anu mehra ppt - 2

27
gital Integrated Circuits 2nd Inverter Low Power VLSI Low Power VLSI Design Design The Inverter The Inverter Dr Anu Mehra

Upload: varun-bansal

Post on 21-Jun-2015

805 views

Category:

Education


2 download

DESCRIPTION

Anu Mehra ppt - 2

TRANSCRIPT

Page 1: Anu Mehra ppt - 2

© Digital Integrated Circuits2nd Inverter

Low Power VLSI Low Power VLSI DesignDesign

The InverterThe Inverter

Dr Anu Mehra

Page 2: Anu Mehra ppt - 2

© Digital Integrated Circuits2nd Inverter

The CMOS Inverter: A First GlanceThe CMOS Inverter: A First Glance

V in Vout

CL

VDD

Page 3: Anu Mehra ppt - 2

© Digital Integrated Circuits2nd Inverter

CMOS InverterCMOS Inverter

Polysilicon

In Out

VDD

GND

PMOS 2

Metal 1

NMOS

OutIn

VDD

PMOS

NMOS

Contacts

N Well

Page 4: Anu Mehra ppt - 2

© Digital Integrated Circuits2nd Inverter

Two InvertersTwo Inverters

Connect in Metal

Share power and ground

Abut cells

VDD

Page 5: Anu Mehra ppt - 2

© Digital Integrated Circuits2nd Inverter

CMOS InverterCMOS InverterFirst-Order DC AnalysisFirst-Order DC Analysis

VOL = 0VOH = VDD

VM = f(Rn, Rp)

VDD VDD

Vin 5 VDD Vin 5 0

VoutVout

Rn

Rp

Page 6: Anu Mehra ppt - 2

© Digital Integrated Circuits2nd Inverter

CMOS Inverter: Transient ResponseCMOS Inverter: Transient Response

tpHL = f(Ron.CL)

= 0.69 RonCL

VoutVout

Rn

Rp

VDDVDD

Vin 5 VDDVin 5 0

(a) Low-to-high (b) High-to-low

CLCL

Page 7: Anu Mehra ppt - 2

© Digital Integrated Circuits2nd Inverter

Voltage TransferVoltage TransferCharacteristicCharacteristic

Page 8: Anu Mehra ppt - 2

© Digital Integrated Circuits2nd Inverter

PMOS Load LinesPMOS Load Lines

VDSp

IDp

VGSp=-2.5

VGSp=-1VDSp

IDnVin=0

Vin=1.5

Vout

IDnVin=0

Vin=1.5

Vin = VDD+VGSpIDn = - IDp

Vout = VDD+VDSp

Vout

IDnVin = VDD+VGSpIDn = - IDp

Vout = VDD+VDSp

Page 9: Anu Mehra ppt - 2

© Digital Integrated Circuits2nd Inverter

CMOS Inverter Load CharacteristicsCMOS Inverter Load Characteristics

IDn

Vout

Vin = 2.5

Vin = 2

Vin = 1.5

Vin = 0

Vin = 0.5

Vin = 1

NMOS

Vin = 0

Vin = 0.5

Vin = 1Vin = 1.5

Vin = 2

Vin = 2.5

Vin = 1Vin = 1.5

PMOS

Page 10: Anu Mehra ppt - 2

© Digital Integrated Circuits2nd Inverter

CMOS Inverter VTCCMOS Inverter VTC

Vout

Vin0.5 1 1.5 2 2 .5

0.5

11.

52

2.5

NMOS resPMOS off

NMOS satPMOS sat

NMOS offPMOS res

NMOS satPMOS res

NMOS resPMOS sat

Page 11: Anu Mehra ppt - 2

© Digital Integrated Circuits2nd Inverter

Switching Threshold as a function Switching Threshold as a function of Transistor Ratioof Transistor Ratio

100

101

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

MV

(V

)

Wp

/Wn

Page 12: Anu Mehra ppt - 2

© Digital Integrated Circuits2nd Inverter

Determining VDetermining VIHIH and V and VILIL

VOH

VOL

Vin

Vout

VM

VIL VIH

A simplified approach

Page 13: Anu Mehra ppt - 2

© Digital Integrated Circuits2nd Inverter

Inverter GainInverter Gain

0 0.5 1 1.5 2 2.5-18

-16

-14

-12

-10

-8

-6

-4

-2

0

Vin

(V)

gain

Page 14: Anu Mehra ppt - 2

© Digital Integrated Circuits2nd Inverter

Simulated VTCSimulated VTC

0 0.5 1 1.5 2 2.50

0.5

1

1.5

2

2.5

Vin

(V)

Vou

t(V)

Page 15: Anu Mehra ppt - 2

© Digital Integrated Circuits2nd Inverter

Propagation DelayPropagation Delay

Page 16: Anu Mehra ppt - 2

© Digital Integrated Circuits2nd Inverter

CMOS Inverter Propagation DelayCMOS Inverter Propagation DelayApproach 1Approach 1

dt

dVCI L

VDD

Vout

Vin = VDD

CLIav

tpHL = CL Vswing/2

Iav

∆t=CL∆V/IDS

Iav is average charging

current and ∆V is VDD/2

Page 17: Anu Mehra ppt - 2

© Digital Integrated Circuits2nd Inverter

CMOS Inverter Propagation DelayCMOS Inverter Propagation DelayApproach 2Approach 2

VDD

Vout

Vin = VDD

Ron

CL

tpHL = f(Ron.CL)

= 0.69 RonCL

t

Vout

VDD

RonCL

1

0.5

ln(0.5)

0.36

Page 18: Anu Mehra ppt - 2

© Digital Integrated Circuits2nd Inverter

0 0.5 1 1.5 2 2.5

x 10-10

-0.5

0

0.5

1

1.5

2

2.5

3

t (sec)

Vou

t(V)

Transient ResponseTransient Response

tp = 0.69 CL (Reqn+Reqp)/2

tpLHtpHL

Page 19: Anu Mehra ppt - 2

© Digital Integrated Circuits2nd Inverter

Delay as a function of VDelay as a function of VDDDD

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.41

1.5

2

2.5

3

3.5

4

4.5

5

5.5

VDD

(V)

t p(nor

mal

ized

)

Page 20: Anu Mehra ppt - 2

© Digital Integrated Circuits2nd Inverter

The Transistor as a SwitchThe Transistor as a Switch

0.5 1 1.5 2 2.50

1

2

3

4

5

6

7x 10

5

VDD

(V)

Req

(O

hm)

Page 21: Anu Mehra ppt - 2

© Digital Integrated Circuits2nd Inverter

Design for Performance (minimum Design for Performance (minimum delay)delay)

Keep capacitances small –keep drain diffusion area small so less overlap

Increase transistor sizes watch out for self-loading!

Increase VDD –however increasing voltage beyond a level leads to reliability concern

Page 22: Anu Mehra ppt - 2

© Digital Integrated Circuits2nd Inverter

To MAKE A SYMMETRIC INVERTER To MAKE A SYMMETRIC INVERTER tpHL=tpLHtpHL=tpLH

Reqn= 13kΩ and Reqp= 31kΩ (for 0.25µm technology)

RN= Reqn(L/W)n

RP=Reqp(L/W)p

tpLH=ln(2)RPCL

tnHL=ln(2)RNCL

Page 23: Anu Mehra ppt - 2

© Digital Integrated Circuits2nd Inverter

In order to make

tpHL=tpLH

pn W

L

W

L

31

13

np L

W

L

W

38.2

Page 24: Anu Mehra ppt - 2

© Digital Integrated Circuits2nd Inverter

To minimize total delayTo minimize total delay

Total delay =tpHL+tpLH Approximate load Capacitance CL= (Cdp1+Cdn1)+(Cgp2+Cgn2)+CW Let β =(W/L)p/(W/L)n Then Cdp1= βCdn1 and Cgp2=βCgn2 Total delay=tp

Page 25: Anu Mehra ppt - 2

© Digital Integrated Circuits2nd Inverter

tp=0.69((1+β)(Cdn1+Cgn2)+CW

(Reqn+Reqp/β) tp=0.69((1+β)(Cdn1+Cgn2)+CW

Reqn(1+r/β) To minimize delay

0tp

211(

CgnCdn

Cwropt

Page 26: Anu Mehra ppt - 2

© Digital Integrated Circuits2nd Inverter

For 0.25 technology

58.1 r

Page 27: Anu Mehra ppt - 2

© Digital Integrated Circuits2nd Inverter

1 1.5 2 2.5 3 3.5 4 4.5 53

3.5

4

4.5

5x 10

-11

t p(sec

)

NMOS/PMOS ratioNMOS/PMOS ratio

tpLH tpHL

tp = Wp/Wn