antibiotikų krizė: kaip į ją patekome ir kur išeitis?...fluoroquinolone resistance some types...

69
Vytauto Didžiojo universitetas Antibiotikų krizė: kaip į ją patekome ir kur išeitis? Rimantas Daugelavičius VDU Biochemijos ir biotechnologijų katedra 20072013 m. Žmogiškųjų išteklių plėtros veiksmų programos 3 prioriteto „Tyrėjų gebėjimų stiprinimasVP1-3.1-ŠMM-05-K priemonės „MTTP tematinių tinklų, asociacijų veiklos stiprinimasprojektas Lietuvos Biochemikų draugijos potencialo kurti žinių visuomenę didinimas(Nr. VP1-3.1-ŠMM-05-K-01-022)

Upload: others

Post on 26-Jan-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • Vytauto Didžiojo universitetas

    Antibiotikų krizė: kaip į ją

    patekome ir kur išeitis?

    Rimantas Daugelavičius

    VDU Biochemijos ir biotechnologijų katedra

    2007–2013 m. Žmogiškųjų išteklių plėtros veiksmų programos

    3 prioriteto „Tyrėjų gebėjimų stiprinimas“

    VP1-3.1-ŠMM-05-K priemonės „MTTP tematinių tinklų,

    asociacijų veiklos stiprinimas“

    projektas „Lietuvos Biochemikų draugijos potencialo kurti

    žinių visuomenę didinimas“

    (Nr. VP1-3.1-ŠMM-05-K-01-022)

  • 7 balandžio - Pasaulio sveikatos diena (PSO (WHO), įkurtos 1948 m., gimtadienis)

    Kiekvienais metais švenčiama Pasaulio sveikatos diena būna teminė. Taip akcentuojami PSO veiklos prioritetai ir

    akcentuojamos didžiausio rūpesčio sritys

    2011

    Antimicrobial resistance: no action today no cure tomorrow

    2012

    Ageing and health: Good health adds life to years

  • Penicilinas, pirmasis gamtinis

    antibiotikas, atrastas 1928 m.

    1881-1955

    Alexander Fleming

    Už penicilino atradimą ir

    įdiegimą į medicininę praktiką,

    Ernst Chain, Howard Florey ir

    Alexander Fleming 1945 gavo

    Nobelio premiją Medicinos

    srityje.

  • 4/24/2012

    4

  • 4/24/2012

    7

  • According to the 2008 study, every year at least 25 000 patients

    in the European Union alone die from an infection caused by

    multidrug-resistant bacteria and estimated additional health-

    care costs and productivity losses are at least 1.5 billion Euros.

  • Antimicrobial resistance (AMR) is resistance of a

    microorganism to an antimicrobial medicine to which it was

    previously sensitive.

    Methicillin-resistant Staphylococcus aureus (MRSA)

    Vancomycin-resistant enterococci (VRE)

    Extended-spectrum b-lactamase (ESBL)-producing

    Enterobacteriaceae (examples of common Enterobacteriaceae

    are Escherichia coli and Klebsiella pneumoniae)

    Carbapenemase-producing Enterobacteriaceae (e.g. Klebsiella

    pneumonia)

    Multidrug-resistant Pseudomonas aeruginosa

    Clostridium difficile

    Examples of common multidrug-resistant bacteria

  • 4/24/2012

    11

    Microbe

    Diseases caused

    Drugs resisted

    Staphylococcus aureus bacteremia (blood infection), pneumonia,

    surgical-wound infections

    Chloramphenicol, Rifampin, Methicillin,

    Ciprofloxacin, Clindamycin, Erythromycin,

    Beta-lactams, Tetracycline, Trimethoprim

    Streptococcus pneumoniae meningitis, pneumonia, otitis media (ear

    infection)

    Aminoglycosides, Penicillin,

    Chloramphenicol, Erythromycin,

    Trimethoprim- Sulfamethoxazole

    Mycobacterium tuberculosis tuberculosis Aminoglycosides, Ethambutol, Isoniazid,

    Pyrazinamide, Rifampin

    Haemophilus influenzae epiglottitis, meningitis, otitis media,

    pneumonia, sinusitis

    Beta-lactams, Chloramphenicol,

    Tetracycline, Trimethoprim

    Enterobacteriaceae (e.g. Klebsiella

    pneumonia, Escherichia coli, Salmonella)

    bacteremia, pneumonia, urinary-tract or

    surgical- wound infections, diarrhea

    Aminoglycosides, Beta-lactams,

    Chloramphenicol, Trimethoprim

    Enterococcus bacteremia, urinary-tract or surgical-

    wound infections

    Aminoglycosides, Beta-lactams,

    Erythromycin, Vancomycin

    Neisseria gonorrhoeae gonorrhea Beta-lactams, Penicillin, Spectinomycin,

    Tetracycline

    Pseudomonas aeruginosa bacteremia, pneumonia, urinary-tract

    infections

    Aminoglycosides, Beta-lactams,

    Ciprofloxacin, Tetracycline, Sulfonamides

    Bacteroides septicemia, anaerobic infections Penicillin, Clindamycin

    Shigella dysenteriae severe diarrhea Ampicillin, Trimethoprim-Sulfamethoxazole,

    Tetracycline, Chloramphenicol

    Ten common antibiotic-resistant bacteria

  • Four main mechanisms resistance to antimicrobials are:

    1.Drug inactivation or modification: for example, enzymatic deactivation of

    penicillin G in some penicillin-resistant bacteria through the production of β-

    lactamases

    2.Alteration of target site: for example, alteration of PBP—the binding target

    site of penicillins—in MRSA and other penicillin-resistant bacteria

    3.Alteration of metabolic pathway: for example, some sulfonamide-resistant

    bacteria do not require para-aminobenzoic acid (PABA), an important precursor

    for the synthesis of folic acid and nucleic acids in bacteria inhibited by

    sulfonamides, instead, like mammalian cells, they turn to using preformed folic

    acid.

    4.Reduced drug accumulation: by decreasing drug permeability and/or

    increasing active efflux (pumping out) of the drugs across the cell surface

    'Persister' bacterial cells are temporarily hyper-resistant to all antibiotics at

    once. They are able to survive (normally) lethal levels of antibiotics without

    being genetically resistant to the drug. These cells are a significant cause of

    treatment failure yet the mechanism behind the persistence phenomenon is still

    unclear.

  • There are three known mechanisms of

    fluoroquinolone resistance

    Some types of efflux pumps can act to decrease intracellular quinolone

    concentration.

    In Gram-negative bacteria, plasmid-mediated resistance genes produce

    proteins that can bind to DNA gyrase, protecting it from the action of

    quinolones.

    Finally, mutations at key sites in DNA gyrase or topoisomerase IV can

    decrease their binding affinity to quinolones, decreasing the drug's

    effectiveness. Research has shown the bacterial protein LexA may play a

    key role in the acquisition of bacterial mutations giving resistance to

    quinolones and rifampicin.

  • 4/24/2012

    15

  • Staphylococcus aureus

    Found on the mucous membranes and the human skin of around a third of the

    population, it is extremely adaptable to antibiotic pressure.

    It was one of the earlier bacteria in which penicillin resistance was found—in 1947,

    just four years after the drug started being mass-produced. Methicillin was then the

    antibiotic of choice, but has since been replaced by oxacillin due to significant kidney

    toxicity.

    Methicillin-resistant Staphylococcus aureus (MRSA) was first detected in Britain in 1961,

    and is now "quite common" in hospitals. MRSA was responsible for 37% of fatal cases

    of sepsis in the UK in 1999, up from 4% in 1991. Half of all S. aureus infections in the

    US are resistant to penicillin, methicillin, tetracycline and erythromycin.

    This left vancomycin as the only effective agent available at the time. However, strains

    with intermediate (4-8 μg/ml) levels of resistance, termed glycopeptide-intermediate

    Staphylococcus aureus (GISA) or vancomycin-intermediate Staphylococcus aureus

    (VISA), began appearing in the late 1990s. The first identified case was in Japan in

    1996, and strains have since been found in hospitals in England, France and the US.

    The first documented strain with complete (>16 μg/ml) resistance to vancomycin, termed

    vancomycin-resistant Staphylococcus aureus (VRSA) appeared in the United States in

    2002.

  • Meticilinui atsparus St. aureus Europoje 2006

  • MRSA paplitimas

  • E. coli on the March

    Toxic strains of a common gut microbe

    are multiplying

  • The first rule of

    antibiotics is try not to

    use them, and the

    second rule is try not

    to use too many of

    them.

    —Paul L. Marino, The

    ICU Book

  • Until recently such completely resistant bacteria have only been found in

    hospitals. Now we are starting to see virtually or totally pan-resistant bacteria spilling

    into the community.

    The outbreak of resistant strains of Escherichia coli – a common cause of food

    poisoning – carrying a gene called NDM1 (New Delhi metallo-β-lactamase) in India in

    2010, which spread to other countries, is a case in point.

  • 4/24/2012

    28

  • A shrinking field of research into new antibiotics, which are slow and expensive to

    develop. All currently used antibiotics were introduced between 1940 and

    1962 then, after a gap of 38 years, the new class of oxazolidinones followed in

    2000.

    During the past three decades, only two new classes of antibiotics have

    been found, and sales shrank to $14.4bn in 2010 from $16.1bn in 2005.

    With many existing antibiotics having been around for decades and available as

    generics, the bar for prices is low.

    Antibiotics have a poor return on investment because they are taken for a short

    period of time and cure their target disease. In contrast, drugs that treat chronic

    illness, such as high blood pressure, are taken daily for the rest of a patient’s life

    If a new antibiotic is approved, it tends to be kept as a last line of defence

    against the most serious infections, minimising the sales opportunity. The practice

    of reserving new products exclusively as a treatment of last resort for the worst

    bacteria significantly reduces the opportunity for companies to recoup their

    research and development costs.

  • That’s why many companies have stopped developing antibiotics altogether. Only five

    major pharmaceutical companies – albeit five of the biggest – GlaxoSmithKline,

    Novartis, AstraZeneca, Merck and Pfizer, still had active antibacterial discovery

    programmes in 2008

    Adding to the grim picture, a comprehensive study of antibiotic development, covering

    innovative, small firms, as well as pharma giants, found in 2008 that only 15 antibiotics

    of 167 under development had a new mechanism of action with the potential to meet

    the challenge of multidrug resistance. Most of those were in the early phases of

    development.

  • 4/24/2012

    35

    New targets for antibacterials:

    Aminoacyl-tRNA-synthase

    Polypeptide deformylase

    Fatty acid synthesis enzymes

    Virulence factors

    Outer membrane proteins

    The IDSA launched its "Bad Bugs, No Drugs," campaign in 2010 which aims to get

    10 new antibiotics on the market by 2020, and has been active in lobbying for

    increased government research in antibiotics.

  • Šiuo metu tikrinami 9 intraveniniai junginiai, aktyvūs prieš Gramneigiamąsias

    bakterijas: 1 β-laktamazės slopiklis šlapimo takų infekcijoms (III fazė), ir 8 junginiai (3 β-

    laktamazės slopiklių kombinacijos, II fazė odos bakterinių infekcijų gydymui). Dar trys

    junginiai yra I klinikinių arba priešklininkinių tyrimų fazėje.

    Tik keletas iš 9 junginių yra aktyvūs prieš blogiausius patogenus, tokius, kaip

    Acinetobacter baumannii ir Pseudomonas aeruginosa. Tik du iš II fazėj tikrinamų

    junginių turi naują veiklos mechanizmą. Vienas yra pernašos RNR sintazės slopiklis, o

    antrasis - peptidomimetikas. Nauji mechanizmai – papildomi saugumo rūpesčiai.

    Kibdelomicin - "the first truly novel bacterial type II topoisomerase inhibitor with

    potent antibacterial activity discovered from natural product sources in more than six

    decades". was dug out from an organism in a sample from the Central African Republic

    by a complicated but useful screening protocol

    Fidaxomicin is the first of a new class of antibiotics called macrocycles; it’s a narrow-

    spectrum drug aimed specifically at Clostridium difficile, the bacterial, toxin-producing,

    potentially fatal infection of the gut that occurs when broad-spectrum antibiotics have

    killed off the other populations of bacteria that normally live in the intestines.

  • 0

    5

    10

    15

    20

    25

    30

    35

    40

    1992-1993 1994-1995 1996-1997 1998-1999 2000-2001

    %

    0% 0%

    6%

    27%

    37%

    DVA pasižyminčių S. enterica ser. Typhimurium

    paplitimas Centrinėje ir Rytų Europoje

  • Išmetimo siurblių tipai

  • RND šeimos siurblio AcrAB-TolC struktūra

    40

    Citoplazma

    Vaistas

    Periplazma

    PM

    IM

    Citoplazma

    Vaistas

    Periplazma

    PM

    IM

    Pos, PNAS, 2009

    Citoplazma

    Vaistas

    Periplazma

  • Bakterijose esančių siurblių klasifikacija

    Šeima Energijos

    šaltinis

    Substrato

    specifiškumas

    Aminorūgščių

    skaičius

    Bakterijų gentys

    ABC

    didšeimė

    ATP Specifinis ir

    nespecifinis

    varijuoja Escherichia

    Lactobacillus

    Staphylococcus

    SMR

    šeima

    Protonovaros

    jėga

    Nespecifinis ~ 110 Bacillus

    Escherichia

    Staphylococcus

    MFS

    didšeimė

    Protonovaros

    jėga

    Specifinis ir

    nespecifinis

    400-600 Lactobacillus

    Staphylococcus

    Bacillus

    Echerichia

    Streptococcus

    MATE

    šeima

    Protonovaros

    jėga

    Nespecifinis > 1000 Haemophilus

    Vibrio

    Bacillus

    RND

    šeima

    Protonovaros

    jėga

    Nespecifinis > 1000 Escherichia

    Pseudomonas

    Neisseria

    Haemophilus

  • Išmetimo sistemos E. coli

    • Chromosomoje koduojami siurbliai: 19 MFS, 3 SMR, 7 RND,

    7 ABC, 1 MATE

    20 siurblių gali pernešti ląstelei toksiškas/antibiotikų

    molekules

  • P. aeruginosa siurbliai

    Siurblys Substratai

    MexAB-OprM β-laktamai, fluorochinolonai, tetraciklinas, makrolidai, chloramfenikolis, pesticidai

    MexCD-OprJ β-laktamai, fluorochinolonai, tetraciklinas, makrolidai, chloramfenikolis, pesticidai

    MexEF-OprN Fluorochinolonai, chloramfenikolis, pesticidai

    MexXY-OprM

    Aminoglikozidai, β-laktamai, fluorochinolonai,

    tetraciklinas, makrolidai, chloramfenikolis

  • S. enterica siurbliai:

    Išmetimo sistema Substratai

    TetA (MF) Tetraciklinas, TPP+;

    AcrAB-TolC (RND) Tetraciklinas, TPP+,

    chloramfenilokis, chinolonai ir kt.

    MdfA (MF) Tetraciklinas, chloramfenikolis,

    makrolidai, aminoglikozidai ir kt.

    MdsABC (RND) TPP+, novobiocinas ir kt.

  • 4/24/2012

    45

  • ABC transporterių mechanizmai

    • L. lactis LmrA 3D modelis – flipazė

    • S. aureus Sav1866 – “vacuum cleaner”

    Ecker G.F et al. Mol Pharmacol. 2004; 66:1169-1179. Schuldiner S. Nature. 2006; 443:156-157.

  • Baltymas P-gp dar žinomas kaip

    ABCB1, MDR1, PGY1

    ATP-binding cassette sub-family B

    member 1

  • Problema: Atsparumas antibiotikams dėl jų išmetimo iš ląstelės

    Galimi sprendimo būdai: – Siurblių nepernešami vaistai

    – Pernašos siurblių slopinimas

  • Potencialūs DVA siurblių slopikliai:

    1. Augalinės kilmės junginiai: barberinas, eteriniai aliejai, izoflavonoidai, žaliosios arbatos ekstraktas, gervuogių sultys, raudonėlio, vynuogių sėklų ekstraktai

    2. Kiti vaistai

    Žinomos farmakokinetinės savybės, pašaliniai poveikiai

    3. Naujai susintetinti junginiai

  • DVA slopiklių panaudojimo problemos

    • Būtinai kombinuojama dviejų vaistų terapija:

    – DVA substrato ir slopiklio farmakokinetinės savybės

    turi būti suderintos

    • Kiekvienas MDR slopiklis yra dar vienas naujas

    vaistas. Neaiški sąveika su mūsų organizmo

    ląstelių siurbliais

  • DVA slopikliai

    • Sukuria „kamštį” išorinės

    membranos kanale;

    • Sukelia konkurenciją

    siurblio išmetamam vaistui;

    • Apsunkinti trikomponentės

    sistemos susijungimą

    • Trikdo siurblio aprūpinimą

    energija

    • Keičia membranos savybes

    Slopiklių veikimo mechanizmai

  • Laboratoriniams tyrimams naudojami slopikliai

    • Rezerpinas

    • Chlorpromazinas

    • Fenilalanilarginino-β-naftilamidas (PAβN)

  • Populiariausi DVA siurblių slopikliai, naudojami

    laboratoriniuose tyrimuose

  • 54

    Ind

    ikato

    rin

    is e

    lektr

    od

    as

    Paly

    gin

    am

    asis

    ele

    ktr

    od

    as

    Potenciometrinių matavimų sistema ir

    indikatoriniai jonai

    TPP+

    Et+

  • 4/24/2012

    55

    Polymyxin B (PMB)

    Polymyxins – closely related cyclic peptides

    Polymyxin B = Polymyxin B1 + B2

    Colistin (polymyxin E) is a mixture of colistin A and B

    Source – Bacillus polymyxa (1947)

  • 4/24/2012

    56

  • 4/24/2012

    57

    Antibacterial peptides

    I

  • discovery of bacteriophages by Frederick

    Twort and Felix d'Hérelle[8] in 1915 and

    1917

    Frederick Twort Felix d'Hérelle

    http://en.wikipedia.org/wiki/Frederick_Tworthttp://en.wikipedia.org/wiki/Frederick_Tworthttp://en.wikipedia.org/wiki/Felix_d'H%C3%A9rellehttp://en.wikipedia.org/wiki/Felix_d'H%C3%A9rellehttp://en.wikipedia.org/wiki/Phage_therapyhttp://en.wikipedia.org/wiki/Frederick_Tworthttp://en.wikipedia.org/wiki/Frederick_Tworthttp://en.wikipedia.org/wiki/Felix_d'H%C3%A9rellehttp://en.wikipedia.org/wiki/Felix_d'H%C3%A9relle

  • 4/24/2012

    59

  • http://www.sp.uconn.edu/~terry/229sp03/lectures/viruses.html

    Bacteriophage infection cycle

  • 4/24/2012

    61 http://www.youtube.com/watch?v=rzdwfwuVWUU&feature=related

    http://www.youtube.com/watch?v=zGSSDJhHgp0&feature=related

    http://www.youtube.com/watch?v=rzdwfwuVWUU&feature=relatedhttp://www.youtube.com/watch?v=zGSSDJhHgp0&feature=related

  • This figure, based on the data in the 1943 mouse studies of Rene Dubos, provides

    significant insight into why phage therapy works well even in treating infections that

    antibiotics can't reach. When he injected the mice intraperitoneally with 109 phages, they

    quickly appeared in the blood stream, entering the brain, but they were rapidly cleared.

    However, if the mice were also injected intracerebrally with Shigella dysenteriae,

    the host for these phages, then 46/64 of the mice survived (as compared with 3/84

    in the absence of appropriate viable phage) and the brain level of phage climbed to over

    109 per gram. Once the bacteria were cleared, phage levels dropped below detection

    limits.

    Bacteriophage. 2011 Mar-

    Apr; 1(2): 66–85.

    doi: 10.4161/bact.1.2.15845

    http://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=An external file that holds a picture, illustration, etc.Object name is bact0102_0066_fig001.jpg [Object name is bact0102_0066_fig001.jpg]&p=PMC3&id=3278644_bact0102_0066_fig001.jpg

  • An electron micrograph of bacteriophages

    attached to a bacterial cell. These viruses

    are the size and shape of coliphage T1

    The direct human use of phages is likely to

    be very safe; suggestively, in August

    2006, the United States Food and Drug

    Administration approved spraying meat

    with phages. The approval was for

    ListShield (a phage preparation targeted

    against Listeria monocytogenes) created

    by Intralytix. This was the first approval

    granted by the FDA and UDSA for a

    phage-based food additive.

    There are no non-toxic antibiotics to treat

    some bacteria such as multiple-resistant

    Klebsiella pneumoniae, but killing of the

    bacteria via intraperitoneal, intravenous

    or intranasal of phages in vivo has been

    shown to work in laboratory tests.

    Enzobiotics are a new development at

    Rockefeller University that create enzymes

    from phage.

  • The first controlled clinical trial of a therapeutic bacteriophage preparation

    showed efficacy and safety in chronic otitis because of chemo-resistant P.

    aeruginosa.

    Phage therapy is flawed for a number of reasons:

    1. Bacteria can and frequently do become resistant to phage.

    2. Phage are usually species and sometimes strain specific. In a clinicial setting,

    infections can be of mixed species and finding out the infecting species, let alone the

    strain, takes time.

    3.Phage can generate an antibody response, which has the potential render them

    useless.

    4.Phage can shuttle genes encoding antibiotic resistance and virulence factors

    from one bacteria to another.

  • 4/24/2012

    67

  • Fagu Bam35 infekuotų B. thuringiensis ląstelių lizės

    eigos priklausomybė nuo suspensijops aeracijos

    intensyvumo

  • Ačiū už dėmesį!