antibiotic accumulation and efflux in eukaryotic cellscraig (1998) cid 26:1-10. isap classical view...

of 120 /120
Antibiotic Antibiotic accumulation and efflux accumulation and efflux in eukaryotic cells: in eukaryotic cells: a journey at the frontier a journey at the frontier of pharmacokinetics of pharmacokinetics and and pharmacodynamics “corpora non agunt nisi fixata” Ehrlich’s “magic bullet” theory pharmacodynamics Unité de Pharmacologie cellulaire et moléculaire F. Van Bambeke

Author: others

Post on 30-Sep-2020

1 views

Category:

Documents


0 download

Embed Size (px)

TRANSCRIPT

  • Antibiotic Antibiotic accumulation and effluxaccumulation and effluxin eukaryotic cells:in eukaryotic cells:

    a journey at the frontier a journey at the frontier of pharmacokinetics of pharmacokinetics and and pharmacodynamics

    “corpora non agunt nisi fixata”

    Ehrlich’s “magic bullet” theory

    pharmacodynamics

    Unité de Pharmacologiecellulaire et moléculaire

    F. Van Bambeke

  • Magic bullets need to reach their target

  • Magic bullets need to reach their target

    glycopeptides

    β-lactams

    quinolones

    macrolides aminoglycosides

    for appropriate time and in sufficient concentration …

  • Birth of antibiotic “PK-PD”

    Concentrationversus timein tissues andother body fluids

    Pharmacologicor toxicologiceffect

    Concentrationversus timein serum

    Dosageregimen

    Concentrationversus timeat siteof infection

    Antimicrobial effect versustime

    absorptiondistributionelimination

    PHARMACOKINETICS PHARMACODYNAMICS

    Craig (1998) CID 26:1-10

  • ISAP classical view of PK/PD

  • but classical PD predicts concentration-effectsfor all drugs ….

  • but classical PD predicts concentration-effectsfor all drugs ….

    ampicillingentamicin

    S. aureus; 24 h Barcia-Macay et al, submitted; Lemaire et al (2005) JAC in press

  • Can we conciliate both theories ?

    Cmin Cmax

    conc.-dependent

    Cmin Cmax

    PD profile in the clinics

    time -dependentampicillingentamicin

    S. aureus; 24 h Barcia-Macay et al, submitted; Lemaire et al (2005) JAC in press

  • Target accessibility becomes critical for intracellular activity

  • Main routes of drug entry in cells

    passive

    diffusionchannel

    transporter transporterendocytosis

    active

  • Intracellular “PK-PD”

    Concentrationversus timein non-infectedcells

    Pharmacologicor toxicologiceffect

    Concentrationversus timein cells

    Dosageregimen

    Concentrationversus timeat intracellularsite of infection

    Antimicrobial effect versustime

    penetrationdistributionefflux

    PHARMACOKINETICS PHARMACODYNAMICS

  • Intracellular “PK-PD”

    Concentrationversus timein non-infectedcells

    Pharmacologicor toxicologiceffect

    Concentrationversus timein cells

    Dosageregimen

    Concentrationversus timeat intracellular site of infection

    Antimicrobial effect versustime

    penetrationpenetrationdistributiondistributionefflux

    glycopeptides

    PHARMACOKINETICS PHARMACODYNAMICS

  • Intracellular “PK-PD”

    Concentrationversus timein non-infectedcells

    Pharmacologicor toxicologiceffect

    Concentrationversus timein cells

    Dosageregimen

    Concentrationversus timeat intracellular site of infection

    Antimicrobial Antimicrobial effect versuseffect versustimetime

    penetrationpenetrationdistributiondistributionefflux

    glycopeptides

    PHARMACOKINETICS PHARMACODYNAMICS

  • Intracellular “PK-PD”

    Concentrationversus timein non-infectedcells

    PharmacologicPharmacologicor or toxicologictoxicologiceffecteffect

    Concentrationversus timein cells

    Dosageregimen

    Concentrationversus timeat intracellular site of infection

    Antimicrobial effect versustime

    penetrationpenetrationdistributiondistributionefflux

    glycopeptides

    PHARMACOKINETICS PHARMACODYNAMICS

  • Intracellular “PK-PD”

    Concentrationversus timein non-infectedcells

    Pharmacologicor toxicologiceffect

    Concentrationversus timein cells

    Dosageregimen

    Concentrationversus timeat intracellular site of infection

    Antimicrobial effect versustime

    penetrationdistributioneffluxefflux

    macrolidesquinolones

    PHARMACOKINETICS PHARMACODYNAMICS

  • Intracellular “PK-PD”

    Concentrationversus timein non-infectedcells

    Pharmacologicor toxicologiceffect

    Concentrationversus timein cells

    Dosageregimen

    Concentrationversus timeat intracellular site of infection

    Antimicrobial Antimicrobial effect versuseffect versustimetime

    penetrationdistributioneffluxefflux

    macrolidesquinolones

    PHARMACOKINETICS PHARMACODYNAMICS

  • Accumulation of magic bullets in eukaryotic cells

    glycopeptides

  • Vancomycin, the parent compound

    O O

    NH

    HN

    NH

    HN

    NH

    O

    HOCl

    O

    O

    O

    O

    HOOH

    ONH CH3

    H N

    O

    HOOC

    OH

    CONH2

    Cl

    O OH

    HOHO

    OO

    H3C

    CH3H2NHO

    OH

  • O O

    NH

    HN

    NH

    HN

    NH

    O

    OCl

    O

    O

    O

    O

    HOOH

    ONH CH3

    H N

    O

    HOOC

    OH

    CONH2

    Cl

    O OH

    HOHO

    OO

    H3C

    CH3HN

    OH

    Cl

    O

    H2N

    CH3

    HOH3C

    OH

    The glycopeptide oritavancin, a voluminous, amphiphilic molecule

  • From vancomycin to oritavancin

    O O

    NH

    HN

    NH

    HN

    NH

    O

    HOCl

    O

    O

    O

    O

    HOOH

    ONH CH3

    H N

    O

    HOOC

    OH

    CONH2

    Cl

    O OH

    HOHO

    OO

    H3C

    CH3H2N

    OHepi-vancosamine

    OH

  • From vancomycin to oritavancin

    O O

    NH

    HN

    NH

    HN

    NH

    O

    OCl

    O

    O

    O

    O

    HOOH

    ONH CH3

    H N

    O

    HOOC

    OH

    CONH2

    Cl

    O OH

    HOHO

    OO

    H3C

    CH3H2N

    OHO

    H2N

    CH3

    HOH3C

    OH4-epi-vancosamine

    self-association capacity

    LY264626

  • From vancomycin to oritavancin

    O O

    NH

    HN

    NH

    HN

    NH

    O

    OCl

    O

    O

    O

    O

    HOOH

    ONH CH3

    H N

    HOOC

    OH

    CONH2

    Cl

    O OH

    HOHO

    OO

    H3C

    CH3HN

    OH

    Cl

    lipophilic side chainactivity including against resistant enterococci

    OHO

    O

    O

    H2N

    CH3

    HOH3C

    Cooper et al (1996) J Antibiot 49: 575-81

  • Oritavancin, a cationic amphiphile

    O O

    NH

    HN

    NH

    HN

    NH

    O

    OCl

    O

    O

    O

    O

    HOOH

    ONH CH3

    H N

    O

    HOOC

    OH

    CONH2

    Cl

    O OH

    HOHO

    OO

    H3C

    CH3HN

    OH

    Cl

    O

    H2N

    CH3

    HOH3C

    OH

    lipophilic side chain

    additional protonable amine

  • Oritavancin, a cationic amphiphile

    New chemical entity

    New pharmacodynamic properties ?

    New pharmacokinetic profile ?

    But also ... new potential side effects ?

  • Spectrum of activity

    bacteria resistance vancomycin oritavancin

    enterococci susc.VanAVanB

    1-2>1288-128

    0.06-0.25 1-4

    0.125

    S. aureus Methi-SMethi-RGISAGRSA

    1-21-48

    > 128

    1 1-21-80.5

    •highly active on susc. enterococci•active on VAN-resistant strains

    Van Bambeke et al. (2004) Drugs 64:913-36

  • Pharmacodynamic profile

    VANCOMYCIN: modestly bactericidal • slow • no or little conc. effect

    oritavancin

    0 6 12 18 24time (h)

    ORITAVANCIN:highly bactericidal:• rapid• conc. dependent

    vancomycin

    0 6 12 18 24-6

    -4

    -2

    0

    2

    4

    time (h)

    ∆lo

    g C

    FU fr

    om ti

    me

    0

    1 X MIC10 X MIC

    control

    40 X MIC

    S. aureus Barcia-Macay et al. submitted

  • Pharmacokinetic properties

    parameter Vancomycin(15 mg/kg)

    Oritavancin(3 mg/kg)

    peak (mg/L)

    trough (mg/L)

    protein binding

    terminal t½ (h)

    20-50 31

    5-12(24 h)

    1.7 (24 h)

    10-55 % 90 %

    4-8 360

    • daily administration• retention in the organism ?

    Van Bambeke et al. (2004) Drugs 64:913-36

  • Aim of the study

    • activity against (multi-resistant) Gram-positive (S. aureus)• rapid bactericidal activity• retention in the organism

    any place for intracellular infections?

    accumulation and subcellulardistribution in eukaryotic cells

    cellular pharmacokinetics:

    activity against intracellular S. aureus

    cellular pharmacodynamics:

    morphological and biochemical alterations

    cellular toxicity:

  • Aim of the study

    • activity against (multi-resistant) Gram-positive (S. aureus)• rapid bactericidal activity• retention in the organism

    any place for intracellular infections?

    accumulation and accumulation and subcellularsubcellulardistributiondistribution inin eukaryotic cellseukaryotic cells

    cellular pharmacokinetics:cellular pharmacokinetics:

    activity against intracellular bacteria

    cellular pharmacodynamics:

    morphological and biochemical alterations

    cellular toxicity:

  • Kinetics of accumulation-efflux

    Oritavancin accumulation and release are slow

    J774 macrophages; extracell. conc. 25 mg/L; 24 h Van Bambeke et al. (2004) AAC 48:2853-60

  • Comparison with other antibiotics

    Oritavancin reaches exceptional cellular accumulation levels

    vancomycin azithromycin0

    100

    200

    300

    400

    accu

    mul

    atio

    n ra

    tio

    oritavancin

    J774 macrophages; extracell. conc. 25 mg/L; 24 h Van Bambeke et al. (2004) AAC 48:2853-60

  • Subcellular localization

    lysosomes

    mitochondria

    membrane

    N-acetyl-β-glucosaminidase

    cytochrome c-oxydase

    inosine diphosphatase

    Van Bambeke et al. (2004) AAC 48:2853-60

  • Subcellular localization

    Oritavancin is a lysosomotropic antibiotic

    lysosomes

    mitochondria

    membrane

    N-acetyl-β-glucosaminidase

    cytochrome c-oxydase

    inosine diphosphatase

    Van Bambeke et al. (2004) AAC 48:2853-60

  • Mechanism of cellular accumulation

    chloroquineazithromycin

    +++

    HRPlatex beads

  • Mechanism of cellular accumulation

    Oritavancin kinetics of accumulation are very similar to those of tracers of (adsorptive) endocytosis

    accu

    mul

    atio

    n ra

    tio

    kinetics of accumulation

    Van Bambeke et al. (2004) AAC 48:2853-60

  • Aim of the study

    • activity against multi-resistant Gram-positive (S. aureus)• rapid bactericidal activity• retention in the organism

    any place for intracellular infections?

    accumulation and distribution in eukaryotic cells

    cellular pharmacokinetics:

    activity against activity against intracellular bacteriaintracellular bacteria

    cellular pharmacodynamics:cellular pharmacodynamics:

    morphological and biochemical alterations

    cellular toxicity:

  • Intracellular activity on S. aureus

    cont

    rol

    orita

    vanc

    in

    Oritavancincan destroy intracellular bacteria

    THP-1 macrophages; extracell. conc. 25 mg/L; 24 h Barcia-Macay et al. submitted

  • Time-effect for intracellular activity

    0 5 10 15 20 25101

    103

    time (h)

    CFU

    /mg

    prot

    105

    107 vancomycinoritavancin

    Oritavancin shows time- and concentration-dependent intracellular bactericidal effects

    2.5 µg/ml

    25 µg/ml

    0.25 µg/ml

    10 µg/ml

    50 µg/ml

    control

    J774 macrophages Seral et al (2003) AAC 47: 2283-92

  • Dose-effect for extracell. vs intracell. activity

    intracellular activity < extracellular activity

    extra intra

    staticconc. 0.3 X MIC 4.8 X MIC

    max. effect - 5.55 log - 3.15 log

    THP-1 macrophages; 24 h Barcia-Macay et al. submitted

  • Dose-effect

    intracellular activity < extracellular activity, but bactericidal effects reached at clinically-relevant concentrations

    Cmin Cmax

    Barcia-Macay et al. submitted

  • Comparison with other antibiotics

    MIC10 X MICCmax

    oritavancin is one of the most active drugs against intracellular S. aureus

    THP-1 macrophages; 24 h Barcia-Macay et al. submitted

  • Aim of the study

    • activity against multi-resistant Gram-positive (S. aureus)• rapid bactericidal activity• retention in the organism

    any place for intracellular infections?

    accumulation and subcellulardistribution in eukaryotic cells

    cellular pharmacokinetics:

    activity against intracellular bacteria

    cellular pharmacodynamics:

    morphological and biochemical alterations

    cellular toxicity:

  • Morphological studies

    macrophages fibroblastspolar lipids

    Rat embryo fibroblasts; 25 mg/L; 3 daysJ774 macrophages, 25 mg/L; 1 day Van Bambeke et al. (2005) AAC – in press

  • Biochemical studies : time-effects

    accumulation of phospholipids and cholesterol develops in parallel with oritavancin cellular concentration

    drug-free medium

    drug-free medium

    drug-free medium

    Rat embryo fibroblasts; 25 mg/L Van Bambeke et al. (2005) AAC – in press

  • Biochemical studies : dose-effects

    Rat embryo fibroblasts, 3 daysJ774 macrophages, 1 day Van Bambeke et al. (2005) AAC – in press

  • Model of the interaction of oritavancin with eukaryotic cells

    S. aureus

    polar lipids

    oritavancin

    undefined material

  • Can we dissociate activity from toxicity ?

    cellular alterations co-exist with destroyed bacteria ….

    THP-1 macrophages; 25 mg/L; 24 h

  • Can we dissociate activity from toxicity ?

    comparison with two other lysosomotropic cationic antibiotics

    O

    O

    O

    CHH2N

    NH2

    OH

    HNH3C

    CH3 OHHO

    H2NO HN

    R1

    R2

    gentamicin

    • polycationic, hydrophilic• endocytosis• phospholipidosis

    O

    CH3

    OH

    OH

    OH

    CH3

    CH2CH3 O

    O

    CH3

    CH3

    CH3

    O

    O

    OOH

    N(CH3)2

    CH3

    OH

    N

    CH3

    CH3

    CH3

    OCH3 CH3

    azithromycin

    • dicationic• diffusion/segregation• accumulation of phospholipids

    and cholesterol

  • Lysosomotropic antibiotics and activity on S. aureus

    GEN and ORI are both conc.-dependent intracellularly

    J774 macrophages

  • Lysosomotropic antibiotics and activity on S. aureus

    GEN and ORI are both conc.-dependent intracellularly

    J774 macrophages

  • Lysosomotropic antibiotics and activity on S. aureus

    But GEN activity limited at clinically-relevant conditions

    J774 macrophages

  • Lysosomotropic antibiotics and phospholipidosis

    Phospholipidosis developing on a conc.-dependent manner

    Rat embryo fibroblasts

  • Lysosomotropic antibiotics and phospholipidosis

    Toxic potential variable at clinically-relevant conditions

    Rat embryo fibroblasts

  • Lysosomotropic antibiotics and phospholipidosis

    Toxic potential variable at clinically-relevant conditions

    Rat embryo fibroblasts

  • Lysosomotropic antibiotics and phospholipidosis

    Toxic potential variable at clinically-relevant conditions

    Rat embryo fibroblasts

  • Can we dissociate activity from toxicity ?

    both processes are dependent on cellular concentration …

    -3-2-10100

    120

    140

    160

    180

    intracellular activity

    cellu

    lar t

    oxic

    ity

    GEN

    AZM

    ORI

    … and develop in parallel

  • Conclusion amphiphilic glycopeptides, a new type of « magic bullets»

    pharmacokinetics:lysosomotropic accumulation

    bactericidal, conc-dep.activity

    pharmacodynamics:

    conc. and time-dependentcellular toxicity

    cellular toxicity:

    Morphological studies

    Rat embryo fibroblasts; 25 mg/L; 3 daysJ774 macrophages, 25 mg/L; 1 day

    macrophages fibroblastspolar lipids

    Van Bambeke et al. (2005) AAC – in press

    conc. and time-dependentbactericidal activitytowards extra AND intraS. aureus

    cellular pharmacodynamics:

    Dose-effect

    intracellular activity < extracellular activity, but bactericidal effects reached at clinically-relevant concentrations

    Barcia-Macay et al. submitted

    Cmin Cmax

  • Questions for future work

    S. aureus

    polar lipids

    oritavancin

    undefined material

    ?

    binding site?

    reasons for reduction in activity

    intracellularly

    in vivo

    ? mechanismof accumulation

    ?

  • Take home message

    cellular accumulation, the best and the worse of properties…

    drug developmentactivity

    toxicity

  • Intracellular “PK-PD”

    Concentrationversus timein non-infectedcells

    Pharmacologicor toxicologiceffect

    Concentrationversus timein cells

    Dosageregimen

    Concentrationversus timeat intracellular site of infection

    Antimicrobial effect versustime

    penetrationdistributioneffluxefflux

    macrolidesquinolones

    PHARMACOKINETICS PHARMACODYNAMICS

  • Intracellular “PK-PD”

    Concentrationversus timein non-infectedcells

    Pharmacologicor toxicologiceffect

    Concentrationversus timein cells

    Dosageregimen

    Concentrationversus timeat intracellular site of infection

    Antimicrobial Antimicrobial effect versuseffect versustimetime

    penetrationdistributioneffluxefflux

    macrolidesquinolones

    PHARMACOKINETICS PHARMACODYNAMICS

  • Efflux of magic bullets from eukaryotic cells

    macrolidesquinolones

  • Why efflux transporters ?

    polar drug

    lipophilic drug

    physico-chemical properties are inadequate for reaching an intracellular target !

    Van Bambeke et al. (2000) Biochem. Pharmacol. 60:457-70

  • Why efflux transporters ?

    amphipathic drug

    most drugs are amphipathic by design,to be able to cross membrane barriers !

    Van Bambeke et al. (2000) Biochem. Pharmacol. 60:457-70

  • Why efflux transporters ?

    But a diffusible compound may have

    potentially harmful effects !Van Bambeke et al. (2000) Biochem. Pharmacol. 60:457-70

  • Why efflux transporters ?

    Extrusion by efflux pumps

    Van Bambeke et al. (2000) Biochem. Pharmacol. 60:457-70

  • Why efflux transporters ?

    Extrusion by efflux pumps

    general mean of protectionagainst cell invasion by diffusible molecules

    Van Bambeke et al. (2000) Biochem. Pharmacol. 60:457-70

  • Mechanisms of active efflux

    ATP ADP+Pi

    membrane insertion / release

    vacuum cleaner

    flippaseflip-flop

    Van Bambeke et al. (2000) Biochem. Pharmacol. 60:457-70

  • Antibiotics as substrates of efflux pumps

    Antibiotic bacteria fungi superiorclass Gram (+) Gram(-) eucaryotesβ-lactamsfusidic acidmacrolidesstreptograminstetracyclinesaminoglycosideschloramphenicolrifamycinssulfamidestrimethoprimfluoroquinolones

    Van Bambeke et al. (2000) Biochem. Pharmacol. 60:457-70

  • Antibiotics as substrates of efflux pumps

    O

    H3C

    OH

    OH

    OH

    CH3

    H3CH2C O

    O

    CH3

    CH3

    H3C

    O

    O

    OHO(H3C)2N

    CH3

    OH

    N

    CH3

    CH3

    H3C

    H3C

    H3CO

    azithromycin

    ciprofloxacin

    N

    C

    O

    FOH

    O

    OCH3

    HN N

    moxifloxacin

    N

    O

    OH

    O

    HNN

    F

  • Macrolides and quinolones as cell-associated antibiotics

  • Aim of the study

    amphiphilic antibiotics• accumulating in eucaryotic cells• considered as useful for treating intracellular infections• known substrates of efflux pumps in bacteria

    efflux from macrophages ?

    macrolides

    • phenotypic characterization of the active efflux

    • consequences for intracellular activity

    quinolones

  • Aim of the study

    amphiphilic antibiotics• accumulating in eucaryotic cells• considered as useful for treating intracellular infections• known substrates of efflux pumps in bacteria

    efflux from macrophages ?

    macrolides

    •• phenotypic characterization phenotypic characterization of the active efflux of the active efflux

    • consequences for intracellular activity

    quinolones

  • Efflux pumps expressed in J774 macrophages

  • ABC multidrug transporters

    ATP ADP

    MDR-1 (P-glycoprotein) MRP1-10

    cationic amphiphiles

    anionic amphiphiles

  • How to inhibit ABC transporters ?

    ATP ADP

    MDR-1 (P-glycoprotein) MRP1-10

    cationic amphiphiles

    anionic amphiphiles

    deoxyglucoseNaN3

  • How to inhibit ABC transporters ?OCH3

    H3CO

    CNCH(CH3)2

    N

    CH3

    OCH3

    OCH3

    NH

    C

    OHN

    H3CO

    O

    N

    H3CO

    H3CO

    ATP

    verapamil

    cationic amphiphiles

    MDR-1 (P-glycoprotein)

    GF120918

    ADP

  • How to inhibit ABC transporters ?

    COOHSN

    O

    OC3H7

    C3H7

    NCl

    S

    S

    HOOC

    N(CH3)2

    O

    ATP

    MRP1-10

    anionic amphiphilesprobenecid

    (CH2)3 C

    CH3

    CH3

    COOHH3C

    CH3gemfibrozil

    MK571

    ADP

  • Differential recognition by MDR pumps

    Influence of ATP-depletion and pump inhibitors on accumulation at equilibrium

    ciprofloxacin&

    MRP

    azithromycin&

    P-glycoproteinextracell. conc. 5 mg/L; AZM 3 h; CIP 2 h Michot et al. AAC (2004) 48:2673-82

  • Aim of the study

    amphiphilic antibiotics• accumulating in eucaryotic cells• considered as useful for treating intracellular infections• known substrates of efflux pumps in bacteria

    efflux from macrophages ?

    macrolides

    • phenotypic characterization of the active efflux

    • consequences for consequences for intracellular activityintracellular activity

    quinolones

  • Models of intracellular infection

    L. monocytogenes S. aureus

    phagolysosomescytosol

  • Influence of pump inhibitors onintracellular activity

    azithromycin and L. monocytogenes

    L. monocytogenes

    verapamil 20 µM; 24 h

    AZMAZM

    Seral et al (2003) JAC 51:1167-73

  • Influence of pump inhibitors onintracellular activity

    azithromycin and S. aureus

    S. aureus

    AZMAZM

    verapamil 20 µM; 24 h Seral et al (2003) JAC 51:1167-73

  • Influence of pump inhibitors onintracellular activity

    ciprofloxacin and L. monocytogenes

    L. monocytogenes

    gemfibrozil 250 µM; 24 h

    CIP

    Seral et al (2003) JAC 51:1167-73

  • Influence of pump inhibitors onintracellular activity

    ciprofloxacin and S. aureus

    S. aureus

    CIP

    gemfibrozil 250 µM; 24 h Seral et al (2003) JAC 51:1167-73

  • Influence of pump inhibitors on antibiotic distribution

    verapamil enhances azithromycin concentrationIn cytosol and vacuoles

    L. monocytogenes

    AZMAZM

    S. aureus

    Seral et al (2003) JAC 51:1167-73

  • Influence of pump inhibitors on antibiotic distribution

    gemfibrozil enhances ciprofloxacin cytosolic content

    L. monocytogenes

    CIP

    S. aureus

    Seral et al (2003) JAC 51:1167-73

  • Are these effects clinically-relevant ?

    constitutive efflux makes AZM and CIP activity suboptimalin a clinically-meaningful range of concentrations

  • Aim of the study

    amphiphilic antibiotics• accumulating in eucaryotic cells• considered as useful for treating intracellular infections• known substrates of efflux pumps in bacteria

    efflux from macrophages ?

    macrolidesmacrolides

    • cellular pharmacokinetics

    • model of interaction with the transporters

    quinolonesquinolones

  • Aim of the study

    amphiphilic antibiotics• accumulating in eucaryotic cells• considered as useful for treating intracellular infections• known substrates of efflux pumps in bacteria

    efflux from macrophages ?

    macrolides

    •• cellular pharmacokinetics cellular pharmacokinetics

    •• model of interaction model of interaction with the transporterswith the transporters

    quinolones

  • Kinetics of accumulation and effluxfor azithromycin

    accumulation markedly increased; efflux marginally affected

    extracell. conc. 5 mg/L; verapamil 20 µM Seral et al (2003) AAC 47:1047-51

  • Kinetics of accumulation and effluxfor ciprofloxacin

    both accumulation and efflux markedly affected

    extracell. conc. 17 mg/L; probenecid 5 mM Michot et al. AAC (2004) 48:2673-82

  • Kinetics of accumulation and effluxfor moxifloxacin

    neither accumulation nor efflux affected

    extracell. conc. 17 mg/L; probenecid 5 mM Michot et al. AAC (2005) – in press

  • Quinolones as inhibitors of ciprofloxacin efflux

    • ciprofloxacin efflux inhibited by ciprofloxacin

    Michot et al. AAC (2005) – in press

  • Quinolones as inhibitors of ciprofloxacin efflux

    • ciprofloxacin efflux inhibited by ciprofloxacin• moxifloxacin not affected

    Michot et al. AAC (2005) – in press

  • Quinolones as inhibitors of ciprofloxacin efflux

    • ciprofloxacin efflux inhibited by ciprofloxacin

    CIP

    CIP

    MXF

    Michot et al. AAC (2005) – in press

  • Quinolones as inhibitors of ciprofloxacin efflux

    • ciprofloxacin efflux inhibited by ciprofloxacinmoxifloxacin

    CIP MXF

    moxifloxacin also able

    to interact with the transporter !

    CIP

    Michot et al. AAC (2005) – in press

  • Comparison of kinetic parameters

    influx efflux

    half-life (min) half-life (min)

    control inhibitor

    flux(pmol/mg prot/min) control inhibitor

    AZM 1 44 71 1 49 53

    CIP 5 8 8 6 1.2 7.2

    MXF 68 0.2 0.2 66 0.6 0.6

    flux(pmol/mg prot/min)

    drug

  • Comparison of kinetic parameters

    influx efflux

    half-life (min) half-life (min)

    control inhibitor

    flux(pmol/mg prot/min) control inhibitor

    AZM 1 44 71 1 49 53

    CIP 5 8 8 6 1.2 7.2

    MXF 68 0.2 0.2 66 0.6 0.6

    flux(pmol/mg prot/min)

    drug

  • Comparison of kinetic parameters

    influx efflux

    half-life (min) half-life (min)

    control inhibitor

    flux(pmol/mg prot/min) control inhibitor

    AZM 1 44 71 1 49 53

    CIP 5 8 8 6 1.2 7.2

    MXF 68 0.2 0.2 66 0.6 0.6

    flux(pmol/mg prot/min)

    drug

  • Comparison of kinetic parameters

    influx efflux

    half-life (min) half-life (min)

    control inhibitor

    flux(pmol/mg prot/min) control inhibitor

    AZM 1 44 71 1 49 53

    CIP 5 8 8 6 1.2 7.2

    MXF 68 0.2 0.2 66 0.6 0.6

    flux(pmol/mg prot/min)

    drug

  • Comparison of kinetic parameters

    influx efflux

    half-life (min) half-life (min)

    control inhibitor

    flux(pmol/mg prot/min) control inhibitor

    AZM 1 44 71 1 49 53

    CIP 5 8 8 6 1.2 7.2

    MXF 68 0.2 0.2 66 0.6 0.6

    flux(pmol/mg prot/min)

    drug

  • Azithromycin, ‘kick-back’ modelGaj et al. (1998) Biochem. Pharmacol. 55:1199-211

  • Ciprofloxacin, classical modelKolaczkowski & Goffeau (1997) Pharmacol. Ther. 76:219-42

  • Moxifloxacin, ‘futile-cycle’ modelEytan et al. (1996) JBC 271:12897-902

  • Conclusion constitutive efflux of antibiotics in macrophages

    pharmacokinetics:suboptimal cellular accumulation

    suboptimal intracell.activity

    pharmacodynamics:

    resistance ?

    wide spectrum transporters

    pharmacokinetics:

    drug interactions ?

    differences in affinitywithin a AB class

    pharmacology:

  • Questions for future research

    ?

    mechanismof

    transport?

    identificationof

    transporter

    cooperation with bacterial efflux pumps

    ? ?

    drug interactions

    metabolicalterations?

  • Take home message

    constitutive efflux is part of the game

    Take it into account in the choice of your « magic bullets » …for their optimal targeting

  • Thanks toThanks to …

  • Thanks toThanks to …

    Evaluating magic bulletsEvaluating magic bullets

    •• pharmacokineticspharmacokineticsH.H. ChanteuxChanteux, M., M. HeremansHeremans, J.M., J.M. MichotMichot

    •• pharmacodynamicspharmacodynamicsM. Barcia, N. M. Barcia, N. BlesBles, S., S. CarrynCarryn, S., S. LemaireLemaire, , A. Olivier, C.A. Olivier, C. SeralSeral, S. Van de, S. Van de VeldeVelde

    •• toxicodynamicstoxicodynamicsJ.P.J.P. MontenezMontenez, H., H. ServaisServais, D., D. TytecaTyteca

    •• biophysicsbiophysics & molecular biology& molecular biologyN.N. CaceresCaceres, N., N. Fa Fa

  • Thanks toThanks to …

    New magic bulletsNew magic bullets

    •• chemistrychemistryE.E. ColacinoColacino, C., C. DaxDax, L., L. EfronEfron, T., T. HappaertsHappaerts, M., M. RenardRenard

    •• pharmacologypharmacologyI.I. TytgatTytgat, D. Van, D. Van AckerenAckeren

    •• modelingmodelingM.M. PrévostPrévost, M., M. RoomanRooman, S., S. VandevuerVandevuer

  • Thanks toThanks to …

    Resistance to magic bulletsResistance to magic bullets

    •• effluxeffluxL.L. AvrainAvrain, N., N. MesarosMesaros

    •• glycopeptidesglycopeptidesP.P. CourvalinCourvalin and his teamand his team

  • Thanks toThanks to …

    Clinical use of magic bulletsClinical use of magic bullets

    •• clinical pharmacyclinical pharmacyE.E. AmpeAmpe, V., V. BasmaBasma, A., A. SpinewineSpinewine

  • Thanks toThanks to …

    Playing with magic bulletsPlaying with magic bullets

    •• technical stafftechnical staffN. Aguilera, M.C.N. Aguilera, M.C. CambierCambier, O., O. MeertMeert, , F.F. RenoirdRenoird, M., M. VergauwenVergauwen

    •• secretarysecretaryM.M. BreugelmansBreugelmans

  • Thanks toThanks to …

    Ehrlich’s colleaguesEhrlich’s colleagues

  • Thanks toThanks to …

    Inspiring research on magic bulletsInspiring research on magic bullets

  • Thanks toThanks to …

    Evaluating research on magic bulletsEvaluating research on magic bullets

    P. Courvalin, A. Dalhoff, M. Delmée,P. Courvalin, A. Dalhoff, M. Delmée,H. Derendorf,Y. Glupczynski, H. Derendorf,Y. Glupczynski, E. Sonveaux, F. ZechE. Sonveaux, F. Zech

  • Thanks toThanks to …

    Paying for research on magic bulletsPaying for research on magic bullets

  • Thanks toThanks to …

    Managing research on magic bulletsManaging research on magic bullets

    M.P. MingeotM.P. Mingeot--LeclercqLeclercq

    P.M. TulkensP.M. Tulkens

  • Thank you Thank you for your attentionfor your attention

    Antibiotic accumulation and effluxin eukaryotic cells:a journey at the frontier of pharmacokinetics and pharmacodynamicMagic bullets need to reach their targetMagic bullets need to reach their targetBirth of antibiotic “PK-PD”ISAP classical view of PK/PDbut classical PD predicts concentration-effectsfor all drugs ….but classical PD predicts concentration-effectsfor all drugs ….Can we conciliate both theories ?Target accessibility becomes critical for intracellular activity Main routes of drug entry in cellsIntracellular “PK-PD”Intracellular “PK-PD”Intracellular “PK-PD”Intracellular “PK-PD”Intracellular “PK-PD”Intracellular “PK-PD”Accumulation of magic bullets in eukaryotic cellsVancomycin, the parent compoundThe glycopeptide oritavancin, a voluminous, amphiphilic moleculeFrom vancomycin to oritavancinFrom vancomycin to oritavancinFrom vancomycin to oritavancinOritavancin, a cationic amphiphileOritavancin, a cationic amphiphileSpectrum of activityPharmacodynamic profilePharmacokinetic propertiesAim of the studyAim of the studyKinetics of accumulation-effluxComparison with other antibioticsSubcellular localizationSubcellular localizationMechanism of cellular accumulationMechanism of cellular accumulationAim of the studyIntracellular activity on S. aureusTime-effect for intracellular activityDose-effect for extracell. vs intracell. activityDose-effectComparison with other antibioticsAim of the studyMorphological studiesBiochemical studies : time-effectsBiochemical studies : dose-effectsModel of the interaction of oritavancin with eukaryotic cellsCan we dissociate activity from toxicity ?Can we dissociate activity from toxicity ?Lysosomotropic antibiotics and activity on S. aureusLysosomotropic antibiotics and activity on S. aureusLysosomotropic antibiotics and activity on S. aureusLysosomotropic antibiotics and phospholipidosisLysosomotropic antibiotics and phospholipidosisLysosomotropic antibiotics and phospholipidosisLysosomotropic antibiotics and phospholipidosisCan we dissociate activity from toxicity ?ConclusionQuestions for future workTake home messageIntracellular “PK-PD”Intracellular “PK-PD”Efflux of magic bullets from eukaryotic cellsWhy efflux transporters ?Why efflux transporters ?Why efflux transporters ?Why efflux transporters ?Why efflux transporters ?Mechanisms of active effluxAntibiotics as substrates of efflux pumpsAntibiotics as substrates of efflux pumpsMacrolides and quinolones as cell-associated antibioticsAim of the studyAim of the studyEfflux pumps expressed in J774 macrophagesABC multidrug transportersHow to inhibit ABC transporters ?How to inhibit ABC transporters ?How to inhibit ABC transporters ?Differential recognition by MDR pumpsAim of the studyModels of intracellular infectionInfluence of pump inhibitors onintracellular activityInfluence of pump inhibitors onintracellular activityInfluence of pump inhibitors onintracellular activityInfluence of pump inhibitors onintracellular activityInfluence of pump inhibitors on antibiotic distributionInfluence of pump inhibitors on antibiotic distributionAre these effects clinically-relevant ?Aim of the studyAim of the studyKinetics of accumulation and effluxfor azithromycinKinetics of accumulation and effluxfor ciprofloxacinKinetics of accumulation and effluxfor moxifloxacinQuinolones as inhibitors of ciprofloxacin effluxQuinolones as inhibitors of ciprofloxacin effluxQuinolones as inhibitors of ciprofloxacin effluxQuinolones as inhibitors of ciprofloxacin effluxComparison of kinetic parametersComparison of kinetic parametersComparison of kinetic parametersComparison of kinetic parametersComparison of kinetic parametersAzithromycin, ‘kick-back’ modelCiprofloxacin, classical modelMoxifloxacin, ‘futile-cycle’ modelConclusionQuestions for future researchTake home messageThanks to …Thanks to …Thanks to …Thanks to …Thanks to …Thanks to …Thanks to …Thanks to …Thanks to …Thanks to …Thanks to …Thank you for your attention