antenna tutorials - mathematical analysis of waveguides

6
4/20/2015 Antenna Tutorials Mathematical Analysis of Waveguides http://www.antennatheory.com/tutorial/waveguides/waveguides2.php 1/6 Mathematical Analysis of Waveguides Back: Intro to Waveguides Waveguides (Table of Contents) Antennas (Home) In this section, we will take a mathematical look at waveguides and derive some of their key properties. We will again be concerned with metal (perfectly conducting) waveguides with a rectangular cross section as shown in Figure 1. Figure 1. Geometry for Waveguide Analysis. If you weren't aware, electromagnetics is governed by Maxwell's Equations , and Maxwell's Equations are not easy to solve. Hence, every math trick someone can think of will be used in order to make the analysis tractable. We'll start with discussing the electric vector potential, F. In a sourcefree region (i.e., an area through which waves propagate that is away from sources), we know that: In the above, D is the Electric Flux Density . If a vector quantity is divergenceless (as in the above), then it can be expressed as the curl of another quantity. This means that we can write the solution for D and the corresponding electric field E as: In the above, epsilon is the permittivity of the medium through which the wave propagates. We are purely in the world of mathematics now. The quantity F is not physical, and is of little practical value. It is simply an aid in performing our mathematical manipulations. It turns out that waves (or electromagnetic energy) can not propagate in a waveguide when both Hz and Ez are equal to zero. Hence, what field configurations that are allowed will be classified as either TM (Transverse Magnetic, in which Hz=0) and TE (Transverse Electric, in which Ez=0). The reason that waves cannot be TEM (Transverse Electromagnetic, Hz=Ez=0) will be shown towards the end of this derivation.

Upload: tapasrout

Post on 29-Sep-2015

217 views

Category:

Documents


0 download

DESCRIPTION

dkshsksdhsk

TRANSCRIPT

  • 4/20/2015 AntennaTutorialsMathematicalAnalysisofWaveguides

    http://www.antennatheory.com/tutorial/waveguides/waveguides2.php 1/6

    MathematicalAnalysisofWaveguides

    Back:IntrotoWaveguides Waveguides(TableofContents) Antennas(Home)

    Inthissection,wewilltakeamathematicallookatwaveguidesandderivesomeoftheirkeyproperties.Wewillagainbeconcernedwithmetal(perfectlyconducting)waveguideswitharectangularcrosssectionasshowninFigure1.

    Figure1.GeometryforWaveguideAnalysis.

    Ifyouweren'taware,electromagneticsisgovernedbyMaxwell'sEquations,andMaxwell'sEquationsarenoteasytosolve.Hence,everymathtricksomeonecanthinkofwillbeusedinordertomaketheanalysistractable.We'llstartwithdiscussingtheelectricvectorpotential,F.Inasourcefreeregion(i.e.,anareathroughwhichwavespropagatethatisawayfromsources),weknowthat:

    Intheabove,DistheElectricFluxDensity.Ifavectorquantityisdivergenceless(asintheabove),thenitcanbeexpressedasthecurlofanotherquantity.ThismeansthatwecanwritethesolutionforDandthecorrespondingelectricfieldEas:

    Intheabove,epsilonisthepermittivityofthemediumthroughwhichthewavepropagates.Wearepurelyintheworldofmathematicsnow.ThequantityFisnotphysical,andisoflittlepracticalvalue.Itissimplyanaidinperformingourmathematicalmanipulations.

    Itturnsoutthatwaves(orelectromagneticenergy)cannotpropagateinawaveguidewhenbothHzandEzareequaltozero.Hence,whatfieldconfigurationsthatareallowedwillbeclassifiedaseitherTM(TransverseMagnetic,inwhichHz=0)andTE(TransverseElectric,inwhichEz=0).ThereasonthatwavescannotbeTEM(TransverseElectromagnetic,Hz=Ez=0)willbeshowntowardstheendofthisderivation.

  • 4/20/2015 AntennaTutorialsMathematicalAnalysisofWaveguides

    http://www.antennatheory.com/tutorial/waveguides/waveguides2.php 2/6

    Toperformouranalysis,we'llassumethatEz=0(i.e.,wearelookingataTEmodeorfieldconfiguration).Inthiscase,workingthroughMaxwell'sequations,itcanbeshownthattheEandHfieldscanbedeterminedfromthefollowingequations:

    Therefore,ifwecanfindFz(thezcomponentofthevectorF),thenwecanfindtheEandHfields.Intheaboveequation,kisthewavenumber.

    WorkingthroughthemathofMaxwell'sEquations,itcanbeshownthatinasourcefreeregion,thevectorpotentialFmustsatisfythevectorwaveequation:

    [1]

    Tobreakthisequationdown,wewilllookonlyatthezcomponentoftheaboveequation(thatis,Fz).Wewillalsoassumethatwearelookingatasinglefrequency,sothatthetimedependenceisassumedtobeoftheformgivenby(wearenowusingphasorstoanalyzetheequation):

    Thentheequation[1]canbesimplifiedasfollows:

    [2]

    Tosolvethisequation,wewillusethetechniqueofseparationofvariables.HereweassumethatthefunctionFz(x,y,z)canbewrittenastheproductofthreefunctions,eachofasinglevariable.Thatis,weassumethat:

    [3]

    (Youmightask,howdoweknowthattheseparationofvariablesassumptionaboveisvalid?

  • 4/20/2015 AntennaTutorialsMathematicalAnalysisofWaveguides

    http://www.antennatheory.com/tutorial/waveguides/waveguides2.php 3/6

    Wedon'twejustassumeitscorrect,andifitsolvesthedifferentialequationwhenwearedonedoingtheanalysisthentheassumptionisvalid).NowwepluginourassumptionforFz(equation[3])intoequation[2],andweendupwith:

    [4]

    Intheaboveequation,theprimerepresentsthederivativewithrespecttothevariableintheequation(forinstance,Z'representsthederivativeoftheZfunctionwithrespecttoz).Wewillbreakupthevariablek^2intocomponents(again,justtomakeourmatheasier):

    [5]

    Usingequation[5]tobreakdownequation[4],wecanwrite:

    [6]

    Thereasonthattheequationsin[6]arevalidisbecausetheyareonlyfunctionsofindependentvariableshence,eachequationmustholdfor[5]tobetrueeverywhereinthewaveguide.Solvingtheaboveequationsusingordinarydifferentialequationstheory,weget:

    [7]

    TheformofthesolutionintheaboveequationisdifferentforZ(z).Thereasonisthatbothforms(thatforXandY,andthatforZ),arebothequallyvalidsolutionsforthedifferentialequationsinequation[6].However,thecomplexexponentialtypicallyrepresentstravellingwaves,andthe[real]sinusoidsrepresentstandingwaves.Hence,wechoosetheformsgivenin[7]forthesolutions.Nomathrulesareviolatedhereagain,wearejustchoosingformsthatwillmakeouranalysiseasier.

    Fornow,wecansetc5=0,becausewewanttoanalyzewavespropagatinginthe+zdirection.Theanalysisisidenticalforwavespropagatinginthezdirection,sothisisfairlyarbitrary.ThesolutionforFzcanbewrittenas:

  • 4/20/2015 AntennaTutorialsMathematicalAnalysisofWaveguides

    http://www.antennatheory.com/tutorial/waveguides/waveguides2.php 4/6

    [8]

    Ifyourememberanythingaboutdifferentialequations,youknowthereneedstobesomeboundaryconditionsappliedinordertodeterminetheconstants.Recallingourphysics,weknowthatthetangentialElectricfieldsatanyperfectconductormustbezero(why?because

    ,soiftheconductivityapproachesinfinity(perfectconductor),thenifthetangentialEfieldisnotzerothentheinducedcurrentwouldbeinfinite).

    Thetangentialfieldsmustbezero,soExmustbezerowheny=0andwheny=b(seeFigure1above),nomatterwhatthevalueforyandzare.Inaddition,Eymustbezerowhenx=0andwhenx=a(independentofxandz).WewillcalculateEx:

    Exisgivenbytheaboveequation.Theboundaryconditiongivenby

    Ex(x,y=0,z)=0[9]

    impliesthatc4mustbeequaltozero.Thisistheonlywaythatboundaryconditiongivenin[9]willbetrueforallxandzpositions.Ifyoudon'tbelievethis,trytoshowthatitisincorrect.Youwillquicklydeterminethatc4mustbezerofortheboundaryconditionin[9]tobesatisfiedeverywhereitisrequired.

    Next,thesecondboundarycondition,

    Ex(x,y=b,z)=0[10]

    impliessomethingveryunique.Theonlywayfortheconditionin[10]tobetrueforallvaluesofxandzwhenevery=b,wemusthave:

    Ifthisistobetrueeverywhere,c3couldbezero.However,ifc3iszero(andwehavealreadydeterminedthatc4iszero),thenallofthefieldswouldendupbeingzero,becausethefunctionY(y)in[7]wouldbezeroeverywhere.Hence,c3cannotbezeroifwearelookingforanonzerosolution.Hence,theonlyalternativeisiftheaboveequationimpliesthat:

    Thislastequationisfundamentaltounderstandingwaveguides.Itstatesthattheonlysolutions

  • 4/20/2015 AntennaTutorialsMathematicalAnalysisofWaveguides

    http://www.antennatheory.com/tutorial/waveguides/waveguides2.php 5/6

    forY(y)functionmustendupbeingsinusoids,thatanintegernumberofmultiplesofahalfwavelength.Thesearetheonlytypeoffunctionsthatsatisfythedifferentialequationin[6]andtherequiredboundaryconditions.Thisisanextremelyimportantconcept.

    Ifweinvokeourothertwoboundaryconditions:

    Ey(x=0,y,z)=0

    Ey(x=a,y,z)=0

    Then(usingidenticalreasoningtothatabove),wecandeterminethatc2=0andthat:

    Thisstatementimpliesthattheonlyfunctionsofxthatsatisfythedifferentialequationandtherequiredboundaryconditionsmustbeanintegermultipleofhalfsinusoidswithinthewaveguide.

    Combiningtheseresults,wecanwritethesolutionforFzas:

    Intheabove,wehavecombinedtheremainingnonzeroconstantsc1,c3,andc6intoasingleconstant,A,forsimplicity.Wehavefoundthatonlycertaindistributions(orfieldconfigurations)willsatisfytherequireddifferentialequationsandtheboundaryconditions.Eachofthesefieldconfigurationswillbeknownasamode.BecausewederivedtheresultsabovefortheTEcase,themodeswillbeknownasTEmn,wheremindicatesthenumberofhalfcyclevariationswithinthewaveguideforX(x),andnindicatesthenumberofhalfcyclevariationswithinthewaveguideforY(y).

    Inthenextsection,we'llexplicitlywriteoutthefieldscorrespondingtothesemodes,discusswhichmodesareallowable,andlookintotheTM(transversemagnetic)case.

    Next:MoreAnalysisofWaveguideFields

  • 4/20/2015 AntennaTutorialsMathematicalAnalysisofWaveguides

    http://www.antennatheory.com/tutorial/waveguides/waveguides2.php 6/6

    Previous:IntrotoWaveguides

    Waveguides(Main)

    TopicsRelatedToAntennaTheory

    AntennaTutorial(Home)