antennas and propagation chapter 5: antenna · pdf filecombine multiple antennas more...

Download Antennas and Propagation Chapter 5: Antenna · PDF fileCombine multiple antennas More flexibility in transmitting / receiving signals Spatial filtering Beamforming ... m using the

If you can't read please download the document

Upload: ledan

Post on 06-Feb-2018

222 views

Category:

Documents


1 download

TRANSCRIPT

  • Chapter 5: Antenna Arrays

    Antennas and Propagation

  • Chapter 4Antennas and Propagation Slide 2

    5 Antenna Arrays

    AdvantageCombine multiple antennasMore flexibility in transmitting / receiving signalsSpatial filtering

    BeamformingExcite elements coherently (phase/amp shifts)Steer main lobes and nulls

    Super-Resolution MethodsNon-linear techniquesAllow very high resolution for direction finding

  • Chapter 4Antennas and Propagation Slide 3

    5 Antenna Arrays (2)

    DiversityRedundant signals on multiple antennasReduce effects due to channel fading

    Spatial Multiplexing (MIMO)Different information on multiple antennasIncrease system throughput (capacity)

  • Chapter 4Antennas and Propagation Slide 4

    General Array

    Assume we have N elementspattern of ith antenna

    Total pattern

    Identical antenna elements

    Pattern MultiplicationElement Factor Array Factor

  • Chapter 4Antennas and Propagation Slide 5

    Uniform Linear Array (ULA)

    Place N elements on the z-axisUniform spacing

  • Chapter 4Antennas and Propagation Slide 6

    Uniform Excitation

    Apply equal amplitude to elements(different phases only)

    Recall:

  • Chapter 4Antennas and Propagation Slide 7

    Uniform Excitation (2)

    Note: sin(Nx)/sin(x) behaves like Nsinc(x)

    Maximum occurs for = 0If we center array about z=0, and normalize

    Normalize input power with additional elements for = 0, sin(Nx)/sin(x) goes to N

    Result: Steers a beam in direction = 0 that has amplitude N1/2compared to single element

    Array Gain

  • Chapter 4Antennas and Propagation Slide 8

    Uniform Excitation: Examples

    Example: N=8, =/2

  • Chapter 4Antennas and Propagation Slide 9

    Grating Lobes

    Problem for > /2Lobes with amplitude equal to main beam appearCalled grating lobesSimilar to aliasing in signal processing

    Example

  • Chapter 4Antennas and Propagation Slide 10

    ULA Beamwidth, Directivity

    Note: Example values in (.) are for N=8, =/2

  • Chapter 4Antennas and Propagation Slide 11

    Hansen-Woodyard (HWA)

    IdeaEnd-fire excitation has a fat main lobeSimple coherent excitation not optimal solution for directivityHWA: do direct maximization

    AnalysisArray factor for N elements and progressive phase shift

    Max max AF = 1

  • Chapter 4Antennas and Propagation Slide 12

    Hansen-Woodyard (2)

    Consider smallMeans scan angle on main beam

    Progressive phase shift

  • Chapter 4Antennas and Propagation Slide 13

    Hansen-Woodyard (3)

    Radiation intensity: proportional to |AF|2

    In beam direction, =0, U() is

    Normalize U to make unity at =0. Call new function U()

    Directivity found as D0=4Umax/Prad = Umax/U0, with

    How do we maximize D0?

  • Chapter 4Antennas and Propagation Slide 14

    Hansen-Woodyard (4)

    Minimize

    Find v, then can compute

  • Chapter 4Antennas and Propagation Slide 15

    Hansen-Woodyard (5)

    vmin = -1.46

  • Chapter 4Antennas and Propagation Slide 16

    Hansen-Woodyard (6)

    Directivity of HWA: Is there a cost to increased directivity?

  • Chapter 4Antennas and Propagation Slide 17

    Non-Uniform Excitation

    Increased FlexibilityWeights are generalSimilar to a filter synthesis problem

    Example methodsBinomial Array

    Similar to maximally flat filterNo side lobes for < /2

    Tschebyscheff ArraySimilar to equiripple filterProduces smallest beamwidth

    for given sidelobe level

  • Chapter 4Antennas and Propagation Slide 18

    Symmetric Array

    Antennas placed symmetrically on z axis(Also same excitation)

    Odd number of elements:put two copies of center element (for two sides)

    Amplitude on true center element is 2a1

  • Chapter 4Antennas and Propagation Slide 19

    Symmetric Array (2)

    Array factors are

    Example MethodsBinomial array

    Derive based on heuristic argument

    Tschebyscheff arrayUse direct synthesis procedure

  • Chapter 4Antennas and Propagation Slide 20

    Binomial Array

    2-element Array

    Plot of AF1 = 1 + x

    Has no side-lobes for < /2

    Idea to make more dir.Successively superimpose

    pairs of arraysGenerates AF = (AF1)M

  • Chapter 4Antennas and Propagation Slide 21

    Binomial Array (2)

    2-element Array

    3-element ArrayIdea: 2-element array

    each element has pattern AF1

    4-element Array

    Can repeat indefinitelyThis procedure is just binomial series!

    Element 1

    Element 2

    1 2 1

    1 1

    1 3 3 1

    Element 1

    Element 2

  • Chapter 4Antennas and Propagation Slide 22

    Binomial Array (3)

    Coefficients

    Also given by Pascals triangle

  • Chapter 4Antennas and Propagation Slide 23

    Binomial Array (4)

    AdvantageNo side lobes

    DisadvantagesWide main lobeHigh variation in weights

  • Chapter 4Antennas and Propagation Slide 24

    General Array Synthesis

    ProcedureExpand AF in a (cosine) power seriesAF is a polynomial in x, where x=cos uChoose a desired pattern shape

    (polynomial of same order)Equate coefficients of polynomials yields weights on arrays

    ExampleDolph-Tschebyscheff ArraySolves: Minimum beamwidth for a prescribed max. sidelobe level

  • Chapter 4Antennas and Propagation Slide 25

    Tschebyscheff Array

    Array factorEven number of antennas (M is twice # antennas)

    Cosine Power Series

  • Chapter 4Antennas and Propagation Slide 26

    Tschebyscheff Array (2)

    Tschebyscheff Polynomials

    Recursion

    Direct Computation with cos/cosh

  • Chapter 4Antennas and Propagation Slide 27

    Tschebyscheff Array (3)

    Tschebyscheff Polynomials

  • Chapter 4Antennas and Propagation Slide 28

    Tschebyscheff Example

    M = 3 (6 antenna elements)

  • Chapter 4Antennas and Propagation Slide 29

    Tschebyscheff Example (2)

    OK, but

    How do we map z to x?

  • Chapter 4Antennas and Propagation Slide 30

    Tschebyscheff Example (3)

    Main beam atx = 1 x = cos uz = z0Let z = z0 x

  • Chapter 4Antennas and Propagation Slide 31

    Tschebyscheff Example (4)

    Straightforward generalization for higher orders.

  • Chapter 4Antennas and Propagation Slide 32

    Tschebyscheff Array (Generalized)

  • Chapter 4Antennas and Propagation Slide 33

    Gen. Tschebyscheff Array (2)

    Can find the am using the same recursive procedure as before.

  • Chapter 4Antennas and Propagation Slide 34

    Comparison of Beamforming Methods

    =/4, N=8, R0=10 (-20dB side lobes)

  • Chapter 4Antennas and Propagation Slide 35

    Summary

    Antenna ArraysOffer flexibility over single antenna elementsArray factor / Element FactorDirect synthesis methods for designing AF

    BeamformingConsidered mainly ULAUniform excitation (change phases)Non-uniform: Binomial array, Tschebyscheff

    Other possibilitiesNon-ULA: circular array, rectangular, sparse arraysNon-symmetric excitationNon-linear processing