api-x80 강재 라인파이프의 대변형 비선형 해석

8
한국전산구조공학회 논문집 제22권 제4호(2009.8) 363 API-X80 강재 라인파이프의 대변형 비선형 해석 Large Deformation Inelastic Analysis of API-X80 Steel Linepipes 이 승 정* 윤 영 철** 조 우 연*** 유 성 문**** 지 광 습Lee, Seung-Jung Yoon, Young-Cheol Cho, Woo-Yeon Yu, Seong-Mun Zi, Goangseup (논문접수일 : 2009년 6월 12일 ; 심사종료일 : 2009년 6월 30일) ················································································································································································································ 본 논문에서는 비선형 유한요소해석 기법을 이용하여 API-X80 강재 라인파이프의 대변형 비선형 거동을 모사하였다. 강재의 구성방정식을 작성하기 위해 GTN(Gurson-Tvergaard-Needleman) 모델을 사용하였다. 대변형 해석을 위해 범용 유한요소해석 프로그램인 ABAQUS과 연계해서 사용할 수 있는 사용자 서브루틴(User Subroutine)의 사용자 재료모델 (UMAT)을 개발하였다. 유한요소해석 결과와 일축인장실험의 결과와의 비교를 통해 GTN 모델에서 사용되는 재료모델상 수를 도출하였다. 도출된 모델상수를 이용해 API-X80 강재 라인파이프의 소성 좌굴변형해석을 실시하여 실험결과와 비교 하였고 소성 좌굴변형에서 발생하는 거동 특성을 성공적으로 모사하였다. 핵심용어 : API-X80, 대변형, 비선형 거동, 비선형 유한요소해석, GTN 모델, 재료모델상수 Abstract We simulated large deformation and inelastic behavior of API-X80 steel linepipes using nonlinear finite element method. Gurson-Tvergaard-Needleman(GTN) model is employed for the development of the constitutive model of the steel. The GTN model is implemented in the form of the user-supplied material subroutine(UMAT) for the commercial software of ABAQUS. To calibrate the model parameters, we simulated the behavior of the uniaxial tension test using ABAQUS equipped with the developed GTN model. Using the set of the model parameters, we were able to capture the characteristics of the plastic buckling of API-X80 steel linepipes. Keywords : API-X80, large deformation, inelastic behavior, nonlinear Finite Element Analysis, GTN model, model parameters ················································································································································································································ 책임저자, 정회원고려대학교 건축·사회환경공학부 부교수 Tel: 02-3290-3324 ; Fax: 02-928-7656 E-mail: [email protected] * 고려대학교 건축·사회환경공학부 석박사통합과정 ** 명지전문대학 토목과 조교수 *** 포항산업과학연구원 강구조연구소 책임연구원 **** 고려대학교 건축·사회환경공학부 석사과정 이 논문에 대한 토론을 2009년 10월 31일까지 본 학회에 보내주 시면 2009년 12월호에 그 결과를 게재하겠습니다. 1. 서 최근 지속되고 있는 고유가현상으로 인해 육상개발과 함께 해저개발도 경제성을 확보할 수 있게 됨에 따라 남극, 심해저 와 같은 특수한 지역에서 채굴된 에너지의 장거리 운송에 적 합한 고강도, 고성능 강재의 필요성이 대두되고 있다. 현재 전세계에 걸쳐 고강도 강재를 이용한 다양한 대규모의 파이프 라인 건설프로젝트가 수행되고 있으며, API-X65, X70 강재 와 더불어 API-X80 강재가 북미지역에서부터 사용되고 있 다. API-X80 강재는 고강도 강재의 한 종류로 다른 고강도 강재에 비해 내압에 대한 저항성이 뛰어나 가스관의 두께를 줄이고 용접에 소요되는 시간을 단축할 수 있는 장점을 가지 고 있다. 이에 따라 여러 강재 제작사들에 의해 고강도, 고인 성이며 우수한 용접성을 가진 API-X80 강재가 개발 및 적용 되고 있다. 개발된 고강도 및 고성능 강재는 높은 인성치를 발휘해야 하는 극지방과 심해와 같은 특수 조건 하에 사용되 므로 설계 시 기존의 건설용 강재의 설계 대상 변형률인 0.2%를 크게 상회하는 범위의 변형률까지 고려해야 한다.

Upload: others

Post on 22-Apr-2022

11 views

Category:

Documents


0 download

TRANSCRIPT

574()-363-370.hwpAPI-X80
Large Deformation Inelastic Analysis of API-X80 Steel Linepipes
* ** *** **** †
Lee, Seung-Jung Yoon, Young-Cheol Cho, Woo-Yeon Yu, Seong-Mun Zi, Goangseup
( : 2009 6 12 ; : 2009 6 30)
················································································································································································································

API-X80 .
GTN(Gurson-Tvergaard-Needleman) .
ABAQUS (User Subroutine)
(UMAT) . GTN
. API-X80
.
: API-X80, , , , GTN ,
Abstract
We simulated large deformation and inelastic behavior of API-X80 steel linepipes using nonlinear finite element method.
Gurson-Tvergaard-Needleman(GTN) model is employed for the development of the constitutive model of the steel. The GTN model
is implemented in the form of the user-supplied material subroutine(UMAT) for the commercial software of ABAQUS. To calibrate
the model parameters, we simulated the behavior of the uniaxial tension test using ABAQUS equipped with the developed GTN
model. Using the set of the model parameters, we were able to capture the characteristics of the plastic buckling of API-X80 steel
linepipes.
model parameters
Tel: 02-3290-3324 ; Fax: 02-928-7656
**
***
2009 10 31
2009 12 .
1.
,

, .

, API-X65, X70
API-X80
. API-X80


. ,
API-X80
.


0.2% .
API-X80
364 22 4(2009.8)
1

.
Mcclitock(1968)
, Rice
Tracey(1969)
(spherical void)
. Gurson(1977)

. Tvergaard
Needleman(1984) Gurson GTN
(Gurson-Tvergaard-Needleman) .
,
GTN
(
, 2008; Acharyya , 2008; Oh , 2007).


.

.
(Belytschko , 1999; Moes , 1999; Zi
, 2003; 2004; 2005) (Bordas ,
2008; Rabczuk , 2007; Zi , 2007) .
.

. ABAQUS
GTN API-X80
. GTN
User Subroutine
(UMAT) ABAQUS
. GTN


.
2.1 GTN
(Nucleation), (Growth), (Coalescence)

,

,

.
(1984) Gurson
(effective void
volume fraction)
. Gurson GTN
,

.
(1) .


. GTN
.









.
,

22 4(2009.8) 365
2
,

.

,
. (3) .

.
(4)
(5)
(6)

(7) .










, ,
.


exponent), ,
.
(8)
.
2.2
GTN

. 2.1

.
.
ABAQUS/Standard User Subroutine
. User Subroutine
UMAT(User-defined material)
. UMAT
ABAQUS

. ABAQUS

.
GTN UMAT
. UMAT
Aravas(1987) .
GTN
9 ABAQUS input
.
GTN

. 2007 API
specification API-X80
2 . 3
1 .


API-X80
366 22 4(2009.8)
3
(a)
(b)
A D G R a b
45 8.9 35.6 6 10 35
1 (mm)
y=0 z=0 x=0
y=0 z=0 x=0 y=10
2

.
. 4(a)
1/8 , 4(b) 2
1, 2, 3 4
.
.

.
10mm
8 3 C3D8(8-node linear
brick) .
.

.

.
,
0.7mm×0.7mm .
3.2 GTN
3.2.1
2 11 . 11

, Franklin(1969) (9)
.
()
. API-X80 30ppm,
1.8% ( , 2007)
, 0 .

. , 9 API-
X80
. ,

.
.
(8)
.














22 4(2009.8) 367
5
(a)
(b)
6


(MPa)
4
,
,
5 . ,
200MPa 0.3 .
3.2.2
6 . 6(a)

, 6(b)
. experiment
1~4 , FE result 1~4
. 6
GTN
. 6(a)

GTN
.
3
. API-X80
,
.
, ,
.
4
. 1 2
, , .
4.
4.1
GTN
API-X80
368 22 4(2009.8)
7 8
(a) 1 (b) 2 (c) 3
10 Von Mises
(a) 1 (b) 2 (c) 3
9

2007
.


.

(imperfection)
.
7 4.750mm 10MN
UTM(Universal Testing Machine) 300
.

, LVDT(Linear
Variable Differential Transformation)
.
(2007) .
8
1/2 .
8 3 C3D8I(8-node linear
brick, incompatible modes) .
7
8
.
surface 1
x y
.
100kN
z 500mm
.
. 9

. .
4.2.2


.


0.5, 1.0, 5.0[mm]
.

22 4(2009.8) 369
11 -
0.0205 0.0181 0.0131
.
.

11 . GTN
1
.
,
400mm
(11) .
(11)
.

.
GTN
.

. (12)~(13) .



. (13) .
11
.
0.5 1.0
5.0 ,
.
, 11
6
.
ABAQUS
API-X80
. .
(1) GTN

.
API-X80

. ,
API-X80


.

.
.
(3) GTN

.


.

.
GTN
.
(4) GTN


.
370 22 4(2009.8)

Design 2009
(ADD-06-05-06)
,
.

X100 ,
POSCO , 12(1), pp.20∼27.
, (2008)
, , 45(2), pp.157∼
167.
, 2007
, pp.211∼216.
Journal of Materials Science, 43(6), pp.1897∼
1909.
class of pressure-dependent plasticity models,
International Journal for Numerical Methods in
Engineering, 24, pp.1395∼1416.
International Journal for Numerical Methods in
Engineering, 45(5), pp.601∼620.
dimensional crack initiation, propagation, branching
and junction in non-linear materials by an extended
meshfree method without asymptotic enrichment,
Engineering Fracture Mechanics, 75(5), pp.943∼
960.
Steel Institute, 207, pp.181∼186.
Gurson, A.L. (1977) Continuum theory of ductile
rupture by void nucleation and growth:Part-1
Yield criteria and flow rules for porous ductile
media, Engineering Material and Technology, 99,
pp.215.
fracture by growth of holes, Journal of Applied
Mechanics, 35, pp.363371.
finite element method for crack growth without
remeshing, International Journal for Numerical
Methods in Engineering, 46(1), pp.131~150.
Oh, C.K., Kim, Y.J., Baek, J.H., Kim, Y.P., Kim,
W.S. (2007) A phenomenological model of ductile
fracture for API X65 steel, International Journal of
Mechanical Sciences, 49, pp.13991412.
Rabczuk, T., Bordas, S., Zi, G. (2007) A three-
dimensional meshfree method for continuous
multiple-crack initiation, propagation and junction
in statics and dynamics, Computational Mechanics,
40(3), pp.473495.
based on the local partition of unity for cohesive
cracks, Computational Mechanics, 39(6), pp.743
760.
enlargement of voids in triaxial stress fields,
Mechanics and Physics of Solids, 17(3), pp.201
217.
the cup-cone fracture in a round tensile bar, Acta
Metallurgica, 32(1), pp.157169.
for XFEM and applications to cohesive cracks,
International Journal for Numerical Methods in
Engineering, 57(15), pp.22212240.
The extended finite element method for dynamic
fractures, Shock and Vibration, 12(1), pp.923.
Zi, G., Rabczuk, T., Wall, W. (2007) Extended
meshfree methods without branch enrichment for
cohesive cracks, Computational Mechanics, 40(2),
pp.367382.
Belytschko, T. (2004) A method for growing
multiple cracks without remeshing and its
application to fatigue crack growth, Modelling and
Simulation in Materials Science and Engineering,
12(5), pp.901915.