apontamentos Álgebra linear e geometria …w3.ualg.pt/~cfsousa/ensino/alga/matriz.pdf · Área...

24
UNIVERSIDADE DO ALGARVE – ESCOLA SUPERIOR DE TECNOLOGIA ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL APONTAMENTOS ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA (I. Matrizes)

Upload: hoangtuyen

Post on 12-Aug-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

UNIVERSIDADE DO ALGARVE – ESCOLA SUPERIOR DE TECNOLOGIA

ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL

APONTAMENTOS

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA

(I. Matrizes)

ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Matrizes

APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA

Índice

1. Matrizes ........................................................................................................... 1

1.1 Definição e generalidades.................................................................................. 1

1.2 Álgebra das matrizes ......................................................................................... 4

1.3 Dependência e independência de linhas e colunas de uma matriz....................... 9

1.4 Característica de uma matriz............................................................................ 14

1.5 Inversão de matrizes ........................................................................................ 19

ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Matrizes

APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA

1/ 22

1. Matrizes 1.1 Definição e generalidades A informação em ciências e, em particular, na matemática é muitas vezes organizada em linhas e

colunas que formam tabelas de dados. Essas tabelas podem ser apresentadas em forma de matrizes.

Um exemplo são as tabelas de contingência ( m n× ) onde as frequências observadas se distribuem

por m linhas e n colunas. A seguinte tabela com três linhas e sete colunas descreve o número de

horas que um estudante despende a estudar três disciplinas durante uma determinada semana:

2ª feira 3ª feira 4ª feira 5ª feira 6ª feira Sábado Domingo Álgebra 2 3 2 4 1 4 2 Análise I 0 3 1 4 3 2 2 Fisica 4 1 3 1 0 0 2

A partir desta última, suprimido os cabeçalhos, podemos construir a seguinte tabela (3 2× ),

denominada matriz:

2 3 2 4 1 4 20 3 1 4 3 2 24 1 3 1 0 0 2

� �� �� �� �� �

.

Por outro lado, apesar das matrizes serem muitas vezes tabelas de dados numéricos que resultam de

observações físicas, podem ocorrem em diferentes contextos matemáticos. Por exemplo, como

veremos, toda a informação necessária para resolver o sistema de equações

5 32 1

x y

x y

+ =�� − =

está contida na matriz

5 1 32 1 1� �� �−� �

,

a solução do sistema é obtida realizando operações apropriadas na matriz. Neste contexto, as

matrizes são particularmente importante no desenvolvimento de programas computacionais para se

resolverem sistemas de equações lineares. Contudo, as matrizes não são apenas uma ferramenta

utilizada para este propósito, estas podem ser vistas como objectos matemáticos por direito,

existindo uma vasta e importante teoria que lhes esta associada que tem uma grande variedade de

aplicações.

ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Matrizes

APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA

2/ 22

Definição1: Dá-se o nome de matriz ao quadro onde ( m n× ) elementos (números ou expressões) se

distribuem, ordenadamente, segundo m linhas e n colunas, e representa-se por:

11 12 1

21 22 2

1 2 ( )

........

........

........

n

n

m m mn m n

a a a

a a aA

a a a×

� �� �� �=� �� �� �

� � � �ou, abreviadamente: ( ) [ ]m n ijA a× = , 1, 2,...,i m= e 1, 2,...,j n= .

• Generalidades:

a) A ija designa-se por elemento genérico, aos números i e j dá-se o nome de índices naturais,

o primeiro representa a ordem da linha e o segundo a ordem da coluna;

b) Caso m n≠ a matriz diz-se rectangular (matriz tipo ( m n× )), caso m n= a matriz diz-se

quadrada (matriz tipo ( n n× ) ou de ordem n), estas últimas são particularmente importantes.

c) De entre as matrizes rectangulares há a destacar a matriz linha e a matriz coluna,

[ ]11 12 13 1 (1 )... n n

A a a a a×

= e

11

21

31

1 ( 1)m m

b

b

B b

� �� �� �� �=� �� �� �� �

, respectivamente.

d) Numa matriz quadrada dá-se o nome de elementos principais aos elementos ija , em que

i j= ( iia ). Eles formam a diagonal principal, que vai do canto superior esquerdo ao canto

inferior direito.

Diagonal secundária ( )n n× Diagonal principal

ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Matrizes

APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA

3/ 22

e) Os elementos que se distribuem simetricamente em relação à diagonal principal chamam-se

elementos opostos. O elemento ija é oposto do elemento jia . Por exemplo, na matriz (3 3× ),

���

���

333231

232221

131211

aaa

aaa

aaa

, os elementos 12a e 21a são opostos.

Caso ij jia a= , i j∀ ≠ , a matriz diz-se simétrica.

f) Sejam A e B duas matrizes do mesmo tipo (têm o mesmo número de linhas e de colunas),

ijij baBA =⇔= , isto é: duas matrizes só podem ser iguais se forem do mesmo tipo e os

seus elementos homólogos iguais.

Obs.1: Elementos homólogos de duas matrizes são os elementos com índices iguais.

g) Matriz triangular. Dá-se o nome de matriz triangular à matriz quadrada cujos elementos

situados de um dos lados da diagonal principal são todos nulos e entre os elementos do outro

lado há pelo menos um que não é nulo. Assim sendo temos dois tipos de matrizes

triangulares, a matriz triangular superior e a matriz triangular inferior. Exemplificando

com matrizes do tipo (3 3× ):

matriz triangular superior: ���

���

d

ec

ba

000

0

; e matriz triangular inferior: ���

���

000000

d

b

a

.

h) Matriz diagonal. É a matriz quadrada ( ) [ ]n n ijA a× = em que; 0ija = se i j≠ e 0ija∃ ≠ .

Exemplificando com uma matriz do tipo (3 3× ),

0 00 00 0 0

a

D b� �� �= � �� �� �

.

De entre as matrizes diagonais há que destacar as seguintes:

Matriz Identidade, é a matriz diagonal que os elementos da diagonal principal são todos 1 e

representa-se por, I. Por exemplo:

���

���

=100010001

3I ;

ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Matrizes

APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA

4/ 22

Obs.2: Para dar ênfase à dimensão da matriz identidade escreve-se ( )n nI × , ou apenas nI , uma

vez que a matriz é quadrada.

Matriz Escalar, é a matriz diagonal na qual os elementos da diagonal principal são todos

iguais, mas diferentes de 1 e de 0. Por exemplo:

���

���

=200020002

E .

i) Matriz Nula, é a matriz formada apenas por zeros. Por exemplo:

(3 3)

0 0 00 0 00 0 0

O ×

� �� �= � �� �� �

.

Obs.3: Se for importante dar ênfase à dimensão da matriz nula, escreve-se ( )m nO × . 1.2 Álgebra das matrizes Nesta secção vamos definir as seguintes operações com matrizes: soma de matrizes, multiplicação

de uma matriz por um escalar, multiplicação de matrizes e transposição de matrizes.

Definição2: Dadas duas matrizes ( )m nA × e ( )m nB × , do mesmo tipo, define-se soma das duas matrizes,

como sendo a matriz C A B= + , tal que o elemento genérico ij ij ijc a b= + , 1,...,i m= e 1,...,j n= ;

ou seja, a matriz C obtém-se somando os elementos homólogos das matrizes A e B. Claro que, se A

e B são do tipo ( m n× ) então também C A B= + é do tipo ( m n× ).

Exemplo1: Some as seguintes matrizes

(3 2)

1 02 3

5 6A

×

� �� �= − −� �� �� �

e

(3 2)

3 15 01 2

B

×

− −� �� �= � �� �−� �

.

Resolução: A soma (adição) das duas matrizes é possível porque são ambas do mesmo tipo (3 2× ),

���

���

−−−

=+=463312

BAC , que continua a ser uma matriz (3 2× ).�

ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Matrizes

APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA

5/ 22

Propriedades da soma de matrizes. Admitindo que a dimensão das matrizes envolvidas permite

que as operações indicadas possam ser efectuadas, então são válidas as seguintes regras:

i) Associatividade, ( ) ( )A B C A B C+ + = + + ;

ii) Comutatividade, A B B A+ = + ;

iii) Elemento neutro, A O O A A+ = + = (O matriz nula) ;

iv) Elemento simétrico, ( ) ( )A A A A O+ − = − + = ;

v) O A A− = − ;

vi) A B= e C D= então A C B D+ = + .

Repare-se que as propriedades da adição de matrizes são idênticas às da adição em � .

Definição3: A multiplicação de uma matriz A por um escalar λ ∈� é uma nova matriz, do mesmo

tipo, cujo elemento genérico é: ijaλ . Ou seja, multiplica-se uma matriz por um escalar

multiplicando todos os seus elementos por esse escalar, [ ]ijA aλ λ= , 1,...,i m= e 1,...,j n= .

Exemplo2: Sendo

(3 2)

1 02 3

5 6A

×

� �� �= − −� �� �� �

e 2λ = , então:

(3 2) (3 2)

1 0 2 02 2 3 4 6

5 6 10 12Aλ

× ×

� � � �� � � �= × − − = − −� � � �� � � �� � � �

.�

Propriedades da multiplicação de uma matriz por um escalar. Admitindo que a dimensão das

matrizes A e B permite que as operações possam ser efectuadas, então, para ,λ µ ∈� , são válidas

as seguintes regras:

i) Distributividade, ( )A B A Bλ λ λ+ = + ;

ii) Distributividade, ( )A A Aλ µ λ µ+ = + ;

iii) Associatividade, ( ) ( )A Aλ µ λµ= ;

iv) 1A A= ;

v) A B A Bλ λ= = .

Definição4: Dadas as matrizes, ( )m nA × e ( )p qB × , o produto de matrizes A B× existe se n p= e o seu

resultado é a matriz C do tipo ( m q× ) cujo elemento genérico é ikc , o qual se obtém multiplicando a

linha i da matriz A (primeira matriz), pela coluna k da matriz B (segunda matriz).

ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Matrizes

APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA

6/ 22

Uma vez que, a multiplicação de matrizes envolve a multiplicação de (linhas da 1ª matriz)×(colunas

da 2ª matriz), torna-se necessário que o número de elementos das linhas da 1ª matriz (n – nº de

colunas) coincida com o número de elementos das colunas da 2ª matriz (p – nº de linhas).

Em resumo:

Por exemplo,

11 12 13 11 12 11 12

(3 3) (3 2) 21 22 23 21 22 21 22 (3 2)

31 32 33 31 32 31 32

a a a b b c c

A B a a a b b c c C

a a a b b c c× × ×

� � � � � �� � � � � �× = × = =� � � � � �� � � � � �� � � � � �

,

para calcular 11c multiplica-se a 1ª linha (1 3)× da matriz A pela 1ª coluna (3 1)× da matriz B,

obtendo-se uma matriz (1 1)× , ou seja, um escalar,

[ ]11

11 11 12 13 21 11 11 12 21 13 31(1 3)

31 (3 1)

( )

b

c a a a b a b a b a b

×

� �� �= × = × + × + × ∈� �� �� �

� .

Por raciocínio análogo calculam-se os restantes elementos de C, 1

n

ik ij jkj

c a b=

=� .

Exemplo3: Seja (2 3)

2 3 51 0 1

� �= � �−� �

e

(3 2)

1 1

2 2

3 3

B

×

−� �� �= � �� �� �

calcule o produto: C A B= × .

Resolução: O produto existe porque o número de colunas da 1ª (matriz A) coincide com o número

de linhas da 2ª (matriz B) e o resultado é uma matriz do tipo ( 2 2× ), (2 3) (3 2) (2 2)A B C× × ×× = . Os

elementos da matriz C são calculados da maneira seguinte:

11c = (linha 1 da1ªmatriz)×(coluna 1 da 2ª matriz) 2 1 3 2 5 3 23= × + × + × =

12c = (linha 1 da1ªmatriz)×(coluna 2 da 2ª matriz) 2 ( 1) 3 2 5 3 19= × − + × + × =

21c = (linha 2 da1ªmatriz)×(coluna 1 da 2ª matriz) 1 1 0 2 ( 1) 3 2= × + × + − × = −

22c = (linha 2 da1ªmatriz)×(coluna 2 da 2ª matriz) 1 ( 1) 0 2 ( 1) 3 4= × − + × + − × = −

logo: (2 3) (2 2)

(3 2)

1 12 3 5 23 19

2 21 0 1 2 4

3 3

C A B× ×

×

−� �� � � �� �= × = × =� � � �� �− − −� � � �� �� �

.�

Exercício1: Calcule B A× e conclua quanto à comutatividade da multiplicação de matrizes.

ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Matrizes

APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA

7/ 22

Exemplo4: A Ana e o Carlos planeiam comprar fruta para a toda semana. Cada um deles quer

comprar algumas maçãs, tangerinas e laranjas, porém em quantidades diferentes. A tabela1 ilustra o

que pretendem comprar em kg. Nas proximidades existem duas mercearias de fruta – a Beinha e a

Vanda – cujos preços em euros estão apresentados na tabela2. Quanto gastarão a Ana e o Carlos

para fazerem as suas compras em cada uma das mercearias.

Resolução: Se a Ana comprar à da Beinha, gastará 6 0,60 3 0,30 10 0, 20 6,50× + × + × = euros, se

comprar à da Vanda gastará 6 0,65 3 0, 20 10 0, 25 7,00× + × + × = euros.

O Carlos, à da Beinha gastará, 4 0,60 8 0,30 5 0, 20 5,80× + × + × = euros, e à da Vanda, gastará

4 0,65 8 0, 20 5 0, 25 5, 45× + × + × = euros.

Provavelmente, a Ana fará as suas compras à da Beinha e o Carlos à da Vanda. A forma (produto

escalar) dos cálculos e a maneira como os dados estão apresentados nas tabelas sugere que a

multiplicação de matrizes funciona aqui. Se organizarmos as informações dadas numa matriz de

intenções de compra, C, e numa matriz de preços, P, teremos

(2 3)

6 3 104 8 5

� �= � �� �

e

(3 2)

0,60 0,65

0,30 0, 20

0, 20 0, 25

P

×

� �� �= � �� �� �

.

Os cálculos efectuados em cima são equivalentes a

(2 3)(3 2)

0,60 0,656 3 10 6,50 7,00

0,30 0, 204 8 5 5,80 5, 45

0, 20 0, 25

C P×

×

� �� � � �� �× = × =� � � �� �� � � �� �� �

,

que podem ser organizados na tabela

Tabela1 – Quantidades em kg de fruta Maçãs Tangerinas Laranjas Ana 6 3 10 Carlos 4 8 5

Tabela2 – Preços nas duas mercearias Beinha Vanda Maçã 0,60 0,65 Tangerina 0,20 0,20 Laranja 0,20 0,25

Tabela3 – Gastos nas duas mercearias Beinha Vanda Ana 6,50 7,00 Carlos 5,80 5,45

ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Matrizes

APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA

8/ 22

Propriedades da multiplicação de matrizes. Admitindo que a dimensão das matrizes envolvidas

permite que as operações indicadas possam ser efectuadas, então são válidas as seguintes regras:

i) Associatividade, ( ) ( )A B C A B C× × = × × ;

ii) Não comutatividade, pode existir A B× mas não B A× , ou existirem mas serem diferentes;

iii) Distributividade em relação à adição de matrizes, ( )A B C A B A C× + = × + × e

( )B C A B A C A+ × = × + × ;

iv) ( ) ( ) ( )A B A B A Bλ λ λ× = × = × , λ ∈� ;

v) A O O× = e O A O× = ou ( ) ( )n n n nA O O A O× ×× = × = (matriz nula);

vi) A I A× = e I A A× = ou ( ) ( ) ( )n n n n n nA I I A A× × ×× = × = (a matriz identidade I é o elemento

neutro);

vii) vezes

...k

k

A A A A= × × ×������� ; ( 0k > ) desde que A seja quadrada;

viii) 0A I= (matriz identidade).

Definição5: Chama-se matriz transposta de uma matriz ( )m nA × à matriz que dela se obtém trocando,

ordenadamente, as linhas com as colunas, e representa-se por ( )Tn mA × .

Exemplo5: A matriz transposta da matriz A é:(2 3)

(3 2)

2 12 3 5

3 11 1 0

5 0

TA A×

×

� �� � � �= = −� � � �−� � � �� �

.�

Propriedades da transposição de matrizes. Admitindo que a dimensão das matrizes permite que

as operações indicadas possam ser efectuadas, então são válidas as seguintes regras:

i) ( )T TA A= ;

ii) ( )T TA Aλ λ= (λ constante);

iii) ( ) ( )T k k TA A= ;

iv) ( )T T TA B A B+ = + ;

v) ( )T T TA B B A× = × ;

vi) ( ... ) ...T T T TA B X X B A× × × = × × × .

Obs.4: Numa matriz quadrada se TA A A= ⇔ é simétrica.

ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Matrizes

APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA

9/ 22

Definição6: Chama-se traço de uma matriz quadrada à soma dos elementos da diagonal principal,

1

( )n

iii

tr A a=

=� .

Propriedades do traço de uma matriz. Admitindo que a dimensão das matrizes permite que as

operações indicadas possam ser efectuadas, então são válidas as seguintes regras:

i) ( ) ( ) ( )tr A B tr A tr B+ = + ;

ii) ( ) ( )tr A tr Aα α= ;

iii) ( ) ( )tr AB tr BA= ;

iv) ( ) ( )Ttr A tr A= .

1.3 Dependência e independência de linhas e colunas de uma matriz

Considere-se a matriz A do tipo ( m n× ),

11 12 1

21 22 2

1 2 ( )

........

........

........

n

n

m m mn m n

a a a

a a aA

a a a×

� �� �� �=� �� �� �

� � � �. Representando as m

linhas da matriz por,

[ ] [ ] [ ]1 11 12 1 2 21 22 2 1 2(1 ) (1 ) (1 ), ,..., ,n n m m m mnn n n

L a a a L a a a L a a a× × ×

= = =� � �

chama-se combinação linear das m linhas a qualquer expressão do tipo:

1 1 2 2 ....... m mL L L Lλ λ λ= + + + (matriz linha),

em que 1 2, ,..., mλ λ λ ∈� .

Considere-se, agora, a matriz linha nula [ ]0000 �=L . É, então, possível construir a equação

02211 ....... LLLL mm =+++ λλλ .

Há dois casos a considerar, para as soluções da equação anterior:

1º caso: a única maneira de obter a linha nula é fazer 1 2 ... 0mλ λ λ= = = = na combinação linear.

Neste caso, as linhas dizem-se linearmente independentes (L.I.).

2º caso: a linha nula pode ser obtida da combinação linear anterior, sem ser necessário considerar

zeros todos os escalares iλ . Neste caso, as linhas dizem-se linearmente dependentes (L.D.).

ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Matrizes

APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA

10/ 22

Conclusão:

Se: ⇔=+++ 02211 ....... LLLL mmλλλ 1 2 ... 0mλ λ λ= = = = as linhas da matriz dizem-se

linearmente independentes, caso contrário (caso se possa obter a linha nula 0L sem ser necessário

considerar zeros todos os escalares iλ ) as linhas dizem-se linearmente dependentes.

Exemplo6: Estude a matriz 1 2 23 1 43 6 6

A

−� �� �= −� �� �−� �

quanto à dependência linear das suas linhas.

Resolução: Sendo a matriz (3 3)A × , devemos resolver a equação 1 1 2 2 3 3 0L L L Lλ λ λ+ + = , visando

encontrar os 1 2 3, ,λ λ λ ∈� , para o quais a equação anterior se verifique,

[ ] [ ] [ ] [ ][ ] [ ] [ ] [ ][ ] [ ]

1 2 3

1 1 1 2 2 2 3 3 3

1 2 3 1 2 3 1 2 3

1 2 2 3 1 4 3 6 6 0 0 0

2 2 3 4 3 6 6 0 0 0

3 3 2 6 2 4 6 0 0 0

λ λ λλ λ λ λ λ λ λ λ λλ λ λ λ λ λ λ λ λ

− + − + − = ⇔

⇔ − + − + − = ⇔

⇔ + + − + − + − =

desta igualdade resulta o seguinte sistema

1 2 3

1 2 3 2 1 3

1 2 3

3 3 0

2 6 0 0 3

2 4 6 0

λ λ λλ λ λ λ λ λ

λ λ λ

+ + =�� − + = = = −��− + − =

� , 3λ ∈� .

O sistema é possível e indeterminado, tem tantas soluções quantos os valores atribuídos a 3λ , por

exemplo, para 3 11 3λ λ= = − . Portanto, a equação é satisfeita para 1 23, 0λ λ= − = e 3 1λ = .

Assim, para iλ não simultaneamente nulos verifica-se a igualdade e, consequentemente, as linhas

são linearmente dependentes. E, 1 1 3 3 0 1 1 3 33 3L L L L Lλ λ λ λ− = ⇔ = , 1L é combinação linear de 3L .�

Repare-se que a equação 1 1 2 2 3 3 0L L L Lλ λ λ+ + = , do exercício anterior, é equivalente à equação

[ ] [ ]11 12 13

1 2 3 21 22 23(1 3) (1 3)

31 32 33 (3 3)

0 0 0a a a

a a a

a a a

λ λ λ× ×

×

� �� � =� �� �� �

.

O que pode ser estendido a matrizes do tipo ( )n m× . O mesmo raciocínio pode aplicar-se às colunas da matriz A. Assim, se a combinação linear das

colunas de A coincide com a coluna nula, apenas quando todos os escalares forem nulos ( 0iλ = )

ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Matrizes

APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA

11/ 22

então as colunas de A são L.I.. Por outro lado, se for possível obter a coluna nula sem ser necessário

utilizar apenas escalares nulos, as colunas serão L.D..

Analiticamente, sendo 1 2, ,..., nC C C as colunas de A e 0C a coluna nula :

����

����

=

1

21

11

1

ma

a

a

C�

,

����

����

=

2

22

12

2

ma

a

a

C�

, ...,

����

����

=

mn

n

n

n

a

a

a

C�

2

1

e

����

����

=

0

00

0�

C ,

se

1 1 2 2 0 1 2 ... 0n n nC C C Cλ λ λ λ λ λ+ + + = ⇔ = = = =� , as colunas da matriz A são L.I.. Caso contrário são L.D..

Exemplo7: Estude a matriz1 2 14 2 32 6 1

A� �� �= � �� �− −� �

quanto à dependência linear das suas colunas.

Resolução: Temos que calcular 1 2 3, ,λ λ λ ∈� tal que 1 1 2 2 3 3 0C C C Cλ λ λ+ + = ,

1 2 3 1 2 3

1 2 3 1 2 3 1 2 3

1 2 3 1 2 3

1 2 1 0 2 0 2 04 2 3 0 4 2 3 0 4 2 3 02 6 1 0 2 6 0 2 6 0

λ λ λ λ λ λλ λ λ λ λ λ λ λ λ

λ λ λ λ λ λ

+ +� � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � �+ + = ⇔ + + = ⇔ + + =� � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � �− − − − − + −� � � � � � � � � � � � � � � � � � � �

donde

1 2 3

1 2 3 1 2 3

1 2 3

2 0

4 2 3 0 0

2 6 0

λ λ λλ λ λ λ λ λ

λ λ λ

+ + =�� + + = = = =��− + − =

.

O sistema é possível e determinado, admite como solução única (a equação é satisfeita apenas se)

1 2 3 0λ λ λ= = = . Assim, uma vez que todos os iλ são simultaneamente nulos as colunas da matriz

são linearmente independentes.�

Repare-se que a equação 1 1 2 2 3 3 0C C C Cλ λ λ+ + = , do exercício anterior, é equivalente à equação

111 12 13

21 22 23 2

31 32 33 3(3 3) (3 1)(3 1)

000

a a a

a a a

a a a

λλλ× ××

� �� � � �� �� � � �=� �� � � �� �� � � �� � � �� �

.

Analogamente para matrizes do tipo ( )n m× .

ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Matrizes

APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA

12/ 22

De um modo geral, as filas de uma matriz dizem-se linearmente independentes quando nenhuma

delas se pode escrever como combinação linear das restantes e linearmente dependente quando

alguma delas se pode escrever como combinação linear das demais.

Propriedades da dependência/independência linear das filas de uma matriz

i) Se uma das linhas 1 2, ,..., ,...,i mL L L L é formada apenas por zeros, então as linhas são linearmente

dependentes (idem para as colunas);

ii) Se algumas das linhas 1 2, ,..., iL L L ( i m< ) são linearmente dependentes, então todas o serão

(idem para as colunas);

iii) A dependência ou independência linear das linhas (colunas) de uma matriz, não se altera se

trocarmos a ordem dessas linhas (colunas);

iv) Se as linhas 1 2, ,..., ,...,i mL L L L são linearmente dependentes (independentes), então também o

serão as linhas: 1 2, ,..., ,...,i mL L L Lλ , \ {0}λ ∈� (idem para as colunas);

v) Se as linhas 1 2, ,..., ,..., ,...,i k mL L L L L são linearmente dependentes (independentes), então

também o serão as linhas 1 2, ,..., ,..., ,...,i k k mL L L L L L+ (idem para as colunas);

vi) Se as linhas 1 2, ,..., ,...,i mL L L L são linearmente dependentes, então algumas delas podem-se

escrever como combinação linear das restantes (idem para as colunas);

vii) As linhas (colunas) de uma matriz triangular (superior ou inferior), com os elementos da

diagonal principal diferentes de zero, são linearmente independentes;

viii) As linhas (colunas) de uma matriz diagonal (diferente da matriz nula), são linearmente

independentes;

ix) Seja 1 2[ | ]A A A= :

• Se as linhas de 1A e de 2A são linearmente independentes, então as linhas de A também

são linearmente independentes;

• Se 1A ou 2A é uma matriz triangular superior (inferior), tal que os elementos da diagonal

principal são diferentes de zero, então as linhas da matriz A são linearmente

independentes;

ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Matrizes

APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA

13/ 22

x) Seja 1

2

AA

A

� �= � �� �

:

• Se na matriz A as colunas da submatriz 1A são linearmente independentes, então as

colunas de A também são linearmente independentes;

• Se 1A ou 2A é uma matriz triangular superior (inferior), tal que os elementos da diagonal

principal são diferentes de zero, então as colunass da matriz A são linearmente

independentes.

Exemplo8: Estude a dependência linear da matriz 1 3 0 0 50 0 1 0 20 0 0 1 2

A� �� �= −� �� �� �

.

Resolução: A matriz não é quadrada, é uma matriz (3 5× ) vamos primeiro estudar a dependência

das linhas. Resolvendo a equação 1 1 2 2 3 3 0L L L Lλ λ λ+ + = , vem 1 2 3 0λ λ λ= = = . Portanto, as 3

linhas são linearmente independentes.

Quanto à dependência das colunas, ao resolver equação 1 1 2 2 3 3 4 4 5 5 0C C C C C Cλ λ λ λ λ+ + + + = ,

vem, por exemplo, 1 2 5 3 5 4 53 5 0 2 2λ λ λ λ λ λ λ+ + = = = −� � . Portanto, as 5 colunas são

linearmente dependentes. Prova-se que, apenas 3 colunas são linearmente independentes.

Como a matriz é (3 5× ), ou seja, o número de colunas é maior que o número de linhas, é razoável

pensar que o número máximo de colunas que podem ser linearmente independentes seja 3. De facto,

no sistema que resulta da equação 1 1 2 2 3 3 4 4 5 5 0C C C C C Cλ λ λ λ λ+ + + + = , temos 3 equações para 5

incógnitas. Enquanto que para as linhas, o sistema resultante tem 3 equações para 3 incógnitas.�

Este último exemplo ilustra um resultado muito importante: Numa matriz, o número máximo de

linhas linearmente independentes é igual ao número máximo de colunas linearmente

independentes.

Exercício2: Transponha a matriz do exemplo anterior e estude a dependência linear das colunas e

das linhas.

Do exercício anterior, facilmente se vê que estudar a dependência linear da linhas de uma matriz é o

mesmo que estudar a dependência linear das colunas da sua transposta e vice-versa.

ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Matrizes

APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA

14/ 22

1.4 Característica de uma matriz

Nesta secção introduz-se o conceito de característica de uma matriz e apresenta-se um processo para

o seu cálculo.

Definição7: Dá-se o nome de característica de uma matriz A ao número máximo de filas paralelas

linearmente independentes que figuram nessa matriz. Representa-se por ( )r A .

Como em matrizes triangulares, o número de filas (linhas ou colunas) paralelas linearmente

independentes (a característica) é igual ao número de elementos da diagonal principal diferentes de

zero, pode partir-se deste facto para calcular a característica de uma matriz.

Definição8: Condensar uma matriz é o processo que consiste em dar à matriz, através de operações

elementares, uma forma em que figure nela uma matriz triangular (superior ou inferior) da maior

ordem possível com elementos principais não nulos.

Operações elementares

Chamam-se operações elementares, efectuadas sobre uma matriz, ao conjunto de operações que não

alterem a dependência ou independência das linhas ou colunas (portanto, não alteram a

característica da matriz). Algumas operações elementares são:

a) Troca entre si de duas filas paralelas de uma matriz;

b) Multiplicação ou divisão de qualquer fila por uma constante diferente de zero;

c) Soma dos elementos homólogos de filas paralelas depois de multiplicados por factores

constantes diferentes de zero.

Processo de condensação

O processo de condensação é constituído por várias fases – reduções – onde se vão anulando os

elementos abaixo e/ou acima da diagonal principal da matriz quadrada inicial ou de uma submatriz

quadrada da maior ordem possível (caso a matriz inicial seja rectangular).

Como numa matriz, o número máximo de linhas linearmente independentes é igual ao número

máximo de colunas linearmente independentes, a característica de uma matriz pode calcular-se

tanto por linhas como por colunas.

Na prática é, pois, indiferente efectuar condensação vertical (na qual se reduzem a zero elementos

situados na mesma coluna que o redutor) ou condensação horizontal (em que os elementos a anular,

ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Matrizes

APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA

15/ 22

estão na mesma linha que o redutor) para determinar a característica de uma matriz. O objectivo a

atingir (usando operações elementares) é dar à matriz uma forma em que figure uma matriz ou

submatriz triangular de elementos principais não nulos e da maior ordem possível.

Vamos exemplificar a condensação vertical. Considere-se a matriz ( )m nA × que se pretende condensar

para determinar a sua característica

11 12 1

21 22 2

1 2 ( )

.......

...

n

n

m m mn m n

a a a

a a aA

a a a×

� �� �� �=� �� �� �

� � � �.

a) A partir de 11 0a ≠ , ( caso isso não aconteça, trocam-se entre si duas ou mais filas paralelas para

colocar no seu lugar um elemento não nulo, de preferência 1 ou –1), a que se dá o nome de

elemento redutor (pivot), adiciona-se a primeira linha a todas as restantes, multiplicada por factores

tais que se anulem todos os elementos seguintes da primeira coluna (abaixo de 11a ). Portanto:

11 12 1

22 2

2

0

0

n

n

m mn

a a a

a aA

a a

� �� �� �� �� �� �

��� � � �

;

b) Procede-se com 22a em relação à 2ª coluna como se procedeu com 11a em relação à 1ª coluna:

11 12 13 1

22 23 2

33 3

3

00 0

0 0

n

n

n

m mn

a a a a

a a a

A a a

a a

� �� �� �� �� �� �� �� �

� �

� � � � �

;

c) Procede-se de modo análogo para os restantes iia até que a condensação termine porque não há

mais linhas ou porque as linhas que existem são todas formadas por zeros. A matriz original terá

uma forma onde figura nela uma matriz ou submatriz triangular da maior ordem possível com

elementos principais não nulos:

11 12 1 1

22 2 20

0 0

0 0 0 0 0

r m

r m

rr rm

a a a a

a a a

Aa a

� �� �� �� �� �� �� �� �� �

� �

� �

� � � � � ��

� �

� � � � � �

;

ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Matrizes

APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA

16/ 22

d) Como todas as linhas e colunas de uma matriz triangular, com elementos principais significativos

(não nulos), são linearmente independentes, chegada ao seu termo, a condensação indica qual o

número máximo de filas paralelas de uma matriz que podem ser linearmente independentes (a

característica da matriz). Assim, a característica será dada pela dimensão da maior matriz

triangular, com elementos principais não nulos, que foi possível instituir na matriz A (indicada na

alínea c) em segundo plano),

Característica da matriz ( )A r A r= = .

Obs.5: • A característica de uma matriz A é igual à característica da sua transposta TA ;

• Exceptuando a matriz nula que tem ( ) 0r O = , qualquer matriz tem 1r ≥ ;

• Para se calcular a característica de uma matriz esta não tem que ser quadrada;

• Uma matriz quadrada de ordem n, tem no máximo característica n;

• Diz-se que duas matrizes A e B são equivalentes, ( A B� , A B↔ ) se ( ) ( )r A r B= .

Exemplo9: Calcule da característica da matriz

1 2 14 2 32 6 1

A� �� �= � �� �− −� �

.

Resolução: Para determinar a característica de uma matriz aplicam-se sucessivamente as operações

elementares, até se chegar a uma matriz equivalente à original onde figure nela uma matriz

triangular da maior ordem possível com elementos principais não nulos. A que se dá o nome de

condensação da matriz.

A partir do elemento redutor 11 1a = , vamos reduzir a zero os restantes elementos da 1ª coluna. Para

reduzir o elemento 21 4a = a zero, multiplica-se a 1ª linha por ( 4)− e soma-se com a 2ª linha.

Simbolicamente:

Procedendo de maneira análoga para o elemento 31 2a = − , multiplicando a primeira linha por

( 2)+ e somando a 3ª linha vem

ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Matrizes

APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA

17/ 22

Analogamente, a partir do novo elemento redutor 22 6a = − vamos reduzir a zero o elemento

32 10a = . A fim de facilitar os cálculos vamos, por exemplo, trocar a 2ª coluna pela 3ª. Neste caso

o elemento redutor será 22 1a = − . Obtemos

1 1 2 1 1 20 1 6 0 1 60 1 10 0 0 4

A� � � �� � � �− − − −� � � �� � � �� � � �

� � ,

o que completa a condensação, uma vez que a matriz resultante é triangular. A matriz dada A é

equivalente à matriz triangular obtida. Como numa matriz triangular, com elementos da diagonal

principal diferentes de zero, todas as filas são independentes, e como a característica de uma

matriz é igual ao número de filas independentes, então a característica da matriz é 3, ( ) 3r A = .�

Dependência linear com recurso à condensação Pelo que foi referido, através do recurso à condensação, ao cálculo da característica de uma matriz,

é possível concluir acerca da dependência ou independência linear das filas de uma matriz.

Matrizes quadradas: Seja A uma matriz quadrada de ordem n.

i) Quando ( )r A n= , as filas são linearmente independentes e a matriz designa-se por matriz

regular;

ii) Quando ( )r A n< , as filas são linearmente dependentes e a matriz designa-se por matriz

singular.

Matrizes rectangulares: Seja A uma matriz rectangular do tipo ( )m n× .

i) Quando m n>

• Se ( )r A n< , as colunas são linearmente dependentes;

• Se ( )r A n= , as colunas são linearmente independentes;

• Como ( )r A m< , as linhas são sempre linearmente dependentes.

ii) Quando m n<

• Se ( )r A m< , as linhas são linearmente dependentes;

• Se ( )r A m= , as linhas são linearmente independentes;

• Como ( )r A n< , as colunas são sempre linearmente dependentes.

ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Matrizes

APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA

18/ 22

Exemplo10: Estude da característica da matriz

1 3 0 0 50 0 1 0 20 0 0 1 2

A� �� �= −� �� �� �

.

Resolução: A matriz não é quadrada, é uma matriz (3 5× ), vamos condensá-la na vertical (por

colunas). A maior submatriz triangular (quadrada) que pode figurar em A é de ordem 3 (igual ao nº

de linhas), como se vê todos os elementos da diagonal principal dessa matriz são diferentes de zero

1 3 0 0 5 1 0 3 0 5 1 0 0 0 50 0 1 0 2 0 1 0 0 2 0 1 0 0 20 0 0 1 2 0 0 0 1 2 0 0 1 3 2

A

� �� � � � � �� �� � � � � �= − − −� �� � � � � �� �� � � � � �� � � � � �� �

� � ,

ou seja, ( ) 3r A = (igual ao nº de linhas, as linhas são linearmente independentes, L.I.). Por outro

lado, como se tem sempre ( ) 5r A < (nº de colunas, 5 3n = > ), as colunas são sempre linearmente

dependentes (L.D.), mas, sendo ( ) 3r A = , conclui-se que, 3 destas são L.I.. Porquê?

Mesmo sabendo que ( ) ( )Tr A r A= , vamos transpor A e calcular a sua característica. Vê-se que, a

maior submatriz triangular que pode figurar em TA é de ordem 3 (nº de colunas), condensado esta

matriz, vê-se que todos os seus elementos principais são diferentes de zero, logo ( ) 3r A = ,

1 0 01 0 0 1 0 0 1 0 00 1 03 0 0 3 0 0 0 1 00 0 10 1 0 0 1 0 3 0 0

0 0 1 0 0 1 0 0 1 3 0 05 2 2 5 2 2 5 2 2 5 2 2

TA

� �� �� � � � � �� �� �� � � � � �� �� �� � � � � �� �� �� � � � � �= � �� �� � � � � �� �� �� � � � � �� �� �� � � � � �− − − −� � � � � � � �� �

� � � .

A matriz transposta é (5 3× ), como se tem sempre ( ) 5r A < (nº de linhas) as linhas são sempre

L.D., mas sendo ( ) 3r A = , conclui-se que, 3 destas são L.I.. Quantas colunas são L.I.? �

Sugestão: Compare os resultados deste exemplo, com os resultados do exemplo8. Exercício3: Estude a característica das seguintes matrizes:

a)

1 0 1 32 0 1 4

4 0 2 3A

−� �� �= −� �� �−� �

; b)

1 2 1 32 4 1 4

4 8 2 3B

−� �� �= − −� �� �−� �

; c)

1 2 1 12 4 1 2

4 8 2 8C

− −� �� �= − − −� �� �� �

.

Sugestão: Veja o que acontece, quanto à dependência, se numa matriz eliminar: a) uma fila com

todos os seus elementos nulos; b) uma fila que seja proporcional a outra; c) uma fila que seja

combinação linear de outras.

ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Matrizes

APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA

19/ 22

1.5 Inversão de matrizes O problema da inversão de matrizes é uma das questões mais importantes da teoria das matrizes.

Para além da definição, nesta secção, vamos apresentar algumas propriedades da inversão e um

método de cálculo da matriz inversa.

Definição9: Chama-se matriz inversa de uma matriz A à matriz B tal que: A B B A I× = × = .

A matriz inversa de A, quando existir, representa-se por: 1A− , pelo que: 1A− é a inversa de A 1 1A A A A I− −⇔ × = × = (matriz identidade)

Condições para a existência de matriz inversa

Para que exista o produto 1A A−× é necessário que o número de colunas da matriz A coincida com o

número de linhas da matriz 1A− , por outro lado para que exista o produto 1A A− × é necessário que

o número de colunas da matriz 1A− coincida com o número de linhas da matriz A, ou seja, A e 1A−

têm que ter a mesma dimensão. Daí que, só podem ter inversa as matrizes quadradas, e dentro

destas as que têm as filas linearmente independentes, ou seja, característica r igual à sua ordem n.

Em resumo: Uma matriz quadrada A de ordem n admite inversa se ( )r A n= . E, como já vimos,

estas designam-se por matrizes regulares. As matrizes que não têm inversa dizem-se singulares.

Propriedades da matriz inversa. Admitindo que as matrizes admitem inversa e que a sua

dimensão permite que as operações possam ser efectuadas, então são válidas as seguintes regras:

i) 1A− quando existe é única;

ii) ( ) AA =−− 11 ;

iii) ( ) 111 −−− ×=× ABBA , se existe ( ) 1A B −× , então A e B admitem inversa;

iv) ( ) 1111 −−−− ×××=××× ABXXBA ���� ;

v) ( ) ( )1 1 1 1 1

vezes

...kk k

k

A A A A A A−− − − − −= = = × × ×��������� ;

vi) r s r sA A A += , ,r s ∈ ;

vii) ( )r s r sA A= , ,r s ∈ ;

viii) 1 11( )A Aλ

λ− −= , \ {0}λ ∈� ;

ix) ( ) ( )TT AA 11 −− = .

ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Matrizes

APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA

20/ 22

Obs.6: Uma matriz ortogonal é a matriz quadrada que tem como inversa a sua transposta, isto é,

T TA A A A I× = × = .

Cálculo da matriz inversa pelo método da matriz ampliada [ | ]A I Caso exista, a inversa de uma matriz A pode ser calculada transformando a matriz ampliada [ | ]A I

em [ | ]I B , onde 1B A−= , ou seja, em 1[ | ]I A− , utilizando as operações elementares, descritas em

1.4, aplicadas apenas às linhas.

Obs.7: A matriz inversa pode ainda ser calcula por definição, o que só é funcional para matrizes de

2ª ou 3ª ordem.

Exemplo11: Determine a inversa da matriz regular 1 12 0

A−� �

= � �� �

.

Resolução: Sendo a matriz regular, ela admite inversa. Vamos considerar a matriz ampliada [ | ]A I

visando obter a matriz 1[ | ]I A− . Num primeiro passo obtemos,

1 1 1 0 1 1 1 0[ | ]

2 0 0 1 0 2 2 1A I

� − � � − �= ↔� � � �−� � � �

,

considerámos como elemento redutor 11 1a = , e utilizámos as operações elementares para a

condensação. Finalmente, para obter 1[ | ]I A− , por exemplo, multiplicamos a 2ª linha por 12( )+ e,

para o elemento redutor 22 1a = , reduzimos a zero o elemento 12 1a = − , assim

12

1 12 2

1 0 01 1 1 01 10 1 0 1

� − � � �↔� � � �− −� � � �

.

O que conclui o processo da matriz ampliada, transformámos a matriz [ | ]A I em 1[ | ]I A− , e,

portanto, a matriz inversa de A, é 12112

01

A− � �= � �−� �

.

Por ter inversa, as linhas da matriz A são linearmente independentes e a característica da matriz é 2,

igual à ordem da matriz.

Como a matriz é de 2ª ordem vamos utilizar a definição para calcular a sua inversa. Seja

1 x yA

z t− � �

= � �� �

. Da definição resulta

ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Matrizes

APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA

21/ 22

1 1 1 1 0 1 02 0 0 1 2 2 0 1

x y x z y tA A I

z t x y− − − −� � � � � � � � � �

× = ⇔ × = ⇔ =� � � � � � � � � �� � � � � � � � � �

,

para se verificar esta última igualdade devemos ter

12

12

010

2 0 12 1

xx zyy t

x z

y t

=− = ���� =− =� �⇔� �= = −� �

� �= =

, donde 12112

01

x yA

z t− � �� �

= = � �� � −� � � �.

Repare-se que 1A A I− × = , e que a inversa de uma matriz quadrada A é ainda uma matriz quadrada

da mesma ordem.�

Obs.8: A matriz de dimensão (2 2)× , a b

Ac d� �

= � �� �

admite inversa se 0ad bc− ≠ , a sua inversa é

dada por 1 1 d bA

c aad bc− −� �

= � �−− � �.�

Exercício4: Verifique este resultado para o exemplo anterior.

Exemplo12: Verifique a existência da inversa da matriz ���

���

−−=

732110321

C .

Resolução: Vamos utilizar o método da matriz ampliada. É possível pensar na inversa desta matriz,

uma vez que, ela é de ordem 3, ou seja, quadrada. A matriz ampliada é

1 2 3 1 0 0

[ | ] 0 1 1 0 1 02 3 7 0 0 1

C I

�− − �� �= � �� �−� �

.

Utilizando as operações elementares, obtemos

1 2 3 1 0 0 1 2 3 1 0 0 1 2 3 1 0 0 1 2 3 1 0 00 1 1 0 1 0 0 1 1 0 1 0 0 1 1 0 1 0 0 1 1 0 1 0 .2 3 7 0 0 1 2 3 7 0 0 1 0 1 1 2 0 1 0 0 0 2 1 1

�− − � � − − � � − − � � − − �� � � � � � � �↔ ↔ ↔� � � � � � � �� � � � � � � �− − −� � � � � � � �

ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Matrizes

APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA

22/ 22

Portanto, partindo de [ | ]C I não é possível obter 1[ | ]I C− , na última matriz ampliada há uma linha

de zeros. Quer dizer, a matriz C não tem inversa. As linhas da matriz não são linearmente

independentes, a sua característica é 2, diferente da ordem da matriz que é 3. �

Exemplo13: Sendo A uma matriz quadrada regular que verifica a relação 2 0A A I+ + = , determine

a sua inversa 1A− .

Resolução: Multiplicando à esquerda 2 0A A I+ + = por 1A− , vem

1 2 1 1 1 1

1 1 1

0 ( ) 0

0 ( )

A A A A A I A A A I A

A I A A A I A A I

− − − − −

− − −

+ + = ⇔ + + = ⇔⇔ + + = ⇔ = − − ⇔ = − +

.�

Exemplo14: Supondo A e B matrizes regulares, resolva em ordem a X a equação matricial

1 1( ) ( )TTA X AB A− −� � + =� � .

Resolução: Multiplicando à esquerda 2 0A A I+ + = por 1A− , vem

1 1 1 1 1 1

1 1 1 1

2 1 2 1 1 2 1

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( )

T T TT T T T T

T T

T T T

A X AB A X A A AB X A A AB

X A A AB X A A AA AB A

X A AB A X A B A A X A B

− − − − − −

− − − −

− − − −

� � � � � �+ = ⇔ = − ⇔ = − ⇔� � � � � �

⇔ = − ⇔ = − ⇔⇔ = − ⇔ = − ⇔ = −

.

Considerando, agora ���

���

=100011001

A e ���

���

=300020001

B , vamos determinar a matriz X,

2 1

2 1

1 1 1 12 2 2 2

1 2 2 23 3 3 3

1 0 0 1 0 01 1 0 0 2 00 0 1 0 0 3

1 0 0 1 0 0 0 0 0 0 0 0 0 2 02 1 0 0 0 2 0 2 0 0 00 0 1 0 0 0 0 0 0 0 0

T

T

X A B

X

� � � �� � � �= − = − =� � � �� � � �� � � �

� � � � � � � �� �� � � � � � � �� �= − = ⇔ = =� � � � � � � �� �� � � � � � � �� �� � � � � � � � � �

.

Ou (verifique)

2 1 2 1 2 1 2 1( ) ( ) ( ) ( ) ( ) ( )T T T T T T T TX A B X A B X A B X A B− − − −= − ⇔ = − ⇔ = − ⇔ = − . �