anton v. chizhov ioffe physico-technical institute of ras, st.-petersburg lab. of neurophysics and...

53
Anton V. Chizhov Ioffe Physico-Technical Institute of RAS, St.-Petersburg Lab. of Neurophysics and Physiology, Université Rene Descartes, Paris Single cell level Populations Large-scale simulations (NMM & FR-models for EEG & MRI) Rough definitions: Population is a great number of similar neurons receiving similar input Population activity (=population firing rate) is the number of spikes per unit time per total number of neurons Refractory Density model for a population of conductance-based neurons

Upload: corey-clarke

Post on 29-Jan-2016

223 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Anton V. Chizhov Ioffe Physico-Technical Institute of RAS, St.-Petersburg Lab. of Neurophysics and Physiology, Université Rene Descartes, Paris Single

Anton V. Chizhov

Ioffe Physico-Technical Institute of RAS,St.-Petersburg

Lab. of Neurophysics and Physiology, Université Rene Descartes, Paris

Single cell level

Populations

Large-scale simulations(NMM & FR-models

for EEG & MRI)

Rough definitions:

Population is a great number of similar neurons receiving similar input

Population activity (=population firing rate) is the number of spikes per unit time per total number of neurons

Refractory Density model for a population of

conductance-based neurons

Page 2: Anton V. Chizhov Ioffe Physico-Technical Institute of RAS, St.-Petersburg Lab. of Neurophysics and Physiology, Université Rene Descartes, Paris Single

Overview

• Experimental evidences of population firing rate coding

• Conductance-based neuron model

• Probability Density Approach (PDA)

• Conductance-Based Refractory Density approach (CBRD)

- threshold neuron- t*-parameterization - Hazard-function for white noise- Hazard-function for colored noise

• Simulations of coupled populations

• Firing-Rate model

• Hierarchy of visual cortex models

Page 3: Anton V. Chizhov Ioffe Physico-Technical Institute of RAS, St.-Petersburg Lab. of Neurophysics and Physiology, Université Rene Descartes, Paris Single

Experimental evidences of population firing rate coding

Page 4: Anton V. Chizhov Ioffe Physico-Technical Institute of RAS, St.-Petersburg Lab. of Neurophysics and Physiology, Université Rene Descartes, Paris Single

[E.Aksay, R.Baker, H.S.Seung, D.W.Tank \\

J.Neurophysiol. 84:1035-1049, 2000] Activity of a position neuron during spontaneous saccades and fixations in the dark. A: horizontal eye position (top 2 traces), extracellular recording (middle), and firing rate (bottom) of an area I position neuron during a scanning pattern of horizontal eye movements.

[R.M.Bruno, B.Sakmann // Science 312:1622-1627, 2006] Population PSTH of thalamic neurons’ responses to a 2-Hz sinusoidal deflection of their respective principal whiskers (n = 40 cells).

Commonly information is coded by firing rate

Page 5: Anton V. Chizhov Ioffe Physico-Technical Institute of RAS, St.-Petersburg Lab. of Neurophysics and Physiology, Université Rene Descartes, Paris Single

Whole-cell (WC) recording of a layer 2/3 neuron of the C2 cortical barrel column was performed simultaneously with measurement of VSD fluorescence under conventional optics in a urethane anesthetized mouse.

Commonly populations are localized in cortical space

Page 6: Anton V. Chizhov Ioffe Physico-Technical Institute of RAS, St.-Petersburg Lab. of Neurophysics and Physiology, Université Rene Descartes, Paris Single

Voltage-sensitive Dye Optical Imaging

[W.Tsau, L.Guan, J.-Y.Wu, 1999]

Pure population events observed in experiments:

• Evoked responses

• Oscillations

•Traveling waves

Page 7: Anton V. Chizhov Ioffe Physico-Technical Institute of RAS, St.-Petersburg Lab. of Neurophysics and Physiology, Université Rene Descartes, Paris Single

GABA-IPSC AMPA-EPSCAMPA-EPSC

AMPA-EPSP

AMPA-EPSP

GABA-IPSP

GABA-IPSC

GABA-IPSPPSP

PSP

Firing rateFiring rate

SpikeSpike

Threshold criterium

Population model

Synaptic conductance kinetics

What happens in the populations?

Membraneequations

Eq. for spatial connections

Page 8: Anton V. Chizhov Ioffe Physico-Technical Institute of RAS, St.-Petersburg Lab. of Neurophysics and Physiology, Université Rene Descartes, Paris Single

Conductance-based neuron

uVVstVIS )(),( 0

)()()()( 0 tIVVtgtu electrodeS

SS S

S tgts )()(

)(

)(

V

hVh

dt

dh

h

)(

)(

V

mVm

dt

dm

m

)(

)(

V

nVn

dt

dn

n

2

2

x

Vk

[Hodgkin, Huxley, 1952]

EXPERIMENT

Voltage-gated channels kinetics:

),())(())()(,(

))()(,(),()(

4

3

tVIVtVgVtVtVng

VtVtVhtVmgdt

tdVC

SLLKK

NaNa

M O D E L)())(()(),( tIVtVtgtVI electrodeS

SSS

Property: Neuron is controlled by two signals [Pokrovskiy, 1978]

Page 9: Anton V. Chizhov Ioffe Physico-Technical Institute of RAS, St.-Petersburg Lab. of Neurophysics and Physiology, Université Rene Descartes, Paris Single

C

Vd

Vd

Vd

Vd

Vs

Vs

Is

Is

g=Id/(Vd-Vrev)

B

2-compartmental neuron with somatically registered synaptic currents

dd

ms

drest

dd

m

s

Sd

restm

It

IG

VVVVdt

dV

GI

VVVVdtdV

31

))(2()(

)()(

Figure Transient activation of somatic and delayed activation of dendritic inhibitory conductances in experiment (solid lines) and in the model (small circles). A, Experimental configuration.B, Responses to alveus stimulation without (left) and with (right) somatic V-clamp. C, In a different cell, responses to dynamic current injection in the dendrite; conductance time course (g) in green, 5-nS peak amplitude, Vrev=-85 mV.

A

[F.Pouille, M.Scanziani //Nature, 2004]

X=0 X=L

Vd

V0

Parameters of the model:m= 33 ms, = 3.5, Gs= 6 nS in B and 2.4 nS in C

Two boundary problems:A) current-clamp to register PSP:

B) voltage-clamp to register PSC:

;0

TV

VGRXV

sX

)(TIRXV

SLX

02

2

VXV

TV

;0)0,( TV

Solution:[A.V.Chizhov // Biophysics 2004]

Page 10: Anton V. Chizhov Ioffe Physico-Technical Institute of RAS, St.-Petersburg Lab. of Neurophysics and Physiology, Université Rene Descartes, Paris Single

1 mm

Model. Response of 4 pinwheels to horizontal and then vertical oriented stimuli.

Experimental map of orientationally selective columns.

Page 11: Anton V. Chizhov Ioffe Physico-Technical Institute of RAS, St.-Petersburg Lab. of Neurophysics and Physiology, Université Rene Descartes, Paris Single

Population models

Page 12: Anton V. Chizhov Ioffe Physico-Technical Institute of RAS, St.-Petersburg Lab. of Neurophysics and Physiology, Université Rene Descartes, Paris Single

Population models

• Definition

A population is a set of similar neurons receiving a common input and dispersed due to noise and intrinsic parameter distribution.

• Common assumptions of population models:– Input – synaptic current (+conductance)– Infinite number of neurons– Output – population firing rate

• Types of population models:

1. Direct Monte-Carlo simulation of individual neurons

2. Firing-Rate models. Assumption. Neurons are de-synchronized.

3. Probability Density Approach (PDA)

)(I

N

tttn

tt act

Nt

);(1limlim)(

0

)(Uor

(4000)

Page 13: Anton V. Chizhov Ioffe Physico-Technical Institute of RAS, St.-Petersburg Lab. of Neurophysics and Physiology, Université Rene Descartes, Paris Single

where the matrix represents the influence of noise

Problem! The equation is multi-dimensional.

Particular cases are - membrane potential

- time passed since the last spike

- time till the next spike

Idea of Probability Density Approach (PDA)

For classical H-H:

[A.Turbin 2003]X

SXFdt

Xd

)(

),( tX

Single neuron equation (e.g. H-H model)

XW

XXF

Xt

)(

S

W�

),,,( nhmVX

F

where is the common deterministic part,

is the noisy term.S

Eq. for neural density

*tX

VX

[B.Knight 1972]

[A.Omurtag et al. 2000][D.Nykamp, D.Tranchina 2000][N.Brunel, V.Hakim 1999], …

[J.Eggert, JL.Hemmen 2001][А.Чижов, А.Турбин 2003]

Page 14: Anton V. Chizhov Ioffe Physico-Technical Institute of RAS, St.-Petersburg Lab. of Neurophysics and Physiology, Université Rene Descartes, Paris Single

• Kolmogorov-Fokker-Planck eq. for ρ(t,V)Leaky Integrate-and-Fire (LIF) neuron:

• Refractory density ρ(t,t*) for SRM - neurons

Spike Response Model (SRM):

)'()'()(,0)(

),()(

2 ttttt

VVthenVVif

ttRIVdtdV

m

resetT

m

)(2

)(2

22

resetm VVV

RIVVt

Htt

0

**),()()0,( dttttt

*

0

*** ''',,t

dttIttktttU

)*),,(( TVttUHH

[W.Gerstner, W.Kistler, 2002]

TVVVt

2)(

2

VTVreset

ρ

Hz

0

ν

Hz

0 t

Problem! Voltage can not uniquely characterize neuron’s state.

Simplest 1-d PDAs

Page 15: Anton V. Chizhov Ioffe Physico-Technical Institute of RAS, St.-Petersburg Lab. of Neurophysics and Physiology, Université Rene Descartes, Paris Single

1-D Refractory Density

Approach for conductance-

based neurons (CBRD)

1. Threshold single-neuron model

2. Refractory density approach (t* - parameterization)

3. Hazard-function

Htt

iAHPLHMADR IIIIIIIt

U

t

UC

*

)(

)(

,)(

)(

*

*

U

yUy

t

y

t

y

U

xUx

t

x

t

x

y

x

t* is the time since the last spike;

[A.V.Chizhov, L.J.Graham // Phys. Rev. E 2007, 2008]

H(U) = ‘frozen stationary’ + ‘self-similar’ solutions of Kolmogorov-Fokker-Planck eq. for I&F neuron with white or color noise-current

Page 16: Anton V. Chizhov Ioffe Physico-Technical Institute of RAS, St.-Petersburg Lab. of Neurophysics and Physiology, Université Rene Descartes, Paris Single

Approximations for are taken from [L.Graham, 1999]; IAHP is from [N.Kopell et al., 2000]

1. Threshold neuron model

iAHPLHMADRNa IIIIIIIIdt

dVC

HMADRNa IIIII ,,,,

iAHPLHMADR IIIIIIIdt

dUC

Full single neuron model

Threshold model

).1(018.0,:

);1(18.0,:

;002.0:

;691.0,743.0:

;473.0,262.0:

40

wwwwwIfor

xxxxxIfor

yyIfor

yyxxIfor

yyxxIfor

mVUUthenVUif

resetresetAHP

resetresetM

resetH

resetresetA

resetresetDR

resetT

)(

)(,

)(

)(

U

yUy

dt

dy

U

xUx

dt

dx

yx

NaI

Page 17: Anton V. Chizhov Ioffe Physico-Technical Institute of RAS, St.-Petersburg Lab. of Neurophysics and Physiology, Université Rene Descartes, Paris Single
Page 18: Anton V. Chizhov Ioffe Physico-Technical Institute of RAS, St.-Petersburg Lab. of Neurophysics and Physiology, Université Rene Descartes, Paris Single

2. Refractory density approach (t* - parameterization)

Htt

iAHPLHMADR IIIIIIIt

U

t

UC

*

)(

)(

,)(

)(

*

*

U

yUy

t

y

t

y

U

xUx

t

x

t

x

y

x

Boundary conditions:

-- firing rate)()0,(0

tdtFt

)(1)exp(2

)(~,),(~2-)(

)),(),(),(),(),(/(

),()(1)(

2

m

*****

TerfT

TFUU

TTFdtdT

UB

ttggttgttgttgttgC

dtdUUBUAUH

T

AHPLHMADRm

m

).),((),(:

;),()0,(

;),()0,(

;,,)0,(,)0,(

)0,(

***

*

*

dtttdUUttUt

Iforwttwtw

Iforxttxtx

IIIforytyxtx

UtU

TTTT

AHPresetT

MresetT

HADRresetreset

reset

),(),,(),,(),,( **** ttyyttxxttUUtt

-- Hazard function

AHPHMADR IIIIIfor

VUyxgI

,,,,

)( .........

**

*

tttdt

dt

tdt

d

t* is the time since the last spike;

). 0.0117 0.072 0.257 1.1210(6.1exp=)( 4323 TTTTUA

Page 19: Anton V. Chizhov Ioffe Physico-Technical Institute of RAS, St.-Petersburg Lab. of Neurophysics and Physiology, Université Rene Descartes, Paris Single

CBRD: Hazard-function

Page 20: Anton V. Chizhov Ioffe Physico-Technical Institute of RAS, St.-Petersburg Lab. of Neurophysics and Physiology, Université Rene Descartes, Paris Single

A – solution in case of steady stimulation (self-similar);B – solution in case of abrupt excitation

0~

2~))((

~ 2

VVtU

Vtm

Single LIF neuron - Langevin equation

spikethenUVif T

)()( ttUVdt

dVm

0)( t)'()'()( 2 tttt m

Fokker-Planck equation

0),(~ TUt

0),(~ t

22)(exp1

),0(~

UVV

))()((ˆ)( tUtVtu

))((ˆ)( tUUtT T

0~

2

1~~

uu

utm

0))(,(~ tTt

0),(~ t

2exp1

),0(~ uu

3. Hazard-function in the case of white noise-current (First-time passage problem)

Approximation:

)(

~

21

/)(~)(tTum

m utHtH

TUVm VtH

~

2)(

2

Page 21: Anton V. Chizhov Ioffe Physico-Technical Institute of RAS, St.-Petersburg Lab. of Neurophysics and Physiology, Université Rene Descartes, Paris Single

Self-similar solution (T=const)

shapeutpamplitudet ),(,)(

),()(),(~ utptut

)(),(~)(

tTduuttwhere

ptHup

puut

pm

)(~21

Tuup

tHwhere

21

)(~0),( Ttp

0),( tp

Assumption.

2exp1

),0( uup

U(t)=const (or T(t)=const). Notation: Then the shape of , which is , is invariable. ~ ),( utp

ptAu

ppu

u

)(2

1

Tuu

ptAwhere

2

1)(

0),( Ttp

0),( tp

)(TAdt

dm

),(~= tHdtd

m

HA ~

Equivalent formulation:

Page 22: Anton V. Chizhov Ioffe Physico-Technical Institute of RAS, St.-Petersburg Lab. of Neurophysics and Physiology, Université Rene Descartes, Paris Single

Frozen Gaussian distribution (dT/dt = ∞)

)(),(~)(

tTduuttwhere

T(t) decreases fast.The initial Gaussian distribution remains almost unchanged except cutting at u=T.The hazard function in this case is H=B(T,dT/dt).

Assumption.

dt

dT

dT

d

dt

dB mm

For the simplicity, we consider the case of arbitrary but monotonically increasing T(t) and the Gaussian distribution

otherwise

tTtuifuut

,0

)()(,exp1

),(~2

)(~

2 TFdt

dT

dt

dT

dT

dB m

m

or

)erf(1

)exp(2)(

~ 2

T

TTFwhere

[x]+ for x>0 and zero otherwise

Bdt

dm

U(t) UT

Page 23: Anton V. Chizhov Ioffe Physico-Technical Institute of RAS, St.-Petersburg Lab. of Neurophysics and Physiology, Université Rene Descartes, Paris Single

)(

~

2

tTum uH

0~

2

1~~

uu

utm

Approximation of hazard function in arbitrary case

tt )(

Weak stimulus Strong stimulus

0))(,(~ tTt0),(~ t

2exp1

),0(~ uu

Approximation:

))((ˆ)( tUUtTгде T

A – solution in case of steady stimulation (self-similar);B – solution in case of abrupt excitation

Approximation of H by A is green, by B is blue, by A+B is red, exact solution is black.

Page 24: Anton V. Chizhov Ioffe Physico-Technical Institute of RAS, St.-Petersburg Lab. of Neurophysics and Physiology, Université Rene Descartes, Paris Single

Verification of CBRD

Page 25: Anton V. Chizhov Ioffe Physico-Technical Institute of RAS, St.-Petersburg Lab. of Neurophysics and Physiology, Université Rene Descartes, Paris Single

Comparison with Monte-Carlo simulations

Non-adaptive neurons

(4000)

Page 26: Anton V. Chizhov Ioffe Physico-Technical Institute of RAS, St.-Petersburg Lab. of Neurophysics and Physiology, Université Rene Descartes, Paris Single

with IM

Oscillatory input

Page 27: Anton V. Chizhov Ioffe Physico-Technical Institute of RAS, St.-Petersburg Lab. of Neurophysics and Physiology, Université Rene Descartes, Paris Single

Cравнение c аналитическим стационарным решением

[Johannesma 1968]

Page 28: Anton V. Chizhov Ioffe Physico-Technical Institute of RAS, St.-Petersburg Lab. of Neurophysics and Physiology, Université Rene Descartes, Paris Single

with IM and IAHP

),)(()()(

),()()(

SSS

Sexti

VtUtgtI

tItItI

)(2

mS/cm 1

mV, 5

ms, 1

ms, 5.4

150

2

S

restatmV

g

V

pAI

V

S

S

ext

)0,()()(

2)(

2

22 tgtg

dt

tdg

dt

tgdSS

SS

SS

[S.Karnup, A.Stelzer 2001]

Experiment

Recurrent network of pyramidal cells, including all-to-all connectivity by excitatory synapses

Page 29: Anton V. Chizhov Ioffe Physico-Technical Institute of RAS, St.-Petersburg Lab. of Neurophysics and Physiology, Université Rene Descartes, Paris Single

Recurrent network of interneurons, including all-to-all connectivity by inhibitory synapses

),)(()()(

),()()(

SSS

Sexti

VtUtgtI

tItItI

)0,()(

)()()(

2)(

*

2

22

tttapproachdensityfor

tgtgdt

tdg

dt

tgddSS

SS

SS

2

S

d

S

7mS/cm

-80mV,V

1ms,

1ms,

3ms,

Sg

Page 30: Anton V. Chizhov Ioffe Physico-Technical Institute of RAS, St.-Petersburg Lab. of Neurophysics and Physiology, Université Rene Descartes, Paris Single

CBRD: again Hazard-function

Page 31: Anton V. Chizhov Ioffe Physico-Technical Institute of RAS, St.-Petersburg Lab. of Neurophysics and Physiology, Université Rene Descartes, Paris Single

Langevin equation

TUV

),( tUIdt

dUC tot

/))(,()(~,/)(,/))(,(

)(2

)(~),(),(

UUtUgtT

tqUVtUguгде

tqdtdq

tTutqudtdu

tU

Ttot

tot

m

)(2 tdtd

0)( t)'()'()( tttt

0~1~~

~2

2

qq

qqu

ut m

Fokker-Planck eq.

0)~,~,(~),,(~),,(~),,(~

TqTutqut

qutqut

ququk

kk

kk

qut 2)1(2

1exp

21

),,0(~ 22

3. Hazard-function in the case of colored noise

)(),( ttVIdtdV

C tot

Without noise: TUU

With noise:

or

or

shapeutpamplitudet ),(,)(),,()(),,(~ qutptqut 1),,(

)(

tTduqutpdqwhere

ptHqp

qpq

kpquut

pm )(~)( 2

2

dqqTtpTqtUHwhereT

),~,( )~())((~~

. ),,(~=)(

~

dudqquttT

)/,(),( tUtUk m, ),~,(~ )~(

1))((~

~dqqTtTqtUH

T

0))(~),(~,(),,(

),,(),,(

tTqtTutpqutp

qutpqutp

),(~= tHdtd

m

Page 32: Anton V. Chizhov Ioffe Physico-Technical Institute of RAS, St.-Petersburg Lab. of Neurophysics and Physiology, Université Rene Descartes, Paris Single

Self-similar solution (T=const)

Assumption. U(t) (or T(t)) is constant or slow. Then the shape of , which is , is invariable. ~ ),,( qutp

0)( 2

2

pAqp

qpq

kpquu 0)~,~,(),,(

),,(),,(

TqTutpqutp

qutpqutp

dqqTtpTqAwhereT

),~,( )~(~

u

q

)T0.0117 -T0.072 -T0.257 - T1.12-exp(0.0061 (T)A 432

21~ k

TT

Page 33: Anton V. Chizhov Ioffe Physico-Technical Institute of RAS, St.-Petersburg Lab. of Neurophysics and Physiology, Université Rene Descartes, Paris Single

Approximation of H by A is green, by B is blue,by A+B is red, exact solution is black.

Hazard function in arbitrary case

tt )(

K=1:

K=8:

Weak stimulus

Weak stimulus

Strong stimulus

Strong stimulus

Page 34: Anton V. Chizhov Ioffe Physico-Technical Institute of RAS, St.-Petersburg Lab. of Neurophysics and Physiology, Université Rene Descartes, Paris Single

Results: comparison with individual neuron simulation in case of step input

LIF

Adaptive conductance-based neuron

Page 35: Anton V. Chizhov Ioffe Physico-Technical Institute of RAS, St.-Petersburg Lab. of Neurophysics and Physiology, Université Rene Descartes, Paris Single

Results: stationary solution

Firing rate depends on the noise time constant.

1'

00 )/(

)(exp=

uduadu

uauHu ma

m

)(/= LT

La VUgIa

dots – Monte-Carlosolid – eq.(*)dash – adiabatic approach [Moreno-Bote, Parga 2004]

(*)

Page 36: Anton V. Chizhov Ioffe Physico-Technical Institute of RAS, St.-Petersburg Lab. of Neurophysics and Physiology, Université Rene Descartes, Paris Single

Application of CBRD: coupled populations

Page 37: Anton V. Chizhov Ioffe Physico-Technical Institute of RAS, St.-Petersburg Lab. of Neurophysics and Physiology, Université Rene Descartes, Paris Single

Excitatory synaptic current:

- maximum specific conductance,

- non-dimensional conductance

- reversal potential

Inhibitory synaptic current:

Non-dimensional synaptic conductances:

where

- rise and decay time constants - firing rate on j-type axonal terminals

NMDAGABAAMPAj

jjjd

jrj

jdj

rj Sm

dt

dm

dt

md

,,

2

2

),()(

)()()( NMDANMDANMDANMDANMDA VVVftmgi

)()( AMPAAMPAAMPAAMPA

NMDAAMPAE

VVtmgi

iii

))062.0exp(57.3/1/(1)( VMgVf NMDA

jg

jm

jV

)()( GABAGABAGABAI VVtmgi

1))2exp(1(2)(S jj dj

rj ,

s 1

)(tj

Pyramidal neurons

Interneurons

Approximations of synaptic currents

Page 38: Anton V. Chizhov Ioffe Physico-Technical Institute of RAS, St.-Petersburg Lab. of Neurophysics and Physiology, Université Rene Descartes, Paris Single

OscillationsModel ExperimentsControl (“Kainate”) +“Bicuculline”

Spikes in single neurons

Conductances

Power Spectrum of Extracellular Potentials

Spike timing of pyramidal and inhibitory cells.

[Khazipov, Holmes, 2003] Kainate-induced oscillations in CA3.

[A.Fisahn et al., 1998] Cholinergically induced oscillations in CA3

[N.Hajos, J.Palhalmi, E.O.Mann, B.Nemeth, O.Paulsen, and T.F.Freund. J.Neuroscience, 24(41):9127–9137, 2004]

conbic

All the simulations were done with a single set of parameters. All the parameters except synaptic maximum conductances have been obtained by fitting to experimental registration of elementary events such as patch-electrode current-induced traces, spike trains and monosynaptic responses .

The model reproduces the following characteristics of gamma-oscillations :

frequency of population spikes

a single pyramidal cell does not fire every cycle

every interneuron fires every cycle

amplitude of EPSC is less than that of IPSC

blockage of GABA-A receptors reduces the frequency

peak of pyramidal cell’s firing frequency corresponds to the descending phase of EPSC and the ascending phase of IPSC

firing of interneurons follows the firing of pyramidal cells

gamma-oscillations are homogeneous in space along the cortical surface (data not shown)

Page 39: Anton V. Chizhov Ioffe Physico-Technical Institute of RAS, St.-Petersburg Lab. of Neurophysics and Physiology, Université Rene Descartes, Paris Single

Spatial connections

22 )()(),,,( YyXxYXyxd

- firing rate on presynaptic terminals; - firing rate on somas.

Assumption: distances from soma to synapses have exponentially decreasing distribution p(x) [B.Hellwig 2000].

[V.Jirsa, G.Haken 1996][P.Nunez 1995] [J.Wright, P.Robinson 1995]

),,(2 22

2

2

222

2

2

yxttyx

ctt

),,( yxt),,( yxt

where γ = c/λ; c – the average velocity of spike propagation along the cortex surface by axons; λ – characteristic axon length. [D.Contreras, R.Llinas 2001]

Experiment:

, ),,,(),,/),,,((=),,( dYdXYXyxWYXcYXyxdtyxt iij

),,,(

),,,(YXyxd

eYXyxW

Page 40: Anton V. Chizhov Ioffe Physico-Technical Institute of RAS, St.-Petersburg Lab. of Neurophysics and Physiology, Université Rene Descartes, Paris Single

PSPs and PSCs evoked by extracellular stimulation and registered

at 3.5cm away, w/ and w/o kainate.

[S.Karnup, A.Stelzer 1999] Effects of GABA-A receptor blockade on orthodromic potentials in CA1 pyramidal cells. Superimposed responses in a pyramidal cell soma before and after application of picrotoxin (PTX, 100 muM). Control and PTX recordings were obtained at V rest (-64 mV; 150 muA stimulation intensities; 1 mm distance between stratum radiatum stimulation site and perpendicular line through stratum pyramidale recording site). The recordings were carried out in ‘minislices’ in which the CA3 region was cut off by dissection.

[V.Crepel, R.Khazipov, Y.Ben-Ari, 1997] In normal concentrations of Mg and in the absence of CNQX, block of GABA-A receptors induced a late synaptic response.

BA

C

[B.Mlinar, A.M.Pugliese, R.Corradetti 2001] Components of complex synaptic responses evoked in CA1 pyramidal neurones in the presence of GABAA receptor block.

The model reproduces postsynaptic currents and postsynaptic potentials registered on somas of pyramidal cells, namely:

monosynaptic EPSCs and EPSPs

disynaptic IPSC/Ps followed be EPSC/Ps

polysynaptic EPSC/Ps

reduction of delays in polysynaptic EPSCs

decay of excitation after II component of poly-EPSCs in presence of GABA-A receptor block.

The model predicts that the evoked responses are essentially non-homogeneous in space:

Spatial profiles of membrane potential and firing rate in pyramids.

Evoked responsesModel Experiments

Page 41: Anton V. Chizhov Ioffe Physico-Technical Institute of RAS, St.-Petersburg Lab. of Neurophysics and Physiology, Université Rene Descartes, Paris Single

WavesIn the case of reduced GABA-reversal potential VGABA= -50mV and stimulation by extracellular electrode we obtain a traveling wave of stable amplitude and velocity 0.15 m/s. The velocity is much less than the axon propagation velocity (1m/s) and is determined mostly by synaptic interactions.

B

Fig.5. Wave propagating from the site of extracellular stimulation at right border of the “slice”. A, Evoked responses of pyramidal cells and interneurons at the site of stimulation. B, Profiles of mean voltage and firing rate in pyramidal cells and interneurons at the time 200 ms after the stimulus.

A

[Leinekugel et al. 1998]. Spontaneous GDPs propagate synchronously in both hippocampi from septal to temporal poles. Multiple extracellular field recordings from the CA3 region of the intact bilateral septohippocampal complex. Simultaneous extracellular field recordings at the four recording sites indicated in the scheme. Corresponding electrophysiological traces (1–4) showing propagation of a GDP at a large time scale.

[D.Golomb, Y.Amitai, 1997]Propagation of discharges in disinhibited neocortical slices.

Model Experiments

Waves with unchanging chape and velocity are observed in cortical tissue in disinhibiting or overexciting conditions. The waves are produced by complex interaction of pyramidal cells and interneurons. That is confirmed by much lower speed of the wave propagation comparing with the axon propagation velocity which is the coefficient in the wave-like equation.Analysis of wave solutions and more detailed comparison with experiments are expected in future.

Page 42: Anton V. Chizhov Ioffe Physico-Technical Institute of RAS, St.-Petersburg Lab. of Neurophysics and Physiology, Université Rene Descartes, Paris Single

From CBRD to Firing-Rate model

Page 43: Anton V. Chizhov Ioffe Physico-Technical Institute of RAS, St.-Petersburg Lab. of Neurophysics and Physiology, Université Rene Descartes, Paris Single

IVUggdt

dUC LSL ))((

)(;)(

exp1

-)(

(steady) ;)(1)(

/

),()()(

2

2

m

1/)(

/)(

2

suddenUV

dt

dUUB

duuerfeUA

gC

dtdUUBUAt

T

UV

UV

um

Lm

T

reset

Hazard-function:-- firing rate

Oscillating input

Firing-rate model

[Chizhov, Rodrigues, Terry // Phys.Lett.A, 2007 ]

)(;)(

exp1

-)(

(steady) ;)(1)(

/

),()()(

2

2

m

1/)(

/)(

2

suddenUV

dt

dUUB

duuerfeUA

gC

dtdUUBUAt

T

UV

UV

um

Lm

T

reset

Hazard-function:-- firing rate

Oscillating input

[Чижов, Бучин // Нейроинформатика-2009 ]

IVUtwgVUtngVUggdt

dUC AHPAHPMMLSL ))(())(())(( 2

)()/1,/1(

)1()(

0101

2

201 tv

K

www

dt

dw

dt

wd

AHPAHPAHPAHPAHPAHP

)()/1,/1(

)1()(

0101

2

201 tv

K

nnn

dt

dn

dt

nd

MMMMMM

Not-adaptive neurons Adaptive neurons

Page 44: Anton V. Chizhov Ioffe Physico-Technical Institute of RAS, St.-Petersburg Lab. of Neurophysics and Physiology, Université Rene Descartes, Paris Single

Рис. 12. Схема активности популяции FS (fast spiking) нейронов, возбуждаемых внешним стимулом νext(t), приходящим из таламуса. Обозначения: ν(t) – популяционная частота спайков FS нейронов, gE(t), gI(t) – проводимости возбуждающих и тормозящих синапсов.

FS

νext

ν gI

gE

Эксперимент

Модель

Рис. 13. Постсинаптический (моносинаптический) ток в FS-нейроне при слабой таламической стимуляции током 30 μA и потенциале фиксации ‑88 mV в эксперименте (вверху) (adapted by permission from Macmillan Publishers Ltd: (Cruikshank et al., 2007), copyright 2007) и в модели (внизу).

Рис. 14. Ответы FS-нейронов на таламическую стимуляцию током 120 μA в эксперименте (слева) (adapted by permission from Macmillan Publishers Ltd: (Cruikshank et al., 2007), © 2007) и в модели (справа). A, B - постсинаптические токи при потенциале фиксации -88, -62, и -35 mV; C, D - синаптические проводимости; E, F – постсинаптические потенциалы U и модельная популяционная частота ν.

))(()()( EEE VtVtgti

)()( 212

2

21 tggdt

dgdt

gd extEE

EEEEEE

),()()( titiVUgdt

dUC IELL

),()()( UBUAt

;)(1)(

-12/)(

2/)(

2

VT

Vreset

UV

UV

um duuerfeUA

2

2

2)(

exp2

1)(

V

T

V

UVdt

dUUB

))(()()( III VtVtgti

)()( 212

2

21 tggdt

dgdt

gdII

IIIIII

Simple model of interacting cortical interneurons, evoked by thalamus

Синаптические токи и проводимости:

Мембранный потенциал:

Популяционная частота спайков:

Page 45: Anton V. Chizhov Ioffe Physico-Technical Institute of RAS, St.-Petersburg Lab. of Neurophysics and Physiology, Université Rene Descartes, Paris Single

Visual cortex

Page 46: Anton V. Chizhov Ioffe Physico-Technical Institute of RAS, St.-Petersburg Lab. of Neurophysics and Physiology, Université Rene Descartes, Paris Single

Model. Response of 4 pinwheels to horizontal and then vertical oriented stimuli.

Experimental map of orientationally selective columns.

1 mm

Preferred direction Null direction

V

GE

GI

Page 47: Anton V. Chizhov Ioffe Physico-Technical Institute of RAS, St.-Petersburg Lab. of Neurophysics and Physiology, Université Rene Descartes, Paris Single

Refractory Density Approach (RDA)-based ring model for

HH-neurons with synaptic kinetics

RDA-based ring model for

LIF-neurons with synaptic kinetics

Kolmogorov-Fokker-Planck (KFP)-based ring model for

LIF-neurons with synaptic kinetics

2-D distributedRefractory Density Approach (RDA)-based model

for Hodgkin-Huxley (HH)-neurons with synaptic kinetics

KFP-based ring model for

LIF-neurons with instantaneous synaptic currents

Firing-Rate (FR)-based ring model with

instantaneous synaptic currents

=

Hierarchy of visual cortex models

Page 48: Anton V. Chizhov Ioffe Physico-Technical Institute of RAS, St.-Petersburg Lab. of Neurophysics and Physiology, Université Rene Descartes, Paris Single

2-d RD model

FR-shunt ring model

KFP-shunt ring model

RD-cos ring modelRD-exp ring model

Paremeters:FR ring model

Page 49: Anton V. Chizhov Ioffe Physico-Technical Institute of RAS, St.-Petersburg Lab. of Neurophysics and Physiology, Université Rene Descartes, Paris Single

Visual illusion (tilt after-effect)

Explanation:

Model

Page 50: Anton V. Chizhov Ioffe Physico-Technical Institute of RAS, St.-Petersburg Lab. of Neurophysics and Physiology, Université Rene Descartes, Paris Single

Conclusion

Page 51: Anton V. Chizhov Ioffe Physico-Technical Institute of RAS, St.-Petersburg Lab. of Neurophysics and Physiology, Université Rene Descartes, Paris Single

Single cell level

Populations

Htt

iAHPLHMADR IIIIIIIt

U

t

UC

*

)(

)(

,)(

)(

*

*

U

yUy

t

y

t

y

U

xUx

t

x

t

x

y

x

)()0,(0

tdtFt

AHPHMADR IIIIIfor

VUyxgI

,,,,

)( .........

t* is the time since the last spike

CBRD

Large-scale simulations(NMM & FR-models

for EEG & MRI)

Page 52: Anton V. Chizhov Ioffe Physico-Technical Institute of RAS, St.-Petersburg Lab. of Neurophysics and Physiology, Université Rene Descartes, Paris Single

Monte-Carlo simulations:

conventionalFiring-Rate model:

CBRD:

Nttn

tt

спайкиVVVV

tVVggItV

C

КарлоМонтеМетод

act

resetT

ILSL

)(1)(

т , если

)())((

:

0

*)0,()(

))/,()((1

*)),((

))((*

*

:

dtHttv

dtdUUBUAttUH

VUggItU

tU

C

Htt

модельRD

m

LSL

)/,()()(

))((

:FR

dtdUUBUAt

VUggIdt

dUC

модель

LSL

Mathematical complexity:104 ODEs 1 ODE a few ODEs 1-d PDEs

Precision: 4 2 3 5Precision for non-stationary problems:

5 2 4 5Precision for adaptive neurons :

5 1 3 4Computational efficiency:

3 5 5 4Mathematical analyzability:

1 5 4 4

)/,()()(

)()()(

2)(

)()())((

:

2

22

dtdUUBUAt

tvgtgdt

tgddt

tgd

IIVVggItV

C

модельFR

SSS

SS

S

AHPMLSL

modified Firing-Rate model (non-stationary and adaptive):

Page 53: Anton V. Chizhov Ioffe Physico-Technical Institute of RAS, St.-Petersburg Lab. of Neurophysics and Physiology, Université Rene Descartes, Paris Single

Colleagues:

Lyle Graham

Adrien Schramm

Anatoliy Buchin

Elena Smirnova

Andrey Turbin