anti herb ivory

Upload: kaiswan-gan

Post on 03-Apr-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/28/2019 Anti Herb Ivory

    1/5

    Plant Biotechnology29, 495499 (2012)

    Copyright 2012 The Japanese Society for Plant Cell and Molecular Biology

    Evaluation of anti-herbivory genes using anAgrobacterium-mediated transient expression system

    Kei Kawazu1,a,, Naoya Wasano1,b, Kotaro Konno2, Yuko Ohashi2,

    Atsushi Mochizuki 1,, Ichiro Mitsuhara2,*1 National Institute for Agro-Environmental Sciences, Tsukuba, Ibaraki 305-8604, Japan; 2 Plant-microbe InteractionsResearch Unit, National Institute of Agrobiological Science, Tsukuba, Ibaraki 305-8602, Japan*E-mail: [email protected] Fax:+81-29-838-7044

    Received May 15, 2012; accepted July 11, 2012 (Edited by Y. Nagano)

    Abstract A high-throughput system or the evaluation o anti-herbivory genes in plant is proposed, in which genes aretransiently expressed in a small area o lea via Agrobacterium-inltration, and the results can be obtained within 1 week.ransient expression o the cry1Ab gene, a well-known Bt toxin gene, in the leaves o tobacco (Nicotiana tabacum cv. SamsunNN) exhibited a lethal eect on both cotton cutworm ( Spodoptera litura) and cabbage armyworm (Mamestra brassicae)

    larvae. InArabidopsis leaves, this gene also provided potent inhibition o eeding o diamondback moth (Plutella xylostella)larvae. Te expression o another anti-herbivory gene, MLX56, in tobacco and tomato (Solanum lycopersium cv. Micro-om) leaves resulted in enhanced mortality oM. brassicae and S. litura larvae. Signicantly higher growth inhibition oS.litura larvae and eeding inhibition oP. xylostella larvae were also observed in tobacco and Arabidopsis leaves expressingtheMLX56gene. All results could be obtained within 57 days, indicating that thisAgrobacterium-mediated transient geneexpression system enables a high throughput evaluation o anti-herbivory genes.

    Key words: Anti-herbivory gene, B toxin, Lepidoptera, MLX56, transient assay

    o date, many types o genetically modiied (GM)

    crops have been grown commercially worldwide. All

    GM soybean and canola hybrids are herbicide tolerant,

    whereas some GM corn and cotton are resistant to insect

    pests. Te most well-known insect resistant GM cropsare transormed with the insecticidal crystal (cry) gene

    rom Bacillus thuringiensis, which encodes a protein

    called Bt toxin with strong insecticidal activity against

    lepidopteran insects. However, Cry proteins are very

    selectively active against insects and no Bt toxins have

    been ound to be available or agriculturally important

    insect pests such as hemipteran and orthopteran insects,

    and the emergence o pests resistant to Bt toxins has

    also been reported (Janmaat and Myers 2003; abashnik

    et al. 2008; Wang et al. 2003). Tereore, other novel

    genes with anti-herbivory eects are being sought or

    agricultural pest control (Foissac et al. 2000; Fowler et al.2009; Gatehouse 2008; Mochizuki et al. 1999; Wang et al.

    2005; Wang and Constabel 2004; Yarasi et al. 2008).

    Although searching o new anti-herbivory genes

    is needed or the development o herbivory resistant

    transgenic plants, the evaluation o such genes is labor

    intensive and time consuming. For example, testing

    the toxic or resistance activity o candidate anti-

    herbivory proteins requires large amounts o the puried

    protein. However, it is sometimes very diicult to

    puriy candidate anti-herbivory proteins rom a sourceorganism or to produce candidate proteins using ectopic

    expression system (Pechan et al. 2004; Mohan et al.

    2006). Carrying out bioassays with the protein is more

    dicult or insect species or which an articial diet has

    not been established. Furthermore, the evaluation o

    anti-herbivory genes in stable transgenic plants requires

    substantial time, labor and cost or the introduction o

    candidate anti-herbivory genes into a crop, and then the

    selection and maintenance o strains exhibiting stable

    expression levels, beore the bioassay or herbivory

    resistance can be perormed.

    Agrobacterium-iniltration methods enable thetransient and local expression o genes o interest

    in the iniltrated area o a lea, in a broad range o

    plants, including Nicotiana tabacum, N. benthamiana,

    Arabidopsis thaliana, Linum usitattissium, Pisum

    sativum, and Lactuca sativa (Kapila et al. 1997; Van

    Note

    DOI: 10.5511/plantbiotechnology.12.0711a

    a Present address: Kyoyu Agri Co., Ltd., 173-2 Guze, omitake, Nagano 381-0006, Japan.b Present address: International Environmental and Agricultural Sciences, okyo University o Agriculture and echnology, 3-5-8 Saiwai-cho, Fuchu,

    okyo 183-8509, Japan. Tese authors contributed equally to this work.

    Tis article can be ound at http://www.jspcmb.jp/

    Published online November 30, 2012

  • 7/28/2019 Anti Herb Ivory

    2/5

    496 High throughout evaluation o anti-herbivory genes

    Copyright 2012 The Japanese Society for Plant Cell and Molecular Biology

    der Hoorn et al. 2000; Wroblewski et al. 2005). Tis in

    planta transient expression system using Agrobacterium

    has been applied to analysis o genes unction, promoter

    analysis and protein production (Bendahmane et al.

    2000; Sawers et al. 2006; Vaquero et al. 1999; Yang et al.

    2000). A strikingly successul example o the application

    o transient expression systems is the characterization

    o signaling events involved in the induction o thehypersensitive reaction, which is associated with plant

    resistance against pathogens (e.g. Van der Hoorn et al.

    2000).

    In the present study, we attempted to establish

    a transient evaluation system or anti-herbivory

    genes using the Agrobacterium-iniltration system

    (Agrobacterium-mediated transient expression system).

    We expressed two anti-herbivory genes in the leaves o

    tobacco, tomato and Arabidopsis byAgrobacterium-

    iniltration and then assessed the eect o transient

    expression on lepidopteran larvae ed on the leaves. A

    CaMV 35S promoter-driven, codon-optimized versiono a synthetic cry1Ab gene (pBIK102mcbt, Shinoyama

    et al. 2003) was inltrated into leaves o N. tabacum

    cv. SamsunNN using Agrobacterium (GV3101), as

    described by Kobayashi et al. (2011). Native cry1 genes

    are barely expressed in plant systems because o their

    prokaryotic type codon usage with highly A-rich

    sequences. hus, we used a synthesized cry1Ab gene

    with codons optimized to the chrysanthemum codon

    usage or expression in higher plants (Shinoyama et al.

    2003). Te negative control consisted oAgrobacterium

    transormed with pIG121-Hm, as described by Ohta et

    al. (1990), which has a 35S::int-GUS construct. Liquid-cultured Agrobacterium containing the -DNA vectors

    (O.D.600=0.4 to 0.8) were harvested and resuspended

    in buer containing acetosyringone (10 mM MES (pH

    5.6), 10 mM MgCl2, 20M acetosyringone) at O.D.=0.1.

    Te suspension oAgrobacterium was le on bench at

    room temperature or 3 h to induce virulence and then

    inltrated into the intercellular space o leaves using

    needleless syringe (Figure 1AC). Quantitative R-PCR

    analysis was used to monitor transgene expression with

    the use o primers 5-AAC C CC AAC GGG CC

    C G-3 (Cry1Ab5) and 5-GG CAC GAA CC

    GA CC GC -3 (Cry1Ab3) as described previously(Kobayashi et al. 2010) (Figure 2A). Te transcript o

    the cry1Ab gene was detected at 1 day post inltration

    (DPI), its level peaked at 2 DPI and remained distinct

    until 5 DPI. Protein gel blot analysis using a polyclonal

    antibody against Bacillus thuringinesis Cry1Ab toxin

    (Abcam, Cambridge UK) was used to conirm the

    accumulation o the cry1Ab gene product (Bt protein)

    (Figure 2B). One day aer inltration, 10 newly hatched

    larvae oMamestra brassicae (cabbage armyworm) (eggs

    were kindly provided by the Japan Plant Protection

    Association, Ibaraki, Japan) or Spodptera litura (cotton

    cutworm) (Sumika echnoservice Co., akarazuka,

    Japan) were inoculated onto each iniltrated tobacco

    lea area and kept within a miniature chamber to inhibit

    escaping the larvae rom the area o inoculation (Figure1DF). At 4 days ater inoculation, the numbers o

    surviving M. brassicae larvae on the leaves expressing

    cry1Ab gene decreased signiicantly compared with

    those on the control leaves (Figure 2C). All larvae o S.

    litura on the leaves expressing cry1Ab gene died within 4

    days, whereas most larvae on the control leaves survived

    (Figure 2D).

    Plutella xylostella larvae (diamondback moth) were

    also used to assess the eect o expression o cry1Ab in

    Agrobacterium-inltrated leaves oArabidopsis. Rosette

    leaves oArabidopsis thaliana ecotype Columbia were

    Figure 1. Procedures o the Agrobacterium-mediated transient assay

    or insect resistance. (A) Photograph o a tobacco (Nicotiana tabacum)

    lea. (B) Inltration o anAgrobacterium suspension into a tobacco lea.

    (C) Te margin o the inltrated tobacco lea area was marked. (D)

    Schematic gure o the miniature chamber. Te chamber containing

    a larva was positioned onto each inltrated tobacco lea area. (E)

    Larvae were placed into the miniature chamber. (F) Photograph o a

    tobacco lea, part o which was iniltrated with an Agrobacteriumsuspension. One day aer inltration, larvae were inoculated onto the

    area and enclosed in a miniature chamber (20 mm diameter). All plants

    and insects were kept at 251C, LD 16 : 8 h. (G) Photograph o an

    Arabidopsis lea, part o which was inltrated with an Agrobacterium

    suspension and then inoculated with one rst instar diamondback

    moth (P. xylostella) larva (neonate larvae). Te larva on the lea was

    enclosed in a 20-mm diameter chamber. Arabidopsis and P. xylostella

    larva were kept at 251C, LD 16 : 8 h.

  • 7/28/2019 Anti Herb Ivory

    3/5

    K. Kawazu et al. 497

    Copyright 2012 The Japanese Society for Plant Cell and Molecular Biology

    inltrated with cry1Ab transormed Agrobacterium orthe control, and one P. xylostella larva was inoculated on

    the inltrated area in the same manner as M. brassicae

    (Figure 1G). Because the rst instar o P. xylostella larva

    is very small (approximately 1 mm in length) and they

    tend to mine within the plant mesophyll tissue to eed,

    larval mortality is dicult to assess. We considered that

    the area o lea consumed reected the degree o larvalperormance; thereore, we measured the area consumed

    byP. xylostella larva. At 3 days aer inoculation, the area

    consumed byP. xylostella larvae in leaves expressing the

    cry1Ab gene was signicantly less than that in the control

    leaves (Figure 2E). Tese results indicated clearly that

    activity o the well-known anti-herbivory gene cry1Ab

    can be demonstrated with the use o our Agrobacterium-

    inltration system.

    o urther assess the present method, we analyzed the

    eect o transient expression o a second anti-herbivory

    gene, MLX56. MLX56 is a 56-kDa protein contained

    in the latex o cultivated mulberry, Morus alba cv,Shin-Ichinose, and it acts a deensive protein against

    lepidopteran insects (Wasano et al. 2009). When the

    larvae o the cabbage armyworm,M. brassicae, and o Eri

    silkworm, Samia ricimi ate an articial diet containing

    MLX56 protein, larval growth was retarded. However,

    MLX56 showed no activity against silkworm larvae,

    Bombyx mori, the mulberry specialist, suggesting the

    adaptation oB. mori to this mulberry deensive protein.

    he MLX56 gene was inserted into binary vector

    pEl2 (Ohtsubo et al. 1999) under the control

    o a modiied 35S promoter and introduced into

    Agrobacterium GV3101 and then iniltrated intotobacco, tomato or Arabidopsis leaves. Quantitative

    R-PCR analysis o iniltrated tobacco leaves using

    primers 5-AAC C CC AAC GGG CC C G-3

    (MLX565) and 5- CCG AGG GC C CCA

    CA C-3 (MLX563) identiied expression o the

    MLX56 gene (Figure 3A). he numbers o survivinglarvae oM. brassicae or S. litura on the areas o tobacco

    leaves iniltrated with Agrobacterium containing the

    35S::MLX56 construct was signiicantly reduced

    compared with those on control areas (Figure 3B, C).

    he numbers o surviving S. litura larvae on tomato

    (cv. micro om) lea areas expressing MLX56gene alsodecreased signicantly (Figure 3D). Tus, the transient

    expression o the MLX56 gene in tobacco and tomato

    leaves decreased to the survival oM. brassicae and

    S. litura larvae. One 3rd instar larvae o S. litura onto

    each tobacco lea area expressing the MLX56 gene in

    order to assess the eect o expression oMLX56 gene

    on the growth o larvae. wo days aer inoculation, the

    weight gain o the larvae was signicantly suppressed

    compared with those exposed to a control area (Figure

    3E). o assess the eect o expression o the MLX56gene

    on the rate o consumption by larvae, one 1st instar P.

    Figure 2. Agrobacter ium-mediated transient expression o a

    cry1Ab gene was used to induce resistance to lepidopteran larvae. (A)

    Quantitative PCR was used to assess transcript levels o the cry1Ab gene

    in Agrobacterium-inltrated leaves o tobacco. Te transcript levels

    o cry1Ab were normalized using those o the actin gene. Values are

    meansSE. Te assay was replicated three times (df=3, F=11.2562,

    p=0.0030). Means with dierent letters are signicantly dierent by

    ukey-Kramer HSD test (p

  • 7/28/2019 Anti Herb Ivory

    4/5

    498 High throughout evaluation o anti-herbivory genes

    Copyright 2012 The Japanese Society for Plant Cell and Molecular Biology

    xylostella larvae was inoculated onto each Arabidopsis

    lea area expressing the MLX56 gene. At 3 days aer

    inoculation, the area oArabidopsis leaves expressing

    the MLX56 gene consumed by P. xylostella larvae wassignicantly less than those or control areas (Figure 3F).

    B toxin is known to have strong insecticidal activity

    against lepidopteran insects, whereas MLX56 showed

    only growth inhibition against the larvae o the M.

    brassicae and S. ricimi (Wasano et al. 2009). However,

    in present transient assay system, the expression o

    MLX56 gene in the leaves exhibited not only a growthinhibition eect but also induced eeding inhibition and

    lethality. Tis may have been achieved by a higher level

    o accumulation o theMLX56gene product as a result o

    Agrobacterium inltration or by a combination o MLX56

    and unidentied anti-herbivory agents in the test plants.

    In the present study, the inhibitory eect on

    lepidopteran larvae oAgrobacterium-mediated transient

    expression o the cry1Ab gene was veried in tobacco,

    tomato and Arabidopsis . Furthermore, our transient

    assay demonstrated that expression o the gene or the

    anti-herbivory protein MLX56 enhanced plant resistance

    against some lepidopteran larvae ed on tobacco, tomatoand Arabidopsis. Consequently, we are now trying to

    produce stable transgenic plants with enhanced herbivore

    resistance by introduction o the MLX56 gene. he

    Agrobacterium iniltration method is a powerul tool

    or plant molecular biology, because it enables high

    throughput expression o a gene o interest. Furthermore,

    our current system involving the combination o

    Agrobacterium-mediated transient expression and a

    specialized miniature inoculation chamber permit the

    high throughput evaluation o anti-herbivory genes

    within 1 week, thereby reducing the time and eort or

    the selection o transgenic lines and the establishment ostable transormants. Because this system can be applied

    to a variety o plant species (tobacco, tomato, Arabidopsis

    etc.), it will be straight-orward to perorm bioassays

    with insect pests that cannot be reared on articial diets,

    and the anti-insect perormance o transgenic plants can

    be measured using a variety o indices (larval weights,

    mortalities, consumption rates etc.).

    Acknowledgements

    We thank Harue Shinoyama or providing the modied cry1Ab

    gene, Kayoko Furukawa or insect rearing, Chiaki Kimoto or plant

    growing, Masumi eruse or technical assistance, and akeshi

    Shiraishi or valuable inormation. Tis work was supported by

    the Program or the Promotion o Basic Research Activities or

    Innovative Biosciences.

    References

    Bendahmane A, Querci M, Kanyuka K, Baulcombe DC (2000)

    Agrobacter ium transient expression system as a tool or the

    isolation o disease resistance genes: application to the Rx2 locus

    in potato. Plant J21: 7381

    Foissac X, Ti Loc N, Christou P, Gatehouse AMR, Gatehouse JA

    (2000) Resistance to green leafopper (Nephotettix virescens)

    Figure 3. Agrobacterium-mediated transient expression o the

    MLX56 gene was used to induce resistance to lepidopteran larvae.

    (A) Quantitative PCR was used to assess transcript levels o the

    MLX56gene in Agrobacterium-inltrated leaves o tobacco. Te assay

    was replicated three times (df=3, F=5.5330,p=0.0237). Means with

    dierent letters are signicantly dierent by ukey-Kramer HSD test

    (p

  • 7/28/2019 Anti Herb Ivory

    5/5

    K. Kawazu et al. 499

    Copyright 2012 The Japanese Society for Plant Cell and Molecular Biology

    and brown planthopper (Nilaparvata lugens) in transgenic rice

    expressing snowdrop lectin (Galanthus nivalis agglutinin; GNA).

    J Insect Physiol46: 573583

    Fowler JH, Narvez-Vsquez J, Aromdee DN, Pautot V, Holzer FM,

    Walling LL (2009) Leucine aminopeptidase regulates deense and

    wound signaling in tomato downstream o jasmonic acid. Plant

    Cell21: 12391251

    Gatehouse JA (2008) Biotechnological prospects or engineering

    insect-resistant plants. Plant Physiol146: 881887Janmaat AF, Myers J (2003) Rapid evolution and the cost o

    resistance to Bacillus thuringiensis in greenhouse populations o

    cabbage loopers, Trichoplusia ni. Proc Biol Sci 270: 22632270

    Kapila J, De Rycke R, Van Montagu M, Angenon G (1997) An

    Agrobacterium-mediated transient gene expression system or

    intact leaves. Plant Sci 122: 101108

    Kobayashi M, Seo S, Hirai K, Yamamoto-Katou A, Katou S, Seto

    H, Meshi , Mitsuhara I, Ohashi Y (2010) Silencing o WIPK

    and SIPK mitogen-activated protein kinases reduces tobacco

    mosaic virus accumulation but permits systemic viral movement

    in tobacco possessing the N resistance gene. Mol Plant Microbe

    Interact23: 10321041

    Kobayashi M, Yamamoto-Katou A, Katou S, Hirai K, Meshi ,

    Ohashi Y, Mitsuhara I (2011) Identication o an amino acid

    residue required or dierential recognition o a viral movement

    protein by the Tomato mosaic virus resistance gene Tm-2(2). J

    Plant Physiol168: 11421145

    Mochizuki A, Nishizawa Y, Onodera H, abei Y, oki S, Habu Y,

    Ugaki M, Ohashi Y (1999) ransgenic rice plants expressing a

    trypsin inhibitor are resistant against rice stem bores, Chilo

    suppressalis. Entomol Exp Appl93: 173178

    Ohta S, Mita S, Hattori , Nakamura K (1990) Construction and

    expression in tobacco o-glucuronidase (GUS) reporter gene

    containing an intron within the coding sequence. Plant Cell

    Physiol31: 805813

    Ohtsubo N, Mitsuhara I, Koga M, Seo S, Ohashi Y (1999) Ethylene

    promotes the necrotic lesion ormation and basic PR geneexpression in MV-inected tobacco. Plant Cell Physiol 40:

    808817

    Sawers RJH, Farmer PR, Moett P, Brutnell P (2006) In planta

    transient expression as a system or genetic and biochemical

    analyses o chlorophyll biosynthesis. Plant Methods 2: 15

    Shinoyama H, Mochizuki A, Komano M, Nomura Y, Nagai

    (2003) Insect resistance in transgenic Chrysanthemum

    [Dendranthema grandiflorum (Ramat.) Kitamura] by the

    introduction o a modiied -endotoxin gene o Bacillus

    thuringiensis.Breed Sci 53: 359367

    Sokal RR, Rohl FJ (1995) Biometry. Freeman, New York, pp 1937

    abashnik BE, Gassmann AJ, Crowder DW, Carrire Y (2008)

    Insect resistance to Bt crops: evidence versus theory. NatBiotechnol26: 199202

    Vaquero C, Sack M, Chandler J, Drossard J, Schuster F, Monecke

    M, Schillberg S, Fischer R (1999) ransient expression o a

    tumor-specic single-chain ragment and a chimeric antibody in

    tobacco leaves. Proc Natl Acad Sci USA 96: 1112811133

    Van der Hoorn RA, Laurent F, Roth R, De Wit PJ (2000)

    Agroinltration is a versatile tool that acilitates comparative

    analyses oAvr9/Cf-9-induced and Avr4/Cf-4-induced necrosis.

    Mol Plant Microbe Interact13: 439446

    Wang J, Boets A, Van Rie J, Ren G (2003) Characterization o cry1,

    cry2, and cry9 genes in Bacillus thuringiensis isolates rom China.

    J Invertebr Pathol82: 6371

    Wang J, Constabel CP (2004) Polyphenol oxidase overexpression

    in transgenic Populus enhances resistance to herbivory by orest

    tent caterpillar (Malacosoma disstria). Planta 220: 8796

    Wang Z, Zhang K, Sun X, ang K, Zhang J (2005) Enhancement o

    resistance to aphids by introducing the snowdrop lectin genegna

    into maize plants.J Biosci 30: 627638

    Wasano N, Konno K, Nakamura M, Hirayama C, Hattori M,

    ateishi K (2009) A unique latex protein, MLX56, deends

    mulberry trees rom insects. Phytochemistry70: 880888

    Wroblewski , omczak A, Michelmore R (2005) Optimization o

    Agrobacterium-mediated transient assays o gene expression in

    lettuce, tomato andArabidopsis. Plant Biotechnol J3: 259273

    Yang Y, Li R, Qi M (2000) In vivo analysis o plant promoters and

    transcription actors by agroinltration o tobacco leaves. Plant

    J22: 543551Yarasi B, Sadumpati V, Immanni CP, Vudem DR, Khareedu VR

    (2008) ransgenic rice expressingAllium sativum lea agglutinin

    (ASAL) exhibits high-level resistance against major sap-sucking

    pests. BMC Plant Biol8: 102

    http://dx.doi.org/10.1016/S0022-1910(99)00143-2http://dx.doi.org/10.1016/S0022-1910(99)00143-2http://dx.doi.org/10.1016/S0022-1910(99)00143-2http://dx.doi.org/10.1016/S0022-1910(99)00143-2http://dx.doi.org/10.1016/S0022-1910(99)00143-2http://dx.doi.org/10.1016/S0022-1910(99)00143-2http://dx.doi.org/10.1016/S0022-1910(99)00143-2http://dx.doi.org/10.1016/S0022-1910(99)00143-2http://dx.doi.org/10.1105/tpc.108.065029http://dx.doi.org/10.1105/tpc.108.065029http://dx.doi.org/10.1105/tpc.108.065029http://dx.doi.org/10.1105/tpc.108.065029http://dx.doi.org/10.1105/tpc.108.065029http://dx.doi.org/10.1105/tpc.108.065029http://dx.doi.org/10.1104/pp.107.111096http://dx.doi.org/10.1104/pp.107.111096http://dx.doi.org/10.1104/pp.107.111096http://dx.doi.org/10.1104/pp.107.111096http://dx.doi.org/10.1098/rspb.2003.2497http://dx.doi.org/10.1098/rspb.2003.2497http://dx.doi.org/10.1098/rspb.2003.2497http://dx.doi.org/10.1098/rspb.2003.2497http://dx.doi.org/10.1098/rspb.2003.2497http://dx.doi.org/10.1098/rspb.2003.2497http://dx.doi.org/10.1098/rspb.2003.2497http://dx.doi.org/10.1098/rspb.2003.2497http://dx.doi.org/10.1098/rspb.2003.2497http://dx.doi.org/10.1016/S0168-9452(96)04541-4http://dx.doi.org/10.1016/S0168-9452(96)04541-4http://dx.doi.org/10.1016/S0168-9452(96)04541-4http://dx.doi.org/10.1016/S0168-9452(96)04541-4http://dx.doi.org/10.1016/S0168-9452(96)04541-4http://dx.doi.org/10.1016/S0168-9452(96)04541-4http://dx.doi.org/10.1094/MPMI-23-8-1032http://dx.doi.org/10.1094/MPMI-23-8-1032http://dx.doi.org/10.1094/MPMI-23-8-1032http://dx.doi.org/10.1094/MPMI-23-8-1032http://dx.doi.org/10.1094/MPMI-23-8-1032http://dx.doi.org/10.1094/MPMI-23-8-1032http://dx.doi.org/10.1094/MPMI-23-8-1032http://dx.doi.org/10.1094/MPMI-23-8-1032http://dx.doi.org/10.1094/MPMI-23-8-1032http://dx.doi.org/10.1094/MPMI-23-8-1032http://dx.doi.org/10.1016/j.jplph.2011.01.002http://dx.doi.org/10.1016/j.jplph.2011.01.002http://dx.doi.org/10.1016/j.jplph.2011.01.002http://dx.doi.org/10.1016/j.jplph.2011.01.002http://dx.doi.org/10.1016/j.jplph.2011.01.002http://dx.doi.org/10.1016/j.jplph.2011.01.002http://dx.doi.org/10.1016/j.jplph.2011.01.002http://dx.doi.org/10.1016/j.jplph.2011.01.002http://dx.doi.org/10.1016/j.jplph.2011.01.002http://dx.doi.org/10.1016/j.jplph.2011.01.002http://dx.doi.org/10.1016/j.jplph.2011.01.002http://dx.doi.org/10.1016/j.jplph.2011.01.002http://dx.doi.org/10.1016/j.jplph.2011.01.002http://dx.doi.org/10.1046/j.1570-7458.1999.00576.xhttp://dx.doi.org/10.1046/j.1570-7458.1999.00576.xhttp://dx.doi.org/10.1046/j.1570-7458.1999.00576.xhttp://dx.doi.org/10.1046/j.1570-7458.1999.00576.xhttp://dx.doi.org/10.1046/j.1570-7458.1999.00576.xhttp://dx.doi.org/10.1046/j.1570-7458.1999.00576.xhttp://dx.doi.org/10.1046/j.1570-7458.1999.00576.xhttp://dx.doi.org/10.1046/j.1570-7458.1999.00576.xhttp://dx.doi.org/10.1093/oxfordjournals.pcp.a029609http://dx.doi.org/10.1093/oxfordjournals.pcp.a029609http://dx.doi.org/10.1093/oxfordjournals.pcp.a029609http://dx.doi.org/10.1093/oxfordjournals.pcp.a029609http://dx.doi.org/10.1093/oxfordjournals.pcp.a029609http://dx.doi.org/10.1093/oxfordjournals.pcp.a029609http://dx.doi.org/10.1186/1746-4811-2-15http://dx.doi.org/10.1186/1746-4811-2-15http://dx.doi.org/10.1186/1746-4811-2-15http://dx.doi.org/10.1186/1746-4811-2-15http://dx.doi.org/10.1186/1746-4811-2-15http://dx.doi.org/10.1270/jsbbs.53.359http://dx.doi.org/10.1270/jsbbs.53.359http://dx.doi.org/10.1270/jsbbs.53.359http://dx.doi.org/10.1270/jsbbs.53.359http://dx.doi.org/10.1270/jsbbs.53.359http://dx.doi.org/10.1270/jsbbs.53.359http://dx.doi.org/10.1270/jsbbs.53.359http://dx.doi.org/10.1270/jsbbs.53.359http://dx.doi.org/10.1270/jsbbs.53.359http://dx.doi.org/10.1270/jsbbs.53.359http://dx.doi.org/10.1270/jsbbs.53.359http://dx.doi.org/10.1270/jsbbs.53.359http://dx.doi.org/10.1270/jsbbs.53.359http://dx.doi.org/10.1038/nbt1382http://dx.doi.org/10.1038/nbt1382http://dx.doi.org/10.1038/nbt1382http://dx.doi.org/10.1038/nbt1382http://dx.doi.org/10.1038/nbt1382http://dx.doi.org/10.1073/pnas.96.20.11128http://dx.doi.org/10.1073/pnas.96.20.11128http://dx.doi.org/10.1073/pnas.96.20.11128http://dx.doi.org/10.1073/pnas.96.20.11128http://dx.doi.org/10.1073/pnas.96.20.11128http://dx.doi.org/10.1073/pnas.96.20.11128http://dx.doi.org/10.1094/MPMI.2000.13.4.439http://dx.doi.org/10.1094/MPMI.2000.13.4.439http://dx.doi.org/10.1094/MPMI.2000.13.4.439http://dx.doi.org/10.1094/MPMI.2000.13.4.439http://dx.doi.org/10.1094/MPMI.2000.13.4.439http://dx.doi.org/10.1094/MPMI.2000.13.4.439http://dx.doi.org/10.1094/MPMI.2000.13.4.439http://dx.doi.org/10.1094/MPMI.2000.13.4.439http://dx.doi.org/10.1094/MPMI.2000.13.4.439http://dx.doi.org/10.1016/S0022-2011(02)00202-1http://dx.doi.org/10.1016/S0022-2011(02)00202-1http://dx.doi.org/10.1016/S0022-2011(02)00202-1http://dx.doi.org/10.1016/S0022-2011(02)00202-1http://dx.doi.org/10.1016/S0022-2011(02)00202-1http://dx.doi.org/10.1016/S0022-2011(02)00202-1http://dx.doi.org/10.1016/S0022-2011(02)00202-1http://dx.doi.org/10.1016/S0022-2011(02)00202-1http://dx.doi.org/10.1016/S0022-2011(02)00202-1http://dx.doi.org/10.1016/S0022-2011(02)00202-1http://dx.doi.org/10.1016/S0022-2011(02)00202-1http://dx.doi.org/10.1007/s00425-004-1327-1http://dx.doi.org/10.1007/s00425-004-1327-1http://dx.doi.org/10.1007/s00425-004-1327-1http://dx.doi.org/10.1007/s00425-004-1327-1http://dx.doi.org/10.1007/s00425-004-1327-1http://dx.doi.org/10.1007/s00425-004-1327-1http://dx.doi.org/10.1007/s00425-004-1327-1http://dx.doi.org/10.1007/s00425-004-1327-1http://dx.doi.org/10.1007/s00425-004-1327-1http://dx.doi.org/10.1007/BF02703563http://dx.doi.org/10.1007/BF02703563http://dx.doi.org/10.1007/BF02703563http://dx.doi.org/10.1007/BF02703563http://dx.doi.org/10.1007/BF02703563http://dx.doi.org/10.1007/BF02703563http://dx.doi.org/10.1007/BF02703563http://dx.doi.org/10.1016/j.phytochem.2009.04.014http://dx.doi.org/10.1016/j.phytochem.2009.04.014http://dx.doi.org/10.1016/j.phytochem.2009.04.014http://dx.doi.org/10.1016/j.phytochem.2009.04.014http://dx.doi.org/10.1016/j.phytochem.2009.04.014http://dx.doi.org/10.1111/j.1467-7652.2005.00123.xhttp://dx.doi.org/10.1111/j.1467-7652.2005.00123.xhttp://dx.doi.org/10.1111/j.1467-7652.2005.00123.xhttp://dx.doi.org/10.1111/j.1467-7652.2005.00123.xhttp://dx.doi.org/10.1111/j.1467-7652.2005.00123.xhttp://dx.doi.org/10.1111/j.1467-7652.2005.00123.xhttp://dx.doi.org/10.1111/j.1467-7652.2005.00123.xhttp://dx.doi.org/10.1111/j.1467-7652.2005.00123.xhttp://dx.doi.org/10.1046/j.1365-313x.2000.00760.xhttp://dx.doi.org/10.1046/j.1365-313x.2000.00760.xhttp://dx.doi.org/10.1046/j.1365-313x.2000.00760.xhttp://dx.doi.org/10.1046/j.1365-313x.2000.00760.xhttp://dx.doi.org/10.1046/j.1365-313x.2000.00760.xhttp://dx.doi.org/10.1046/j.1365-313x.2000.00760.xhttp://dx.doi.org/10.1046/j.1365-313x.2000.00760.xhttp://dx.doi.org/10.1186/1471-2229-8-102http://dx.doi.org/10.1186/1471-2229-8-102http://dx.doi.org/10.1186/1471-2229-8-102http://dx.doi.org/10.1186/1471-2229-8-102http://dx.doi.org/10.1186/1471-2229-8-102http://dx.doi.org/10.1186/1471-2229-8-102http://dx.doi.org/10.1186/1471-2229-8-102http://dx.doi.org/10.1186/1471-2229-8-102http://dx.doi.org/10.1186/1471-2229-8-102http://dx.doi.org/10.1186/1471-2229-8-102http://dx.doi.org/10.1186/1471-2229-8-102http://dx.doi.org/10.1186/1471-2229-8-102http://dx.doi.org/10.1046/j.1365-313x.2000.00760.xhttp://dx.doi.org/10.1046/j.1365-313x.2000.00760.xhttp://dx.doi.org/10.1046/j.1365-313x.2000.00760.xhttp://dx.doi.org/10.1111/j.1467-7652.2005.00123.xhttp://dx.doi.org/10.1111/j.1467-7652.2005.00123.xhttp://dx.doi.org/10.1111/j.1467-7652.2005.00123.xhttp://dx.doi.org/10.1016/j.phytochem.2009.04.014http://dx.doi.org/10.1016/j.phytochem.2009.04.014http://dx.doi.org/10.1016/j.phytochem.2009.04.014http://dx.doi.org/10.1007/BF02703563http://dx.doi.org/10.1007/BF02703563http://dx.doi.org/10.1007/BF02703563http://dx.doi.org/10.1007/s00425-004-1327-1http://dx.doi.org/10.1007/s00425-004-1327-1http://dx.doi.org/10.1007/s00425-004-1327-1http://dx.doi.org/10.1016/S0022-2011(02)00202-1http://dx.doi.org/10.1016/S0022-2011(02)00202-1http://dx.doi.org/10.1016/S0022-2011(02)00202-1http://dx.doi.org/10.1094/MPMI.2000.13.4.439http://dx.doi.org/10.1094/MPMI.2000.13.4.439http://dx.doi.org/10.1094/MPMI.2000.13.4.439http://dx.doi.org/10.1094/MPMI.2000.13.4.439http://dx.doi.org/10.1073/pnas.96.20.11128http://dx.doi.org/10.1073/pnas.96.20.11128http://dx.doi.org/10.1073/pnas.96.20.11128http://dx.doi.org/10.1073/pnas.96.20.11128http://dx.doi.org/10.1038/nbt1382http://dx.doi.org/10.1038/nbt1382http://dx.doi.org/10.1038/nbt1382http://dx.doi.org/10.1270/jsbbs.53.359http://dx.doi.org/10.1270/jsbbs.53.359http://dx.doi.org/10.1270/jsbbs.53.359http://dx.doi.org/10.1270/jsbbs.53.359http://dx.doi.org/10.1270/jsbbs.53.359http://dx.doi.org/10.1186/1746-4811-2-15http://dx.doi.org/10.1186/1746-4811-2-15http://dx.doi.org/10.1186/1746-4811-2-15http://dx.doi.org/10.1093/oxfordjournals.pcp.a029609http://dx.doi.org/10.1093/oxfordjournals.pcp.a029609http://dx.doi.org/10.1093/oxfordjournals.pcp.a029609http://dx.doi.org/10.1093/oxfordjournals.pcp.a029609http://dx.doi.org/10.1046/j.1570-7458.1999.00576.xhttp://dx.doi.org/10.1046/j.1570-7458.1999.00576.xhttp://dx.doi.org/10.1046/j.1570-7458.1999.00576.xhttp://dx.doi.org/10.1046/j.1570-7458.1999.00576.xhttp://dx.doi.org/10.1016/j.jplph.2011.01.002http://dx.doi.org/10.1016/j.jplph.2011.01.002http://dx.doi.org/10.1016/j.jplph.2011.01.002http://dx.doi.org/10.1016/j.jplph.2011.01.002http://dx.doi.org/10.1016/j.jplph.2011.01.002http://dx.doi.org/10.1094/MPMI-23-8-1032http://dx.doi.org/10.1094/MPMI-23-8-1032http://dx.doi.org/10.1094/MPMI-23-8-1032http://dx.doi.org/10.1094/MPMI-23-8-1032http://dx.doi.org/10.1094/MPMI-23-8-1032http://dx.doi.org/10.1094/MPMI-23-8-1032http://dx.doi.org/10.1016/S0168-9452(96)04541-4http://dx.doi.org/10.1016/S0168-9452(96)04541-4http://dx.doi.org/10.1016/S0168-9452(96)04541-4http://dx.doi.org/10.1098/rspb.2003.2497http://dx.doi.org/10.1098/rspb.2003.2497http://dx.doi.org/10.1098/rspb.2003.2497http://dx.doi.org/10.1104/pp.107.111096http://dx.doi.org/10.1104/pp.107.111096http://dx.doi.org/10.1105/tpc.108.065029http://dx.doi.org/10.1105/tpc.108.065029http://dx.doi.org/10.1105/tpc.108.065029http://dx.doi.org/10.1105/tpc.108.065029http://dx.doi.org/10.1016/S0022-1910(99)00143-2http://dx.doi.org/10.1016/S0022-1910(99)00143-2http://dx.doi.org/10.1016/S0022-1910(99)00143-2