.7. Solution

Run Polyflow to calculate a solution for the model you just defined using Polydata.

1. Run Polyflow by right-clicking the Solution cell of the simulation and selecting Update.

This executes Polyflow using the data file as standard input, and writes information about the problemdescription, calculations, and convergence to a listing file (polyflow.lst).

2. Check for convergence in the listing file.

a. Right-click the Solution cell and select Listing Viewer....

Workbench opens the View listing file dialog box, which displays the listing file.

b. It is a common practice to confirm that the solution proceeded as expected by looking for the followingprinted at the bottom of the listing file:

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.162

3D Extrusion

Page 175: ANSYS Polyflow Tutorial Guide

The computation succeeded.

4.5.8. Postprocessing

Use CFD-Post to view the results of the Polyflow simulation.

1. Double-click the Results cell in the Workbench analysis and read the results files saved by Polyflow.

CFD-Post reads the solution fields that were saved to the results file.

2. Display the velocity distribution on the boundaries.

a. Click the Insert menu and select Contour or click the button.

b. Click OK to accept the default name (Contour 1) and display the details view below the Outline tab.

c. In the Outline tree tab, under User Locations and Plots, deselect Wireframe.

d. Perform the following steps in the details view of Contour 1:

i. In the Geometry tab, click the button next to Locations.

ii. Select all topological entities under PFL in the Location Selector dialog box (use Shift) andclick OK.

iii. Select VELOCITIES from the Variable drop-down list (or by clicking ).

iv. In the Render tab, deselect Show Contour Lines.

163Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 176: ANSYS Polyflow Tutorial Guide

v. Click Apply.

In Figure 4.3: Contours of Velocity Magnitude (p. 164), the velocity is zero along the die wall (as expected)and there is a fully developed profile at the inlet of the die. At the die outlet, the velocity profile changesto become constant throughout the extrudate cross-section. The transition between these two statescan be seen in the beginning section of the extrudate.

Figure 4.3: Contours of Velocity Magnitude

3. Display contours of velocity in cross-sections.

a. Deselect Contour 1 in the Outline tree tab under User Locations and Plots.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.164

3D Extrusion

Page 177: ANSYS Polyflow Tutorial Guide

b. Create the cross-section planes, at Z = 0, 0.08, 0.15, 0.45 m.

i. Select Plane from the Location drop-down menu ( ).

ii. Click OK to accept the default name (Plane 1) and display the details view below the Outlinetab.

165Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 178: ANSYS Polyflow Tutorial Guide

iii. In the Geometry tab of the details view of Plane 1, ensure XY Plane is selected from theMethod drop-down list.

iv. Enter 0 for Z.

v. Click Apply.

vi. Repeat steps 3.b.i.–v. for the other planes, at Z = 0.08,0.15, and 0.45 m.

vii. In the Outline tree tab, under User Locations and Plots, deselect Plane 1, Plane 2, Plane 3,and Plane 4.

c. Click the Insert menu and select Contour or click the button.

d. Click OK to accept the default name (Contour 2) and display the details view below the Outline tab.

e. In the Outline tree tab under User Locations and Plots, select Wireframe.

f. Perform the following steps in the details view of Contour 2:

i. In the Geometry tab, click the button next to Locations.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.166

3D Extrusion

Page 179: ANSYS Polyflow Tutorial Guide

ii. Select all planes under User Locations and Plots (use Shift for multiple selection).

iii. Click OK.

iv. Select VELOCITIES from the Variable drop-down list (or click ).

v. In the Render tab, deselect Show Contour Lines.

vi. Click Apply.

Velocity profiles at the flow inlet, the flow outlet, and planes just before and just after the die exit aredisplayed (Figure 4.4: Velocity Profiles at Cross-Sections (p. 168)). Compare the velocity profile within thedie to the velocity profile just after the die exit at the end of the computational domain. In the die theflow is fully developed. The velocity profile is flat in the extrudate, far away from the die exit; all theparticles in the cross-section plane are at the same velocity. Just beyond the die exit, in the transitionalzone, the velocity profile is reorganized. The velocity profile on the plane = 15 is no longer fully de-veloped, but it is not yet flat either. The velocity rearrangement is the source of the deformation of theextrudate.

167Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 180: ANSYS Polyflow Tutorial Guide

Figure 4.4: Velocity Profiles at Cross-Sections

4. Compare the cross-section shape of the extrudate with die.

a. Simplify the display.

In the Outline tree tab, under User Locations and Plots, deselect Contour 2 and Wireframe.

b. Display the die shape using a polyline.

i. Select Polyline from the Location drop-down menu ( ).

ii. Click OK to accept the default name (Polyline 1) and display the details view below the Outlinetab.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.168

3D Extrusion

Page 181: ANSYS Polyflow Tutorial Guide

iii. In the Geometry tab of the details view, select Boundary Intersection from the Method drop-down list.

iv. Click next to Boundary List and select SUBDOMAIN_1_BOUNDARY_2, SUBDO-MAIN_1_BOUNDARY_3, SUBDOMAIN_1_BOUNDARY_4 (use Shift for multiple selection).Click OK to close the Location Selector dialog box.

v. Select SUBDOMAIN_1_BOUNDARY_1 from the Intersect With drop-down list.

vi. Under the Color tab, click next to Color and select dark blue.

vii. Click Apply.

c. Display the extrudate shape using a polyline.

i. Select Polyline from the Location drop-down menu ( ).

ii. Click OK to accept the default name (Polyline 2) and display the details view below the Outlinetab.

iii. In the Geometry tab of the details view, select Boundary Intersection from the Method drop-down list.

iv. Click next to Boundary List and select SUBDOMAIN_2_BOUNDARY_3, SUBDO-MAIN_2_BOUNDARY_4, SUBDOMAIN_2_BOUNDARY_5 (use Shift for multiple selection).

v. Select SUBDOMAIN_2_BOUNDARY_6 from the Intersect With drop-down list.

vi. Click Apply.

169Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 182: ANSYS Polyflow Tutorial Guide

d. On the axis triad in the graphics window click +Z to view from Z-direction.

This allows you to compare the size and shape of the flow inlet with that of the flow outlet withoutdistortion due to perspective.

Figure 4.5: Swelling of the Extrudate

Since the model involves a generalized Newtonian fluid, there are no viscoelastic effects. The swelling(Figure 4.5: Swelling of the Extrudate (p. 170)) is only due to reorganization of the velocity profile at thedie exit. Fluid from the high-speed region moves to the low-speed region and pushes the free surfaceto the exterior.

5. Create a 2D plot on the diagonal of the die.

a. Define the line of the plot with the points (0.0, 0.1, 0.1) and (0.1, 0.0, 0.1).

These values are in meters.

i. Select Line from the Location drop-down menu ( ).

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.170

3D Extrusion

Page 183: ANSYS Polyflow Tutorial Guide

ii. Click OK to accept the default name (Line 1) and display the details view below the Outlinetab.

iii. Enter 0,0.1,0.1 for Point 1 and 0.1,0,0.1 for Point 2.

iv. Click Apply.

b. Create a plot.

i. Click the chart button .

ii. Click OK to accept the default name (Chart 1) and display the details view below the Outlinetab.

171Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 184: ANSYS Polyflow Tutorial Guide

iii. In the General tab of the details view, ensure XY is selected for Type, and enter 3D Extrusionfor Title.

iv. In the Data Series tab, for Series 1, select Line 1 from the Locations drop-down list (or by

clicking the button).

v. In the X Axis tab, select X from the Variable drop-down list.

vi. In the Y Axis tab, select VELOCITIES from the Variable drop-down list.

vii. Click Apply.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.172

3D Extrusion

Page 185: ANSYS Polyflow Tutorial Guide

Figure 4.6: Velocity Magnitude Along a Diagonal of Die Exit Section

The shear-thinning introduced by the Cross law is not clearly visible in Figure 4.6: Velocity MagnitudeAlong a Diagonal of Die Exit Section (p. 173) due to the large finite elements along the die wall. Themesh should be refined in that zone.

6. Plot X-velocity close to center of the die.

a. Define the line of the plot with the points (0.08, 0.02, 0.00) and (0.08, 0.02, 0.50).

i. Select Line from the Location drop-down menu ( ).

ii. Click OK to accept the default name (Line 2) and display the details view below the Outlinetab.

iii. Enter 0.08,0.02,0 for Point 1 and 0.08,0.02,0.5 for Point 2.

iv. Click Apply.

b. Create a plot.

i. Click the chart button .

ii. Click OK to accept the default name (Chart 2) and display the details view below the Outlinetab.

iii. In the General tab of the details view, ensure XY is selected for Type, and disable Display Title.

173Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 186: ANSYS Polyflow Tutorial Guide

iv. In the Data Series tab, select Line 2 from the Locations drop-down list for Series 1.

v. In the X Axis tab, select Z from the Variable drop-down list.

vi. In the Y Axis tab, select VELOCITIES X from the Variable drop-down list.

vii. Click Apply.

Figure 4.7: X-Velocities Along a Line Close to the Center of the Die

7. Plot Y-velocity close to the center of the die.

a. In the Y Axis tab of the details of Chart 2, select VELOCITIES Y from the Variable drop-down list.

b. Click Apply.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.174

3D Extrusion

Page 187: ANSYS Polyflow Tutorial Guide

Figure 4.8: Y-Velocities Along a Line Close to the Center of the Die

8. Plot Z-velocity close to the center of the die.

a. In the Y Axis tab of the details view of Chart 2, select VELOCITIES Z from the Variable drop-downlist.

b. Click Apply.

Figure 4.9: Velocities Along a Line Close to the Center of the Die (p. 176) shows that the flowslows down ( decreases) after the die exit. Meanwhile, particles travel from the center ofthe extrudate toward the edge, creating the swelling of the extrudate. Figure 4.7: X-VelocitiesAlong a Line Close to the Center of the Die (p. 174) and Figure 4.8: Y-Velocities Along a LineClose to the Center of the Die (p. 175) show that the peak values of and are located atthe very beginning of the extrudate, and vanish at the end of the free jet.

175Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 188: ANSYS Polyflow Tutorial Guide

Figure 4.9: Velocities Along a Line Close to the Center of the Die

4.6. Summary

This tutorial introduced the concept of a 3D extrusion problem. You solved the problem using a specific3D geometry for the die and made suitable assumptions about the physics of the problem. You analyzedthe factors affecting the extrudate shape. In Polydata you learned how to use the optimesh remeshingmethod, which is recommended for 3D extrusion problems.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.176

3D Extrusion

Page 189: ANSYS Polyflow Tutorial Guide

Chapter 5: Direct Extrusion

This tutorial is divided into the following sections:5.1. Introduction5.2. Prerequisites5.3. Problem Description5.4. Setup and Solution5.5. Summary5.6. Appendix

5.1. Introduction

This tutorial is similar to the 3D extrusion problem solved in 3D Extrusion (p. 149), where the shape ofthe extrudate was computed from the die geometry. In this tutorial, a complex geometry (free surface)is associated with the exit section of the die and undergoes large deformations during the extrusionprocess. Consequently, the problem becomes highly nonlinear and special convergence techniques arerequired to obtain a solution. This tutorial introduces the evolution procedure in Polyflow that is usedto handle nonlinear problems.

In this tutorial you will learn how to:

• Define an evolution problem.

• Create a sub-task to define a direct extrusion problem.

• Set material properties and boundary conditions for a direct extrusion problem.

5.2. Prerequisites

This tutorial assumes that you are familiar with the menu structure in Polydata and Workbench andthat you have solved or read 2.5D Axisymmetric Extrusion (p. 53). Some steps in the set up procedurewill not be shown explicitly.

5.3. Problem Description

This problem deals with the flow of a Newtonian fluid through a three-dimensional die with a complexdie lip section. Due to the symmetry of the problem (the cross-section of the die is a polygon), thecomputational domain of the fluid is defined for a quarter of the geometry and two planes of symmetryare defined.

The melt enters the die as shown in Figure 5.1: Problem Description (p. 178) at a flow rate = 10 cm3/s(a quarter of the actual flow rate) and the extrudate is obtained at the exit. It is assumed that subdomain2 is long enough to account for all the deformation of the extrudate.

177Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Page 190: ANSYS Polyflow Tutorial Guide

Figure 5.1: Problem Description

The incompressibility and momentum equations are solved over the computational domain. The domainfor the problem is divided into two subdomains (as shown in Figure 5.1: Problem Description (p. 178))so that the remeshing algorithm can be applied only to the portion of the mesh that is deformed.Subdomain 1 represents the fluid as it enters and is confined by the die. Subdomain 2 corresponds tothe extrudate that is in contact with the air (and can deform freely). The main aim of the calculation isto find the location of the free surface (the skin of the extrudate).

The boundary set for the problem are shown in Figure 5.2: Boundary Set for the Problem (p. 179), andthe conditions at the boundaries of the domains are:

• boundary 1: flow inlet, volumetric flow rate = 10 cm3/s

• boundary 2: symmetry plane

• boundary 3: symmetry plane

• boundary 4: zero velocity

• boundary 5: free surface

• boundary 6: flow exit

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.178

Direct Extrusion

Page 191: ANSYS Polyflow Tutorial Guide

Figure 5.2: Boundary Set for the Problem

5.4. Setup and Solution

The following sections describe the setup and solution steps for this tutorial:5.4.1. Preparation5.4.2. Project and Mesh5.4.3. Create a Task for the Model5.4.4. Material Data5.4.5. Boundary Conditions5.4.6. Remeshing5.4.7. Numerical Parameters5.4.8. Outputs5.4.9. Save and Exit Polydata5.4.10. Solution5.4.11. Postprocessing

5.4.1. Preparation

To prepare for running this tutorial:

1. Prepare a working folder for your simulation.

179Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 192: ANSYS Polyflow Tutorial Guide

2. Go to the ANSYS Customer Portal, https://support.ansys.com/training.

Note

If you do not have a User Name and Password, you can register by clicking CustomerRegistration on the Log In page.

3. Enter the name of this tutorial into the search bar.

4. Narrow the results by using the filter on the left side of the page.

a. Click ANSYS Polyflow under Product.

b. Click 16.0 under Version.

5. Select this tutorial from the list.

6. Click Files to download the input and solution files.

7. Unzip the Direct-Extrusion_R160.zip file you have downloaded to your working folder.

The mesh file dirext.msh can be found in the unzipped folder.

8. Start Workbench from Start > All Programs > ANSYS 16.0 > Workbench 16.0.

5.4.2. Project and Mesh

1. Create a Fluid Flow - Extrusion (Polyflow) analysis system by drag and drop in Workbench.

2. Save the ANSYS Workbench project using File → Save, entering direct-extrusion as the name ofthe project.

3. Import the mesh file (dirext.msh).

4. Double-click the Setup cell to start Polydata.

When Polydata starts, the Create a new task menu item is highlighted, and the geometry for theproblem is displayed in the Graphics Display window.

5.4.3. Create a Task for the Model

In the following steps you will define a new task representing the evolution model. Then, you will define asub-task for the isothermal flow calculation.

1. Create a task for the model.

Create a new task

a. Select the following options:

• F.E.M. task

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.180

Direct Extrusion

Page 193: ANSYS Polyflow Tutorial Guide

• Evolution problem(s)

The complex geometry associated with the free surface of the extrudate introduces nonlinearterms into the kinematic condition equation used to find its location. An evolution scheme isused to handle the nonlinear problem.

b. Click Accept the current setup.

The Create a sub-task menu item is highlighted.

2. Create a sub-task for the isothermal flow.

Create a sub-task

a. Select Generalized Newtonian isothermal flow problem.

A dialog box appears asking for the title of the problem.

b. Enter Direct extrusion as the New value and click OK.

The Domain of the sub-task menu item is highlighted.

3. Define the domain where the sub-task applies.

Since this problem involves a free surface, the domain is divided into two subdomains; one for theregion near the free surface (SUBDOMAIN_2) and the other for the rest of the domain (SUBDO-MAIN_1). In this problem, the sub-task applies to both subdomains, which is the default condition.

Domain of the sub-task

Accept the default selection of both subdomains by clicking Upper level menu.

The Material data menu item is highlighted.

5.4.4. Material Data

Polydata indicates the material properties that are relevant for your sub-task by graying out the irrelevantproperties. In this case, viscosity, density, inertia terms, and gravity are available for specification. For thismodel, define only the viscosity of the material.

Material Data

1. Click Shear-rate dependence of viscosity.

2. Click Power law.

The viscosity in this tutorial is given by the power law. For information on power law, see Ap-pendix (p. 198).

3. Specify the value for , referred to as “fac” in the graphical user interface (compare the equation at thetop of the Power law menu to the equation shown in the Appendix (p. 198)).

181Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 194: ANSYS Polyflow Tutorial Guide

Modify fac

Enter 3e+05 [units: poise] as the New value and click OK.

4. Retain the default value for , referred to as “tnat” in the graphical user interface.

Modify tnat

Click OK to retain the default value of 1 [units: s].

5. Specify the value for , referred to as “expo” in the graphical user interface.

Modify expo

Enter 0.75 as the New value and click OK.

6. Click Upper level menu three times to return to the Direct extrusion menu.

The Flow boundary conditions menu item is highlighted.

5.4.5. Boundary Conditions

In the following steps you will set the conditions at each of the boundaries of the domain. When a boundaryset is selected, its location is highlighted in red in the graphics window.

Flow boundary conditions

1. Set the conditions at the flow inlet (BOUNDARY_1).

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.182

Direct Extrusion

Page 195: ANSYS Polyflow Tutorial Guide

a. Select Zero wall velocity (vn=vs=0) along BOUNDARY_1 and click Modify.

b. Click Inflow.

c. Ensure Volumetric flow rate is selected and click Modify volumetric flow rate.

Polydata prompts you for the volumetric flow rate.

d. Enter 10 [units: cm3/s] as the New value and click OK.

e. Ensure Automatic is selected and click Upper level menu.

When the Automatic option is selected, Polydata chooses the most appropriate method to computethe inflow condition.

2. Set the conditions at the first symmetry plane (BOUNDARY_2).

In 2D axisymmetric problems, the axis of symmetry is automatically identified by Polydata, but for 3Dflows, you must manually identify a plane of symmetry. The normal velocity ( ) and the tangentialforce ( ) are set to zero on a symmetry plane. A particle cannot cross the plane ( = 0) due to the

symmetry, so the particles flow at the same velocity on both sides of the symmetry plane, leading to azero tangential force.

a. Select Zero wall velocity (vn=vs=0) along BOUNDARY_2 and click Modify.

b. Click Plane of symmetry (fs=0, vn=0).

3. Set the conditions at the second symmetry plane (BOUNDARY_3).

a. Select Zero wall velocity (vn=vs=0) along BOUNDARY_3 and click Modify.

b. Click Plane of symmetry (fs=0, vn=0).

4. Retain the default condition Zero wall velocity (vn=vs=0) along BOUNDARY_4 at the wall of SUBDO-MAIN_1 (BOUNDARY_4).

At a solid-liquid interface, the velocity of the liquid is that of the solid surface. Hence the velocity thefluid is assumed to stick to the wall. This is known as the no-slip assumption because the liquid is assumedto adhere to the wall, and hence, has no velocity relative to the wall.

183Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 196: ANSYS Polyflow Tutorial Guide

By default, Polydata imposes = = 0 along all boundaries. No action is required to accept the defaultcondition.

5. Set the conditions at the free surface (BOUNDARY_5).

In a steady-state problem, the velocity field must be tangential to a free surface, since no fluid particlesgo out of the domain through the free surface. This constraint is called the kinematic condition, =0. This equation requires an initial condition, that is, the starting line of the free surface. In this problem,the starting line of the free surface is the intersection of boundary 4 and boundary 5 (see Figure 5.2: Bound-ary Set for the Problem (p. 179)).

a. Select Zero wall velocity (vn=vs=0) along BOUNDARY_5 and click Modify.

b. Click Free surface.

c. Click Boundary conditions on the moving surface.

d. Select No condition along BOUNDARY_4 (the boundary where the free surface starts) and clickModify.

e. Select Position imposed.

f. Click Upper level menu to return to the Boundary conditions on the moving surface menu.

g. Click Upper level menu two times to return to the Flow boundary conditions menu.

6. Set the conditions at the flow exit (BOUNDARY_6).

It is assumed that a uniform velocity profile is reached at the exit. The melt is not subjected to any ex-ternally applied stress at the exit, so the condition of zero normal and tangential forces is selected.

a. Select Zero wall velocity (vn=vs=0) along BOUNDARY_6 and click Modify.

b. Click Normal and tangential forces imposed (fn, fs).

c. Accept the default value of 0 for the normal force, , by clicking Upper level menu.

d. Accept the default value of 0 for the tangential force, , by clicking Upper level menu.

e. Click Upper level menu to return to the Direct extrusion menu.

The Global remeshing menu item is highlighted.

5.4.6. Remeshing

This model involves a free surface, whose shape is unknown a priori, which will be calculated together withthe flow equations. A portion of the mesh is affected by the relocation of this boundary, so a remeshingtechnique is applied on this part of the mesh. The free surface is entirely contained within subdomain 2,therefore only subdomain 2 is affected by the relocation of the free surface.

Global remeshing

1. Specify the region where the remeshing is to be performed (SUBDOMAIN_2).

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.184

Direct Extrusion

Page 197: ANSYS Polyflow Tutorial Guide

In general, only one local remeshing is required for direct extrusion simulations. It becomes necessaryto define multiple local remeshings for inverse extrusion simulations. A single local remeshing is sufficientfor this case.

1–st local remeshing

a. Select SUBDOMAIN_1 and click Remove.

SUBDOMAIN_1 is moved from the top list to the bottom list, indicating that only SUBDOMAIN_2will be remeshed.

b. Click Upper level menu.

2. Define the parameters for the remeshing method.

The purpose of the remeshing technique is to relocate internal nodes according to the displacement ofboundary nodes due to the motion of the free surface, since a part of the mesh is deformed. For 3Dextrusion problems where large deformations of the extrudate are expected, the optimesh remeshingtechnique is recommended. For information on optimesh remeshing technique, refer to the Ap-pendix (p. 198).

Optimesh-3D (extrusion only)

a. Specify the initial plane for the optimesh remeshing technique, by selecting Intersection withSUBDOMAIN_1 and clicking Confirm.

b. Specify the final plane for remeshing technique, by selecting Intersection with BOUNDARY_6 andclicking Confirm.

Polydata asks if you want to change from the surface kinematic condition to the line kinematiccondition.

c. Click Yes to use the line kinematic condition.

The line kinematic condition is recommended for extrusion problems, and must be used in combin-ation with the optimesh remeshing technique.

d. Click Accept the current setup in the Element distortion check menu.

In complex extrusion simulations, the finite element mesh can undergo great deformations. TheElement distortion check menu deals with the detection of all possible distortions of the elements.

185Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 198: ANSYS Polyflow Tutorial Guide

e. Click Upper level menu two times.

F.E.M. Task 1 menu is displayed.

5.4.7. Numerical Parameters

All information relevant to iterative schemes (for the F.E.M. task calculations) can be modified in the Numer-ical parameters menu.

Numerical parameters

1. Click Enable evolution on moving boundaries to enable the evolution scheme.

For information on the evolution scheme, see Appendix (p. 198).

2. Specify the evolution parameters.

Modify the evolution parameters

a. Define the starting solution for the iterative scheme in the calculation of the free surface location.

The first calculation is performed at . Increase the value of the initial increment of ( ) to reducethe number of evolution steps and to speed up the calculation.

Modify the initial value of delta-S

Polydata prompts you for the initial value of .

b. Enter 0.1 for the New value and click OK.

c. Click Upper level menu to return to the Numerical parameters menu.

3. Click Upper level menu two times to return to the top-level Polydata menu.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.186

Direct Extrusion

Page 199: ANSYS Polyflow Tutorial Guide

5.4.8. Outputs

After Polyflow calculates a solution, it can save the results in several different formats. Choose the one thatis appropriate for your postprocessor. In this case, save the outputs in IGES format, as well as the defaultformat for CFD-Post.

Outputs

1. Retain the default output (CFD-Post) and click Enable Iges file output.

The default CFD-Post output is used for postprocessing with CFD-Post. The IGES output contains themodified geometry of the extrudate (after remeshing) calculated at every step of the evolution procedure.For information on IGES output, see Appendix (p. 198).

Polydata asks you to confirm the current system units and fields that are to be saved to the results filefor postprocessing.

2. Specify the system of units for the simulation.

a. Click Modify system of units.

b. Select Set to metric_cm/g/s/A+Celsius.

c. Click Upper level menu three times.

The top-level Polydata menu is displayed.

5.4.9. Save and Exit Polydata

Save and exit

Polydata asks you to confirm fields that are to be saved to the results file for postprocessing.

1. Click Accept.

This confirms that the default Current field(s) are correct.

2. Click Continue.

This accepts the default names for graphical output files (cfx.res) that are to be saved for postpro-cessing, and for the Polyflow format results file (res).

5.4.10. Solution

Run Polyflow to calculate a solution for the model you just defined using Polydata.

1. Run Polyflow by right-clicking the Solution cell of the simulation and selecting Update.

This executes Polyflow using the data file as standard input, and writes information about the problemdescription, calculations, and convergence to a listing file (polyflow.lst).

2. Check for convergence in the listing file.

187Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 200: ANSYS Polyflow Tutorial Guide

a. Right-click the Solution cell and select Listing Viewer....

Workbench opens the View listing file dialog box, which displays the listing file.

b. It is a common practice to confirm that the solution proceeded as expected by looking for the followingprinted at the bottom of the listing file:

The computation succeeded.

5.4.11. Postprocessing

Use CFD-Post to view the results of the Polyflow simulation.

1. Double-click the Results tab in the Polyflow analysis system. This will start CFD-Post and read the resultsfiles saved by Polyflow. CFD-Post reads the mesh information and the solution fields that were saved tothe results file.

2. Display the velocity distribution on the boundaries.

Deselect Wireframe in the Outline tree tab, under User Locations and Plots.

a. Click the Insert menu and select Contour or click the button.

b. Click OK to accept the default name (Contour 1) and display the details view below the Outline tab.

c. Perform the following steps in the Geometry tab of the details view of Contour 1:

i. Click the button next to Locations.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.188

Direct Extrusion

Page 201: ANSYS Polyflow Tutorial Guide

ii. Select all topological entities under Fluid Flow Extrusion Polyflow in the Location Selectordialog box (use Shift for multiple selection) and click OK.

iii. Select VELOCITIES from the Variable drop-down list (or by clicking ).

iv. Click Apply.

d. Rotate the image so that you can see the fluid at the inlet of the die, as shown in Figure 5.3: Contoursof Velocity Magnitude (p. 189).

Figure 5.3: Contours of Velocity Magnitude

Observe that the velocity is zero along the die wall, as expected, and there is a fully developed profileat the inlet of the die. At the die outlet, the velocity profile changes to become constant throughout theextrudate cross-section. The transition between these two states can be seen in the first third of the ex-trudate.

3. Display contours of velocity in cross-sections.

189Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 202: ANSYS Polyflow Tutorial Guide

a. Deselect the contours previously defined.

In the Outline tree tab, under User Locations and Plots, deselect Contour 1.

b. Create the cross-sectional planes, at Z = 0, 3, 7, and 20 cm.

i. Select Plane from the Location drop-down menu ( ).

ii. Click OK to accept the default name (Plane 1) and display the details view below the Outlinetab.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.190

Direct Extrusion

Page 203: ANSYS Polyflow Tutorial Guide

iii. In the Geometry tab of the details view, ensure XY Plane is selected from the Method drop-down list.

iv. Enter 0 for Z.

v. Click Apply.

vi. Repeat steps 3.b.i.–v. for the other planes, at Z = 0.03,0.07, and 0.1999 m.

vii. In the Outline tree tab, under User Locations and Plots, deselect Plane 1, Plane 2, Plane 3,and Plane 4.

191Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 204: ANSYS Polyflow Tutorial Guide

c. Display the contours.

i. Click the Insert menu and select Contour or click the button.

ii. Click OK to accept the default name (Contour 2) and display the details view below the Outlinetab.

iii. In the Outline tree tab under User Locations and Plots, select Wireframe.

iv. In the Geometry tab of the details view of Contour 2, click the button next to Locations.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.192

Direct Extrusion

Page 205: ANSYS Polyflow Tutorial Guide

v. Select all planes under User Locations and Plots (use Shift for multiple selection).

vi. Click OK.

vii. Select VELOCITIES from the Variable drop-down list (or click ).

viii. In the Render tab, disable Lighting.

ix. Click Apply.

Figure 5.4: Velocity Profiles at Cross-Sections (p. 194) shows the velocity profiles at the flow inlet, the flowoutlet, and at the planes just before and just after the die exit.

193Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 206: ANSYS Polyflow Tutorial Guide

Figure 5.4: Velocity Profiles at Cross-Sections

Compare the velocity profile within the die to the velocity profile just after the die exit at the end of thecomputational domain. In the die the flow is fully developed. In the extrudate, far away from the dieexit, the velocity profile is flat. That is, all the particles in a cross-sectional plane are at the same speed.Just after the die exit, there is a transitional zone where the velocity profile is reorganized. The velocityprofile on the plane Z = 7 cm is no longer fully developed, but it is not yet flat either. The velocity re-arrangement is the source of the deformation of the extrudate.

4. Compare the cross-sectional shape of the extrudate with the die.

a. Simplify the display.

In the Outline tree tab, under User Locations and Plots, deselect Contour 2 and Wireframe.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.194

Direct Extrusion

Page 207: ANSYS Polyflow Tutorial Guide

b. Display the die shape using a polyline.

i. Select Polyline from the Location drop-down menu ( ).

ii. Click OK to accept the default name (Polyline 1) and display the details view below the Outlinetab.

iii. In Geometry tab of the details view, select Boundary Intersection from the Method drop-downlist.

iv. Click next to Boundary List and select SUBDOMAIN_1_BOUNDARY_4. Click OK to closethe Location Selector dialog box.

v. Select SUBDOMAIN_1_BOUNDARY_1 from the Intersect With drop-down list.

vi. In the Color tab, click next to Color and select dark blue.

vii. Click Apply.

c. Display the extrudate shape using a polyline.

i. Select Polyline from the Location drop-down menu ( ).

ii. Click OK to accept the default name (Polyline 2) and display the details view below the Outlinetab.

195Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 208: ANSYS Polyflow Tutorial Guide

iii. In Geometry tab of the details view, select Boundary Intersection from the Method drop-downlist.

iv. Select SUBDOMAIN_2_BOUNDARY_5 from the Boundary List drop-down list.

v. Select SUBDOMAIN_2_BOUNDARY_6 from the Intersect With drop-down list.

vi. Click Apply.

d. Right-click in the graphic window and select View From +Z under Predefined Camera.

This allows you to compare the size and shape of the flow inlet with that of the flow outlet withoutdistortion due to perspective.

5. Restore the symmetry.

a. Click the Insert menu and select Instance Transform, or click the button.

b. Click OK to accept the default name (Instance Transform 1) and display the details view below theOutline tab.

c. Perform the following steps in the details view of Instance Transform 1:

i. Disable Instancing Info From Domain.

ii. Set Number of Graphical Instances to 4.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.196

Direct Extrusion

Page 209: ANSYS Polyflow Tutorial Guide

iii. Ensure Apply Rotation is selected.

iv. Ensure Method is set to Principal Axis and Z is selected from the Axis drop-down list.

v. Enable Full Circle under Instance Definition.

vi. Click Apply.

d. In the Outline tree tab, under User Locations and Plots, right-click Polyline 1 and click Edit (ordouble-click Polyline 1).

e. In the View tab, scroll down and enable Apply Instancing Transform.

f. Select Instance Transform 1 from the Transform drop-down list.

g. Click Apply.

h. In the Outline tree tab, under User Locations and Plots, right-click Polyline 2 and click Edit (ordouble-click Polyline 2).

i. Repeat steps 5.e.–g.

You can use the central-mouse button to zoom in and out. This allows you to compare the size andshape of the flow inlet with that of the flow outlet without distortion due to perspective.

You can also click the fit view button ( ) to properly center the image.

197Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 210: ANSYS Polyflow Tutorial Guide

Figure 5.5: Swelling of the Extrudate

The deformations come from the rearrangement of the velocity profile. Particles coming from high-speed regions in the die must slow down, while particles coming from low-speed regions mustaccelerate. Observe that the central part of the cross, where the fluid easily flows in the die, is en-larged in the extrudate, while the extremities of the branches are smaller in the extrudate. Sincethe combined effect of cross-sectional expansions and reductions is very difficult to guess, a nu-merical simulation is necessary for a moderate to high complexity die.

5.5. Summary

This tutorial introduced the concept of a direct extrusion problem. You solved the problem using aspecific 3D geometry for the die, made suitable assumptions about the physics of the problem, andanalyzed the factors affecting the extrudate shape. The nonlinear problem was solved using an evolutiontechnique to reach the convergence.

5.6. Appendix

The appendix contains the following sections:

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.198

Direct Extrusion

Page 211: ANSYS Polyflow Tutorial Guide

5.6.1. Power Law5.6.2. Optimesh Remeshing Technique5.6.3. Evolution Scheme5.6.4. IGES Output

5.6.1. Power Law

The power law exhibits shear thinning (reduction in the viscosity with an increase in shear rate) that isa characteristic of many polymers. The viscosity in this tutorial is given by the power law:

(5.1)

where:

= consistency factor

= power-law index

= natural time

is included in the equation to make the units consistent.

5.6.2. Optimesh Remeshing Technique

The optimesh remeshing technique requires the direction of extrusion to be parallel to the , , or axis, and all slices into which the remeshing domain is cut must be perpendicular to the extrusion axis.

The domain to be remeshed is cut into a series of 2D slices (planes) in a direction perpendicular to thedirection of extrusion, and each plane will be remeshed independently. For this process, Polyflow requiresthe selection of the initial plane and the final plane. In this problem, the initial plane is the intersectionof SUBDOMAIN_2 with SUBDOMAIN_1, and the final plane is the intersection of SUBDOMAIN_2 withthe flow exit (boundary 6).

5.6.3. Evolution Scheme

The kinematic equation introduces nonlinear terms in the problem that might lead to convergencedifficulties. An evolution scheme is available in Polyflow to solve such highly nonlinear problems. Startthe calculation with a reduced value of the parameter(s) causing the nonlinearity. Beginning with thefirst solution, Polyflow increments the parameter(s) causing the nonlinearity and computes a secondsolution. Starting from this new solution, Polyflow increments the parameter(s) again and computes athird solution. Following this procedure, Polyflow increases the value of each parameter up to itsnominal value. In Polyflow, this procedure is fully automated; the increments are automatically adaptedaccording to the results of previous calculations. Polyflow uses an evolution variable that is incrementedduring the evolution scheme. S starts at an initial value of and is increased to a final value of . Each

parameter that you want to evolve is defined as .

5.6.4. IGES Output

An IGES output allows you to import the final geometry into a CAD program. This is useful when youare designing a die because you want to be able to manufacture the die predicted by the calculation.In the present case, you can compare the final shape of the predicted extrudate in an IGES format withthe desired shape.

199Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Appendix

Page 212: ANSYS Polyflow Tutorial Guide

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.200

Page 213: ANSYS Polyflow Tutorial Guide

Chapter 6: Inverse Extrusion

This tutorial is divided into the following sections:6.1. Introduction6.2. Prerequisites6.3. Problem Description6.4. Setup and Solution6.5. Summary6.6. Appendix

6.1. Introduction

Inverse extrusion deals with the computation of the shape of a die that produces an extrudate of thedesired shape. This tutorial illustrates how to handle a complex inverse extrusion problem. In this tutorial,slip conditions along the die walls are considered and evolution on the slip coefficient is enabled toaid convergence.

In this tutorial you will learn how to:

• Define an evolution problem.

• Create a sub-task to define an inverse extrusion problem.

• Set material properties and boundary conditions for a inverse extrusion problem.

• Specify multiple local remeshing regions.

6.2. Prerequisites

This tutorial assumes that you are familiar with the menu structure in Polydata and Workbench andthat you have solved or read 2.5D Axisymmetric Extrusion (p. 53). Some steps in the set up procedurewill not be shown explicitly.

6.3. Problem Description

This problem deals with the flow of a Newtonian fluid through a three-dimensional die. Due to thesymmetry of the problem (the cross-section of the die is a polygon), the computational domain of thefluid is defined for a quarter of the geometry. Two planes of symmetry are defined.

The melt enters the die as shown in Figure 6.1: Problem Description (p. 202) at a flow rate = 10 cm3/s(a quarter of the actual flow rate) and the extrudate is obtained at the exit.

The incompressibility and momentum equations are solved over the computational domain. The domainfor the problem is divided into two sub-domains (as shown in Figure 6.1: Problem Description (p. 202))so that specific remeshing algorithms can be applied in each sub-domain to accurately predict the dieprofile. Subdomain 1 represents the fluid as it enters and is confined by the die. Subdomain 2 corresponds

201Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Page 214: ANSYS Polyflow Tutorial Guide

to the extrudate that is in contact with the air (and can deform freely). The main aim of the calculationis to compute the geometry of the die to obtain the desired extrudate.

Figure 6.1: Problem Description

Figure 6.2: Boundary Set for the Problem

The boundary set for the problem are shown in Figure 6.2: Boundary Set for the Problem (p. 202), andthe conditions at the boundaries of the domains are given below

boundaries of the domains are:

• boundary 1: flow inlet, volumetric flow rate = 10 cm3/s

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.202

Inverse Extrusion

Page 215: ANSYS Polyflow Tutorial Guide

• boundary 2: symmetry plane

• boundary 3: symmetry plane

• boundary 4: slip conditions along the wall

• boundary 5: free surface

• boundary 6: flow exit

6.4. Setup and Solution

The following sections describe the setup and solution steps for this tutorial:6.4.1. Preparation6.4.2. Project and Mesh6.4.3. Create a Task for the Model6.4.4. Material Data6.4.5. Boundary Conditions6.4.6. Remeshing6.4.7. Numerical Parameters6.4.8. Outputs6.4.9. Save and Exit Polydata6.4.10. Solution6.4.11. Postprocessing

6.4.1. Preparation

To prepare for running this tutorial:

1. Prepare a working folder for your simulation.

2. Go to the ANSYS Customer Portal, https://support.ansys.com/training.

Note

If you do not have a User Name and Password, you can register by clicking CustomerRegistration on the Log In page.

3. Enter the name of this tutorial into the search bar.

4. Narrow the results by using the filter on the left side of the page.

a. Click ANSYS Polyflow under Product.

b. Click 16.0 under Version.

5. Select this tutorial from the list.

6. Click Files to download the input and solution files.

7. Unzip the Inverse-Extrusion_R160.zip file you have downloaded to your working folder.

203Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 216: ANSYS Polyflow Tutorial Guide

The mesh file invext.msh can be found in the unzipped folder.

8. Start Workbench from Start > All Programs > ANSYS 16.0 > Workbench 16.0.

6.4.2. Project and Mesh

1. Create a Fluid Flow - Extrusion(Polyflow) analysis system by drag and drop in Workbench.

2. Save the ANSYS Workbench project using File → Save, entering inverse-extrusion as the name ofthe project.

3. Import the mesh file (invext.msh).

4. Double-click the Setup cell to start Polydata.

When Polydata starts, the Create a new task menu item is highlighted, and the geometry for theproblem is displayed in the Graphics Display window.

6.4.3. Create a Task for the Model

In the following steps you will define a new task representing the inverse extrusion model. Then, define asub-task for the isothermal flow calculation.

1. Create a task for the model.

Create a new task

a. Select the following options:

• F.E.M. task

• Evolution problem(s)

Apply the evolution scheme on the slip coefficient along the outer wall of the die (boundary 4)when you define the slip boundary conditions.

b. Click Accept the current setup.

The Create a sub-task menu item is highlighted.

2. Create a sub-task for the isothermal flow.

Create a sub-task

a. Click Generalized Newtonian isothermal flow problem.

A dialog box appears asking for the title of the problem.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.204

Inverse Extrusion

Page 217: ANSYS Polyflow Tutorial Guide

b. Enter Inverse Extrusion as the New value and click OK.

The Domain of the sub-task menu item is highlighted.

3. Define the domain where the sub-task applies.

This problem involves a free surface, so the domain is divided into two sub-domains; one for the regionnear the free surface (SUBDOMAIN_2) and the other for the rest of the domain (SUBDOMAIN_1). In thisproblem, the sub-task applies to both sub-domains, which is the default condition.

Domain of the sub-task

Accept the default selection of both subdomains by clicking Upper level menu.

The Material data menu item is highlighted.

6.4.4. Material Data

Polydata indicates which material properties are relevant for your sub-task by graying out the irrelevantproperties. In this case, viscosity, density, inertia terms, and gravity are available for specification. For thismodel you will only define the viscosity of the material.

Material Data

1. Click Shear-rate dependence of viscosity.

2. Click Power law.

The viscosity in this tutorial is given by the power law. For information on power law, see PowerLaw (p. 225).

3. Specify the value of , referred to as “fac” in the graphical user interface (compare the equation at thetop of the Power law menu to the equation shown in the Power Law (p. 225)).

Modify fac

205Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 218: ANSYS Polyflow Tutorial Guide

Enter 300000 [units: poise] as the New value and click OK.

4. Retain the default value for , referred to as “tnat” in the graphical user interface.

Modify tnat

Click OK to retain the default value of 1.

5. Specify the value for , referred to as “expo” in the graphical user interface.

Modify expo

Enter 0.75 as the New value and click OK.

6. Click Upper level menu three times to return to the Inverse Extrusion menu.

The Flow boundary conditions menu item is highlighted.

6.4.5. Boundary Conditions

In the following steps you will set the conditions at each of the boundaries of the domain. When a boundaryset is selected, its location is highlighted in red in the graphics window.

Flow boundary conditions

1. Set the conditions at the flow inlet (BOUNDARY_1).

a. Select Zero wall velocity (vn=vs=0) along BOUNDARY_1 and click Modify.

b. Click Inflow.

c. Click Modify volumetric flow rate.

Polydata prompts you for the volumetric flow rate.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.206

Inverse Extrusion

Page 219: ANSYS Polyflow Tutorial Guide

d. Enter 10 [units: cm3/s] as the New value and click OK.

e. Retain the default options of Automatic and Volumetric flow rate.

f. Click Upper level menu.

When the Automatic option is selected, Polydata chooses the most appropriate method to computethe inflow condition.

2. Set the conditions at the first symmetry plane (BOUNDARY_2).

In 2D axisymmetric problems, the axis of symmetry is automatically identified by Polydata, but for 3Dflows, you must manually identify a plane of symmetry.

The normal velocity ( ) and the tangential force ( ) are set to zero on a symmetry plane. A particle

cannot cross the plane ( = 0) due to the symmetry, so the particles flow at the same velocity on bothsides of the symmetry plane, leading to a zero tangential force.

a. Select Zero wall velocity (vn=vs=0) along BOUNDARY_2 and click Modify.

b. Click Plane of symmetry (fs=0, vn=0).

3. Set the conditions at the second symmetry plane (BOUNDARY_3).

a. Select Zero wall velocity (vn=vs=0) along BOUNDARY_3 and click Modify.

b. Click Plane of symmetry (fs=0, vn=0).

4. Set the conditions along the outer wall of the die (BOUNDARY_4).

a. Select Zero wall velocity (vn=vs=0) along BOUNDARY_4 and click Modify.

b. Enable the evolution scheme on the slip coefficient.

The evolution scheme is used to aid with convergence by starting with a low value for the slipcoefficient and slowly increasing the value of the coefficient to reach a no-slip condition. With alow value for the slip coefficient there is no swelling of the extrudate, simplifying the calculation.As the slip coefficient increases, the extrudate begins to swell because the fluid in contact with the

207Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 220: ANSYS Polyflow Tutorial Guide

wall slows down, which increases the velocity of the fluid in the center of the die. For more inform-ation on the evolution scheme, see Evolution Scheme (p. 225).

i. Click EVOL at the top of the Polydata menu to enable the evolution inputs for the slip coefficient.

ii. Click Slip conditions.

iii. Click F(v) = Generalized Navier’s law.

For information on Navier’s law, see Appendix (p. 225).

iv. Specify the value of .

Modify k

A dialog box appears asking you for the value of .

v. Retain the default value of 1 for k and click OK.

vi. Select the function f(S) = a*exp(b*S) + c + d*S.

You will retain the default values for a and b, and will modify the values for c and d.

vii. Click Modify the value of c.

Hint: Scroll down to see Modify the value of c.

A dialog box appears asking for the new value of c.

viii. Enter 0 as the New value and click OK.

ix. Click Modify the value of d.

A dialog box appears asking for the new value of d.

x. Enter 0 as the New value and click OK.

xi. Click EVOL at the top of the Polydata menu to disable the evolution inputs.

xii. Click Upper level menu.

xiii. Retain the default value of 1 for e ( ).

xiv. Click Upper level menu two times to return to the Flow boundary conditions menu.

5. Set the conditions at the free surface (BOUNDARY_5).

In a steady-state problem, the velocity field must be tangential to a free surface, since no fluid particlesgo out of the domain through the free surface. This constraint is called the kinematic condition, =0. This equation requires an initial condition (the starting line of the free surface). In this problem, thestarting line of the free surface is the intersection of boundary 4 and boundary 5 (see Figure 5.2: BoundarySet for the Problem (p. 179)).

a. Select Zero wall velocity (vn=vs=0) along BOUNDARY_5 and click Modify.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.208

Inverse Extrusion

Page 221: ANSYS Polyflow Tutorial Guide

b. Click Free surface.

c. Click Boundary conditions on the moving surface.

d. Select No condition along BOUNDARY_4 (the boundary where the free surface starts) and clickModify.

e. Select Position imposed.

f. Click Upper level menu to return to the Boundary conditions on the moving surface menu.

g. Click Upper level menu at the top of the menu.

h. Click Outlet (Inv. prediction) to define the outlet of the moving surface.

In inverse extrusion problems, you have to predict the appropriate die exit cross-section to obtaina given extrudate cross-section. By defining the outlet of a free surface, inform Polyflow the desiredextrudate shape. Hence, you impose the outlet of the moving surface along the last section of thefree jet as the outlet of the free surface. This section will not be modified during the calculation.

i. Select BOUNDARY_6 as the outlet of the moving surface and click Confirm.

j. Click Upper level menu to return to the Flow boundary conditions menu.

6. Set the conditions at the flow exit (BOUNDARY_6).

It is assumed that a uniform velocity profile is reached at the exit. The melt is not subjected to any ex-ternally applied stress at the exit, so the condition of zero normal and tangential forces is selected.

a. Select Zero wall velocity (vn=vs=0) along BOUNDARY_6 and click Modify.

b. Click Normal and tangential forces imposed (fn, fs).

c. Accept the default value of 0 for the normal force, , by clicking Upper level menu.

d. Accept the default value of 0 for the tangential force, , by clicking Upper level menu.

7. Click Upper level menu at the top of the Flow boundary conditions menu.

The Global remeshing menu item is highlighted.

6.4.6. Remeshing

The purpose of the remeshing technique is to relocate internal nodes according to the displacement ofboundary nodes due to the motion of the free surface, since a part of the mesh is deformed. For informationon remeshing technique, see Appendix (p. 225).

Global remeshing

1. Specify the region where the remeshing is to be performed (SUBDOMAIN_2).

1–st local remeshing

209Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 222: ANSYS Polyflow Tutorial Guide

a. Select SUBDOMAIN_1 and click Remove.

SUBDOMAIN_1 is moved from the top list to the bottom list, indicating that only SUBDOMAIN_2will be remeshed.

b. Click Upper level menu.

2. Define the parameters for the fist local remeshing method.

For 3D extrusion problems where large deformations of the extrudate are expected, the optimeshremeshing technique is recommended. For information on optimesh remeshing technique seeAppendix (p. 225).

Optimesh-3D (extrusion only)

a. Specify the initial plane for the optimesh remeshing technique, by selecting Intersection withSUBDOMAIN_1 and clicking Confirm.

b. Specify the final plane for the remeshing technique, by selecting Intersection with BOUNDARY_6and clicking Confirm.

Polydata asks if you want to change from the surface kinematic condition to the line kinematiccondition.

c. Click Yes to use the line kinematic condition.

The line kinematic condition is recommended for extrusion problems, and must be used in combin-ation with the optimesh remeshing technique.

d. Click Accept the current setup in the Element distortion check menu.

In complex extrusion simulations, the finite element mesh can undergo great deformations. TheElement distortion check menu deals with the detection of all possible distortions of the elements.Accept default options.

3. Activate the inverse prediction.

Inverse prediction management

a. Click Enable the inverse prediction.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.210

Inverse Extrusion

Page 223: ANSYS Polyflow Tutorial Guide

The technique of inverse prediction is selected to calculate the profile for the “constant section”region of the die.

b. Click Upper level menu.

4. Specify a second region for remeshing (SUBDOMAIN_1).

a. Click Creation of a local remeshing.

b. Select SUBDOMAIN_1 and click Add.

c. Click Upper level menu.

d. Click Constant section for prediction.

e. Click Accept the current setup.

5. Click Upper level menu two times.

The F.E.M. Task 1 menu is displayed.

6.4.7. Numerical Parameters

All information relevant to iterative schemes (for the F.E.M. task calculations) can be modified in the Numer-ical parameters menu.

Numerical parameters

1. Specify the evolution parameters.

Modify the evolution parameters

a. Specify the final value of .

Modify the upper limit of S

Enter 20 for the New value and click OK.

Note

Setting the final value of equal to 20 creates a large enough slip coefficient thatit is equivalent to a no-slip condition at the die wall (BOUNDARY_4, as discussedin a previous step).

b. Specify the initial value of .

Modify the initial value of delta-S

Enter 2 for the New value and click OK.

211Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 224: ANSYS Polyflow Tutorial Guide

c. Specify the minimum value of .

Modify the min value of delta-S

Enter 0.1 for the New value and click OK.

d. Specify the maximum value of .

Modify the max value of delta-S

Enter 3 for the New value and click OK.

e. Specify the maximum number of successful steps.

Modify the max number of successful steps

Enter 30 for the New value and click OK.

2. Click Upper level menu three times to return to the top-level Polydata menu.

6.4.8. Outputs

After Polyflow calculates a solution, it can save the results in several different formats. Choose the one thatis appropriate for your postprocessor. In this case, save the outputs in IGES format, as well as the defaultformat for CFD-Post.

Outputs

1. Retain the default output (CFD-Post) and click Enable Iges file output.

The default CFD-Post output is used for postprocessing with CFD-Post. The IGES output contains themodified geometry of the extrudate (after remeshing) calculated at every step of the evolution procedure.For information on IGES output, see Appendix (p. 225).

Polydata asks you to confirm the current system units and fields that are to be saved to the results filefor postprocessing.

2. Specify the system of units for the simulation.

a. Click Modify system of units.

b. Select Set to metric_cm/g/s/A+Celsius.

c. Click Upper level menu three times.

The top-level Polydata menu is displayed.

6.4.9. Save and Exit Polydata

Save and exit

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.212

Inverse Extrusion

Page 225: ANSYS Polyflow Tutorial Guide

1. Click Accept.

This confirms that the default Current field(s) are correct.

2. Click Continue.

This accepts the default names for graphical output files (cfx.res) that are to be saved for postpro-cessing, and for the Polyflow format results file (res).

6.4.10. Solution

Run Polyflow to calculate a solution for the model you just defined using Polydata.

1. Run Polyflow by right-clicking the Solution cell of the simulation and selecting Update.

This executes Polyflow using the data file as standard input, and writes information about the problemdescription, calculations, and convergence to a listing file (polyflow.lst).

A cfx.res file (corresponding to the eight evolution steps of the flow case) will be created.

2. Check for convergence in the listing file.

a. Right-click the Solution cell and select Listing Viewer....

Workbench opens the View listing file dialog box, which displays the listing file.

b. It is a common practice to confirm that the solution proceeded as expected by looking for the followingprinted at the bottom of the listing file:

The computation succeeded.

6.4.11. Postprocessing

Use CFD-Post to view the results of the Polyflow simulation.

1. Double-click the Results tab in the Workbench analysis and read the results files saved by Polyflow.

CFD-Post reads the solution fields that were saved to the results file.

2. Display the velocity distribution on the boundaries.

a. Deselect Wireframe in the Outline tree tab, under User Locations and Plots.

b. Click the Insert menu and select Contour or click the button.

c. Click OK to accept the default name (Contour 1) and open the details view below the Outline tab.

d. Perform the following steps In the Geometry tab of the details view.

i. Click the button next to Locations.

213Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 226: ANSYS Polyflow Tutorial Guide

ii. Select all topological entities under PFL in the Location Selector dialog box (use Shift formultiple selection) and click OK.

iii. Select VELOCITIES from the Variable drop-down list (or by clicking ).

iv. Click Apply.

You can see in Figure 6.3: Contours of Velocity Magnitude (p. 215) that the velocity is zero along the diewall, as expected, and there is a fully developed profile at the inlet of the die. At the die outlet, the velocityprofile changes to become constant throughout the extrudate cross-section. The transition betweenthese two states can be seen at the beginning of extrudate section.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.214

Inverse Extrusion

Page 227: ANSYS Polyflow Tutorial Guide

Figure 6.3: Contours of Velocity Magnitude

3. Display contours of velocity in cross-sections.

a. Deselect the contours previously defined.

215Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 228: ANSYS Polyflow Tutorial Guide

In the Outline tree tab, under User Locations and Plots deselect Contour 1.

b. Create the cross-section planes, at Z = 0, 3, 7 and 20 cm.

i. Select Plane from the Location drop-down menu ( ).

ii. Click OK to accept the default name (Plane 1) and display the details view below the Outlinetab.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.216

Inverse Extrusion

Page 229: ANSYS Polyflow Tutorial Guide

iii. In the Geometry tab of the details view, select XY Plane from the Method drop-down list.

iv. Enter 0 for Z.

v. Click Apply.

vi. Repeat steps 3.b.i.–v. to create the other planes at Z = 0.03,0.07, and 0.1999 m.

vii. In the Outline tree tab, under User Locations and Plots, deselect Plane 1, Plane 2, Plane 3,and Plane 4.

217Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 230: ANSYS Polyflow Tutorial Guide

c. Click the Insert menu and select Contour or click the button.

d. Click OK to accept the default name (Contour 2) and open the details view below the Outline treetab.

e. In the Outline tree tab under User Locations and Plots, select Wireframe.

f. Perform the following steps in the details view of Contour 2.

i. In the Geometry tab, click the button next to Locations.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.218

Inverse Extrusion

Page 231: ANSYS Polyflow Tutorial Guide

ii. Select all planes under User Locations and Plots (use Shift for multiple selection).

iii. Click OK.

iv. Select VELOCITIES from the Variable drop-down list (or click ).

v. In the Render tab, disable Lighting.

vi. Click Apply.

The velocity profiles planes are located at the flow inlet, the flow outlet, and planes just before and afterthe die exit as shown in Figure 6.4: Velocity Profile Planes (p. 220).

Compare the velocity profile within the die to the velocity profile just after the die exit at the end of thecomputational domain.

• The flow is fully developed in the die.

• The velocity profile is flat in the extrudate, far away from the die exit. All particles in the cross-section planeare at the same velocity.

• Just after the die exit, there is a transitional zone where the velocity profile is reorganized.

• The velocity profile on the plane = 7 cm is not fully developed, but it is not flat either.

The velocity rearrangement is the source of the deformation of the extrudate.

219Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 232: ANSYS Polyflow Tutorial Guide

Figure 6.4: Velocity Profile Planes

4. Compare the cross-section shape of the extrudate with die.

a. Simplify the display.

In the Outline tree tab, under User Locations and Plots, deselect Contour 2 and Wireframe.

b. Display the die shape using a polyline.

i. Select Polyline from the Location drop-down menu ( ).

ii. Click OK to accept the default name (Polyline 1) and display the details view below the Outlinetab.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.220

Inverse Extrusion

Page 233: ANSYS Polyflow Tutorial Guide

iii. In the Geometry tab of the details view, select Boundary Intersection from the Method drop-down list.

iv. Click next to Boundary List and select SUBDOMAIN_1_BOUNDARY_4. Click OK to closethe Location Selector dialog box.

v. Select SUBDOMAIN_1_BOUNDARY_1 from the Intersect With drop-down list.

vi. In the Color tab, click next to Color and select dark blue.

vii. Click Apply.

c. Display the extrudate shape using a polyline.

i. Select Polyline from the Location drop-down menu ( ).

ii. Click OK to accept the default name (Polyline 2) and display the details view below the Outlinetab.

iii. In the Geometry tab of the details view, select Boundary Intersection from the Method drop-down list.

iv. Select SUBDOMAIN_2_BOUNDARY_5 from the Boundary List drop-down list.

v. Select SUBDOMAIN_2_BOUNDARY_6 from the Intersect With drop-down list.

vi. Click Apply.

d. Right-click in the graphic window and select View From +Z under Predefined Camera.

221Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 234: ANSYS Polyflow Tutorial Guide

5. Restore the symmetry.

a. Click the Insert menu and select Instance Transform, or click the button.

b. Click OK to accept the default name (Instance Transform 1) and display the details view below theOutline tab.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.222

Inverse Extrusion

Page 235: ANSYS Polyflow Tutorial Guide

c. Perform the following steps in the Definition tab of the details view of Instance Transform 1:

i. Disable Instancing Info From Domain.

ii. Enter 4 for Number of Graphical Instances.

iii. Ensure Apply Rotation is selected.

iv. Ensure Principal Axis and Z are selected for Method and Axis in the Axis Definition groupbox.

v. Enable Full Circle under Instance Definition.

vi. Click Apply.

d. In the Outline tree tab, under User Locations and Plots, right-click Polyline 1 and click Edit (ordouble-click Polyline 1).

e. In the View tab of the details view, scroll down and enable Apply Instancing Transform.

f. Select Instance Transform 1 from the Transform drop-down list.

g. Click Apply.

h. In the Outline tree tab, under User Locations and Plots, right-click Polyline 2 and click Edit (ordouble-click Polyline 2).

i. Repeat steps 5..e–g.

You can use the central-mouse button to zoom in and out. This allows you to compare the size andshape of the flow inlet with that of the flow outlet without distortion due to perspective.

223Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 236: ANSYS Polyflow Tutorial Guide

You can also click the fit view button ( ) to properly center the image.

Figure 6.5: Swelling of the Extrudate

The deformation of the extrudate is the result of the rearrangement taking place at the die exit. Particlecoming from high-speed regions in the die must slow down, while particles coming from low-speed re-gions must accelerate. You can change the speed by enlarging the flowing section. A tube of fluid athigh speed in the die will enlarge its cross-section in the extrudate to decrease its average velocity. Atube of fluid at low speed in the die will reduce its cross-section in the extrudate in order to increaseaverage speed. In Figure 6.5: Swelling of the Extrudate (p. 224), you can see that the die design toolcompensated for these effects. The central part of the cross-section where the fluid easily flowed in theoriginal die has been reduced by the die design tool, while the extremities of the branches were enlargedbecause the flow was much slower in the original die. Since the combined effects of the cross-sectionalenlargements and reductions are very difficult to guess, the numerical simulation is necessary to helpthe die designer reduce the number of trial-and-error iterations.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.224

Inverse Extrusion

Page 237: ANSYS Polyflow Tutorial Guide

6.5. Summary

This tutorial introduced the concept of an inverse extrusion problem. You solved the problem assumingsuitable conditions for the physics of the problem and Polyflow predicted the shape of the die. Youused multiple domain calculations with remeshing methods most suited to 3D inverse extrusion problems.The nonlinear problem was solved using an evolution technique to aid convergence.

6.6. Appendix

The appendix contains the following sections:6.6.1. Power Law6.6.2. Evolution Scheme6.6.3. Remeshing Technique6.6.4. Optimesh Remeshing Technique6.6.5. IGES Output

6.6.1. Power Law

The power law exhibits shear thinning (reduction in the viscosity with an increase in shear rate) that isa characteristic of many polymers. The viscosity in this tutorial is given by the power law:

(6.1)

where:

= consistency factor

= power-law index

= natural time

is included in the equation to make the units consistent.

6.6.2. Evolution Scheme

The kinematic equation introduces nonlinear terms in the problem that might lead to convergencedifficulties. An evolution scheme is available in Polyflow to solve such highly nonlinear problems. Startthe calculation with a reduced value of the parameter(s) causing the nonlinearity. Starting from the firstsolution, Polyflow increments the parameter(s) causing the nonlinearity and computes a second solution.Starting from this new solution, Polyflow increments the parameter(s) again and computes a thirdsolution. Following this procedure, Polyflow increases the value of each parameter up to its nominalvalue. In Polyflow , this procedure is fully automated; the increments are automatically adapted accordingto the results of previous calculations. Polyflow uses an evolution variable that is incremented duringthe evolution scheme. S starts at an initial value of and is increased to a final value of . Each

parameter l that you want to evolve is defined as = .

Navier’s Law: The generalized Navier’s law is given by:

(6.2)

where:

= tangential velocity of the fluid

225Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Appendix

Page 238: ANSYS Polyflow Tutorial Guide

= tangential velocity of the wall

= material parameters

= material parameters

= 0 (assumed zero, by default

6.6.3. Remeshing Technique

Remeshing for the inverse extrusion problems is carried out in two stages. This model involves a freesurface of unknown position. A portion of the mesh will be affected by the relocation of this boundary.Hence a remeshing technique that is suitable for 3D extrusion problems is applied to this part of themesh. The free surface is entirely contained within subdomain 2, and hence only subdomain 2 will beaffected by the relocation of the free surface.

This technique modifies the location of the section where the boundary conditions on the kinematiccondition apply (the die-lip region). Apply local remeshing technique to the region between the entrysection and the die-lip area (subdomain 1). In this tutorial, you define a "constant section" on this sub-domain. This means that the die cross-section is constant from the die entry to the die exit (a paralleldie). Using this two-stage remeshing technique, Polyflow calculates the die profile that produces anextrudate of the desired shape. More complex deformations of the die are available via the definitionof different local remeshings within the die.

6.6.4. Optimesh Remeshing Technique

The optimesh remeshing technique requires the direction of extrusion to be parallel to the , , or axis, and all slices into which the remeshing domain is cut must be perpendicular to the extrusion axis.

The domain to be remeshed is cut into a series of 2D slices (planes) in a direction perpendicular to thedirection of extrusion, and each plane will be remeshed independently. For this process, Polyflow requiresthe selection of the initial plane and the final plane. In this problem, the initial plane is the intersectionof subdomain 2 with subdomain 1, and the final plane is the intersection of subdomain 2 with the flowexit (boundary 6).

6.6.5. IGES Output

An IGES output allows you to import the final geometry into a CAD program. This is useful when youare designing a die because you want to be able to manufacture the die predicted by the calculation.In the present case, you can compare the final shape of the predicted extrudate in an IGES format withthe desired shape.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.226

Inverse Extrusion

Page 239: ANSYS Polyflow Tutorial Guide

Chapter 7: Flow of Two Immiscible Fluids

This tutorial is divided into the following sections:7.1. Introduction7.2. Prerequisites7.3. Problem Description7.4. Setup and Solution7.5. Summary

7.1. Introduction

This tutorial examines the flow of two fluids in a single die. Two polymer melts with distinct physicalproperties are fed through different channels into a die. The aim of the calculation is to predict thelocation of the interface between the two fluids.

In this tutorial you will learn how to:

• Define a moving interface problem.

• Create multiple sub-tasks.

• Set material properties and boundary conditions for a moving interface problem.

• Select a remeshing method.

7.2. Prerequisites

This tutorial assumes that you are familiar with the menu structure in Polydata and Workbench andthat you have solved or read 2.5D Axisymmetric Extrusion (p. 53). Some steps in the set up procedurewill not be shown explicitly.

7.3. Problem Description

This problem analyzes the flow of two immiscible Newtonian fluids (fluid 1 and fluid 2) through a dieof diameter 1 cm, as shown in Figure 7.1: A Schematic Diagram of the Two Fluids in the Die (p. 228). Themelts are fed into the die through boundaries 1 and 3 (see Figure 7.2: Boundary Sets and Subdomainsfor the Problem (p. 229)). The flow rates for the two fluids are not equal. The fluids come into contactin the die, creating an interface. The location of the interface is unknown and will be determined byPolyflow. The location of the interface depends on the physical properties of the fluids, the flow ratesof the fluids, and the geometry of the die.

Incompressibility and momentum equations are solved in the fluid domains. To solve the fully coupledproblem, two sub-tasks are defined one each for fluid 1 (sub-task 1) and fluid 2 (sub-task 2). Each sub-task will contain a particular model, domain of definition, material properties, and boundary conditions,including the moving interface along the intersection of the two sub-tasks.

The domain of definition for the problem is divided into four subdomains: sub-task 1 is defined onsubdomain 1 and subdomain 2, and sub-task 2 is defined on subdomain 3 and subdomain 4 (see Fig-

227Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Page 240: ANSYS Polyflow Tutorial Guide

ure 7.2: Boundary Sets and Subdomains for the Problem (p. 229)). Each sub-task is defined over twosubdomains to allow for the definition of the remeshing method only where it is necessary, (in the areanear the moving interface).

Fluid 1 has a viscosity of = 10000 poise, and fluid 2 has a viscosity of = 5000 poise.

Figure 7.1: A Schematic Diagram of the Two Fluids in the Die

The boundary sets for the problem are shown in Figure 7.2: Boundary Sets and Subdomains for theProblem (p. 229).

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.228

Flow of Two Immiscible Fluids

Page 241: ANSYS Polyflow Tutorial Guide

Figure 7.2: Boundary Sets and Subdomains for the Problem

The conditions at the boundaries of the domains are:

• boundary 1: flow inlet for fluid 1, volumetric flow rate = 3 cm3/s

• boundary 2: outer wall common to subdomain 1 and subdomain 3: zero velocity

• boundary 3: flow inlet for fluid 2, volumetric flow rate = 1 cm3/s

• boundary 4: outer wall common to subdomain 3 and subdomain 4: zero velocity

• boundary 5: flow exit for both fluids

• boundary 6: outer wall common to subdomain 1 and subdomain 2: zero velocity

An interface is defined at the intersection of subdomain 2 and subdomain 4. In this problem, the interfaceis a moving one, since the exact line of separation between the fluids is unknown.

229Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Problem Description

Page 242: ANSYS Polyflow Tutorial Guide

7.4. Setup and Solution

The following sections describe the setup and solution steps for this tutorial:7.4.1. Preparation7.4.2. Project and Mesh7.4.3. Create a Task for the Model7.4.4. Fluid 1 Sub-Task7.4.5. Fluid 2 Sub-Task7.4.6. Save and Exit Polydata7.4.7. Solution7.4.8. Postprocessing

7.4.1. Preparation

To prepare for running this tutorial:

1. Prepare a working folder for your simulation.

2. Go to the ANSYS Customer Portal, https://support.ansys.com/training.

Note

If you do not have a User Name and Password, you can register by clicking CustomerRegistration on the Log In page.

3. Enter the name of this tutorial into the search bar.

4. Narrow the results by using the filter on the left side of the page.

a. Click ANSYS Polyflow under Product.

b. Click 16.0 under Version.

5. Select this tutorial from the list.

6. Click Files to download the input and solution files.

7. Unzip the Two-Fluids_R160.zip file you have downloaded to your working folder.

The mesh file fluids.msh can be found in the unzipped folder.

8. Start Workbench from Start > All Programs > ANSYS 16.0 > Workbench 16.0.

7.4.2. Project and Mesh

1. Create a Fluid Flow - Extrusion (Polyflow) analysis system by drag and drop in Workbench.

2. Save the ANSYS Workbench project using File → Save, entering two-fluids as the name of the project.

3. Import the mesh file (fluids.msh).

4. Double-click the Setup cell to start Polydata.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.230

Flow of Two Immiscible Fluids

Page 243: ANSYS Polyflow Tutorial Guide

When Polydata starts, the Create a new task menu item is highlighted, and the geometry for theproblem is displayed in the Graphics Display window.

7.4.3. Create a Task for the Model

In the following steps you will define a single task that represents the global problem. Since this tutorialdeals with two fluids, each with its own physical properties, you will need to define two different sub-tasks (one for each fluid) in subsequent sections.

Create a task for the model.

Create a new task

1. Select the following options:

• F.E.M. task

• Steady-state problem(s)

• 2D axisymmetric geometry

2. Click Accept the current setup.

The Create a sub-task menu item is highlighted.

7.4.4. Fluid 1 Sub-Task

In the following steps you will define the nature of the flow problem, identify the domain of definition, setthe relevant material properties for fluid 1, and define boundary conditions along its boundaries.

1. Create a sub-task for fluid 1.

Create a sub-task

a. Click Generalized Newtonian isothermal flow problem.

A small dialog box appears asking for the title of the problem.

b. Enter fluid 1 as the New value and click OK.

231Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 244: ANSYS Polyflow Tutorial Guide

The Domain of the sub-task menu item is highlighted.

2. Define the domain where the sub-task applies.

Sub-task 1 is defined for SUBDOMAIN2 (the region of fluid 1 near the moving interface) and SUBDOMAIN1(the rest of fluid 1), as shown in Figure 7.2: Boundary Sets and Subdomains for the Problem (p. 229).

Domain of the sub-task

a. Select SUBDOMAIN3 and click Remove.

b. Select SUBDOMAIN4 and click Remove.

c. Click Upper level menu.

The Material data menu item is highlighted.

3. Specify the material data properties for fluid 1.

Material Data

Polydata indicates which material properties are relevant for your sub-task by graying out the irrelevantproperties. In this case, viscosity, density, inertia terms, and gravity are available for specification. Forthis model, define only the viscosity of the material.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.232

Flow of Two Immiscible Fluids

Page 245: ANSYS Polyflow Tutorial Guide

Click Shear-rate dependence of viscosity.

4. Click Constant viscosity.

5. Specify the value for , referred to as “fac” in the graphical user interface.

Modify fac

Polydata prompts for a new value of .

Enter 10000 [units: poise] as the New value and click OK.

6. Click Upper level menu three times to return to the fluid 1 menu.

The Flow boundary conditions menu item is highlighted.

7. Specify the flow boundary conditions for fluid 1 (SUBDOMAIN1 and SUBDOMAIN2).

Flow boundary conditions

233Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 246: ANSYS Polyflow Tutorial Guide

a. Set the conditions along the intersection of SUBDOMAIN2 and SUBDOMAIN4.

The boundary uses the interface condition, which is the standard boundary condition between twoadjacent fluids. This condition establishes the continuity of the velocity field and the contact forcesin the momentum equation.

The position of the line separating the two fluids is unknown at the start of the problem and iscalculated as part of the solution, so the intersection will be defined as a moving interface. Insteady flows and problems involving immiscible fluids, the interface must be a streamline. To sat-isfy this condition and to obtain the exact location of the line of separation, an additional equation,the kinematic condition, ( = 0), is added to the system. This guarantees that the material pointsdo not cross the interface.

i. Select Zero wall velocity (vn=vs=0) along SUBDOMAIN4 click Modify.

ii. Click Interface.

iii. Select Switch to moving interface.

iv. Click Specify moving interface parameters.

v. Click Boundary conditions on the moving surface.

Polydata asks you to select the boundary or subdomain on which the position of the movingsurface is to be imposed.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.234

Flow of Two Immiscible Fluids

Page 247: ANSYS Polyflow Tutorial Guide

vi. Select No condition along BOUNDARY2 and click Modify.

vii. Select Position imposed.

viii. Click Upper level menu twice to return to the Kinematic condition menu.

ix. Select Upwinding in the kinematic equation. Click Upper level menu.

x. Click Accept the current setup to return to the Flow boundary conditions menu.

b. Set the conditions at the flow inlet for fluid 1 (BOUNDARY1).

i. Select Zero wall velocity (vn=vs=0) along BOUNDARY1 and click Modify.

ii. Click Inflow.

iii. Click Modify volumetric flow rate.

Polydata prompts you for the volumetric flow rate.

235Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 248: ANSYS Polyflow Tutorial Guide

iv. Enter 3 [units: cm3/s] as the New value and click OK.

v. Ensure Automatic is selected and click Upper level menu.

When this option is selected, Polydata automatically chooses the most appropriate methodto compute the inflow condition.

vi. Retain the default condition Zero wall velocity (vn=vs=0) along BOUNDARY2 at the outerwall of SUBDOMAIN1 (BOUNDARY2).

At a solid-liquid interface, the velocity of the liquid is that of the solid surface. Hence the fluidis assumed to stick to the wall. This is known as the no-slip assumption because the liquid isassumed to adhere to the wall, and therefore has no velocity relative to the wall.

By default, Polydata imposes Zero wall velocity ( = = 0) along all boundaries.

c. Set the conditions at the flow outlet (BOUNDARY5).

It is assumed that a fully developed velocity profile is reached at the exit, so the outflow conditionis appropriate. This condition essentially imposes a zero normal force ( ) that includes a pressure

term, and zero tangential velocity ( ).

i. Select Zero wall velocity (vn=vs=0) along BOUNDARY5 and click Modify.

ii. Click Outflow.

d. Retain the default condition Zero wall velocity (vn=vs=0) along BOUNDARY6 at the outer wallcommon to SUBDOMAIN1 and SUBDOMAIN2 (BOUNDARY6).

The fluid is assumed to stick to the wall, since at a solid-liquid interface the velocity of the liquidis that of the solid surface.

e. Click Upper level menu to return to the fluid 1 menu.

8. Define remeshing for SUBDOMAIN2.

This model involves a free surface, whose shape is unknown a priori, which will be calculated togetherwith the flow equations. A portion of the mesh is affected by the relocation of this boundary. Hence aremeshing technique is applied on this part of the mesh. The moving interface is entirely contained

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.236

Flow of Two Immiscible Fluids

Page 249: ANSYS Polyflow Tutorial Guide

within SUBDOMAIN2, and hence only SUBDOMAIN2 will be affected by the relocation of the movinginterface.

Global remeshing

a. Specify the region where the remeshing is to be performed (SUBDOMAIN2).

If you have a complex geometry, it may be necessary to split it into additional subdomains in orderto define a specific remeshing method on each of them.

For this purpose, Polydata allows you to create several local remeshings. For this problem, a singlelocal remeshing is sufficient.

1–st local remeshing

i. Select SUBDOMAIN1 and click Remove.

ii. Click Upper level menu.

The Method of Spines menu item is highlighted.

b. Define the parameters for the system of spines.

The purpose of the remeshing technique is to relocate internal nodes according to the displacementof boundary nodes due to the motion of the interface. Mesh nodes must be organized along linesof remeshing (spines), which are collections of nodes logically arranged in a one-dimensionalmanner. Polydata requires the specification of the first and last spines that the fluid encounters(inlet of spines and outlet of spines, respectively). In this case, the inlet of spines is the intersection

237Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 250: ANSYS Polyflow Tutorial Guide

of SUBDOMAIN2 with SUBDOMAIN1, and the outlet of spines is the intersection of SUBDOMAIN2with the flow exit (BOUNDARY5).

Method of Spines

i. To specify the inlet for the system of spines, select Intersection with SUBDOMAIN1 and clickConfirm.

ii. Specify the outlet for the system of spines, select Intersection with BOUNDARY5 and clickConfirm.

iii. Click Upper level menu two times.

The F.E.M. Task 1 menu is displayed.

7.4.5. Fluid 2 Sub-Task

In the following steps you will define the nature of the flow problem, identify the domain of definition, setthe relevant material properties for fluid 2, and define the boundary conditions along its boundaries.

1. Create a sub-task for fluid 2.

Create a sub-task

a. Polydata asks you if you want to copy data from an existing sub-task.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.238

Flow of Two Immiscible Fluids

Page 251: ANSYS Polyflow Tutorial Guide

b. Click No, since this sub-task has different parameters associated with it.

c. Click Generalized Newtonian isothermal flow problem.

A small dialog box appears asking for the title of the problem.

d. Enter fluid 2 as the New value and click OK.

The Domain of the sub-task menu item is highlighted.

2. Define the domain where the sub-task applies.

Domain of the sub-task

a. Select SUBDOMAIN1 and click Remove.

b. Select SUBDOMAIN2 and click Remove.

c. Click Upper level menu.

The Material data menu item is highlighted.

3. Specify the material data properties for fluid 2.

Material Data

For this model, define only the viscosity of the material.

a. Click Shear-rate dependence of viscosity.

b. Click Constant viscosity.

c. Specify the value for , referred to as “fac” in the graphical user interface.

Modify fac

Polydata prompts for a new value of .

239Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 252: ANSYS Polyflow Tutorial Guide

Enter 5000 [units: poise] as the New value and click OK.

d. Click Upper level menu three times to return to the fluid 2 menu.

The Flow boundary conditions menu item is highlighted.

4. Specify the flow boundary conditions for fluid 2 (SUBDOMAIN3 and SUBDOMAIN4).

Flow boundary conditions

a. Set the conditions along the intersection of SUBDOMAIN2 and SUBDOMAIN4.

i. Select Zero wall velocity (vn=vs=0) along SUBDOMAIN2 and click Modify.

ii. Click Interface.

The interface condition was defined as a moving interface when setting the boundary condi-tions for fluid 1. So further inputs are not required to define the moving interface for fluid 2.Surface tension effects are neglected in this problem.

iii. Click Accept the current setup.

b. Retain the default condition Zero wall velocity (vn=vs=0) along BOUNDARY2 at the outer wall ofSUBDOMAIN3 (BOUNDARY2).

c. Set the conditions at the flow inlet for fluid 2 (BOUNDARY3).

i. Select Zero wall velocity (vn=vs=0) along BOUNDARY3 and click Modify.

ii. Click Inflow.

iii. Click Modify volumetric flow rate.

Polydata prompts you for the volumetric flow rate.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.240

Flow of Two Immiscible Fluids

Page 253: ANSYS Polyflow Tutorial Guide

iv. Accept the default value of 1 [units: cm3/s] for the flow rate by clicking OK.

v. Ensure Automatic is selected, and click Upper level menu.

d. Retain the default condition Zero wall velocity (vn=vs=0) along BOUNDARY4 at the outer wallcommon to SUBDOMAIN3 and SUBDOMAIN4 (BOUNDARY4).

e. Set the conditions at the flow outlet for fluid 2 (BOUNDARY5).

i. Select Zero wall velocity (vn=vs=0) along BOUNDARY5 and click Modify.

ii. Click Outflow.

f. Click Upper level menu to return to the Flow boundary conditions menu.

The Global remeshing menu item is highlighted.

5. Define remeshing for SUBDOMAIN4.

Global remeshing

a. Specify the region where the remeshing is to be performed (SUBDOMAIN4).

1–st local remeshing

i. Select SUBDOMAIN3 and click Remove.

ii. Click Upper level menu.

The Method of Spines menu item is highlighted.

b. Define the parameters for the system of spines.

In this case, the inlet of spines is the intersection of SUBDOMAIN3 with SUBDOMAIN4, and theoutlet of spines is the intersection of SUBDOMAIN4 with the flow exit (BOUNDARY5).

Method of Spines

241Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 254: ANSYS Polyflow Tutorial Guide

i. Specify the inlet for the system of spines by selecting Intersection with SUBDOMAIN3 andclick Confirm.

ii. Specify the outlet for the system of spines by selecting Intersection with BOUNDARY5 andclick Confirm.

c. Click Upper level menu three times.

The top-level Polydata menu is displayed.

7.4.6. Save and Exit Polydata

Save and exit

Polydata asks you to confirm the current system units and fields that are to be saved to the results file forpostprocessing.

1. Specify the system of units for the simulation.

a. Click Modify system of units.

b. Select Set to metric_cm/g/s/A+Celsius.

c. Click Upper level menu twice.

2. Click Accept.

This confirms that the default Current field(s) are correct.

3. Click Continue.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.242

Flow of Two Immiscible Fluids

Page 255: ANSYS Polyflow Tutorial Guide

This accepts the default names for graphical output files (cfx.res) that are to be saved for postpro-cessing, and for the Polyflow format results file (res).

7.4.7. Solution

Run Polyflow to calculate a solution for the model you just defined using Polydata.

1. Run Polyflow by right-clicking the Solution cell of the simulation and selecting Update.

This executes Polyflow using the data file as standard input, and writes information about the problemdescription, calculations, and convergence to a listing file (polyflow.lst).

2. Check for convergence in the listing file.

a. Right-click the Solution cell and select Listing Viewer....

Workbench opens the View listing file dialog box, which displays the listing file.

b. It is a common practice to confirm that the solution proceeded as expected by looking for the followingprinted at the bottom of the listing file:

The computation succeeded.

7.4.8. Postprocessing

Use CFD-Post to view the results of the Polyflow simulation.

1. Double-click the Results tab in the Workbench analysis and read the results files saved by Polyflow.

CFD-Post reads the solution fields that were saved to the results file.

2. Align the view.

a. In the graphical window, right-click, and select the option Predefined Camera.

b. Select View from +Z.

3. Display contours of velocity magnitude.

a. Click the Insert menu and select Contour or click the button.

b. Click OK to accept the default name (Contour 1) and display the details view below the Outline tab.

243Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 256: ANSYS Polyflow Tutorial Guide

c. Perform the following steps in the details view:

i. In the Geometry tab, click the button next to Locations.

ii. In the Location Selector dialog box that opens, select SUBDOMAIN1_surf, SUBDOMAIN2_surf,SUBDOMAIN3_surf, and SUBDOMAIN4_surf (use Ctrl for multiple selection) and then clickOK.

iii. Select VELOCITIES from the Variable drop-down list (or by clicking ).

iv. Click Apply.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.244

Flow of Two Immiscible Fluids

Page 257: ANSYS Polyflow Tutorial Guide

Figure 7.3: Contours of Velocity Magnitude

The velocity is much larger at the inlet of fluid 1 than at the inlet of fluid 2. There are two reasons forthis:

• The flow rate is three times larger for fluid 1 than for fluid 2.

• You are modeling an annular die. Hence the flow section is smaller for the interior channel than for the ex-terior channel.

When the two fluids come into contact with each other, the interface between the two fluids is pushedtowards the exterior of the annular die.

There are three reasons for this:

• The flow rate for fluid 1 is higher than for fluid 2.

• The die is annular, so even identical flow rates cause the interface to move in order to equilibrate the flowsections.

245Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 258: ANSYS Polyflow Tutorial Guide

• The viscosity of fluid 1 is higher than the viscosity of fluid 2. In the process of giving more room to the mostviscous fluid, its shearing decreases. This leads to a smaller global dissipation.

4. Display velocity vectors for the two fluids.

a. Deselect the contour previously defined.

In the Outline tree tab, under User Locations and Plots deselect Contour 1.

b. Click the Insert menu and select Vector or click the button.

c. Click OK to accept the default name (Vector 1) and display the details view below the Outline tab.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.246

Flow of Two Immiscible Fluids

Page 259: ANSYS Polyflow Tutorial Guide

d. Perform the following steps in the details view:

i. In the Geometry tab, click the button next to Locations.

ii. In the Location Selector dialog box that opens, select SUBDOMAIN1_surf, SUBDOMAIN2_surf,SUBDOMAIN3_surf, and SUBDOMAIN4_surf (use Ctrl for multiple selection) and click OK.

iii. Ensure that VELOCITIES is selected as the Variable.

iv. In the Symbol tab, set Symbol to Arrow3D and increase the Symbol Size to 3.

v. Click Apply.

247Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 260: ANSYS Polyflow Tutorial Guide

Figure 7.4: Velocity Vectors

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.248

Flow of Two Immiscible Fluids

Page 261: ANSYS Polyflow Tutorial Guide

Figure 7.5: Magnified View of Velocity Vectors

You can see that the velocity is continuous across the interface. As both the fluids are Newtonian, thevelocity profile is a parabola on both sides of the interface. Since the force must be continuous acrossthe interface, the shear stress generated within fluid 1 is equal to the shear stress generated within fluid2 along the interface.

7.5. Summary

This tutorial introduced the concept of fluid layers flowing in the same duct. In Polydata, you learnedhow to set up a multiple-domain calculation, including the definition of a moving interface and associatedremeshing methods.

The location of the interface depends largely on the physical properties of the fluids involved, thegeometry of the channels, and the operating conditions (for example: flow rates of the fluids). A CFDsimulation with Polyflow allows you to test different setups (for example: in order to optimize thefeeding of a coextrusion die).

249Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Summary

Page 262: ANSYS Polyflow Tutorial Guide

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.250

Page 263: ANSYS Polyflow Tutorial Guide

Chapter 8: Flow of Two Immiscible Fluids by Species Method

This tutorial is divided into the following sections:8.1. Introduction8.2. Prerequisites8.3. Problem Description8.4. Setup and Solution8.5. Summary

8.1. Introduction

This tutorial examines the flow of two fluids in a single die. Two polymer melts with distinct physicalproperties are fed through different channels into a die. The aim of the calculation is to predict thelocation of the interface between the two fluids.

In this tutorial you will learn how to:

• Define a species.

• Define a species transport problem.

• Create multiple sub-tasks.

• Define a PMAT function.

• Define an EVOLUTION task.

8.2. Prerequisites

This tutorial assumes that you are familiar with the menu structure in Polydata and Workbench andthat you have solved or read 2.5D Axisymmetric Extrusion (p. 53). Some steps in the set up procedurewill not be shown explicitly.

8.3. Problem Description

This problem analyzes the flow of two immiscible Newtonian fluids (fluid 1 and fluid 2) through a dieof diameter 1 cm, as shown in Figure 8.1: A Schematic Diagram of the Two Fluids in the Die (p. 252). Themelts are fed into the die through boundaries 1 and 3 (see Figure 8.2: Boundary Sets and Subdomainsfor the Problem (p. 253)). The flow rates for the two fluids are not equal. The fluids come into contactin the die, creating an interface. The location of the interface is unknown and will be determined byPolyflow. The location of the interface depends on the physical properties of the fluids, the flow ratesof the fluids, and the geometry of the die.

Incompressibility and momentum equations are solved in the fluid domains. To determine the interface,an extra scalar transport equation is solved and material properties are made functions of this scalarusing PMAT. If the scalar value is greater than 0.5, material properties of first fluid are used and if thescalar value is less than 0.5, material properties of second species are used. A Scalar value of 0.5 determ-ines the location of interface.

251Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Page 264: ANSYS Polyflow Tutorial Guide

Note that the same problem has been solved using the interface tracking method (see Flow of TwoImmiscible Fluids (p. 227)).

The advantage of this method over the interface tracking method is that it can be used for more complexgeometries, and it is less computationally expensive than the interface tracking method (no remeshingmethod must be defined). However this comes at a loss of accuracy. The interface tracking methodgives a very accurate position of interface, whereas the species method produces a blurred interface.

The geometry and mesh from Flow of Two Immiscible Fluids (p. 227) is used.

Fluid 1 has a viscosity of = 10000 poise, and fluid 2 has a viscosity of = 5000 poise.

Figure 8.1: A Schematic Diagram of the Two Fluids in the Die

The boundary sets for the problem are shown in Figure 8.2: Boundary Sets and Subdomains for theProblem (p. 253).

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.252

Flow of Two Immiscible Fluids by Species Method

Page 265: ANSYS Polyflow Tutorial Guide

Figure 8.2: Boundary Sets and Subdomains for the Problem

The conditions at the boundaries of the domains are:

• boundary 1: flow inlet for fluid 1, volumetric flow rate = 3 cm3/s

• boundary 2: outer wall common to subdomain 1 and subdomain 3: zero velocity

• boundary 3: flow inlet for fluid 2, volumetric flow rate, = 1 cm3/s

• boundary 4: outer wall common to subdomain 3 and subdomain 4: zero velocity

• boundary 5: flow exit for both fluids

• boundary 6: outer wall common to subdomain 1 and subdomain 2: zero velocity

The conditions at the boundaries of the domains for species transport:

• boundary 1: scalar value equal to 1

253Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Problem Description

Page 266: ANSYS Polyflow Tutorial Guide

• boundary 3: scalar value equal to zero

• Insulated condition at all other boundaries

Note that when using this method for a sharp interface, you should ensure that the scalar doesn't diffusemuch into the domain. To ensure this, an evolution is applied on scalar diffusivity starting from a largevalue and gradually decreasing it to a very small number.

8.4. Setup and Solution

The following sections describe the setup and solution steps for this tutorial:8.4.1. Preparation8.4.2. Project and Mesh8.4.3. Create a Task for the Model8.4.4. Species and Species Transport Sub-task8.4.5. Fluids Sub-task8.4.6. Save and Exit Polydata8.4.7. Solution8.4.8. Postprocessing

8.4.1. Preparation

To prepare for running this tutorial:

1. Prepare a working folder for your simulation.

2. Go to the ANSYS Customer Portal, https://support.ansys.com/training.

Note

If you do not have a User Name and Password, you can register by clicking CustomerRegistration on the Log In page.

3. Enter the name of this tutorial into the search bar.

4. Narrow the results by using the filter on the left side of the page.

a. Click ANSYS Polyflow under Product.

b. Click 16.0 under Version.

5. Select this tutorial from the list.

6. Click Files to download the input and solution files.

7. Unzip the Two-Fluids-Species_R160.zip file you have downloaded to your working folder.

The mesh file fluids.msh can be found in the unzipped folder.

8. Start Workbench from Start > All Programs > ANSYS 16.0 > Workbench 16.0.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.254

Flow of Two Immiscible Fluids by Species Method

Page 267: ANSYS Polyflow Tutorial Guide

8.4.2. Project and Mesh

1. Create a Fluid Flow - Extrusion(Polyflow) analysis system by drag and drop in Workbench.

2. Save the ANSYS Workbench project using File → Save, entering two-fluids-species as the nameof the project.

3. Import the mesh file (fluids.msh).

4. Double-click the Setup cell to start Polydata.

When Polydata starts, the Create a new task menu item is highlighted, and the geometry for theproblem is displayed in the Graphics Display window.

8.4.3. Create a Task for the Model

In the following steps you will define a single task that represents the global problem. Since this tutorialdeals with two fluids, each with its own physical properties, you will need to define two different sub-tasks (one for each fluid) in the following sections.

1. Create a task for the model.

Create a new task

2. Select the following options:

• F.E.M. task

• Evolution problem(s)

• 2D axisymmetric geometry

3. Click Accept the current setup.

8.4.4. Species and Species Transport Sub-task

In the following steps you will define a species A and set material properties as well as boundary conditionalong its boundaries.

1. Create a species A.

Define species

2. Create a new species.

Create a new species

A dialog box appears asking for the name of the species.

255Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 268: ANSYS Polyflow Tutorial Guide

a. Enter Species A as the name of the species.

A dialog box appears asking for the nickname of the species.

b. Enter spea as the nickname of the species.

c. Click Upper level menu.

The Create a sub-task menu item is highlighted.

3. Create a sub-task for transport of the species.

Create a sub-task

a. Click Transport of species.

Polydata asks you to select a species.

b. Click SpeciesA.

The Domain of the sub-task menu item is highlighted.

4. Define the domain where the sub-task applies.

Species transport equation is solved in all the subdomains.

Domain of the sub-task

Click Upper level menu to select all of the subdomains.

5. Specify the material properties for species.

Material data

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.256

Flow of Two Immiscible Fluids by Species Method

Page 269: ANSYS Polyflow Tutorial Guide

Polydata indicates the material properties that are relevant for the sub-task by graying out the irrelevantproperties. For this model, you will only define the diffusivity of the species. The evolution will be appliedon diffusivity with an initial high value (1) and decreases it to a small value (1e-9).

a. Click Diffusivity.

b. Click EVOL button at the top of Polydata menu to enable evolution inputs.

c. Click Modify diffusivity.

257Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 270: ANSYS Polyflow Tutorial Guide

A dialog box appears asking for New value of diffusivity.

d. Click OK to accept the default value of 1.

Polydata will take you to evolution panel. Here you will make species diffusivity a function ofevolution parameter . Since the diffusivity must be decreased by several orders of magnitude,

is selected.

e. Select the function f(S) = a*exp(b*S) + c + d*S.

f. Modify the value of function parameters: a, b, c, and d to 1, –20,0 and 0, respectively.

g. Click Upper level menu.

h. Click the EVOL button at the top of the Polydata menu to disable evolution inputs.

i. Click Upper level menu twice to return to the Transport of SpeciesA menu.

Boundary conditions of the species must be defined at all of the boundaries.

6. Specify the concentration boundary conditions for fluid 1 (SUBDOMAIN1 and SUBDOMAIN2).

Concentration boundary conditions

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.258

Flow of Two Immiscible Fluids by Species Method

Page 271: ANSYS Polyflow Tutorial Guide

a. Set mass fraction at BOUNDARY1 equal to 1.

i. Select Mass fraction imposed along BOUNDARY1 and click Modify.

ii. Click Mass fraction imposed.

iii. Click Constant.

A dialog box appears asking for the new value of concentration.

iv. Set New value to 1 and click OK.

v. Click Upper level menu.

259Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 272: ANSYS Polyflow Tutorial Guide

b. Set insulated conditions at BOUNDARY2.

i. Select Mass fraction imposed along BOUNDARY2 and click Modify.

ii. Click Insulated boundary.

c. Set mass fraction at BOUNDARY3 equal to 0.

i. Select Mass fraction imposed along BOUNDARY3 and click Modify.

ii. Click Mass fraction imposed.

iii. Click Constant.

A dialog box appears asking for the new value of concentration.

iv. Click OK to accept the default value of 0.

v. Click Upper level menu.

d. Set insulated conditions at BOUNDARY4, BOUNDARY5, and BOUNDARY6.

i. Select Mass fraction imposed along BOUNDARY4 and click Modify.

ii. Click Insulated boundary.

iii. Repeat step (i) and step (ii) for BOUNDARY5 and BOUNDARY6.

iv. Click Upper level menu twice.

8.4.5. Fluids Sub-task

In the following steps you will define the nature of the flow problem, identify the domain of definition, setthe relevant material properties for fluid, and define boundary conditions along its boundaries.

1. Create a sub-task for the fluids.

Create a sub-task

a. Click No in the window that pops up.

Select Generalized Newtonian isothermal flow problem.

A dialog box appears asking for the title of the problem.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.260

Flow of Two Immiscible Fluids by Species Method

Page 273: ANSYS Polyflow Tutorial Guide

b. Enter fluid 1 and 2 as the New value and click OK.

The Domain of the sub-task menu item is highlighted.

2. Define the domain where the sub-task applies.

This Sub-task is defined for all the subdomains.

Domain of the sub-task

Click Upper level menu to select all of the subdomains.

The Material data menu item is highlighted.

3. Specify the material data properties for fluids.

Material Data

Polydata indicates the material properties that are relevant for the sub-task by graying out the irrelevantproperties. For this model, you will define only the viscosity of the material. The viscosity of material 1will be used if the species concentration is greater than 0.5, otherwise the viscosity of material 2 will beused. This can be achieved by the use of PMAT.

a. Click Shear-rate dependence of viscosity.

b. Click Constant viscosity.

c. Click the PMAT button at the top of Polydata.

d. Specify the value for , referred to as “fac” in the graphical user interface.

Modify fac

Polydata prompts for the new value of .

261Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 274: ANSYS Polyflow Tutorial Guide

Click OK to accept the default value of 1.

e. Polydata will take you to PMAT menu as shown below.

f. Create a new function.

Create a new function

A new function f1(...) will be created.

g. Click f1(...).

h. Select multi-ramp function.

f(X1) = Multi-ramp function

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.262

Flow of Two Immiscible Fluids by Species Method

Page 275: ANSYS Polyflow Tutorial Guide

Polydata will ask to define pairs of values. A minimum of two pairs must be defined. Here you willdefine (0.495, 5000) and (0.505, 10000), where the first index stands for species concentration andthe second index stands for viscosity [units: poise] value.

i. Define new pairs.

Define new pairs (X1, f(X1))

Polydata prompts for X1 and f(X1) sequentially.

Enter 0.495 for X1( 1), and 5000 for f(X1)( 1).

j. Define the second pair.

Insert new pair

k. Enter 0.505 for X1( 2) and 10000 for f(X1)( 2).

l. Click Upper level menu two times.

m. Change the field to species concentration.

Change field X1 = S (evol. var.)

n. Select SpeciesA.

o. Disable the PMAT button at the top of Polydata.

p. Click Upper level menu six times to return to the fluid 1 and 2 menu.

263Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 276: ANSYS Polyflow Tutorial Guide

The Flow boundary conditions menu item is highlighted.

4. Specify the flow boundary conditions for the fluids.

Flow boundary conditions

a. Set the conditions at the flow inlet for fluid 1 (BOUNDARY1).

i. Select Zero wall velocity (vn=vs=0) along BOUNDARY1 and click Modify.

ii. Click Inflow.

iii. Click Modify volumetric flow rate.

Polydata prompts for the new value of the volumetric flow rate.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.264

Flow of Two Immiscible Fluids by Species Method

Page 277: ANSYS Polyflow Tutorial Guide

iv. Enter 3 [units: cm3/s] as the New value and click OK.

v. Ensure Automatic is selected and click Upper level menu.

When the Automatic option is selected, Polydata automatically chooses the most appropriatemethod to compute the inflow condition.

b. Retain the default condition Zero wall velocity (vn=vs=0) along BOUNDARY2.

At a solid-liquid interface, the velocity of the liquid is that of the solid surface. Hence the fluid isassumed to stick to the wall. This is known as the no-slip assumption because the liquid is assumedto adhere to the wall, and so has no velocity relative to the wall.

By default, Polydata imposes Zero wall velocity ( = = 0) along all boundaries.

c. Set the conditions at the flow inlet for fluid 2 (BOUNDARY3).

i. Select Zero wall velocity (vn=vs=0) along BOUNDARY3 and click Modify.

ii. Click Inflow.

iii. Click Modify volumetric flow rate.

Polydata prompts for the new value of the volumetric flow rate.

iv. Click OK to accept the default value of 1 [units: cm3/s] for New Value.

v. Ensure Automatic is selected and click Upper level menu.

d. Retain the default condition Zero wall velocity (vn=vs=0) along BOUNDARY4.

e. Set the conditions at the flow outlet (BOUNDARY5).

It is assumed that a fully developed velocity profile is reached at the exit, so the outflow conditionis appropriate. This condition essentially imposes a zero normal force ( ) that includes a pressure

term, and a zero tangential velocity ( ).

i. Select Zero wall velocity (vn=vs=0) along BOUNDARY5 and click Modify.

ii. Click Outflow.

f. Retain the default condition Zero wall velocity (vn=vs=0) along BOUNDARY6.

The fluid is assumed to stick to the wall, since at a solid-liquid interface the velocity of the liquidis that of the solid surface.

g. Click Upper level menu three times to return to the top-level Polydata menu.

8.4.6. Save and Exit Polydata

Save and exit

265Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 278: ANSYS Polyflow Tutorial Guide

Polydata asks you to confirm the current system units and fields that are to be saved to the results file forpostprocessing.

1. Specify the system of units for the simulation.

a. Click Modify system of Units.

b. Click Set to metric_cm/g/s/A+Celsius.

c. Click Upper level menu twice.

2. Click Accept.

This confirms that the default Current field(s) are correct..

3. Click Continue.

This accepts the default names for graphical output files (cfx.res) that are to be saved for postpro-cessing, and the Polyflow format results file (res).

8.4.7. Solution

Run Polyflow to calculate a solution for the model you just defined using Polydata.

1. Run Polyflow by right-clicking the Solution cell of the simulation and selecting Update.

This executes Polyflow using the data file as standard input, and writes information about the problemdescription, calculations, and convergence to a listing file (polyflow.lst).

2. Check for convergence in the listing file.

a. Right-click the Solution cell and click Listing Viewer....

Workbench opens the View listing file dialog box, which displays the listing file.

b. It is a common practice to confirm that the solution proceeded as expected by looking for the followingprinted at the bottom of the listing file:

The computation succeeded.

8.4.8. Postprocessing

Use CFD-Post to view the results of the Polyflow simulation.

1. Double-click the Results tab in the Workbench analysis and read the results files saved by Polyflow.

CFD-Post reads the solution fields that were saved to the results file.

2. Align the view.

In the graphical window, right-click, and select View from +Z under Predefined Camera.

3. Display contours of velocity magnitude.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.266

Flow of Two Immiscible Fluids by Species Method

Page 279: ANSYS Polyflow Tutorial Guide

a. Click the Insert menu and select Contour or click the Contour button ( ).

b. Click OK to accept the default name (Contour 1) and display the details view below the Outline tab.

c. Perform the following steps in the details view of Contour 1:

i. In the Geometry tab, click the button next to Locations.

ii. In the Location Selector dialog box that opens, select SUBDOMAIN1_surf, SUBDOMAIN2_surf,SUBDOMAIN3_surf, and SUBDOMAIN4_surf (use Ctrl for multiple selection) and click OK.

iii. Select VELOCITIES from the Variable drop-down list.

267Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 280: ANSYS Polyflow Tutorial Guide

iv. Click Apply.

Figure 8.3: Contours of Velocity Magnitude

The velocity is much larger at the inlet of fluid 1 than at the inlet of fluid 2. There are two reasons forthis:

• The flow rate is three times larger for fluid 1 than for fluid 2.

• You are modeling an annular die. Hence the flow section is smaller for the interior channel than for the ex-terior channel.

When the two fluids come into contact with each other, the interface between the two fluids is pushedtowards the exterior of the annular die.

There are three reasons for this:

• The flow rate for fluid 1 is higher than for fluid 2.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.268

Flow of Two Immiscible Fluids by Species Method

Page 281: ANSYS Polyflow Tutorial Guide

• The die is annular, so even identical flow rates cause the interface to move in order to equilibrate the flowsections.

• The viscosity of fluid 1 is higher than the viscosity of fluid 2. In the process of giving more room to the mostviscous fluid, its shearing decreases. This leads to a smaller global dissipation.

4. Display the velocity vectors for the two fluids.

a. In Outline tree tab, under User Locations and Plots, deselect Contour 1.

b. Click the Insert menu and select Vector or click the button.

c. Click OK to accept the default name (Vector 1) and display the details view below the Outline tab.

d. Perform the following steps in the details view of Vector 1:

i. In the Geometry tab, click the button next to Location.

ii. In the Location Selector dialog box that opens, select the locations SUBDOMAIN1_surf, SUB-DOMAIN2_surf, SUBDOMAIN3_surf and SUBDOMAIN4_surf (use ctrl for multiple selections)and click OK.

iii. In the Symbol tab, select Arrow 3D from the Symbol drop-down list.

iv. Set Symbol Size to 2.

v. Click Apply.

269Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 282: ANSYS Polyflow Tutorial Guide

Figure 8.4: Velocity Vectors

You can see that the velocity is continuous across the interface. As both the fluids are Newtonian, thevelocity profile is a parabola on both sides of the interface. Since the force must be continuous acrossthe interface, the shear stress generated within fluid 1 is equal to the shear stress generated within fluid2 along the interface.

5. Displaying the contours of Species A.

a. In Outline tree tab, under User Locations and Plots, deselect Vector 1.

b. Click the Insert menu and select Contour or click the Contour button ( ).

c. Click OK to accept the default name (Contour 2) and display the details view below the Outline tab.

d. Perform the following steps in the details view of Contour 2:

i. Click the button next to Locations.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.270

Flow of Two Immiscible Fluids by Species Method

Page 283: ANSYS Polyflow Tutorial Guide

ii. In the Location Selector dialog box that opens, select SUBDOMAIN1_surf, SUBDOMAIN2_surf,SUBDOMAIN3_surf, and SUBDOMAIN4_surf (use Ctrl for multiple selection), and then clickOK.

iii. Click the button next to Variable.

iv. In the Variable Selector dialog box that opens, select SpeciesA, and then click OK.

v. Set Range to User Specified.

vi. Enter 0 for Min and 1 for Max.

vii. Click Apply.

Figure 8.5: Contours of Species A

6. Display the interface line.

271Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 284: ANSYS Polyflow Tutorial Guide

a. In Outline tree tab, under User Locations and Plots, deselect Contour 2.

b. Select Isosurface from the Location drop-down menu ( ).

c. Click OK to accept the default name (Isosurface 1) and display the details view below the Outlinetab.

d. Perform the following steps in the details view of Isosurface 1:

i. In the Geometry tab, click the button next to Variable and select SpeciesA.

ii. Enter 0.5 for Value in order to locate the interface line.

iii. In the Color tab, select Constant from the Mode drop-down list and select pink by clicking next to Color.

iv. In the Render tab, select Draw As Lines from the Draw Mode drop-down list.

v. Click Apply.

vi. Right-click in the Graphics Window and deselect Default Legend.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.272

Flow of Two Immiscible Fluids by Species Method

Page 285: ANSYS Polyflow Tutorial Guide

Figure 8.6: Location of Interface

8.5. Summary

This tutorial introduced the concept of fluid layers flowing in the same duct. In Polydata, you learnedhow to set up a species transport equation, a PMAT function, and you learned how to define a coextrusionproblem using species transport and PMAT functions. This method avoids the use of the remeshingmethod, which is computationally expensive.

The species method, although less accurate, can help in quickly finding a solution when the die has acomplex shape. For more accurate results, the interface tracking method, as demonstrated in Flow ofTwo Immiscible Fluids (p. 227), should be used. Generating a mesh for a complex die may be an issuewith the interface tracking method.

The location of the interface depends largely on the physical properties of the fluids involved, thegeometry of the channels, and the operating conditions (for example: flow rates of the fluids). A CFDsimulation with Polyflow allows you to test different setups (for example: in order to optimize thefeeding of a coextrusion die).

273Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Summary

Page 286: ANSYS Polyflow Tutorial Guide

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.274

Page 287: ANSYS Polyflow Tutorial Guide

Part III: Blow Molding

The following blow molding tutorials are available:

1. 3D Thermoforming of a Blister2. 2D Axisymmetric Blow Molding3. Plug-Assisted Thermoforming of a Blister4. 3D Blow Molding of a Bottle

Page 288: ANSYS Polyflow Tutorial Guide
Page 289: ANSYS Polyflow Tutorial Guide

Chapter 1: 3D Thermoforming of a Blister

This tutorial is divided into the following sections:1.1. Prerequisites1.2. Problem Description1.3. Setup and Solution1.4. Summary1.5. Further Improvements1.6. Appendix

1.1. Prerequisites

This tutorial assumes that you are familiar with the menu structure in Polydata and Workbench andthat you have solved or read 2.5D Axisymmetric Extrusion (p. 53). Some steps in the setup procedurewill not be shown explicitly.

1.2. Problem Description

This tutorial simulates a typical thermoforming situation for a blister. Figure 1.1: Thermoforming of aBlister, Sheet (blue) and Mold (red) (p. 278) shows a view of the process in the initial configuration.

277Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Page 290: ANSYS Polyflow Tutorial Guide

Figure 1.1: Thermoforming of a Blister, Sheet (blue) and Mold (red)

To reduce the computational run time, and utilizing the symmetric nature of the blister, only one quarterof the blister/mold is modeled, Figure 1.1: Thermoforming of a Blister, Sheet (blue) and Mold (red) (p. 278).From a geometric point of view, the initial (1/4) film has the following dimensions:

• Length = 15 mm

• Width = 5 mm

• Initial thickness = 0.35 mm

Dimensions are intentionally given in millimeters due to the small size of the object. The simulation will bebuilt around the system of units consisting of millimeters, grams and seconds.

The thickness compared to the length/width of the blister is rather small. This allows for the use of themembrane (shell) element, which is suited for the analysis of 3D blow molding and thermoformingsimulations. The use of the membrane element is presently restricted to time-dependent flows and iscombined with Lagrangian representation (each mesh node is a material point). Node displacementresults from the time integration of nodal velocity.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.278

3D Thermoforming of a Blister

Page 291: ANSYS Polyflow Tutorial Guide

The finite element mesh and the boundary conditions are displayed in Figure 1.2: Finite Element Mesh,Subdomains and Boundary Sets (p. 279). A 3D surface mesh has been generated for both the mold andthe film. The most important aspect is the proper description of the inner mold surfaces that will shapethe blister.

The film has the following material properties:

• Viscosity = 105

• Density = 10-3 g/mm3

• Initial thickness = 0.35 mm

Figure 1.2: Finite Element Mesh, Subdomains and Boundary Sets

As seen in Figure 1.2: Finite Element Mesh, Subdomains and Boundary Sets (p. 279), the topology involvestwo subdomains:

• Subdomain 1 = film

• Subdomain 2 = mold

and four boundary sets:

• Boundary 1: will be fixed (clamped boundary)

• Boundary 2: will be fixed (clamped boundary)

279Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Problem Description

Page 292: ANSYS Polyflow Tutorial Guide

• Boundary 3: symmetry boundary condition with respect to the x-axis

• Boundary 4: symmetry boundary condition with respect to the y-axis

The inflation pressure will be defined on the subdomain representing the film (Subdomain 1).

An important new concept is introduced in this tutorial: contact with a mold. Typically, two cases maybe encountered:

• The moving mold comes in contact with the shell and the shell acquires the mold velocity.

• The shell is inflated according to a certain rate and eventually comes into contact with the mold, acquiringits shape.

Often, both types of contact are encountered in a given application.

1.3. Setup and Solution

The following sections describe the setup and solution steps for this tutorial:1.3.1. Preparation1.3.2. Project and Mesh1.3.3. Mold Sub-Task1.3.4. Film Sub-Task1.3.5. Postprocessing Sub-Tasks1.3.6. Numerical Parameters1.3.7. Outputs1.3.8. Save and Exit Polydata1.3.9. Solution1.3.10. Postprocessing

1.3.1. Preparation

To prepare for running this tutorial:

1. Prepare a working folder for your simulation.

2. Go to the ANSYS Customer Portal, https://support.ansys.com/training.

Note

If you do not have a User Name and Password, you can register by clicking CustomerRegistration on the Log In page.

3. Enter the name of this tutorial into the search bar.

4. Narrow the results by using the filter on the left side of the page.

a. Click ANSYS Polyflow under Product.

b. Click 16.0 under Version.

5. Select this tutorial from the list.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.280

3D Thermoforming of a Blister

Page 293: ANSYS Polyflow Tutorial Guide

6. Click Files to download the input and solution files.

7. Unzip the 3D-Thermo-Blister_R160.zip file you have downloaded to your working folder.

The mesh file blister.msh can be found in the unzipped folder.

8. Start Workbench from Start > All Programs > ANSYS 16.0 > Workbench 16.0.

1.3.2. Project and Mesh

1. Create a Fluid Flow - Blow Molding (Polyflow) analysis system by drag and drop in Workbench.

2. Save the ANSYS Workbench project using File → Save, entering blister as the name of the project.

3. Import the mesh file (blister.msh).

4. Double-click the Setup cell to start Polydata.

When Polydata starts, the Create a new task menu item is highlighted, and the geometry for theproblem is displayed in the Graphics Display window.

1.3.3. Mold Sub-Task

In the following steps you will define the task representing the mold.

1. Create a task for the model.

Create a new task

a. Select the following options:

• F.E.M. task

• Time-dependent problem(s)

• 2D shell geometry

b. Click Accept the current setup.

2. Define the molds.

Define molds

a. Create the new mold.

Create a new mold

Click Adiabatic mold.

A dialog box opens, asking for the title of the mold.

281Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 294: ANSYS Polyflow Tutorial Guide

b. Click OK to accept the default name, Mold 1.

The Domain of the mold menu item is highlighted.

3. Define the domain where the mold applies.

Domain of the mold

a. Select Subdomain 1 and click Remove.

b. Click Upper level menu at the top of the Domain of the mold menu.

4. Define the contact boundary conditions.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.282

3D Thermoforming of a Blister

Page 295: ANSYS Polyflow Tutorial Guide

Contact conditions

a. Select No contact along Subdomain 2 and click Modify.

b. Select Contact and click Upper level menu twice.

5. Define the motion of the mold.

Mold motion

a. Click Mold motion type : fixed mold

A dialog box opens, asking you to specify the type of mold motion.

Enter 1 as the New value to impose a translation velocity, and click OK.

b. Click the EVOL button at the top of the Polydata menu to enable evolution inputs.

283Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 296: ANSYS Polyflow Tutorial Guide

c. Set the mold translation velocity.

Modify translation velocity

Polydata prompts for velocity-x.

i. Specify the x-velocity.

Click OK to accept the default value of 0 for the New value of velocity-x.

Polydata asks you to the specify the time dependence of the x-velocity. Click Upper levelmenu, as there is no velocity in the x-direction.

ii. Specify the y-velocity.

Click OK to accept the default value of 0 for the New value of velocity-y, and click Upperlevel menu, as there is no velocity in the y-direction.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.284

3D Thermoforming of a Blister

Page 297: ANSYS Polyflow Tutorial Guide

iii. Specify the z-velocity.

Enter 10 [units: mm/s] for the New value of velocity-z and click OK.

iv. Specify the time dependence of the z-velocity.

Select f(t) = Ramp function.

v. Define the coordinate pairs (a,b) and (c,d) for the points that define the ramp function.

Click Modify the value of a.

Enter 0.097 as the New value and click OK.

vi. In a similar manner, set the values for b, c, and d to 1.0,0.103, and 0, respectively.

Figure 1.3: Ramp Function for Mold Velocity

Figure 1.3: Ramp Function for Mold Velocity (p. 285) shows the ramp function you just defined.

Click Upper level menu to return to the Mold motion menu.

vii. Click the EVOL button at the top of the menu to disable evolution inputs.

viii. Click Upper level menu three times to return to the F.E.M. Task 1 menu.

The Create a sub-task menu item is highlighted.

285Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 298: ANSYS Polyflow Tutorial Guide

1.3.4. Film Sub-Task

In the following steps you will define the nature of the flow problem, identify the domain of definition, setthe relevant material properties for the fluid, and define boundary conditions along its boundaries.

1. Create a sub-task for the fluid.

Create a sub-task

a. Select Shell model : Gen. Newtonian isothermal.

A dialog box opens, asking for the title of the problem.

b. Enter Blister as the New value and click OK.

The Domain of the sub-task menu item is highlighted.

2. Define the domain where the sub-task applies.

Domain of the sub-task

a. Select Subdomain 2 and click Remove.

b. Click Upper level menu button at the top of the Domain of the sub-task menu.

The Flow boundary conditions menu item is highlighted.

3. Specify the flow boundary conditions.

Flow boundary conditions

a. Retain the default settings for Boundary 1 and Boundary 2.

b. Select Zero wall velocity (vn=vs=0) along Boundary 3 and click Modify.

i. Click Plane of symmetry ( fs=0, vn=0 ).

ii. Select normal direction along X axis.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.286

3D Thermoforming of a Blister

Page 299: ANSYS Polyflow Tutorial Guide

iii. Click Upper level menu to continue specifying flow boundary conditions.

c. Select Zero wall velocity (vn=vs=0) along Boundary 4 and click Modify.

i. Click Plane of symmetry ( fs=0, vn=0 ).

ii. Select normal direction along Y axis.

iii. Click Upper level menu to return to the Flow boundary conditions menu.

d. Click Inflation pressure imposed at the bottom of the Flow boundary conditions menu.

e. Click Constant for the inflation pressure.

A dialog box opens, asking for the new value of the constant.

Enter 100000 [units: Pa] as the New value and click OK.

f. Click the EVOL button at the top of the Polydata menu to enable evolution inputs.

g. Click Upper level menu.

Polydata directs you to the Time dependence of inflation pressure menu.

i. Select f(t) = Ramp function.

ii. Click Modify the value of a, and enter 0.1 as the New value.

iii. In a similar manner, set constants b, c, and d to 0,0.11, and 1.0, respectively.

287Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 300: ANSYS Polyflow Tutorial Guide

Figure 1.4: Ramp Function for Pressure

Figure 1.4: Ramp Function for Pressure (p. 288) shows the ramp function you just defined.

h. Click Upper level menu.

Click the EVOL button at the top of the Polydata menu to disable evolution inputs.

i. Click Upper level menu to return to the Blister menu.

4. Define the contacts of the blister.

Define contacts

a. Click Create a new contact problem.

The Modification of a contact problem menu will open with the Select a contact wall menuitem highlighted.

b. Define the contact wall.

i. Click Select a contact wall.

ii. Select Mold 1 : Contact along Subdomain 2 and click Select.

c. Specify the coefficients and accuracy.

i. Click Modify the slipping coefficient.

Enter 1e+10 as the New value and click OK.

ii. Click Modify the penalty coefficient.

Enter 1e+10 as the New value and click OK.

iii. Click Modify the penetration accuracy.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.288

3D Thermoforming of a Blister

Page 301: ANSYS Polyflow Tutorial Guide

Enter 0.05 as the New value and click OK.

d. Define the orientation of the mold.

i. Magnify the view of the mold to ensure that you can see the darts that will be displayed.

Alternatively, you can increase the size of the darts:

Graphical window → Sizing Darts → Size up.

ii. Click Specify mold side / cavity side.

Darts will be displayed in the Graphics Display window, as shown in the following figure.

iii. Click No in the dialog box that opens, to specify that the darts are not pointing towards themold body.

289Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 302: ANSYS Polyflow Tutorial Guide

If the direction of the darts is not clear to you, you can close the dialog box, rotate the viewand/or change the magnification, click Specify mold side / cavity side again, and thenanswer the question appropriately.

e. Click Upper level menu twice.

A warning dialog box opens, saying that velocity prediction must be disabled, and that the modi-fication has automatically been done.

Click OK.

The Define layers menu item is highlighted.

5. Define the layers of the blister.

Define layers

a. Click Create a new layer.

In the dialog box that opens, enter blister as the New value.

The blister menu will open with the Material data menu item highlighted.

b. Specify the material data for the blister.

Material Data

i. Click Shear-rate dependence of viscosity.

ii. Click Constant viscosity.

iii. Click Modify fac.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.290

3D Thermoforming of a Blister

Page 303: ANSYS Polyflow Tutorial Guide

Enter 100000 [units: ] as the New value and click OK.

iv. Click Upper level menu twice to continue with material data specification.

v. Click Density.

vi. Click Modification of density.

Enter 0.001 [units: g/mm3] as the New value and click OK.

vii. Click Upper level menu to continue with the material data specification.

viii. Click Inertia terms.

Select Inertia will be taken into account and click Upper level menu to continue withmaterial data specification.

ix. Click Layer permeability.

x. Click Modify coef. of permeability.

Enter 5e-12 [units: g-mm/s/mm2] as the New value and click OK.

xi. Click Upper level menu twice to return to the blister menu.

c. Specify the initial thickness.

Initial thickness

i. Click Constant.

Enter 0.35 [units: mm] as the New value and click OK.

ii. Click Upper level menu four times to return to the F.E.M. Task 1 menu.

1.3.5. Postprocessing Sub-Tasks

In the following steps you will create a number of sub-tasks that will report various statistics about the blownproduct. The results for derived quantities that produce a single value are displayed in the listing file. Sub-tasks that produce a field of values are exported to CFD-Post.

1. Set a task to report the mass of the blown product.

Create a sub-task

Click No in the dialog box that opens asking if you want to copy the data of an existing sub-task.

a. Click Postprocessor.

Enter Mass of product as the New value in the dialog box that asks for the title of thesub-task and click OK.

291Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 304: ANSYS Polyflow Tutorial Guide

b. Click Mass of blown product.

Click OK in the dialog box that opens saying that the calculation will be performed on Subdo-main 1.

c. Confirm that the Density of layer [blister] is set to 1.00E-03, and click Upper level menu.

d. Click Add a new plane.

The plane is calculated by the following equation (which is displayed at the top of the Restric-tion of Layers by cutting planes menu).

(1.1)

Polydata asks for the values of Coefficients A, B, C, and D sequentially.

e. Enter 0 for A,0 for B,-1 for C, and 25.9 for D.

f. Click Upper level menu.

g. Click Upper level menu to ignore contact with Subdomain 2.

2. Set a task to report the permeability of the blown product.

Create a sub-task

Click No in the dialog box that opens asking if you want to copy the data of an existing sub-task.

a. Click Postprocessor.

Enter Permeability of product as the New value in the dialog box that asks for thetitle of the sub-task and click OK.

b. Click Permeability of blown product.

Click OK in the dialog box that opens saying that the calculation will be performed on Subdo-main 1.

c. Confirm that the Permeability of layer [blister] is set to 5.00E-12, and click Upper level menu.

d. Click Add a new plane.

Polydata asks for the values of Coefficients A, B, C, and D sequentially.

See Equation 1.1 (p. 292) for more information on the coefficients.

e. Enter 0 for A,0 for B,-1 for C, and 25.9 for D.

f. Click Upper level menu.

g. Click Upper level menu to ignore contact with Subdomain 2.

3. Set a task to report the volume of the blown product.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.292

3D Thermoforming of a Blister

Page 305: ANSYS Polyflow Tutorial Guide

Create a sub-task

Click No in the dialog box that opens asking if you want to copy the data of an existing sub-task.

a. Click Postprocessor.

Enter Volume of product as the New value in the dialog box that asks for the title ofthe sub-task and click OK.

b. Click Capacity of blown product.

Click OK in the dialog box that opens saying that the calculation will be performed on Subdo-main 1.

c. Click Add a new plane.

Polydata asks for the values of Coefficients A, B, C, and D sequentially.

See Equation 1.1 (p. 292) for more information on the coefficients.

d. Enter 0 for A,0 for B,-1 for C, and 25.9 for D.

e. Click Upper level menu.

f. Click Upper level menu to ignore contact with Subdomain 2 and return to F.E.M. Task 1.

1.3.6. Numerical Parameters

Numerical parameters

1. Click Modify the transient iterative parameters.

2. Click Modify the initial time value.

Click OK to retain the default value of 0.0 [units: s] as the New value.

3. Click Modify the upper time limit.

Enter 0.6 [units: s] as the New value and click OK.

4. Click Modify the initial value of the time-step.

Enter 0.001 [units: s] as the New value and click OK.

5. Click Modify the min value of the time-step.

Click OK to retain the default value of 0.0001 [units: s] as the New Value.

6. Click Modify the max value of the time-step.

Enter 0.01 [units: s] as the New value and click OK.

7. Click Modify the tolerance.

293Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 306: ANSYS Polyflow Tutorial Guide

Click OK to retain the default of 0.01 [units: s] as the New value.

8. Click Modify the max number of successful steps.

Click OK to retain the default of 200 as the New value.

9. Click Upper level menu three times to return to the top-level Polydata menu.

1.3.7. Outputs

Outputs

1. Set the system of units to output to CFD-Post.

Set units for CFD-Post, Ansys Mapper or Iges

a. Modify the current system of units.

Modify system of Units

b. Specify the new system of units.

Set to metric_mm/g/s/mA+Celsius

2. Click Upper level menu two times to return to the Outputs menu.

a. Set the output triggering.

Output Triggering

b. Specify the type of output triggering.

Output after N valid steps

The Enter the number of steps menu item is highlighted.

c. Specify the number of steps.

Enter the number of steps

Click OK to retain the default of 1 for the New value.

3. Click Upper level menu twice to return to the top-level Polydata menu.

1.3.8. Save and Exit Polydata

Save and exit

1. Click Accept.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.294

3D Thermoforming of a Blister

Page 307: ANSYS Polyflow Tutorial Guide

2. Click Continue.

This accepts the default names for graphical output files (cfx.res) that are to be saved for postpro-cessing, and the Polyflow format results file (res).

1.3.9. Solution

Run Polyflow to calculate a solution for the model you just defined using Polydata.

1. Run Polyflow by right-clicking the Solution cell of the simulation and selecting Update.

This executes Polyflow using the data file as standard input, and writes information about the problemdescription, calculations, and convergence to a listing file (polyflow.lst).

2. Check for convergence in the listing file.

a. Right-click the Solution cell and select Listing Viewer....

Workbench opens the View listing file dialog box, which displays the listing file.

b. It is a common practice to confirm that the solution proceeded as expected by looking for the followingprinted at the bottom of the listing file:

The computation succeeded.

3. Scroll up to view the results of the postprocessing sub-tasks.

295Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 308: ANSYS Polyflow Tutorial Guide

Scroll up in the listing file to view the results of the Postprocessors.

Here you can see the results of the postprocessor sub-tasks you created in Polydata. For additional in-formation on postprocessing sub-tasks, see Postprocessing Sub-Tasks (p. 291) and Overview of DerivedQuantities in the Polyflow User's Guide.

1.3.10. Postprocessing

Use CFD-Post to view the results of the Polyflow simulation.

1. Double-click the Results cell in the Workbench analysis system.

CFD-Post reads the solution fields that were saved to the results file.

2. Align the view as shown in the following figure.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.296

3D Thermoforming of a Blister

Page 309: ANSYS Polyflow Tutorial Guide

3. Display contours of thickness in the fluid region (Subdomain1).

a. Insert → Contour or click the button.

b. In the dialog box that opens, click OK to accept the default name (Contour 1) and display the detailsof Contour 1 below the Outline tree.

297Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 310: ANSYS Polyflow Tutorial Guide

c. Specify the following settings in the Geometry tab:

i. Select Subdomain_1_surf from the Locations drop-down list.

ii. Ensure THICKNESS is selected from the Variable drop-down list.

iii. Select User Specified from the Range drop-down list.

iv. Enter 0.1 mm for Min and 0.35 mm for Max.

v. Click Apply.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.298

3D Thermoforming of a Blister

Page 311: ANSYS Polyflow Tutorial Guide

Figure 1.5: Contours of Thickness 1/4 Geometry

4. Show the contours of thickness on the full mold.

a. Double-click Default Transform in the Outline tree tab, under User Locations and Plots (or right-click Default Transform and select Edit).

299Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 312: ANSYS Polyflow Tutorial Guide

b. Disable Instancing Info From Domain under the Definition tab in the details of Default Transform.

c. Enter 2 for the Number of Graphical Instances.

d. Select Value from the Determine Angle From drop-down list in the Instance Definition group box.

e. Enter 180 for Angle.

f. Enable Apply Reflection, and select ZX Plane from the Method drop-down list.

g. Retain the default value of 0.0 m for Y.

h. Click Apply and revise the magnification of the view to show the whole mold.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.300

3D Thermoforming of a Blister

Page 313: ANSYS Polyflow Tutorial Guide

Figure 1.6: Contours of Thickness on the Whole Mold

5. Display contours of thickness at various time steps.

Polydata exported a total of 73 time steps to CFD-Post.

a. Click the Timestep Selector icon ( ).

b. Scroll up in the Timestep Selector dialog box and select Step 1.

301Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 314: ANSYS Polyflow Tutorial Guide

c. Click Apply.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.302

3D Thermoforming of a Blister

Page 315: ANSYS Polyflow Tutorial Guide

Figure 1.7: Thickness of the Film at Time=0.001 s

d. Repeat steps a.–c. for timesteps 30, 50, and 73.

303Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 316: ANSYS Polyflow Tutorial Guide

Figure 1.8: Contours of Thickness at Time = 0.2338 s

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.304

3D Thermoforming of a Blister

Page 317: ANSYS Polyflow Tutorial Guide

Figure 1.9: Contours of Thickness at Time = 0.4239 s

305Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 318: ANSYS Polyflow Tutorial Guide

Figure 1.10: Contours of Thickness at Time = 0.6000 s

6. Create an animation for the contour plot.

a. Click the animation icon ( ).

b. Ensure Quick Animation is selected in the Animation dialog box.

c. Select Timesteps.

d. To save the animation, expand the dialog box by clicking the button at the lower-right.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.306

3D Thermoforming of a Blister

Page 319: ANSYS Polyflow Tutorial Guide

i. Enable Save Movie.

ii. Click the file icon to the right and enter the path where you would like to save the animation.

Enter Thickness.wmv for the name of the file and click Save to close the Save Moviedialog box.

wmv and mpg are the recommended formats.

iii. Disable to save only one cycle of animations.

iv. Click the play button, to play the animation and save it as a file.

1.4. Summary

This tutorial introduced the concept of a blow molding problem. The mold moved into contact withthe film, where a constant pressure was applied to the film. This blew the film into the mold where itassumed the shape of the mold.

You represented the film by a shell geometry under the valid assumption that the thickness of the filmwas much smaller than the other two dimensions. Polyflow linearly interpolated the process vari-

307Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Summary

Page 320: ANSYS Polyflow Tutorial Guide

ables—thickness, velocity and position. By reporting the individual time steps to CFD-Post you wereable to view the thickness of the product as a function of time.

1.5. Further Improvements

In many practical cases, the use of adaptive meshing based on contact, remeshing, or both may beuseful to selectively and automatically refine the mesh during the solution. To illustrate the effects ofsuch refinement, this tutorial has been run with contact adaptive meshing enabled and made availableas blister-adapt.wbpz in the 3D-Thermo-Blister_R160\solution_files folder you un-zipped in Preparation (p. 280). The following settings were specified:

F.E.M. Task 1

• Numerical parameters

– Adaptive meshing

→ Activate adaptive meshing for contacts

• Enable all the local criteria

• Switch to calculated from angle and curvature

• Modify size_min = .1

• Modify tolerance = .01

• Modify size_max = 1

• Modify dist_crit = .5

→ Modify Nstep = 4

→ Modify Maxdiv = 1, 2, and 3 (in separate analysis systems)

For additional information on adaptive meshing, see Adaptive Meshing.

The results are shown in Figure 1.11: Effect of Adaption on Final Mesh and Thickness Variation (p. 309).Note how the mesh changes as the Maxdiv value increases. The results do not change very much asa result of the adaption, which indicates that the original solution was already mesh independent.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.308

3D Thermoforming of a Blister

Page 321: ANSYS Polyflow Tutorial Guide

Figure 1.11: Effect of Adaption on Final Mesh and Thickness Variation

1.6. Appendix

The appendix contains the following topics:1.6.1. Contact Boundary Conditions1.6.2. Remark on the Penalty Coefficient1.6.3. Remeshing

1.6.1. Contact Boundary Conditions

As seen, the subdomain that describes the fluid will eventually come in contact with the mold. Besidesits usual material parameters, it also receives some process parameters: inflation pressure and the contact

309Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Appendix

Page 322: ANSYS Polyflow Tutorial Guide

with the (moving) molds. In all forming applications (blow molding and thermoforming for example),the definition of the contact is an important aspect, as it will eventually lead to the desired shape. Thecontact involves a “what” and a “how”. The “what” describes the geometry of the film/sheet and themold surface it may get in contact with (contact problem). The “how” refers to other process parameterssuch as a moving mold. In this case, a velocity (possibly time-dependant) must be specified for themold. In some cases, the material may slip along the contact wall, which can also be taken into account.

Next to these operating attributes, some numerical parameters must be specified. A geometrical algorithmis applied for detecting the occurrence of contact, while a penalty formation is used for the treatmentof contact. A penalty coefficient ensures that a geometrical contact is detected. It should not be toosmall. A coefficient is also specified in the tangential direction. If the fluid sticks along the wall, thistangential coefficient should preferably receive the same value as the penalty coefficient. Two additionalcoefficients are also needed; a tolerance on penetration accuracy and an element dilatation.

Presently, the penalty coefficient has been set to 1010, while the same value has been selected for thecoefficient along the tangential direction (slipping coefficient). The tolerance on penetration and elementdilatation equal 0.05 and 0.05 mm, respectively.

1.6.2. Remark on the Penalty Coefficient

The large value of the penalty coefficient can never guarantee an exactly vanishing normal velocity atthe contact. Instead, a residual normal velocity will remain even after mold contact. The amplitude ofthis residual velocity will depend on the penalty coefficient. In most cases, the residual velocity is as

low as 10-3–10-6.

In classical thermoforming applications, such residual velocity will not produce any significant numericalpenetration of the fluid film/sheet through the mold in view of the short times involved (physically, thethermoforming process is very fast). However, some situations may involve longer time scales such asin the glass industry.

The question that is now raised concerns the best evaluation of the penalty coefficient. The penaltyformulation mainly establishes a balance between a force (for example: the inflation pressure, ) anda penalty force because of contact. The penalty force is simply the product of the penalty coefficient,

, and the residual velocity of the film/sheet upon contact. The other elements of the momentumequation can be ignored for the present consideration. Assuming a typical time scale (for example:the simulation time), and a maximum penetration depth , a good penalty coefficient can be selectedas:

1.6.3. Remeshing

No remeshing must be specified. In the context of the membrane element, a Lagrangian representationis applied where all mesh nodes are considered material points.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.310

3D Thermoforming of a Blister

Page 323: ANSYS Polyflow Tutorial Guide

Chapter 2: 2D Axisymmetric Blow Molding

This tutorial contains the following sections:2.1. Introduction2.2. Prerequisites2.3. Problem Description2.4. Setup and Solution2.5. Summary2.6. Appendix

Files required to work on this tutorial can be downloaded from this website: http://support.ansys.com/training.

2.1. Introduction

Molding is a process of forcing a preform or a parison (preshaped sleeve) into a mold cavity so that thepreform assumes the shape of the cavity. There are numerous molding methods, including blowmolding, compression and transfer molding, and slush and rotational molding. These methods differin the formation of the preform and the filling of the mold cavity. Also, each processing method issuitable for a specific class of polymers.

Blow molding is an important processing method for molding hollow articles such as bottles. The preformis usually made by extrusion and forced between the mold halves by pressurization (blowing air). Thepolymer solidifies upon contact with the cold mold and the finished product is then ejected. The homo-geneity and rheological properties of the preform along with the operating conditions (temperatureand pressure variations) are crucial in this step and will affect the design of the processing machinery.This process reflects all facets of polymer processing— the isothermal and transient flow of Newtonianfluids in complex geometries with simultaneous structuring and solidification.

In this tutorial you will learn how to:

• Define a time-dependent problem.

• Set material properties and boundary conditions for a 2D axisymmetric blow molding problem.

• Set numerical parameters available in Polydata for a time-dependent problem.

2.2. Prerequisites

This tutorial assumes that you are familiar with the menu structure in Polydata and Workbench andthat you have solved or read 2.5D Axisymmetric Extrusion (p. 53). Some steps in the setup procedurewill not be shown explicitly.

311Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Page 324: ANSYS Polyflow Tutorial Guide

2.3. Problem Description

This problem analyzes a blow molding simulation for a 2D axisymmetric bottle. The problem deals withthe cavity filling stage of the molding process and it is assumed that a preform has been positionedinside the mold. The contact between the fixed mold and the preform is considered.

A large pressure is applied to the preform, which enters the mold and eventually takes its shape. Theoperating conditions must account for a low pressure drop at the entrance, low material waste, andslow cooling to avoid premature solidification of the preform.

The cylindrical geometry of the preform (Figure 2.1: Problem Description (p. 312)) has an internal radiusof 2 cm and external radius of 3 cm (the initial thickness of the preform is 1 cm). The height of thepreform is 10 cm.

Figure 2.1: Problem Description

The domain for the problem is divided into two subdomains: one for the fluid preform (subdomain 1)and the other for the mold (subdomain 2). Incompressibility and momentum equations are solved insubdomain 1 (the fluid preform). The problem involves two free surfaces (boundary 2 and boundary 4,shown in Figure 2). boundary 2 will eventually come into contact with the mold, and its position iscalculated as a part of the solution.

The fluid preform has a density of =1 g/cm3 and a viscosity of = 100000 poise. Inertia terms andthe effects of gravity will be included in the calculation.

The boundary sets for the problem are shown in Figure 2.2: Boundary Set for the Problem (p. 313), andthe conditions at the boundaries of the domain (for the preform) are:

• boundary 1: symmetry axis

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.312

2D Axisymmetric Blow Molding

Page 325: ANSYS Polyflow Tutorial Guide

• boundary 2: free surface

• boundary 3: zero normal velocity and zero surface force

• boundary 4: free surface

Figure 2.2: Boundary Set for the Problem

2.4. Setup and Solution

The following sections describe the setup and solution steps for this tutorial:2.4.1. Preparation2.4.2. Project and Mesh2.4.3. Create a Task for the Model2.4.4. Material Data2.4.5. Boundary Conditions2.4.6. Remeshing2.4.7. Numerical Parameters2.4.8. Outputs2.4.9.Thickness Postprocessor2.4.10. Save and Exit Polydata2.4.11. Solution2.4.12. Postprocessing

313Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 326: ANSYS Polyflow Tutorial Guide

2.4.1. Preparation

To prepare for running this tutorial:

1. Prepare a working folder for your simulation.

2. Go to the ANSYS Customer Portal, https://support.ansys.com/training.

Note

If you do not have a User Name and Password, you can register by clicking CustomerRegistration on the Log In page.

3. Enter the name of this tutorial into the search bar.

4. Narrow the results by using the filter on the left side of the page.

a. Click ANSYS Polyflow under Product.

b. Click 16.0 under Version.

5. Select this tutorial from the list.

6. Click Files to download the input and solution files.

7. Unzip the 2D-Axi-Blow-Molding_R160.zip file you have downloaded to your working folder.

The mesh file 2d-axi-blowmold.msh can be found in the unzipped folder.

8. Start Workbench from Start > All Programs > ANSYS 16.0 > Workbench 16.0.

2.4.2. Project and Mesh

1. Create a Fluid Flow - Blow Molding (Polyflow) analysis system by drag and drop in Workbench.

2. Save the ANSYS Workbench project using File → Save, entering Final-blow-mold as the name of theproject.

3. Import the mesh file (2d-axi-blowmold.msh).

4. Double-click the Setup cell to start Polydata.

When Polydata starts, the Create a new task menu item is highlighted, and the geometry for theproblem is displayed in the Graphics Display window.

2.4.3. Create a Task for the Model

In the following steps you will define a new task representing the 2D axisymmetric time-dependent model.Then, define the mold and a sub-task for the isothermal flow calculation.

1. Create a task for the model.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.314

2D Axisymmetric Blow Molding

Page 327: ANSYS Polyflow Tutorial Guide

Create a new task

a. Select the following options:

• F.E.M. task

• Time-dependent problem(s)

• 2D axisymmetric geometry

The Current setup is updated to reflect the selected options. This example is a simulation of blowmolding for a 2D axisymmetric bottle and the mold is two-dimensional. The problem is assumedto be time-dependent.

b. Click Accept the current setup.

2. Define the mold.

Define molds

a. Create a mold.

Create a new mold

b. Select an adiabatic mold.

Adiabatic mold

c. When prompted, click OK to retain the default name for the mold (Mold 1).

d. Specify the solid region that represents the mold.

Domain of the mold

i. Select SUBDOMAIN_1 and click Remove.

SUBDOMAIN_1 is moved from the top list to the bottom list, indicating that the mold isdefined as SUBDOMAIN_2.

ii. Click Upper level menu at the top of the menu.

e. Specify the boundary that represents the part of the mold that comes into contact with the fluid.

Polyflow uses this information to determine the penetration distance (into the mold) of everypoint of the free surface (BOUNDARY2).

Contact conditions

i. Select No contact along BOUNDARY5 and click Modify.

315Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 328: ANSYS Polyflow Tutorial Guide

The free surface, BOUNDARY2 of the preform comes into contact with the mold wall,BOUNDARY5 (as shown in Figure 2.2: Boundary Set for the Problem (p. 313)).

ii. Select Contact.

f. Click Upper level menu four times to return to the F.E.M. Task 1 menu.

3. Create a sub-task for the isothermal flow.

Create a sub-task

a. Select Generalized Newtonian isothermal flow problem.

A dialog box opens, asking for the title of the problem.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.316

2D Axisymmetric Blow Molding

Page 329: ANSYS Polyflow Tutorial Guide

b. Enter blow molding as the New value and click OK.

The Domain of the sub-task menu item is highlighted.

4. Define the domain where the sub-task applies.

The domain is divided into two subdomains, one for the fluid preform (SUBDOMAIN_1) and the otherfor the mold (SUBDOMAIN_2). In this problem, the sub-task applies only to the preform.

Domain of the sub-task

a. Select SUBDOMAIN_2 and click Remove.

SUBDOMAIN_2 is moved from the top list to the bottom list, indicating that the sub-task isdefined on SUBDOMAIN_1.

b. Click Upper level menu at the top of the menu.

The Material data menu item is highlighted.

2.4.4. Material Data

Polydata indicates which material properties are relevant for the sub-task by graying out the irrelevantproperties. In this case, viscosity, density, inertia terms, and gravity are available for specification.

Material data

1. Define the viscosity of the preform.

317Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 330: ANSYS Polyflow Tutorial Guide

a. Click Shear-rate dependence of viscosity.

b. Click Constant viscosity.

c. Click Modify fac to specify the value of , which is referred to as “fac” in the graphical user interface.

Polydata prompts for the new value of the viscosity.

d. Enter 100000 [units: poise] as the New value and click OK.

e. Click Upper level menu two times to continue with the Material Data specification.

2. Define the density of the preform.

a. Click Density.

b. Click Modification of density to specify the value of the density.

Polydata prompts for the new value of the density.

c. Enter 1 [units: g/cm3] as the New value and click OK.

d. Click Upper level menu to continue with the Material Data specification.

3. Enable the calculation of the inertia terms in the momentum equation.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.318

2D Axisymmetric Blow Molding

Page 331: ANSYS Polyflow Tutorial Guide

In this problem inertia plays an important role. When internal pressure is applied, the preform expands,and the fluid accelerates towards the mold. In order to obtain a realistic blowing time, inertia must betaken into account.

a. Click Inertia terms.

b. Select Inertia will be taken into account.

c. Click Upper level menu to continue with the Material Data specification.

4. Include the effects of gravity in the flow.

The fluid preform flows in the negative y direction under gravity, so specify the component of gravityalong the y direction ( ).

a. Click Gravity.

b. Click Modify gy to specify the value of gravity in the y direction.

Modify gy

Polydata prompts for the new value of the gravity along the y-axis.

c. Enter -981 [units: cm/s2] as the New value and click OK.

d. Click Upper level menu two times to return to the blow molding menu.

The Flow boundary conditions menu item is highlighted.

2.4.5. Boundary Conditions

In the following steps you will set the conditions at each of the boundaries of the domain. When a boundaryset is selected, its location is highlighted in red in the graphics window.

Flow boundary conditions

1. Retain the default condition Axis of symmetry along BOUNDARY1.

No action is required to accept the default value. You can simply proceed to the next step. For 2Daxisymmetric models, Polydata recognizes the axis of symmetry from the mesh file and automaticallyimposes the symmetry condition along the line .

2. Set the conditions at the outer free surface (BOUNDARY2).

The free surface boundary condition in contact detection problems is different from their simulationsin Polyflow. In blow molding problems, a free surface comes into contact with a solid mold. Polyflowapplies a contact detection algorithm at each location of the surface to detect the occurrence of thecontact.

You need to specify the following for the free surface on BOUNDARY2:

• the components of the direction of displacement along BOUNDARY1 and BOUNDARY3

319Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 332: ANSYS Polyflow Tutorial Guide

• the contact wall (the boundary of the mold along which the contact is detected)

• the penalty coefficient

This determines the accuracy of the contact; the smaller its value, the deeper the contact is.

• The slipping coefficient

The fluid may slip along the contact wall, so to take this factor into account, a slipping coefficientmust be specified along the tangential direction.

a. Select Zero wall velocity (vn=vs=0) along BOUNDARY2 and click Modify.

b. Click Free surface.

c. Specify the contact detection problem.

i. Click Contact (Blow mold).

ii. Click Create a new contact problem.

iii. Specify where the free surface will contact the mold.

Polyflow uses the definition of the contact wall in the determination of the penetration distance(into the mold) of every point of the free surface (BOUNDARY2).

Click Select a contact wall.

iv. Select Mold 1 : Contact along BOUNDARY5 and click Select.

As shown in Figure 2.2: Boundary Set for the Problem (p. 313), the free surface (BOUNDARY2)of the preform comes into contact with the mold (BOUNDARY5).

v. Define the slipping coefficient.

Modify slipping coefficient

Retain the default value of 1e+09 and click OK.

With such a high value of the slipping coefficient, the fluid will stick to the contact wall.

vi. Define the penalty coefficient.

Modify penalty coefficient

Retain the default value of 1e+09 and click OK.

vii. Click Upper level menu two times to return to the Kinematic condition menu.

d. Click Upper level menu to return to the Flow boundary conditions panel.

In contact detection problems, abrupt changes in the velocity field occur at the contact pointsbetween the fluid preform and the mold. Polydata gives the warning message shown below. Since

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.320

2D Axisymmetric Blow Molding

Page 333: ANSYS Polyflow Tutorial Guide

the prediction of the velocity field in such cases destroys the prediction scheme, you can continueby clicking OK.

e. Click OK to accept the warning and continue.

3. Set the conditions at the top part of the preform (BOUNDARY3).

a. Select Zero wall velocity (vn=vs=0) along BOUNDARY3 and click Modify.

b. Click Normal velocity and tangential force imposed ( vn, fs ).

c. Click Upper level menu to accept the default value of 0 for the normal velocity, .

d. Click Upper level menu to accept the default value of 0 for the tangential force, .

4. Set the conditions at the inner free surface (BOUNDARY4).

This boundary of the preform is subjected to pressure by the application of a normal force, so specifya normal force along this boundary.

a. Select Zero wall velocity (vn=vs=0) along BOUNDARY4 and click Modify.

b. Click Free surface.

c. Specify the normal force.

i. Click Normal force.

ii. Select Constant.

Polydata prompts for the new value of the normal force.

321Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 334: ANSYS Polyflow Tutorial Guide

iii. Enter -2e06 as the New value and click OK.

iv. Click Upper level menu.

d. Click Upper level menu to return to the Flow boundary conditions menu.

5. Click Upper level menu to return to the blow molding menu.

The Global remeshing menu item is highlighted.

2.4.6. Remeshing

This model involves free surfaces for which the positions are unknown. A portion of the mesh is affected bythe relocation of these boundaries. Hence a remeshing technique is applied on this part of the mesh. Thefree surfaces are entirely contained within SUBDOMAIN_1, and hence only SUBDOMAIN_1 is affected by therelocation of the free surfaces.

Global remeshing

1. Specify the region where the remeshing is to be performed (SUBDOMAIN_1).

1–st local remeshing

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.322

2D Axisymmetric Blow Molding

Page 335: ANSYS Polyflow Tutorial Guide

Click Upper level menu to accept the default selection of SUBDOMAIN_1.

2. Click Lagrangian on the border only.

For information on remeshing techniques, see Appendix (p. 339).

a. Click Accept the current setup in the Element distortion check menu.

In blow molding simulations, the finite-element mesh can undergo great deformations. The Elementdistortion check menu deals with the detection of all possible distortions of the elements. In thisproblem, you can accept the default options and proceed to the next step.

b. Click Upper level menu two times to return to the F.E.M. Task 1 menu.

2.4.7. Numerical Parameters

In the following steps you will define the numerical parameters for the simulation.

Numerical parameters

1. Specify the parameters for the iterative scheme in the calculation of the free surface.

Modify the transient iterative parameters

323Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 336: ANSYS Polyflow Tutorial Guide

For information on time marching scheme, see Appendix (p. 339).

a. Specify the time limit.

This option specifies the time at which the solution procedure stops.

Modify the upper time limit

Polydata prompts for the new value of the time limit.

Enter 0.1 [units: s] as the New value and click OK.

b. Specify the initial value of the time step.

This option is used to define the initial time step, which is used for the calculation of the next twotime steps. After that, the step size is automatically calculated by Polyflow. This first time stepshould be set according to the characteristic time scale of the process considered.

Modify the initial value of the time-step

Enter 1e-03 [units: s] as the New value and click OK.

c. Specify the minimum value for the time step.

If a calculated value for the time step falls below the minimum for the time step at any point inthe calculation, the iterative scheme stops since this might be a symptom of calculation difficulties.

Modify the min value of the time-step

Enter 1e-07 [units: s] as the New value and click OK.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.324

2D Axisymmetric Blow Molding

Page 337: ANSYS Polyflow Tutorial Guide

d. Specify the maximum value for the time step.

In order to guarantee accuracy of the time-marching scheme and to avoid useless calculations(rejection of inaccurate time steps), you can limit the growth of the time increment.

Modify the max value of the time-step

Enter 1e-03 [units: s] as the New value and click OK.

e. Specify the tolerance for time marching.

The tolerance is the admissible error between the predicted solution and the exact solution at aparticular time step. A very small value of the tolerance can result in large computational costsand a very large value can result in wrong solution.

Modify the tolerance

Retain the default value of 0.01 and click OK.

f. Specify the maximum number of successful steps.

This option is used to select the maximum number of converged steps. If this value is reached, thecalculation stops, even if the upper time limit has not been reached.

Modify the max number of successful steps

Retain the default value of 200 and click OK.

g. Enable Use of the implicit Euler method.

2. Click Upper level menu three times to return to the top-level Polydata menu.

2.4.8. Outputs

You can specify how often Polyflow saves the solution data when it calculates a solution. In this tutorial,save the results at every 4 time steps.

Outputs

1. Click Output Triggering.

a. Click Enter the number of steps.

Polydata prompts you for the number of steps.

b. Enter 4 as the New value and click OK.

2. Click Upper level menu twice.

3. Specify the system of units.

a. Click Modify system of units.

325Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 338: ANSYS Polyflow Tutorial Guide

b. Click Set to metric_cm/g/s/A+Celsius.

4. Click Upper level menu twice to return to the top-level Polydata menu.

2.4.9. Thickness Postprocessor

In the following steps you will create a postprocessor sub-task to compute the thickness of the blown product.The results of this postprocessor are sent to CFD-Post as a value field.

F.E.M. Task 1

1. Create a new sub-task.

Create a sub-task

a. Click No when asked whether you want to copy an existing sub-task.

b. Click Postprocessor.

c. Enter parison thickness as the New value for the title and click OK.

2. Click Parison thickness.

3. Click parison #01.

4. Click OK twice to accept the warnings about defining the borders.

You will have to define these borders at a later stage.

5. Specify the region where the postprocessor sub-task applies.

Domain of the sub-task

Accept the default of SUBDOMAIN_1 by clicking Upper level menu.

6. Specify the boundary sets representing the starting and ending borders to be used in the thickness calcu-lation.

Polyflow evaluates the distance between these borders at a point between them to determine thethickness at that location.

Borders for thickness calculation

a. Select BOUNDARY2: not used and click Modify.

b. Click Starting border.

c. Select BOUNDARY4: not used and click Modify.

d. Click Ending border.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.326

2D Axisymmetric Blow Molding

Page 339: ANSYS Polyflow Tutorial Guide

7. Click Upper level menu five times to return to the top-level Polydata menu.

2.4.10. Save and Exit Polydata

Save and exit

Polydata asks you to confirm fields that are to be saved to the results file for postprocessing.

1. Click Accept.

This confirms that the default Current field(s) are correct.

2. Click Continue.

This accepts the default names for graphical output files (cfx.res) that are to be saved for postpro-cessing, and the Polyflow format results file is (res).

2.4.11. Solution

In the following steps you will run Polyflow to calculate a solution for the model you just defined usingPolydata.

1. Run Polyflow by right-clicking the Solution cell of the simulation and selecting Update.

This executes Polyflow using the data file as standard input, and writes information about the problemdescription, calculations, and convergence to a listing file (polyflow.lst).

2. Check for convergence in the listing file.

a. Right-click the Solution cell and select Listing Viewer....

Workbench opens the View listing file dialog box, which displays the listing file.

b. It is a common practice to confirm that the solution proceeded as expected by looking for the followingprinted at the bottom of the listing file:

The computation succeeded.

2.4.12. Postprocessing

Use CFD-Post to view the results of the Polyflow simulation.

1. Double-click the Results cell in the Workbench analysis system.

CFD-Post reads the solution fields that were saved to the results file.

2. Align the view as shown in the following figure.

327Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 340: ANSYS Polyflow Tutorial Guide

3. Display contours of thickness in the fluid region (SUBDOMAIN_1).

a. Click the Insert menu and select Contour or click the button.

b. In the box that opens, click OK to accept the default name (Contour 1) and display the details belowthe Outline tree.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.328

2D Axisymmetric Blow Molding

Page 341: ANSYS Polyflow Tutorial Guide

c. Specify the following settings under the Geometry tab:

i. Select SUBDOMAIN_1_surf from the Locations drop-down list.

ii. Select estim. THICKNESS from the Variable drop-down list, or click the ellipsis button ( )on the right and select estim. THICKNESS.

iii. Click Apply.

d. Annotate the display.

i. Click the Insert menu and select Text or click the button.

ii. Click OK to accept the default name (Text 1) and display the details view below the Outlinetab.

iii. Enable Embed Auto Annotation under the Definition tab.

iv. Select Time Value from the Type drop-down list.

v. Click Apply.

329Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 342: ANSYS Polyflow Tutorial Guide

Figure 2.3: Contours of Thickness at the Final Time-step t = 0.1 s

4. Show contours of thickness on the full blown bottle.

a. Double-click Default Transform in the Outline tree tab, under User Locations and Plots (or right-click Default Transform and select Edit).

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.330

2D Axisymmetric Blow Molding

Page 343: ANSYS Polyflow Tutorial Guide

b. Disable Instancing Info From Domain under the Definition tab in the details of Default Transform.

c. Enable Apply Reflection, and select YZ Plane from the Method drop-down list.

d. Retain the default value of 0.0 m for X.

e. Click Apply.

f. Click the button to center the view.

331Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 344: ANSYS Polyflow Tutorial Guide

Figure 2.4: Contours of Thickness on the Full Blown Bottle at t = 0.1 s

5. Display contours of thickness at various timesteps.

Display the results at several time steps to see the shape and thickness of the parison during the blowmolding process.

Tools → Timestep Selector or click the button.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.332

2D Axisymmetric Blow Molding

Page 345: ANSYS Polyflow Tutorial Guide

a. Select the 20th timestep and click Apply.

b. Select the 40th timestep and click Apply.

c. Select the 60th timestep and click Apply.

d. Select the final timestep and click Apply.

The thickness decreases as the parison inflates. At the final time step, the thickness is smallestwhere the parison has been the most extended, (in the corner of the bottle). It is largest at the topwhere the deformation was much less important due to the small diameter here.

333Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 346: ANSYS Polyflow Tutorial Guide

Figure 2.5: Contours of Thickness at the 20th Timestep

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.334

2D Axisymmetric Blow Molding

Page 347: ANSYS Polyflow Tutorial Guide

Figure 2.6: Contours of Thickness at the 40th Timestep

335Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 348: ANSYS Polyflow Tutorial Guide

Figure 2.7: Contours of Thickness at the 60th Timestep

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.336

2D Axisymmetric Blow Molding

Page 349: ANSYS Polyflow Tutorial Guide

Figure 2.8: Contours of Thickness on the Full Blown Bottle at t = 0.1 s

6. Create and save an animation.

a. Click the Tools menu and select Animation or click the button.

b. Enable Quick Animation and select Timesteps in the Animation dialog box.

337Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 350: ANSYS Polyflow Tutorial Guide

c. Enable Save Movie to save the animation as a file.

d. Disable to save only one cycle of animations.

e. Click the start button .

7. Display contours of velocity in the fluid region.

a. Double-click Contour 1 under the Outline tab to display the details view.

b. Select VELOCITIES from the Variable drop-down list and click Apply.

There is zero velocity at the contact between the parison and the mold, but the velocity magnitudeis still important where the fluid does not yet touch the mold. At the final time of the simulation,the velocity is near zero, which indicates that the contact is completed. The residual value originatesfrom the penalty formulation used for the contact, as explained in 3D Thermoforming of aBlister (p. 277).

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.338

2D Axisymmetric Blow Molding

Page 351: ANSYS Polyflow Tutorial Guide

Figure 2.9: Final Velocity Distribution

2.5. Summary

This tutorial introduced a time-dependent problem with a 2D axisymmetric geometry for the mold.Suitable assumptions were made regarding the nature of the preform and the operating conditions.You analyzed the factors affecting the process in the postprocessing section. An optimization of thepreform shape could be performed in order to minimize the weight of the bottle while avoiding weak(too thin) bottle walls.

You used a remeshing method that is most suited for contact detection problems. This problem alsointroduced the concept of the calculation of free surfaces for contact detection problems. You usedefficient numerical techniques to more accurately solve a time-dependent problem.

2.6. Appendix

The appendix covers the following topics:

339Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Appendix

Page 352: ANSYS Polyflow Tutorial Guide

2.6.1. Remeshing Technique2.6.2.Time Marching Scheme

2.6.1. Remeshing Technique

The purpose of the remeshing technique is to relocate internal nodes according to the displacementof the boundary nodes due to the motion of the free surface. In blow molding applications, the finite-element mesh undergoes large deformations, especially extension. When a thin fluid region is considered,the shear component is essentially absent from the flow kinematics.

Because this application involves contact occurring over time, a Lagrangian representation is used forthe free surface that undergoes the contact; this improves the robustness of the contact algorithm. TheLagrangian on the border only technique remeshes based on the combination of a Lagrangian rep-resentation on the border of the fluid domain and a minimum-pseudo-energy representation for theinner mesh nodes. For additional information on this technique, see Lagrangian Method on Borders inthe Polyflow User's Guide.

2.6.2. Time Marching Scheme

Since this problem is time-dependent, parameters such as flow rate, boundary conditions, or materialdata are time-dependent. In such problems, the solution of the partial differential equations has to besatisfied at a discrete set of times starting from an initial time. The solution of the equations is obtainedby specific integration methods known as predictor-corrector methods. The predictor method calculatesa first guess of the solution at a specific time step. This guess is then used by the corrector method tocompute the real solution at the time step considered. The data for the time marching scheme isprovided in this menu.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.340

2D Axisymmetric Blow Molding

Page 353: ANSYS Polyflow Tutorial Guide

Chapter 3: Plug-Assisted Thermoforming of a Blister

This tutorial is divided into the following sections:3.1. Prerequisites3.2. Problem Description3.3. Setup and Solution3.4. Summary3.5. Appendix

3.1. Prerequisites

This tutorial assumes that you are familiar with the menu structure in Polydata and Workbench andthat you have solved or read 2.5D Axisymmetric Extrusion (p. 53). Some steps in the setup procedurewill not be shown explicitly.

3.2. Problem Description

This tutorial simulates plug-assisted thermoforming for a blister. Figure 3.1: Plug-Assisted Thermoformingof a Blister: Plug (Orange), Sheet (Blue), and Mold (Green) in the Initial Configuration (p. 342) shows asketch of the process in the initial configuration.

341Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Page 354: ANSYS Polyflow Tutorial Guide

Figure 3.1: Plug-Assisted Thermoforming of a Blister: Plug (Orange), Sheet (Blue), and Mold (Green)in the Initial Configuration

To reduce the computational run time, and utilizing the symmetric nature of the blister, only one quarterof the blister/plug/mold is modeled, Figure 3.1: Plug-Assisted Thermoforming of a Blister: Plug (Orange),Sheet (Blue), and Mold (Green) in the Initial Configuration (p. 342). From a geometric point of view, theinitial (1/4) film has the following dimensions:

• length = 15 mm

• width = 5 mm

• initial thickness = 0.35 mm

Dimensions are intentionally given in millimeters due to the small size of the object. The simulation will bebuilt around the system of units consisting of millimeters, grams and seconds.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.342

Plug-Assisted Thermoforming of a Blister

Page 355: ANSYS Polyflow Tutorial Guide

The thickness compared to the length/width of the blister is rather small. This allows the use of themembrane (shell) element, which is suited for the analysis of 3D blow molding and thermoformingsimulations. The use of the membrane element is presently restricted to time-dependant flows and iscombined with Lagrangian representation. That is, each mesh node is a material point.

The finite element mesh and the boundary conditions are displayed in Figure 3.2: Finite Element Mesh,Subdomains and Boundary Sets (p. 343). As shown, a full 3D finite element is built for the mold, the plugand the film. Only a surface mesh is required for the three subdomains, but the most important aspectremains the proper description of the inner mold surfaces which will shape the blister.

The film has the following material properties:

• model: shell model, Gen. Newtonian isothermal

• viscosity = 105

• density = 10-3 g/mm3

• inertial terms taken into account

• initial thickness = 0.35 mm

Figure 3.2: Finite Element Mesh, Subdomains and Boundary Sets

343Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Problem Description

Page 356: ANSYS Polyflow Tutorial Guide

As seen in Figure 3.2: Finite Element Mesh, Subdomains and Boundary Sets (p. 343), the mesh topologyinvolves three subdomains:

• Subdomain 1 = film

• Subdomain 2 = mold

• Subdomain 3 = plug

and four boundary sets:

• boundary 1: will be a fixed (clamped) boundary

• boundary 2: will be a fixed (clamped) boundary

• boundary 3: symmetry boundary condition with respect to the x-axis

• boundary 4: symmetry boundary condition with respect to the y-axis

The inflation pressure will be defined on the subdomain representing the film (Subdomain 1).

An important new concept is introduced in this tutorial: plug-assisted contact with a mold. The filmacquires the mold velocity then the plug guides the film into the mold. Once inside the mold, the filmis inflated according to a certain rate where it eventually comes into contact with the mold, finally ac-quiring its shape.

3.3. Setup and Solution

The following sections describe the setup and solution steps for this tutorial:3.3.1. Preparation3.3.2. Project and Mesh3.3.3. Mold Sub-Task3.3.4. Plug Sub-Task3.3.5. Blister Sub-Task3.3.6. Numerical Parameters3.3.7. Outputs3.3.8. Save and Exit Polydata3.3.9. Solution3.3.10. Postprocessing

3.3.1. Preparation

To prepare for running this tutorial:

1. Prepare a working folder for your simulation.

2. Go to the ANSYS Customer Portal, https://support.ansys.com/training.

Note

If you do not have a User Name and Password, you can register by clicking CustomerRegistration on the Log In page.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.344

Plug-Assisted Thermoforming of a Blister

Page 357: ANSYS Polyflow Tutorial Guide

3. Enter the name of this tutorial into the search bar.

4. Narrow the results by using the filter on the left side of the page.

a. Click ANSYS Polyflow under Product.

b. Click 16.0 under Version.

5. Select this tutorial from the list.

6. Click Files to download the input and solution files.

7. Unzip the Plug-Thermo-Blister_R160.zip file you have downloaded to your working folder.

The mesh file plugblister.msh can be found in the unzipped folder.

8. Start Workbench from Start > All Programs > ANSYS 16.0 > Workbench 16.0.

3.3.2. Project and Mesh

1. Create a Fluid Flow - Blow Molding (Polyflow) analysis system by drag and drop in Workbench.

2. Save the ANSYS Workbench project using File → Save, entering Blister-plug-assist as the nameof the project.

3. Import the mesh file (plugblister.msh).

4. Double-click the Setup cell to start Polydata.

When Polydata starts, the Create a new task menu item is highlighted, and the geometry for theproblem is displayed in the Graphics Display window.

3.3.3. Mold Sub-Task

In the following steps you will define the task representing the mold.

1. Create a task for the model.

Create a new task

a. Select the following options:

• F.E.M. task

• Time-dependent problem(s)

• 2D shell geometry

b. Click Accept the current setup.

2. Define the molds.

345Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 358: ANSYS Polyflow Tutorial Guide

Define molds

a. Create the new mold.

Create a new mold

b. Click Adiabatic mold.

A dialog box opens, asking for the title of the mold.

c. Click OK to accept the default name, Mold 1.

The Domain of the mold menu item is highlighted.

3. Define the domain where the mold applies.

Domain of the mold

a. Select Subdomain 1 and click Remove.

b. Select Subdomain 3 and click Remove.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.346

Plug-Assisted Thermoforming of a Blister

Page 359: ANSYS Polyflow Tutorial Guide

c. Click Upper level menu at the top of the Domain of the mold menu.

4. Define the contact boundary conditions.

Contact conditions

a. Select No contact along Subdomain 2 and click Modify.

b. Select Contact and click Upper level menu twice.

5. Define the motion of the mold.

Mold motion

a. Click Mold motion type : fixed mold.

A dialog box opens, asking you to specify the type of mold motion.

347Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 360: ANSYS Polyflow Tutorial Guide

Enter 1 as the New value, to impose a translation velocity, and click OK.

b. Click the EVOL button at the top of the Polydata menu to enable evolution inputs.

c. Set the mold translation velocity.

Modify translation velocity

Polydata prompts for velocity-x.

i. Specify the x-velocity.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.348

Plug-Assisted Thermoforming of a Blister

Page 361: ANSYS Polyflow Tutorial Guide

Click OK to accept the default value of 0 [units: mm/s] for the New value of velocity-x.

Polydata asks you to the specify the time dependence of the x-velocity. Click Upper levelmenu, as there is no velocity in the x direction.

ii. Specify the y-velocity.

Click OK to accept the default value of 0 [units: mm/s] for the New value of velocity-y,and click Upper level menu, as there is no velocity in the y direction.

iii. Specify the z-velocity.

Enter 10 [units: mm/s] for the New value of velocity-z and click OK.

iv. Specify the time dependence of the z-velocity.

Select f(t) = Ramp function.

v. Define the coordinate pairs (a,b) and (c,d) for the points that define the ramp function.

Click Modify the value of a.

Enter 0.097 as the New value and click OK.

vi. In a similar manner, set the values for b, c, and d to 1.0,0.103, and 0, respectively.

Figure 3.3: Ramp Function for Mold Velocity (p. 350) shows the ramp function you just defined.

349Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 362: ANSYS Polyflow Tutorial Guide

Figure 3.3: Ramp Function for Mold Velocity

Click Upper level menu to return the Mold motion menu.

vii. Click the EVOL button at the top of the menu to disable evolution inputs.

viii. Click Upper level menu two times to return to the Define molds menu.

3.3.4. Plug Sub-Task

In the following steps you will define the task representing the plug.

1. Create the new mold.

Create a new mold

A dialog box opens, asking if you want to copy the data of an existing mold.

Click No.

a. Click Adiabatic mold.

b. Enter plug as the New value and click OK.

The Domain of the mold menu item is highlighted.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.350

Plug-Assisted Thermoforming of a Blister

Page 363: ANSYS Polyflow Tutorial Guide

2. Define the domain where the mold applies.

Domain of the mold

a. Select Subdomain 1 and click Remove.

b. Select Subdomain 2 and click Remove.

c. Click Upper level menu at the top of the Domain of the mold menu.

3. Define the contact boundary conditions.

Contact conditions

a. Select No contact along Subdomain 3 and click Modify.

b. Select Contact and click Upper level menu twice.

4. Define the motion of the plug.

Mold motion

a. Click Mold motion type : fixed mold.

A dialog box opens, asking you to specify the type of mold motion.

Enter 1 as the New value, to impose a translation velocity, and click OK.

b. Click the EVOL button at the top of the Polydata menu to enable evolution inputs.

c. Set the mold translation velocity.

Modify translation velocity

Polydata prompts for velocity-x.

i. Specify the x-velocity.

351Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 364: ANSYS Polyflow Tutorial Guide

Click OK to accept the default value of 0 [units: mm/s] for the New value of velocity-x.

Polydata asks you to the specify the time dependence of the x-velocity. Click Upper levelmenu, as there is no velocity in the x direction.

ii. Specify the y-velocity.

Click OK to accept the default value of 0 [units: mm/s] for the New value of velocity-y,and click Upper level menu, as there is no velocity in the y direction.

iii. Specify the z-velocity.

Enter -500 [units: mm/s] for the New value of velocity-z and click OK.

iv. Specify the time dependence of the z-velocity.

Select f(t) = Multi-ramp function.

v. Define the four pairs that define the multi-ramp function.

Click Define new pairs ( time, f(time) ).

Polydata asks for the points of the pair sequentially.

Enter 0.11 as the New value for time( 1) and click OK.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.352

Plug-Assisted Thermoforming of a Blister

Page 365: ANSYS Polyflow Tutorial Guide

Retain the default, 0 as the New value for f(time)( 1) and click OK.

vi. Click Insert new pair, and in a similar manner, define the following three pairs: (0.12, 1),(0.13, 1), and (0.14, 0).

Figure 3.4: Multi-Ramp Function for Plug Velocity (p. 353) shows the multi-ramp function youjust defined.

Figure 3.4: Multi-Ramp Function for Plug Velocity

Click Upper level menu three times to return the Mold motion menu.

vii. Click the EVOL button at the top of the menu to disable evolution inputs.

viii. Click Upper level menu three times to return to the F.E.M. Task 1 menu.

The Create a sub-task menu item is highlighted.

353Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 366: ANSYS Polyflow Tutorial Guide

3.3.5. Blister Sub-Task

In the following steps you will define the nature of the flow problem, identify the domain of definition, setthe relevant material properties for the fluid, and define boundary conditions along its boundaries.

1. Create a sub-task for the fluid.

Create a sub-task

a. Select Shell model : Gen. Newtonian isothermal.

A dialog box opens, asking for the title of the problem.

b. Enter Blister as the New value and click OK.

The Domain of the sub-task menu item is highlighted.

2. Define the domain where the sub-task applies.

Domain of the sub-task

a. Select Subdomain 2 and click Remove.

b. Select Subdomain 3 and click Remove.

c. Click Upper level menu button at the top of the Domain of the sub-task menu.

The Flow boundary conditions menu item is highlighted.

3. Specify the flow boundary conditions.

Flow boundary conditions

a. Retain the default settings for Boundary 1 and Boundary 2.

b. Select Zero wall velocity (vn=vs=0) along Boundary 3 and click Modify.

i. Click Plane of symmetry ( fs=0, vn=0 ).

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.354

Plug-Assisted Thermoforming of a Blister

Page 367: ANSYS Polyflow Tutorial Guide

ii. Select normal direction along X axis.

iii. Click Upper level menu to continue specifying flow boundary conditions.

c. Select Zero wall velocity (vn=vs=0) along Boundary 4 and click Modify.

i. Click Plane of symmetry ( fs=0, vn=0 ).

ii. Select normal direction along Y axis.

iii. Click Upper level menu to return to the Flow boundary conditions menu.

d. Click Inflation pressure imposed at the bottom of the Flow boundary conditions menu.

e. Click Constant for the inflation pressure.

A dialog box opens, asking for the new value of the constant.

Enter 1e05 [units: Pa] as the New value and click OK.

f. Click the EVOL button at the top of the Polydata menu to enable evolution inputs.

g. Click Upper level menu.

Polydata directs you to the Time dependence of inflation pressure menu.

i. Select f(t) = Ramp function.

ii. Click Modify the value of a, and enter 0.14 as the New value.

iii. In a similar manner, set constants b, c, and d to 0,0.15, and 1.0 respectively.

Figure 3.5: Ramp Function for Pressure (p. 356) shows the ramp function you just defined.

355Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 368: ANSYS Polyflow Tutorial Guide

Figure 3.5: Ramp Function for Pressure

h. Click Upper level menu.

Click the EVOL button at the top of the Polydata menu to disable evolution inputs.

i. Click Upper level menu to return to the Blister menu.

4. Define the contact of the mold.

Define contacts

a. Click Create a new contact problem.

The Modification of a contact problem menu will open with the Select a contact wall menuitem highlighted.

b. Define the contact wall.

i. Click Select a contact wall.

ii. Select Mold 1 : Contact along Subdomain 2 and click Select.

c. Specify the coefficients and accuracy.

i. Click Modify slipping coefficient.

Retain the default of 1e+09 and click OK.

ii. Click Modify penalty coefficient.

Retain the default of 1e+09 and click OK.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.356

Plug-Assisted Thermoforming of a Blister

Page 369: ANSYS Polyflow Tutorial Guide

iii. Click Modify penetration accuracy.

Enter 0.05 as the New value and click OK.

d. Define the orientation of the mold.

i. Increase the size of the darts that will be used to display the orientation, to ensure that they arevisible.

Graphical window → Sizing Darts → Size up

ii. Rotate the view to an oblique angle and zoom in on the mold.

iii. Click Specify mold side / cavity side.

Darts will be displayed in the Graphics Display window, as shown in the following figure.

iv. Click No in the dialog box that opens, to specify that the darts are not pointing towards themold body.

If the direction of the darts is not clear to you, you can close the dialog box, rotate the viewand/or change the magnification, click Specify mold side / cavity side again, and thenanswer the question appropriately.

v. Click Upper level menu to return to the Define contacts menu.

357Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 370: ANSYS Polyflow Tutorial Guide

5. Define the contact of the plug.

Create a new contact problem

The Modification of a contact problem menu will open with the Select a contact wall menu itemhighlighted.

a. Define the contact wall.

i. Click Select a contact wall.

ii. Select plug : Contact along Subdomain 3 and click Select.

b. Activate contact release and specify the coefficients and accuracy.

i. Click Modify adhesion force density.

Click Yes in the dialog box that asks if you want to activate contact release.

Enter 10 as the New value for adhesion force density.

ii. Click Modify slipping coefficient.

Retain the default of 1e+09 and click OK.

iii. Click Modify penalty coefficient.

Retain the default of 1e+09 and click OK.

iv. Click Modify penetration accuracy.

Enter 0.05 as the New value and click OK.

c. Define the orientation of the plug.

i. Rotate the view and change the magnification so that you can see the plug.

ii. Click Specify mold side / cavity side.

Darts will be displayed in the Graphics Display window, as shown in the following figure.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.358

Plug-Assisted Thermoforming of a Blister

Page 371: ANSYS Polyflow Tutorial Guide

iii. Click Yes in the dialog box that opens, to verify that the darts are pointing toward the plug body(away from contact with the film).

If the direction of the darts is not clear to you, you can close the dialog box, rotate the viewand/or change the magnification, click Specify mold side / cavity side again, and thenanswer the question appropriately.

iv. Click Upper level menu to return to the Define contacts menu.

d. Click Upper level menu to return to the Blister menu.

e. Click OK in the warning box that opens, saying that velocity prediction must be disabled.

359Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 372: ANSYS Polyflow Tutorial Guide

6. Define the layers of the blister.

Define layers

a. Click Create a new layer.

Enter blister as the New value in the dialog box that opens and click OK.

The blister menu will open with the Material data menu item highlighted.

b. Specify the material data for the blister.

Material Data

i. Click Shear-rate dependence of viscosity.

ii. Click Constant viscosity.

iii. Click Modify fac.

Enter 1e05 [units: ] the New value and click OK.

iv. Click Upper level menu twice to continue with material data specification.

v. Click Density.

vi. Click Modification of density.

Enter 0.001 [units: g/mm3] as the New value and click OK.

vii. Click Upper level menu to continue with the material data specification.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.360

Plug-Assisted Thermoforming of a Blister

Page 373: ANSYS Polyflow Tutorial Guide

viii. Click Inertia terms.

ix. Select Inertia will be taken into account.

x. Click Upper level menu twice to return to the blister menu.

c. Specify the initial thickness.

Initial thickness

i. Click Constant.

Enter 0.35 [units: mm] as the New value and click OK.

ii. Click Upper level menu four times to return to the F.E.M. Task 1 menu.

3.3.6. Numerical Parameters

Numerical parameters

1. Click Modify the transient iterative parameters.

2. Click Modify the initial time value.

Retain the default of 0.0 [units: s] and click OK.

3. Click Modify the upper time limit.

Retain the default of 1.0 [units: s] and click OK.

4. Click Modify the initial value of the time-step.

Enter 0.0001 [units: s] as the New value and click OK.

5. Click Modify the min value of the time-step.

Enter 1e-05 [units: s] as the New value and click OK.

6. Click Modify the max value of the time-step.

Enter 0.01 [units: s] as the New value and click OK.

7. Click Modify the tolerance.

Retain the default of 0.01 and click OK.

8. Click Modify the max number of successful steps.

Enter 400 as the New value and click OK.

The maximum number of steps must be increased due to the case containing two contacts and “sharp”changes in the kinematics. This higher number was determined by running the problem with a maximumof 200 steps and observing that more steps were required to reach the final time.

361Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 374: ANSYS Polyflow Tutorial Guide

9. Click Upper level menu to return to the Numerical Parameters menu.

10. Click Modify numerical parameters for iterations.

11. Click Modify the convergence test.

Enter 0.0001 as the New value.

It is recommended that you specify a convergence criterion of 0.0001 or lower when contact release isactivated.

12. Click Upper level menu three times to return to the top-level Polydata menu.

3.3.7. Outputs

Outputs

1. Set the system of units to output to CFD-Post.

Set units for CFD-Post, Ansys Mapper or Iges

2. Modify the current system of units.

Modify system of Units

3. Specify the new system of units.

Set to metric_mm/g/s/mA+Celsius

4. Click Upper level menu three times to return to the top-level Polydata menu.

3.3.8. Save and Exit Polydata

Save and exit

1. Click Accept.

2. Click Continue.

This accepts the default names for the graphical output files (cfx.res) that are to be saved for post-processing, and the Polyflow format results file (res).

3.3.9. Solution

Run Polyflow to calculate a solution for the model you just defined using Polydata.

1. Run Polyflow by right-clicking the Solution cell of the simulation and selecting Update.

This executes Polyflow using the data file as standard input, and writes information about the problemdescription, calculations, and convergence to a listing file (polyflow.lst).

2. Check for convergence in the listing file.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.362

Plug-Assisted Thermoforming of a Blister

Page 375: ANSYS Polyflow Tutorial Guide

a. Right-click the Solution cell and select Listing Viewer....

Workbench opens the View listing file dialog box, which displays the listing file.

b. It is a common practice to confirm that the solution proceeded as expected by looking for the followingprinted at the bottom of the listing file:

The computation succeeded.

3.3.10. Postprocessing

Use CFD-Post to view the results of the Polyflow simulation.

1. Double-click the Results cell in the Workbench analysis system.

CFD-Post reads the solution fields that were saved to the results file.

2. Align the view as shown in the following figure.

363Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 376: ANSYS Polyflow Tutorial Guide

3. Display contours of thickness in the fluid region (Subdomain 1).

a. Click the Insert menu and select Contour or click the button.

b. In the box that opens, click OK to accept the default name (Contour 1) and display the details viewbelow the Outline tree.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.364

Plug-Assisted Thermoforming of a Blister

Page 377: ANSYS Polyflow Tutorial Guide

c. Perform the following steps in the Geometry tab:

i. Select Subdomain_1_surf from the Locations drop-down list.

ii. Select THICKNESS from the Variable drop-down list, or click the ellipsis button ( ) on theright and select THICKNESS.

iii. Select User Specified from the Range drop-down list.

iv. Enter 0.1 mm for Min and 0.35 mm for Max.

v. Click Apply.

365Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 378: ANSYS Polyflow Tutorial Guide

Figure 3.6: Contours of Thickness 1/4 Geometry

4. Show the contours of thickness on the full mold.

a. Double-click Default Transform in the Outline tree tab, under User Locations and Plots (or right-click Default Transform and select Edit).

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.366

Plug-Assisted Thermoforming of a Blister

Page 379: ANSYS Polyflow Tutorial Guide

The details view of Default Transform will be displayed below the Outline tab.

b. Perform the following steps in the Definition tab of the details view.

i. Disable the Instancing Info From Domain option.

ii. Increase the Number of Graphical Instances to 2.

iii. Select Value from the Determine Angle From drop-down list in the Instance Definition groupbox.

iv. Enter 180 for Angle.

v. Enable Apply Reflection, and select ZX Plane from the Method drop-down list.

vi. Retain the default value of 0.0 m for Y.

vii. Click Apply.

c. Rotate the view and change the magnification, as shown in Figure 3.7: Contours of Thickness on theWhole Thermoformed Blister (p. 368).

367Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 380: ANSYS Polyflow Tutorial Guide

Figure 3.7: Contours of Thickness on the Whole Thermoformed Blister

5. Display contours of thickness at various time steps.

Polydata exported a total of 166 time steps to CFD-Post.

a. Click the Timestep Selector icon ( ).

b. Scroll up in the Timestep Selector dialog box and select Step 1.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.368

Plug-Assisted Thermoforming of a Blister

Page 381: ANSYS Polyflow Tutorial Guide

c. Click Apply.

369Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 382: ANSYS Polyflow Tutorial Guide

Figure 3.8: Thickness of the Film at Time = 0.0001 s

d. Repeat steps 5. a.–c. for timesteps 40, 60, and 166.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.370

Plug-Assisted Thermoforming of a Blister

Page 383: ANSYS Polyflow Tutorial Guide

Figure 3.9: Contours of Thickness at Time = 0.1208 s

371Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 384: ANSYS Polyflow Tutorial Guide

Figure 3.10: Contours of Thickness at Time = 0.1291 s

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.372

Plug-Assisted Thermoforming of a Blister

Page 385: ANSYS Polyflow Tutorial Guide

Figure 3.11: Contours of Thickness at Time = 1.0 s

6. Create an animation for the contour plot.

a. Click the animation icon ( ).

b. Ensure Quick Animation is selected in the Animation dialog box.

c. Select Timesteps.

d. To save the animation, expand the dialog box by clicking the button at the lower-right.

373Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 386: ANSYS Polyflow Tutorial Guide

i. Enable Save Movie.

ii. Click the file icon to the right and enter the path where you would like to save the animation.

Enter Thickness.wmv for the name of the file and click Save to close the Save Moviedialog box.

wmv and mpg are the recommended formats.

iii. Disable to save only one cycle of animations.

iv. Click the play button, to play the animation and save it as a file.

3.4. Summary

This tutorial introduced the concept of a plug-assisted blow molding problem. The mold moved intocontact with the film, where a plug guided the film into the mold, and a constant pressure was appliedto the film. This blew the film into the mold where it assumed the shape of the mold.

You represented the film by a shell geometry under the valid assumption that the thickness of the filmwas much smaller than the other two dimensions. Polyflow linearly interpolated the process vari-

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.374

Plug-Assisted Thermoforming of a Blister

Page 387: ANSYS Polyflow Tutorial Guide

ables—thickness, velocity and position. By reporting the individual time steps to CFD-Post you wereable to view the thickness of the product as a function of time.

3.5. Appendix

The appendix covers the following topics:3.5.1. Contact Boundary Conditions3.5.2. Remark on the Penalty Coefficient3.5.3. Remeshing

3.5.1. Contact Boundary Conditions

As seen, the subdomain that describes the fluid will eventually come in contact with the mold and theplug. Besides its usual material parameters, it also receives some process parameters: inflation pressureand the contact with the (moving) molds. In all forming applications (blow molding and thermoformingfor example), the definition of the contact is an important aspect, as it will eventually lead to the desiredshape. The contact involves a "what" and a "how". The "what" describes the geometry of the film/sheetand the mold surface it may get in contact with (contact problem). The "how" refers to other processparameters such as a moving mold. In this case, a velocity (that is possibly time dependant) must bespecified for both the molds. In some cases, the material may slip along the contact wall, which canalso be taken into account.

Next to these operating attributes, some numerical parameters have to be specified. A geometrical al-gorithm is applied for detecting the occurrence of contact, while a penalty formation is used for thetreatment of contact. A penalty coefficient makes sure that a geometrical contact is detected. It shouldnot be too small. A coefficient is also to be specified in the tangential direction. If the fluid sticks alongthe wall, this tangential coefficient should preferably receive the same value as the penalty coefficient.Two additional coefficients are also needed; a tolerance on penetration accuracy and an elementdilatation.

Presently, the penalty coefficient has been set to 109, while the same value has been selected for thecoefficient along the tangential direction (slipping coefficient). The tolerance on penetration and elementdilatation equal 0.05 and 0.05 mm respectively.

3.5.2. Remark on the Penalty Coefficient

The large value of the penalty coefficient can never guarantee an exactly vanishing normal velocity atthe contact. Instead, a residual normal velocity will remain even after mold contact. The amplitude ofthis residual velocity will depend on the penalty coefficient. In most cases, the residual velocity is as

low as 10-3–10-6.

In classical thermoforming applications, such residual velocity will not produce any significant numericalpenetration of the fluid film/sheet through the mold in view of the short times involved (physically, thethermoforming process is very fast). However, some situations may involve longer time scales such asin the glass industry.

The question that is now raised concerns the best evaluation of the penalty coefficient. The penaltyformulation mainly establishes a balance between a force (for example, the inflation pressure, ) anda penalty force because of contact. The penalty force is simply the product of the penalty coefficient,

, and the residual velocity of the film/sheet upon contact. The other elements of the momentumequation can be ignored for the present consideration. Assuming a typical time scale (for example,

375Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Appendix

Page 388: ANSYS Polyflow Tutorial Guide

the simulation time), and a maximum penetration depth , a good penalty coefficient can be selectedas:

3.5.3. Remeshing

The results of this tutorial could be refined and improved with the use of adaptive meshing.

In the context of the membrane element, a Lagrangian representation is applied where all mesh nodesare considered material points. Therefore, the only available remeshing technique is Lagrangian and isthe one that should be specified for this case.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.376

Plug-Assisted Thermoforming of a Blister

Page 389: ANSYS Polyflow Tutorial Guide

Chapter 4: 3D Blow Molding of a Bottle

This tutorial is divided into the following sections:4.1. Prerequisites4.2. Description4.3. Setup and Solution4.4. Summary4.5. Further Improvements4.6. Appendix

4.1. Prerequisites

This tutorial assumes that you are familiar with the menu structure in Polydata and Workbench andthat you have solved or read 2.5D Axisymmetric Extrusion (p. 53). Some steps in the setup procedurewill not be shown explicitly.

4.2. Description

This tutorial simulates a typical blow molding situation for a bottle. In the present case, it is assumedthat a cylindrical parison with uniform thickness distribution has been extruded. The present calculationinvolves two major steps; parison pinch-off due to mold closing, and inflation. Figure 4.1: Blow MoldingInitial Configuration (p. 378) shows a sketch of the process in the initial configuration, before the pinch-off and parison inflation.

377Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Page 390: ANSYS Polyflow Tutorial Guide

Figure 4.1: Blow Molding Initial Configuration

From a geometric point of view, the initial parison has the following dimensions:

• height = 0.276 m

• radius = 0.0225 m

• initial thickness = 0.003 m

The thickness of the fluid parison is much smaller than the other two dimensions of the bottle, whichallows for the use of the membrane (shell) element, which is suited for the analysis of 3D blow moldingsimulations. It is important to remember when preparing the surface mesh, that the mesh elements onthe mold should not be the same order of magnitude as the expected final local thickness. The use ofthe membrane element is presently restricted to time-dependant flows and is combined with Lagrangianrepresentation. That is, each mesh node is a material point.

The finite element mesh and the boundary conditions are displayed in Figure 4.2: Finite Element Mesh,Subdomains, and Boundary Sets (p. 379). As shown, a full 3D finite element is built for both the moldand the parison. Only a surface mesh is needed for both the mold and the parison, but the most im-portant aspect remains the proper description of the inner mold surfaces that will shape the bottle.

The parison has the following material properties in SI units:

• model: shell model, Gen. Newtonian isothermal

• viscosity = 104

• density = 900 kg/m3

• inertial terms taken into account

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.378

3D Blow Molding of a Bottle

Page 391: ANSYS Polyflow Tutorial Guide

Figure 4.2: Finite Element Mesh, Subdomains, and Boundary Sets

As seen in Figure 4.2: Finite Element Mesh, Subdomains, and Boundary Sets (p. 379), the mesh topologyinvolves three subdomains (MoldLeft, parison, and Moldright) and two boundary sets (TopEdge andBottomEdge). The fluid parison is covered by the subdomain named parison while MoldLeft andMoldRight will be defined as molds. Along boundary sets TopEdge and BottomEdge, a symmetryboundary condition will be imposed. The inflation pressure will be defined on the subdomain repres-enting the parison.

4.3. Setup and Solution

The following sections describe the setup and solution steps for this tutorial:4.3.1. Preparation4.3.2. Project and Mesh4.3.3. Right Mold4.3.4. Left Mold4.3.5. Parison Sub-Task4.3.6. Numerical Parameters4.3.7. Outputs4.3.8. Save and Exit Polydata4.3.9. Solution4.3.10. Postprocessing

4.3.1. Preparation

To prepare for running this tutorial:

1. Prepare a working folder for your simulation.

379Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 392: ANSYS Polyflow Tutorial Guide

2. Go to the ANSYS Customer Portal, https://support.ansys.com/training.

Note

If you do not have a User Name and Password, you can register by clicking CustomerRegistration on the Log In page.

3. Enter the name of this tutorial into the search bar.

4. Narrow the results by using the filter on the left side of the page.

a. Click ANSYS Polyflow under Product.

b. Click 16.0 under Version.

5. Select this tutorial from the list.

6. Click Files to download the input and solution files.

7. Unzip the 3D-Blow-Molding-Bottle_R160.zip file you have downloaded to your working folder.

The mesh file bottle.msh can be found in the unzipped folder.

8. Start Workbench from Start > All Programs > ANSYS 16.0 > Workbench 16.0.

4.3.2. Project and Mesh

1. Create a Fluid Flow - Blow Molding (Polyflow) analysis system by drag and drop in Workbench.

2. Save the ANSYS Workbench project using File → Save, entering instanet-PF-only as the name ofthe project.

3. Import the mesh file (bottle.msh).

4. Double-click the Setup cell to start Polydata.

When Polydata starts, the Create a new task menu item is highlighted, and the geometry for theproblem is displayed in the Graphics Display window.

4.3.3. Right Mold

In the following steps you will define the task representing the right half of the mold.

1. Create a task for the model.

Create a new task

a. Select the following options:

• F.E.M. task

• Time-dependent problem(s)

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.380

3D Blow Molding of a Bottle

Page 393: ANSYS Polyflow Tutorial Guide

• 2D shell geometry

b. Click Accept the current setup.

2. Define the right mold.

Define molds

a. Create the new mold.

Create a new mold

Click Mold with constant and uniform temperature.

A dialog box opens, asking for the title of the mold.

b. Enter Mold-Right and click OK.

The Domain of the mold menu item is highlighted.

3. Define the domain where the mold applies.

Domain of the mold

a. Select MOLDLEFT and click Remove.

b. Select PARISON and click Remove.

381Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 394: ANSYS Polyflow Tutorial Guide

c. Click Upper level menu at the top of the Domain of the mold menu.

4. Define the contact boundary conditions.

Contact conditions

a. Select No contact along MOLDRIGHT and click Modify.

b. Select Contact and click Upper level menu twice.

5. Define the motion of the mold.

Mold motion

a. Click Mold motion type : fixed mold.

A small dialog box opens, asking you to specify the type of mold motion.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.382

3D Blow Molding of a Bottle

Page 395: ANSYS Polyflow Tutorial Guide

Enter 1 as the New value, to impose a translation velocity, and click OK.

b. Click the EVOL button at the top of the Polydata menu to enable evolution inputs.

c. Set the mold translation velocity.

Modify translation velocity

Polydata prompts for velocity-x.

i. Specify the x-velocity.

383Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 396: ANSYS Polyflow Tutorial Guide

Click OK to accept the default value of 0 for the New value of velocity-x.

Polydata asks you to the specify the time dependence of the x-velocity. Click Upper levelmenu, as there is no velocity in the x direction.

ii. Specify the y-velocity.

Click OK to accept the default value of 0 for the New value of velocity-y, and click Upperlevel menu, as there is no velocity in the y direction.

iii. Specify the z-velocity.

Enter 0.736842 [units: m/s] for the New value of velocity-z and click OK.

iv. Specify the time dependence of the z-velocity.

Select f(t) = Ramp function.

v. Define the coordinate pairs (a,b) and (c,d) for the points that define the ramp function.

Click Modify the value of a.

Enter 0.09 as the New value and click OK.

vi. In a similar manner, set the values for b, c, and d to -1.0,0.1, and 0, respectively.

Figure 4.3: Ramp Function for Right Mold Velocity (p. 385) shows the ramp function you justdefined.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.384

3D Blow Molding of a Bottle

Page 397: ANSYS Polyflow Tutorial Guide

Figure 4.3: Ramp Function for Right Mold Velocity

Click Upper level menu to return the Mold motion menu.

vii. Click the EVOL button at the top of the menu to disable evolution inputs.

viii. Click Upper level menu two times to return to the Define molds menu.

4.3.4. Left Mold

In the following steps you will define the task representing the left half of the mold.

1. Create the new mold.

Create a new mold

A dialog box opens, asking if you want to copy the data of an existing mold.

Click No.

a. Click Mold with constant and uniform temperature.

385Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 398: ANSYS Polyflow Tutorial Guide

b. Enter Mold-Left as the New value and click OK.

The Domain of the mold menu item is highlighted.

2. Define the domain where the mold applies.

Domain of the mold

a. Select MOLDRIGHT and click Remove.

b. Select PARISON and click Remove.

c. Click Upper level menu at the top of the Domain of the mold menu.

3. Define the contact boundary conditions.

Contact conditions

a. Select No contact along MOLDLEFT and click Modify.

b. Select Contact and click Upper level menu twice.

4. Define the motion of the left mold.

Mold motion

a. Click Mold motion type : fixed mold.

A small dialog box opens, asking you to specify the type of mold motion.

Enter 1 as the New value, to impose a translation velocity, and click OK.

b. Click the EVOL button at the top of the Polydata menu to enable evolution inputs.

c. Set the mold translation velocity.

Modify translation velocity

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.386

3D Blow Molding of a Bottle

Page 399: ANSYS Polyflow Tutorial Guide

Polydata prompts for velocity-x.

i. Specify the x-velocity.

Click OK to accept the default value of 0 for the New value of velocity-x.

Polydata asks you to the specify the time dependence of the x-velocity. Click Upper levelmenu, as there is no velocity in the x direction.

ii. Specify the y-velocity.

Click OK to accept the default value of 0 for the New value of velocity-y, and click Upperlevel menu, as there is no velocity in the y direction.

iii. Specify the z-velocity.

Enter 0.736842 [units: m/s] for the New value of velocity-z and click OK.

iv. Specify the time dependence of the z-velocity.

Select f(t) = Ramp function.

v. Define the coordinate pairs (a,b) and (c,d) for the points that define the ramp function.

Click Modify the value of a.

Enter 0.09 as the New value and click OK.

vi. In a similar manner, set the values for b, c, and d to 1.0,0.1, and 0, respectively.

387Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 400: ANSYS Polyflow Tutorial Guide

Figure 4.4: Ramp Function for Left Mold Velocity (p. 388) shows the ramp function you justdefined.

Figure 4.4: Ramp Function for Left Mold Velocity

vii. Click Upper level menu to return the Mold motion menu.

d. Click the EVOL button at the top of the menu to disable evolution inputs.

e. Click Upper level menu three times to return to the F.E.M. Task 1 menu.

The Create a sub-task menu item is highlighted.

4.3.5. Parison Sub-Task

In the following steps you will define the nature of the flow problem, identify the domain of definition, setthe relevant material properties for the fluid, and define boundary conditions along its boundaries.

1. Create a sub-task for the fluid.

Create a sub-task

a. Select Shell model : Gen. Newtonian isothermal.

A small dialog box opens, asking for the title of the problem.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.388

3D Blow Molding of a Bottle

Page 401: ANSYS Polyflow Tutorial Guide

b. Enter Parison as the New value and click OK.

The Domain of the sub-task menu item is highlighted.

2. Define the domain where the sub-task applies.

Domain of the sub-task

a. Select MOLDLEFT and click Remove.

b. Select MOLDRIGHT and click Remove.

c. Click Upper level menu button at the top of the Domain of the sub-task menu.

The Flow boundary conditions menu item is highlighted.

3. Specify the flow boundary conditions.

Flow boundary conditions

a. Select Zero wall velocity (vn=vs=0) along BOTTOMEDGE and click Modify.

i. Click Plane of symmetry ( fs=0, vn=0 ).

ii. Select normal direction along Y axis.

iii. Click Upper level menu to continue specifying flow boundary conditions.

b. Select Zero wall velocity (vn=vs=0) along TOPEDGE and click Modify.

i. Click Plane of symmetry ( fs=0, vn=0 ).

ii. Select normal direction along Y axis.

iii. Click Upper level menu to return to the Flow boundary conditions menu.

c. Click Inflation pressure imposed at the bottom of the Flow boundary conditions menu.

389Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 402: ANSYS Polyflow Tutorial Guide

Darts will be displayed in the Graphics Display window, to indicate the orientation of the pressureon the parison.

d. Zoom in on the darts to view their orientation.

As shown in the figure that follows, the darts point into the center of the parison.

e. Click Constant for the inflation pressure.

A dialog box opens, asking for the new value of the constant.

Enter -1e4 [units: Pa] as the New value and click OK.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.390

3D Blow Molding of a Bottle

Page 403: ANSYS Polyflow Tutorial Guide

The pressure is negative due to the orientation of the darts.

f. Click the EVOL button at the top of the Polydata menu to enable evolution inputs.

g. Click Upper level menu.

h. Define the settings in the Time dependence of inflation pressure menu that opens.

i. Select f(t) = Ramp function.

ii. Click Modify the value of a, enter 0.1 as the New value, and click OK.

iii. In a similar manner, set the values for b, c, and d to 0,0.2, and 1.0, respectively.

Figure 4.5: Ramp Function for Pressure (p. 391) shows the ramp function you just defined.

Figure 4.5: Ramp Function for Pressure

i. Click Upper level menu.

j. Click the EVOL button at the top of the Polydata menu to disable evolution inputs.

k. Click Upper level menu to return to the Parison menu.

4. Define the contact with the right mold.

Define contacts

a. Click Create a new contact problem.

The Modification of a contact problem menu will open with the Select a contact wall menuitem highlighted.

391Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 404: ANSYS Polyflow Tutorial Guide

b. Define the contact wall.

i. Click Select a contact wall.

ii. Select Mold-Right : Contact along MOLDRIGHT and click Select.

c. Specify the coefficients and accuracy.

i. Click Modify slipping coefficient.

Retain the default of 1e+09 and click OK.

ii. Click Modify penalty coefficient.

Retain the default of 1e+09 and click OK.

iii. Click Modify penetration accuracy.

Enter 0.001 as the New value and click OK.

d. Define the orientation of the mold.

i. Increase the size of the darts that will be used to display the orientation, to ensure that they arevisible.

Graphical window → Sizing Darts → Size up

ii. Zoom out so that the bottle-shaped cavity is visible.

iii. Click Specify mold side / cavity side.

Darts will be displayed in the Graphics Display window, as shown in the following figure.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.392

3D Blow Molding of a Bottle

Page 405: ANSYS Polyflow Tutorial Guide

iv. Click No in the dialog box that opens, to specify that the darts are not pointing towards themold body.

If the direction of the darts is not clear to you, you can close the dialog box, rotate the viewand/or change the magnification, click Specify mold side / cavity side again, and thenanswer the question appropriately.

v. Click Upper level menu to return to the Define contacts menu.

5. Define the contact with the left mold.

Create a new contact problem

The Modification of a contact problem menu will open with the Select a contact wall menu itemhighlighted.

a. Define the contact wall.

i. Click Select a contact wall.

ii. Select Mold-Left : Contact along MOLDLEFT and click Select.

b. Specify the coefficients and accuracy.

393Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 406: ANSYS Polyflow Tutorial Guide

i. Click Modify slipping coefficient.

Retain the default of 1e+09 and click OK.

ii. Click Modify penalty coefficient.

Retain the default of 1e+09 and click OK.

iii. Click Modify penetration accuracy.

Enter 0.001 as the New value and click OK.

c. Define the orientation of the mold.

i. Rotate the view slightly to display the bottle-shaped cavity from an oblique angle.

ii. Click Specify mold side / cavity side.

Darts will be displayed in the Graphics Display window, as shown in the following figure.

iii. Click No in the dialog box that opens, to specify that the darts are not pointing towards themold body.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.394

3D Blow Molding of a Bottle

Page 407: ANSYS Polyflow Tutorial Guide

If the direction of the darts is not clear to you, you can close the dialog box, rotate the viewand/or change the magnification, click Specify mold side / cavity side again, and thenanswer the question appropriately.

iv. Click Upper level menu to return to the Define contacts menu.

d. Click Upper level menu to return to the Parison menu.

e. Click OK in the warning box that opens, to acknowledge that the velocity prediction must be disabled.

6. Define the layers of the parison.

Define layers

a. Click Create a new layer.

In the dialog box that opens, enter parison as the New value.

The parison menu will open with the Material data menu item highlighted.

b. Specify the material data for the parison.

Material Data

i. Click Shear-rate dependence of viscosity.

ii. Click Constant viscosity.

iii. Click Modify fac.

395Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 408: ANSYS Polyflow Tutorial Guide

Enter 10000 [units: ] as the New value and click OK.

iv. Click Upper level menu twice to continue with material data specification.

v. Click Density.

vi. Click Modification of density.

Enter 900 [units: kg/m3] as the New value and click OK.

vii. Click Upper level menu to continue with the material data specification.

viii. Click Inertia terms.

ix. Select Inertia will be taken into account and click Upper level menu twice to return to theparison menu.

c. Specify the initial thickness.

Initial thickness

i. Click Constant.

Enter 0.003 [units: m] as the New value and click OK.

ii. Click Upper level menu four times to return to the F.E.M. Task 1 menu.

4.3.6. Numerical Parameters

Numerical parameters

1. Click Modify the transient iterative parameters.

2. Click Modify the initial time value.

Retain the default of 0.0 [units: s] and click OK.

3. Click Modify the upper time limit.

Enter 2.0 [units: s] as the New value and click OK.

4. Click Modify the initial value of the time-step.

Retain the default of 0.01 [units: s] and click OK.

5. Click Modify the min value of the time-step.

Retain the default of 0.0001 [units: s] and click OK.

6. Click Modify the max value of the time-step.

Retain the default of 0.25 [units: s] and click OK.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.396

3D Blow Molding of a Bottle

Page 409: ANSYS Polyflow Tutorial Guide

7. Click Modify the tolerance.

Retain the default of 0.01 [units: s] and click OK.

8. Click Modify the max number of successful steps.

Retain the default of 200 [units: s] and click OK.

9. Click Upper level menu three times to return to the top-level Polydata menu.

4.3.7. Outputs

Outputs

1. Set the system of units to output to CFD-Post.

Set units for CFD-Post, Ansys Mapper or Iges

2. Confirm that Current system is set to metric_MKSA+Kelvin.

The Current system is shown at the top of the Change system of Units for specific outputs menu.

3. Click Upper level menu twice to return to the top-level Polydata menu.

4.3.8. Save and Exit Polydata

Save and exit

1. Click Accept.

2. Click Continue.

This accepts the default names for the graphical output files (cfx.res) that are to be saved for post-processing, and the Polyflow format results file (res).

4.3.9. Solution

Run Polyflow to calculate a solution for the model you just defined using Polydata.

1. Run Polyflow by right-clicking the Solution cell of the simulation and selecting Update.

This executes Polyflow using the data file as standard input, and writes information about the problemdescription, calculations, and convergence to a listing file (polyflow.lst).

2. Check for convergence in the listing file.

a. Right-click the Solution cell and select Listing Viewer....

Workbench opens the View listing file dialog box, which displays the listing file.

b. It is a common practice to confirm that the solution proceeded as expected by looking for the followingprinted at the bottom of the listing file:

The computation succeeded.

397Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 410: ANSYS Polyflow Tutorial Guide

4.3.10. Postprocessing

Use CFD-Post to view the results of the Polyflow simulation.

1. Double-click the Results cell in the Workbench analysis system.

CFD-Post reads the solution fields that were saved to the results file.

2. Change the view in the Graphics Display window as shown in the figure that follows.

3. Display contours of thickness in the fluid region (PARISON).

a. Click the Insert menu and select Contour or click the button.

b. In the dialog box that opens, click OK to accept the default name (Contour 1) and display the detailsview below the Outline tree.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.398

3D Blow Molding of a Bottle

Page 411: ANSYS Polyflow Tutorial Guide

c. Specify the following settings in the Geometry tab:

i. Select PARISON_surf from the Locations drop-down list.

ii. Ensure THICKNESS is selected from the Variable drop-down list.

iii. Change Range to User Specified.

iv. Enter 0.0006 m for Min and 0.003 m for Max.

v. Click Apply.

d. Disable the Wireframe in the Outline tree tab, under User Locations and Plots.

This makes for a cleaner image by removing the Wireframe lines.

399Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 412: ANSYS Polyflow Tutorial Guide

Figure 4.6: Contours of Thickness on the Parison

4. Display the parison with the mold.

a. Enable and double-click MOLDLEFT_surf in the Outline tree tab, under Fluid Flow Blow MoldingPolyflow at 2s.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.400

3D Blow Molding of a Bottle

Page 413: ANSYS Polyflow Tutorial Guide

b. Enter 0.7 for Transparency in the Render tab in the details view of MOLDLEFT_surf.

The contours of thickness on the parison would not be visible without increasing the transparencyof the mold.

c. Click Apply.

d. In a similar manner, display MOLDRIGHT_surf.

5. Display contours of thickness at various time steps.

Polydata exported a total of 81 time steps to CFD-Post.

a. Click the Timestep Selector icon ( ).

b. Scroll up in the Timestep Selector dialog box and select Step 1.

401Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 414: ANSYS Polyflow Tutorial Guide

c. Click Apply.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.402

3D Blow Molding of a Bottle

Page 415: ANSYS Polyflow Tutorial Guide

Figure 4.7: Thickness of the Film at Time = 0.01 s

d. Repeat steps 5. a.–c. for timesteps 28, 58, and 81.

403Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 416: ANSYS Polyflow Tutorial Guide

Figure 4.8: Contours of Thickness at Time = 0.09253 s

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.404

3D Blow Molding of a Bottle

Page 417: ANSYS Polyflow Tutorial Guide

Figure 4.9: Contours of Thickness at Time = 0.23409 s

405Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Setup and Solution

Page 418: ANSYS Polyflow Tutorial Guide

Figure 4.10: Contours of Thickness at Time = 2.0 s

6. Create an animation for the contour plot.

a. Click the animation icon ( ).

b. Ensure Quick Animation is selected in the Animation dialog box.

c. Select Timesteps.

d. To save the animation, expand the dialog box by clicking the button at the lower-right.

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.406

3D Blow Molding of a Bottle

Page 419: ANSYS Polyflow Tutorial Guide

i. Enable Save Movie.

ii. Click the file icon to the right and enter the path where you would like to save the animation.

Enter Thickness.wmv for the name of the file and click Save to close the Save Moviedialog box.

wmv and mpg are the recommended formats.

iii. Disable to save only one cycle of animations.

iv. Click the play button, to play the animation and save it as a file.

4.4. Summary

This tutorial introduced the concept of a parison blow molding problem. The two halves of the moldmoved into contact with the parison, where it became pinched, and a vacuum was applied to the par-ison. This blew the parison into the mold where it assumed the shape of the mold, which was a bottlein this case.

You represented the parison by a shell geometry under the valid assumption that the thickness of theparison was much smaller than the other two dimensions (diameter and height). Polyflow linearly inter-

407Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Summary

Page 420: ANSYS Polyflow Tutorial Guide

polated the process variables—thickness, velocity and position. By reporting the individual time stepsto CFD-Post you were able to view the thickness of the product as a function of time.

4.5. Further Improvements

In many practical cases, the use of adaptive meshing based on contact, remeshing, or both may beuseful to selectively and automatically refine the mesh during the solution. To illustrate the effects ofsuch refinement, this tutorial has been run with contact adaptive meshing enabled and made availableas instanet-PF-adapt.wbpz in the 3D-Blow-Molding-Bottle_R160\solution_filesfolder you unzipped in Preparation (p. 280). The following settings were specified:

F.E.M. Task 1

• Numerical parameters

– Adaptive meshing

→ Activate adaptive meshing for contacts

• Enable all the local criteria

• Switch to calculated from angle and curvature

• Modify size_min = 0.002

• Modify tolerance = 0.001

• Modify size_max = 0.01

• Modify dist_crit = 0.005

→ Modify Nstep = 5

→ Modify Maxdiv = 1

For additional information on adaptive meshing, see Adaptive Meshing.

The results are shown in Figure 4.11: Effect of Adaption on Final Mesh and Thickness Variation (p. 409).

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.408

3D Blow Molding of a Bottle

Page 421: ANSYS Polyflow Tutorial Guide

Figure 4.11: Effect of Adaption on Final Mesh and Thickness Variation

4.6. Appendix

The appendix contains the following topics:4.6.1. Contact Boundary Conditions4.6.2. Remark on the Penalty Coefficient4.6.3. Remeshing4.6.4. Evolutions

4.6.1. Contact Boundary Conditions

As seen, the parison subdomain, which describes the fluid, will eventually come in contact with themold. Other than its material parameters, the parison also receives some process parameters: inflationpressure and the contact with the (moving) molds. In all blow molding and related applications, thedefinition of the contact is an important aspect as it will eventually lead to the desired shape. The

409Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Appendix

Page 422: ANSYS Polyflow Tutorial Guide

contact involves a "what" and a "how". The "what" describes the geometry of the parison and the moldsurface it may come in contact with (contact problem). The "how" refers to other process parameters,such as a moving mold. In this case, a velocity (that is possibly time dependent) must be specified forthe mold. In some cases, the material may slip along the contact wall, which can also be taken intoaccount.

Along with these operating attributes, some numerical parameters must be specified. A geometricalalgorithm is applied for detecting the contact, while a penalty formation is used for the treatment ofthe contact. A penalty coefficient ensures that a geometrical contact is detected. It should not be toosmall. A coefficient is also specified in the tangential direction. If the fluid sticks along the wall, thistangential coefficient should preferably receive the same value as the penalty coefficient. Two additionalcoefficients are also needed; a tolerance on penetration accuracy and an element dilatation.

Presently, the penalty coefficient and the slipping coefficient (tangential direction) are both set to 109.The tolerance on penetration and element dilatation are equal to 0.001 and 0.002 m respectively.

4.6.2. Remark on the Penalty Coefficient

The large value of the penalty coefficient can never guarantee an exactly vanishing normal velocity atthe contact. Instead, a residual normal velocity will remain even after mold contact. The amplitude ofthis residual velocity will depend on the penalty coefficient. In most cases, the residual velocity is as

low as 10-3–10-6.

In classical blow molding applications, such residual velocity will not produce any significant numericalpenetration of the fluid parison through the mold in view of the short times involved (physically, blowmolding process is very fast). However, some situations may involve longer time scales such as in theglass industry.

The question that is now raised concerns the best evaluation of the penalty coefficient. The penaltyformulation mainly establishes a balance between a force (for example: the inflation pressure, ) anda penalty force because of contact. The penalty force is simply the product of the penalty coefficient,

, and the residual velocity of the parison upon contact. The other variables of the momentum equationcan be omitted for the present problem. Considering a typical time scale, (for example, the simulationtime), and a maximum penetration depth that can be practically accepted, , a good penalty coefficientcan be selected as:

4.6.3. Remeshing

In the context of the membrane element, a Lagrangian representation is applied where all mesh nodesare considered material points. Therefore, the only available remeshing technique is Lagrangian and isthe one that should be specified for this case.

4.6.4. Evolutions

The present case involves a mold motion followed by inflation.

For the mold motion, the x and y-components are zeros. The two mold halves move only in the z dir-ection at the same speed but in opposite directions. The two mold halves move at 0.736842 m/s in thez direction. To control the duration and the direction of the motion, a simple ramp function is applied

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.410

3D Blow Molding of a Bottle

Page 423: ANSYS Polyflow Tutorial Guide

on the mold speed. The ramp function is multiplied by the z-velocity component to give each half ofthe mold the proper speed in the appropriate direction.

411Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

Appendix

Page 424: ANSYS Polyflow Tutorial Guide

Release 16.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.412