appendix 3. presentation slides unit cost vegetation ... · benchmarking study framework hydro one...

68
DISTRIBUTION UNIT COST VEGETATION MANAGEMENT BENCHMARK STUDY DISTRIBUTION UNIT COST VEGETATION MANAGEMENT BENCHMARK STUDY INTRODUCTION AND FRAMEWORK INTRODUCTION AND FRAMEWORK William Porter Director of Research, Development and Industry Intelligence 22Oct2015 Appendix 3. Presentation Slides

Upload: dinhnguyet

Post on 14-Jul-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

DISTRIBUTION UNIT COST VEGETATION MANAGEMENT BENCHMARK STUDY DISTRIBUTION UNIT COST VEGETATION MANAGEMENT BENCHMARK STUDY INTRODUCTION AND FRAMEWORKINTRODUCTION AND FRAMEWORK

William PorterDirector of Research, Development and Industry Intelligence

22‐Oct‐2015

Appendix 3. Presentation Slides

PURPOSE OF BENCHMARKING STUDY

The objectives of this study by CN Utility Consulting (CNUC), enabled by peer and longitudinal comparisons, are:• To help Hydro One comply with Ontario Energy Board’s 

(OEB) directives (EB2013‐0416),  • To identify best management practices, • To identify measurements to substantiate continuous 

improvement, and• To recommend innovative approaches to ensure a 

successful and cost‐efficient utility vegetation management (UVM) program over the next seven to ten years and beyond

THE VEGETATION MANAGEMENT STUDY TEAM• Project team members:

– William Porter: Director of Consulting of CNUC and Project Lead– Nina Cohn: Statistical Analyst [CNUC’s  Senior Analyst]– Stephen Cieslewicz: President of CNUC and Project and Expert 

Witness Advisor and Witness• 60 years of experience in Utility Vegetation Management 

(UVM) 

• Same project team that performed the 2009 UVM benchmark project for Hydro One

• CNUC team has provided expert testimony for numerous legal and regulatory cases

• CNUC team has produced several peer‐reviewed publications and scientific articles

CNUC BACKGROUND AND RELATED PROJECTSProjects relevant to the current Hydro One Benchmarking Study• CNUC has been performing comprehensive benchmarking 

of UVM programs since 2002 and has data dating back to 1997.

• The team is comprised of the authors of the UVM Benchmark & Industry Intelligence publications in 2002, 2010, 2012 and 2014. 

Numerous projects for utilities in which UVM benchmarking was a key component, examples include:

Hydro One, MidAmerican Energy, Connexus Energy, Ameren Illinois, Puget Sound Energy, BC Hydro, United Illuminating, and Avista Utilities

BENCHMARKING STUDY FRAMEWORK

Hydro One Distribution UVM Benchmarking Study

Survey Design, Participation, 

and Deployment

A Review of Hydro One’s Program

Data  Management Data Analysis Recommendations 

and Conclusions

Regulatory and Literature Review

HYDRO ONE PROGRAM REVIEW

• Data is collected in five datasets, entire company and four zones:– Hydro One– Northern – Southern– Central– Eastern

• Longitudinal internal study of the five datasets

2009 CRITERIA FOR CHOOSING APPROPRIATE COMPARATORS• 2009 comparator locations based on climate conditions, growth, storm paths, and forest canopy cover:– Around Ontario– Northeastern North America– Western North America– Southeastern North America

• 2009 customer density:– ≤ 30 customers per circuit kilometre

CHOOSING CURRENT STUDY COMPARATORS

• Peer comparators– 2009 criteria– Unit and categorical comparisons– Total productivity factors

• General comparators– Policies and procedures– Best practices– Regulatory drivers– Workforce

COMPARATORS FOR 2015‐2016The following two slides are select lists of North American companies that have participated in CNUC benchmark surveys and who are potential comparators for this study

Additional companies may be invited

RECENT DISTRIBUTION BENCHMARKING PARTICIPANTS  ‐ 31 COMPANIES

Alabama Power Company [AL, USA]Ameren Illinois Company (AIC) [IL, USA]Appalachian Power Company [VA/WV, USA]Avista Utilities [WA/ID/OR, USA]Baltimore Gas and Electric Co (BG&E) [MD,USA]BC Hydro Distribution [BC, CAN]Commonwealth Edison [IL, USA]Connexus Energy [MN, USA]Consumers Energy Company [MI, USA]Entergy Corporation [LA/AR/MS, USA]EPB  (Electric Power Board) [TN, USA]Hydro One Networks Inc. [ON, CAN]Hydro‐Québec [QC, CAN]Indiana Michigan Power Company [USA]Indianapolis Power & Light [IN, USA]Kentucky Power Company [KY, USA]Lincoln Electric System (LES) [NE, USA]MidAmerican Energy (MEC) [IL, USA]

Northern Indiana Public Service Company [USA]

Northern States Power – MN [USA]Northern States Power – WI, MI [USA]Ohio Power Company  [USA]Omaha Public Power District (OPPD)  [NE, USA]Pacific Gas & Electric (PG&E) [CA, USA]PacifiCorp [CA/OR/WA/ID/WY/UT, USA]Public Service Company of Colorado 

[USA]Public Service Company of Oklahoma 

[USA]Southwestern Electric Power Company

[TX/AR/LA, USA]Southwestern Public Service Company  

[NM/TX, USA]Tampa Electric Company (TECO) [FL, USA]United Illuminating Company [CT, USA]

Companies Names in Italics and Brown Fonts were in the 2009 Hydro One Rate Case CNUC Benchmarking Study12 of the 14 comparators in the 2009 study are recent participants

ADDITIONAL RECENT BENCHMARKING PARTICIPANTS ‐ SPECIAL TOPICS 17 ADDITIONAL COMPANIES 

ATCO Electric [AB, CAN]Con Edison Inc. [NY, USA]Duke Energy Corporation [NC, USA]ENMAX Power Corporation [AB, CAN]Horizon Utilities [ON, CAN]KCPL [KS, USA]Manitoba Hydro [MB, CAN]National Grid [MA, USA]National Rural Electric Cooperative 

Association [VA, USA]

New Brunswick Power  [NB, CAN]Nova Scotia Power Inc. [NS, CAN]Puget Sound Energy Inc. [WA, USA]Saskatoon Light & Power  [SK, CAN]SaskPower  [SK, CAN]Southern Company [AL, USA]Toronto Hydro‐Electric System Limited  

[ON, CAN]We Energies [MI/WI, USA]

Companies in 2009 Study not represented:

Allegheny Power [WVA/PA/MD/VA, USA]Central Maine Power [ME/NY, USA]

SURVEY DESIGN AND STRATEGYDefining and Gathering Data:• Utility characteristics• Productivity

Labour Hours, Work Types, Equipment, Costs, and Cycles

• UVM Practices• Safety• Reliability• Workforce characteristics• Regulatory Policies

METHODOLOGY FOR ANALYSIS

• Data Management and Analysis• Normalizing measurements to reflect total productivity factors 

• Identifying Trends and Best Management Practices 

• Modeling Efficiencies• Forecasting Workload

TOTAL PRODUCTIVITY AND EFFICIENCY FACTORS

– Tree density– Customer density/customer service– Weather/catastrophic events– Cost of living indices– Reliability measurements– Terrain and site characteristics– Forest composition and health– Worker turnover– Safety– Environmental Quality

THE STATE OF THE UVM INDUSTRY IN NORTH AMERICAIs Reliability Centered Maintenance  (RCM) a standard of care for UVM?

UNDERSTANDING THE UVM INDUSTRYUTILITY VEGETATION MANAGEMENT (UVM) PROGRAM DRIVERS

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

2002 2006 2012 2013 2014

Weighted Ranking of the Importance of Each UVM Objective

1. Reliability

2. Safety

3. Comply with Specific Laws

4. Cost Effectiveness

5. Customer Service

6. Prevent Fires

7. Preserve and ProvideEnvironmental Quality

Most Important at the TopPrevious Studies Had Safety Ranked as the Number One Objective

SAFETY: HOW TO MEASURE SUCCESS•Electrocutions in the public sector

•Average percent of trees in contact at time of maintenance

•The frequency and costs of fires caused by trees and power lines

•incident reporting is not a true measure of line clearance safety

•Tree and power line contacts are an unsafe condition 

•Accidents are not reported to external stakeholders by the majority of companies

RISK TOLERANCE0% 1%

8% 10% 15

%

15%

35%

35%

35%

50%

60%

60%

60%

70%

70% 75

% 80%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

BB BD AH AA AP AZ AF AO BE AN AE AW AR AG AI AD AJ

Percen

t of Trees in

 Con

tact

Company Code

Trees in Contact at Time of MaintenanceSample Size: 17

Average: 40%     Q1: 15%      Median: 35%    Q3: 60%

COST: WHAT IS THE VALUE OF EFFECTIVE UTILITY VEGETATION MANAGEMENT?

• Electric reliability has gained the most attention by regulators

• The risk of electrical contacts, accidents, fires and increased customer interruptions has been significant enough to make a case for adopting best management practices in a UVM program

PREFERRED VS. DEFERRED MAINTENANCE

If a property owner, private tree company or worst of all, a child enters a tree that obscures the presence of a single phase primary tap and there is an injury or fatality, then the utility has suddenly lost all of the gain from taking a risk with trees that have low reliability impact. 

GETTING TO KNOW THE CUSTOMER

40%

5%

25%

10%

0% 5% 10% 15% 20% 25% 30% 35% 40% 45%

The CSS information is available to theforestry notifiers/planners

Vegetation data and permissions collected bythe UVM program is stored in the CSS

A record is kept on customers that havevegetation near overhead lines on their

property

The UVM dept knows percent of overheadcustomers have trees that routinely require

UVM

Percent of Companies

Recorded Data about Customers Who Own Properties That Require UVM 

INDUSTRY PERCEPTION OF WORKLOAD

• The UVM customer base is a subset of the utility customer population

• How many customers (meters) have UVM performed on their property? Question asked in survey

• 45% of utilities perceive their workload as 100% of their electric customers 

• Is UVM is  viewed as a system correction more than a customer transaction?

SYSTEM RELIABILITY

The efficacy of a program isn’t just measured by how long it has gone without an outage but rather how well it can prove the conditions that cause an outage won’t happen in the future.

RELIABILITY: A CHANGE IN UVM PRACTICES• In the past, the UVM goal was to create enduring 

airspace between trees and conductors  • Current UVM objectives have been realigned to fit 

budget constraints, realistic schedules and greater tolerance for tree/wire conflicts 

• Reliability metrics have been used to measure performance and direct UVM programs 

• Changing reliability expectations has led to a shift in the primary purposes for performing UVM

• UVM has shifted from the singular endeavor to keep all vegetation away from the conductor to a reduction of outage consequences 

RELIABILITY CENTERED (RC) UVM CHALLENGES

• What causes the system to fail the most often?

• What kind of outages have the longest duration? 

• Which outages impact the most customers? 

• Which outages interrupt the most load?

TRENDS IN THE UVM INDUSTRYVEGETATION‐RELATED SAIDI/SAIFI TO MEASURE UVM EFFICACY

70%

59%

48%

4%

4%

0% 10% 20% 30% 40% 50% 60% 70% 80%

SAIFI

SAIDI

CAIDI

CAIFI

MAIFI

Percent of Companies that Use Each Metric for UVM

Reliability Metrics Used for Utility Vegetation Management Planning and Evaluation

Sample Size: 27

PROBLEMS WITH UVM RELIABILITY CENTERED MANAGEMENT

• Less emphasis on safety 

• Increased cost of reactive maintenance

• Unpredictable reliability once trees are in contact with conductors 

• Down stream customers experience more tree‐related outages

• Inadequate emphasis on grid resiliency to high intensity, major, or widespread events that cause trees to fail into power lines  

DESIGNATING MAJOR EVENT DAYS93%

89%

85%

84%

82%

80%

78%

75%

73%

72%

69%

68%

68%

57%

49%

47%

45%

44%

44%

7%

11%

15%

16%

18%

20%

22%

25%

27%

28%

31%

32%

32%

43%

51%

53%

55%

56%

56%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

AP AW AD AF BD AE AA AI AC AG AJ BB AZ AK BG AR AO AH BE

Percen

t of T

ree‐Re

lated  Outages

Company Code

Major versus Non‐Major Event Tree‐Related Outages: Average Annual Percent in Each Category for Years 2010 ‐ 2013

Non‐Major Event Major Event

Sample Size: 19   Averages: Non‐Major Event: 69% , Major Event: 31%  Median: 72%

ARE INDUSTRY RELIABILITY METRICS A GOOD MEASURE OF VEGETATION CONDITIONS?A COMPARISON OF COMPANIES X, Y AND Z

• X is a large UVM reliability‐centered maintenance company with best‐in‐class electric reliability performance

• Y is a large compliance‐centered, multiple objectives performance company with best‐in‐class UVM performance

• Z is a small company with best‐in‐class reliability, but an underfunded UVM program with increasing levels of liability risk

TREE‐RELATED SAIFI  COMPARISON

0.11

0

0.11

0

0.11

2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

J C T S Y Z X O R E Q N K G H A I B L M

Tree

‐Related

 Non

‐MED

 SAIFI 

Company Code

Tree‐Related Non‐Major Event Day SAIFI Five‐Year Average 2009 ‐ 2013

Average: 0.258     Q1:  0.110    Median: 0.165    Q3: 0.314  

TREE RELATED SAIDI

10.7

11.6

17.3

0

50

100

150

200

250

J C S Z X O Y R T Q H E K N G I A B L MTree

‐Related

 Non

‐MED

 SAIDI in Minutes

Company Code

Tree‐Related Non‐Major Event SAIDI Five Year Average 2009 ‐ 2013

Average: 51.3   Q1: 14.0     Median: 24.9     A3: 60.0

TOTAL NUMBER OF TREE‐RELATED OUTAGES0.015 (0.024

 /mile)

0.081 (0.131/m

ile)

0.291 (0.168/m

ile)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Y S B H J T A C Z Q G O K E R N L I M X

Non

‐MED

 Tree‐Re

lated Outages 

Per P

ole Kilometre

Company Code

Non‐MED Tree‐Related Outages per Distribution Pole KilometreFive Year Average 2009 ‐ 2013 

Average:  0.111     Q1: 0.068     Median: 0.089 Q3: 0.134

RELIABILITY CAN IMPROVE WHILE THE NUMBER OF TREE‐RELATED OUTAGES INCREASE

2006 2007 2008 2009 2010Outages 8,906 12,194 13,918 14,865 16,197SAIFI 0.0822 0.1073 0.1297 0.1237 0.0993

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

Non‐M

ajor Event SAIFI 

Num

ber o

f Non

‐Major Event Outages

Comparison of Non‐Major Event Outages and SAIFI for Company X 2006 ‐ 2010

AN EFFECTIVE UVM PROGRAM HAS TO LOOK BEYOND THE CURRENT RELIABILITY PICTURE

Suburban: r = 0.868, p < 0.001

Rural: r = 0.960,  p < 0.001

0

1

2

3

4

5

6

0 2 4 6 8 10 12 14

Average Num

ber o

f Outages per Circuit 

Number of Years Since Vegetation Was Managed 

Average Number of Tree‐Related Outages per Circuit versus Number of Years Since Vegetation Was Managed

Suburban Averages Outages Rural Averages Outages

WHAT DO CUSTOMERS PAY FOR UVM?RESIDENTIAL 38% AND INDUSTRIAL/COMMERCIAL 62% OF ELECTRICITY SALES

If 33% of all electric customers receive UVM on average every 4 years the Median at time of work cost per UVM customer is estimated to be  $298

$16.38

$37.14

$39.00

$0

$20

$40

$60

$80

$100

$120

$140

$160

C U R O V H W X AA AB AC E AD AE AF G S AG AI Z Y I T AJ N L J K B M

Cost per Customer in

 CAD

 

Company Code

Average Annual Cost of UVM per CustomerSample Size: 30

Average: $35.88    Q1: $17.01     Median: $26.98    Q3: $54.60

UVM FUNDING: A PERENNIAL PROBLEM

Inadequate budgets were characterized as follows: •Significant annual fluctuations •Lower than the needs of the approved program•No where close to meeting program needs•Unpredictable

31%Adequate

10%Somewhat Adequate

59%Not Adequate

Percent of Companies with Highly Adequate, Somewhat Adequate or Inadequate Budgets in 2014

INDUSTRY RELIABILITY INDICES ARE INADEQUATE FOR ACCESSING THE RELATIVE EFFICIENCY OF A PROGRAM

• Outages per kilometre is a better indicator of vegetation conditions

• Measurement of program efficiency should not rely primarily on reliability 

• Program efficiency should include other stated objectives of UVM

KEY TO A SUCCESSFUL UVM PROGRAM, ADEQUATE FUNDING AND CUSTOMER ACCEPTANCE

Utilities can facilitate the relationship between the utility, the regulator and the customer by improving the data they collect and by providing clear analysis that proves compliance to UVM regulations and shows improvements in performance. 

HYDRO ONE STUDY HORIZONS

• Best management practices and opportunities for gaining efficiency

• Balanced objectives and risk tolerances• Measurable performance against industry trends

• Modeling the system for various scenarios• Forecasting costs, including cost of deferred maintenance

• Opportunities for capitalization of UVM

QUESTIONS?

Distribution Total Factor Productivity Study

STEVE FENRICK

[email protected]

OCTOBER 22, 2015

Stakeholder Engagement Meeting

Communications• Strategic Communications Planning• Technology Assessments: Private vs. Commercial• Land Mobile Radio Design• Radio Path & Propagation Studies• Fiber WAN Design & Procurement• GIS Mapping & Integration of Communication Assets• Microwave & Fixed Data Design & Procurement

Utility Automation• Technology Work Plans• Integration, Testing, Training and

Support• Cyber Security & IT Assessments• Substation and Distribution

Automation• Strategic Planning• Consulting and Procurement

services on SCADA, AMI/AMR, OMS, GIS, CIS, and others

Engineering & Design• System Planning Studies• Distributed Generation Strategies• Transmission Studies• Power Factor Correction Studies• System Loss Evaluation• Substation Design• Line Design

PSE Services 2

• Load Forecasting• Statistical Performance

Measurement (Productivity & Benchmarking)

• Market & Load Research• Alternative Regulation• Demand-Side Management

(DSM)• Value of Service• Other Economic Studies

Economics & Research Rates & Financial Planning

• Revenue Requirement Studies• Class Cost of Service Studies• Rate Design• Key Account Services• Rate Comparisons &

Competitive Assessments• Strategic & Financial Planning

My ExperienceSteve Fenrick (Leader, Economics & Market Research)

Worked on empirical TFP and benchmarking research for 3rd

Generation IR (while at Pacific Economics Group) Engaged by the Ontario Energy Board to produce the

OM&A annual stretch factor updates (2010-2013) Peer group benchmarking update Econometric benchmarking update

Provided TFP research in Enbridge Gas (2013) case Benchmarking and TFP expert on behalf of the Coalition of

Large Distributors during the 4th Generation IR proceeding (2013)

Benchmarking expert on behalf of Toronto Hydro ICM (2013/2014) Custom IR (2014/2015)

Benchmarking expert on behalf of Hydro Ottawa Custom IR (2015)

3

Agenda 4

Section 1: Project Overview

Section 2: Empirical Approach

Section 3: Incorporating TFP Drivers into the TFP Measure

Section 4: Project Next Steps

Project Overview

Board’s March 12, 2015 Decision in EB-2013-0416, page 17:

“The OEB sees value in Hydro One measuring its own total factor productivity over time to be able to demonstrate improvement in productivity to its customers and the OEB. The OEB leaves it to Hydro One to determine its preferred total factor productivity study method. However, the period of the study should include years at least going back to 2002. The results of the study must be filed as part of Hydro One’s next rates application.”

5

Project Overview

In 4th Generation IR, the Board Staff’s expert developed industry TFP trends

The Board’s method was based on developing an X-factor for rate adjustments, not for providing a comprehensive view of performance

Board’s November 21, 2013 Decision in EB-2010-0379 stated on page 17: “The Board acknowledges that achieved industry TFP may be negative due to unforeseen events and/or situations in which costs may be incurred with no corresponding increase in output.”

A more “comprehensive” TFP measure is needed to properly demonstrate the performance of Hydro One

6

Project Overview

Project Objectives include:1. Provide the Board and stakeholders with Hydro One’s own

TFP trends starting in 2002 through 2022 Variable projections estimated by Hydro One will be used to

calculate TFP projections from 2015 and beyond

2. Build upon the 4th Generation IR TFP methodology by incorporating additional cost drivers into the analysis

3. Clearly explain the basis for weighting and incorporating these additional TFP drivers Wherever possible, use empirically-derived evidence

4. Provide high-level recommendations that Hydro One can use to inform its future planning or reporting processes

7

Empirical Approach

FromtheStaff’sconsultant PEG in4th GenerationIRproceeding: ∆ ∆ ∆

Outputs = customers, total kWh deliveries, system capacity peak demand

Inputs = Capital & OM&A

Output choice was logical when setting a TFP trend for a rate setting application, because revenues are primarily driven by these three outputs

However, in demonstrating the trend in performance of a particular distributor, the fact that input quantities (i.e. cost trends) are a function of other possible outputs must be recognized and incorporated into the study

8

Empirical Approach

Other possible TFP drivers that the TFP study will investigate: Changes in reliability (SAIFI & SAIDI) during the 2002-2022 period

Changes in customer service levels

Environmental output

Regulatory outputs and costs

Input price inflation of Hydro One

Other drivers as they may be uncovered during the course of the project

9

Incorporating TFP Drivers

Two possible approaches:1. Empirical modeling

2. Hydro One internal “added cost” estimates

Wherever possible, PSE will prefer empirical modeling based on externally-derived evidence in incorporating TFP drivers

If no model can be developed, Hydro One “added cost” estimates will be used if:1. PSE is convinced the variable in question is crucial

to properly demonstrating Hydro One’s TFP performance trend, and

2. Reasonable estimates can be obtained

10

Incorporating TFP Drivers

Working Assumptions:1. Reliability is an “output” of an electric distributor

and is positively correlated with cost (i.e., if reliability improves then cost is likely to increase)

2. Customer service is an “output” and is positively correlated with cost

3. Meeting more stringent environmental or regulatory requirements is an “output” and is positively correlated with cost

11

Project Next Steps

1. Modify TFP study plan based on feedback2. Data and information gathering

Hydro One interviews on possible TFP drivers Hydro One data and information gathering Industry sample data gathering

3. Analysis on incorporating TFP variables Reliability, customer service, environmental &

regulatory, input price, other

4. Finalize TFP estimates and write report5. TFP report to be filed in Hydro One’s next rate

case

12

Steve Fenrick

Leader, Economics & Market Research Group

608-268-3549

608-334-5994 (mobile)

[email protected]

13

Thank You:

DISPUTES & INVESTIGATIONS • ECONOMICS • F INANCIAL ADVISORY • MANAGEMENT CONSULT ING

Stakeholder Session #1

Distribution Pole Replacement

and Station Refurbishment Unit

Cost Benchmarking Studies

October 22, 2015

Section 1 »

Section 2 »

Section 3 »

Section 4 »

Section 5 »

Overview

Approach

Process and Metrics

Next Steps

2

Agenda

Overview

Navigant

3

» A global and independent consulting firm, Navigant’s reputation is for assisting our clients across core

industries to address the critical opportunities and challenges of new markets, evolving customer demands,

regulation and business model changes, new technologies, risk, and disputes

» With more than 400 consultants, Navigant’s Global Energy Practice is the largest energy management

consulting team in the industry. Our team of experienced professionals serves leading energy companies

to address their most complex business opportunities and challenges

Overview

First Quartile Consulting

4

» First Quartile Consulting is the leading provider of benchmarking services in the transmission and distribution

and customer service areas for utilities

» Established in 2007, the leadership team has was together for 20 years prior to founding of 1QC

› The 1QC team began conducting large-scale transmission and distribution benchmarking studies in 1989

› Annual studies under the First Quartile Consulting name began in 2008

» Beyond the annual studies, the firm conducts many different tailored benchmarking studies each year for

individual clients, designed to meet specific needs, be it deep concentration on a particular area (e.g. work

management approaches, capital planning, field construction, etc.), or a broader view across geographies or

outside the utility industry

Overview

Goals and Objectives

5

Design and implement a robust benchmarking study of Hydro One’s distribution

costs

The benchmarking study will:

» Include an appropriate group of businesses to use as comparators/peers to Hydro One, taking into account a

number of characteristics, including asset demographics, geography, customer characteristics, etc.;

» Quantify and evaluate Hydro One’s practices and unit costs for distribution pole replacement and distribution

substation refurbishment work relative to the peer group, taking into account cost drivers and differentiating

characteristics;

» Ensure a common understanding of the comparison criteria through the use of clear definitions;

» Explore cost variations and associated practices and methods;

» Make recommendations on practices that could be augmented or adopted to realize efficiency gains;

» Engage stakeholders in regards to the peer group selection criteria, comparison metrics, and preliminary

findings and recommendations.

Approach

Project Plan

6

Approach

Panel Design

7

Approaches to creating a pool of companies for a benchmarking study

Approach 1: Concentrate only on comparing overall performance outcomes

Panel 1: Select a homogeneous panel

Approach 2: Investigate operating practices in order to find the best practices

Panel 2: Select a panel of different utilities

Approach recommended for Hydro One:

a. Study goal is to look at both performance and practices

b. Select a “balanced” panel to include like companies as well as different companies

c. Some factors to consider in selecting peers for Hydro One:

� Size of company

� Density of the territory

� Regulatory regime

� Ownership structure

� Weather and storm patterns

� Ability to collect financial, operating, and practice data

Approach

Peer Group Selection

8

Step 3: Filter Existing

Benchmarking Community

Step 1: Identify demographics (e.g., volume, type and age of Dx poles, number and type of Dx substation

projects, climate, geography, customer density.)

Step 2: Establish appropriate sample size

Step 4: Identify and

Recruit Additional

Participants

Benchmark Sample

Approach

Targeted Companies

Oncor Electric

Delivery

KCP&L

ComEd

New York State E&G

Rochester G&E

B.C. Hydro

Tucson Electric

Power

Hydro-Québec

Southern

California

Edison

Austin Energy

CenterPoint Energy

CPS Energy

Westar Energy

BGE

PECO Energy

PPL Electric Utilities

PSE&G

Central Maine Power

EKPC

Manitoba

HydroSaskPower

DTE

UES Electric

Nova Scotia

Power

8 Ontario Distribution

Companies:• PowerStream (GTA)

• Veridian (GTA)

• Horizon (Niagara Peninsula)

• Greater Sudbury and/or Thunder

Bay (Northern Ontario)

• Algoma Power (Central Ontario)

• Entegrus (South-western

Ontario)

• Essex and/or EnWin

(Southwestern Ontario)

• Oshawa and/or Kingston and/or

Peterborough (Eastern Ontario)

9

Process and Metrics

Pole Replacement

10

Str

ateg

y Develop Pole Infrastructure Program

Eva

luat

ion Execute

Inspection Routine

Info

rmat

ion Document /

Archive Inspection Results Im

prov

emen

t

Perform Follow Up Or Emergency Treatment

Doc

umen

tatio

n Archive Treatment Results

Measures

› # Of poles

› Pole demographics

(type, height,

number of circuits,

footings, etc.)

› Begin inspect

› % inspected

› Unit cost per pole

› Rotation years

› Number archived

› Maintenance

follow up months

› Unit cost per pole

Materials› Wood / steel /

composite /

concrete

Methods› All / targeted › Visual / sound &

bore / excavation /

sonic

› Serviceable /

rejects / reinforce /

replace

› Remedial

treatment or

replacement

› Urban-suburban /

circuit / pole

Manpower › Internal / Vendor › Internal / Vendor

Program cost

Process and Metrics

Substation Refurbishment

11

Str

ateg

y Develop the program

Eva

luat

ion Execute

substation evaluation routines In

form

atio

n Document / archive inspection and evaluation results

Pre

para

tion Design The

solution

Impr

ovem

ent

Perform construction

Doc

umen

tatio

n Record new asset information

Measures

› # of stations,

› Station

demographics

› Component

demographics

› # of stations

evaluated,

› Specific

components

evaluated

› Inspection cycles

by component,

› Number of

inspections

archived

› Station demographics per project

› Design and construction costs per

project

› Months to complete design

› Months to complete construction

› Units of

property

recorded

› Unit cost / kVA

Materials› Types and number of components

replaced / refurbished for each

project

Methods

› Refurbishment

strategy –

component

based vs.

station centric

› Evaluation

methods by

component

› Project initiation

criteria

› Component

replacement

criteria

› iMDS vs traditional substation

rebuild at existing site

Manpower › Internal/vendor

Program cost

Next Steps

12

Several short-term and some long-term activities to prepare the comparisons

» Follow-up from the stakeholder session

› Respond to inputs

› Modify the process and metrics as necessary

» Data gathering

› Hydro One internal data gathering

‒ Interviews

‒ Complete a questionnaire

› Peer group

‒ Recruit Canadian and US utilities to participate

‒ Work with participating utilities to validate their data for accuracy and comparability

» Summary and reporting

› Initial draft of data comparisons for data validation and analysis

› Analysis and normalization

› Draft report

» Analysis expected to be complete in Q1 2016, next stakeholder session planned for Q2 2016

Appendix

Glossary

Pole Replacement

Term Definition

Pole replacement Pertains to all the activates related to managing the wood pole assets

# of poles Approximate number of poles, in thousands, owned by the utility

Pole demographics Segmentation of the population of poles based on age (in service)

Begin inspect The age of a pole or circuit area that inspections will begin

% inspected The number of actual inspections performed divided by the scheduled number of inspections

Unit cost The actual cost divided by the number of pieces of work / circuits

Rotation years The number of years between inspections

# archived How many past inspections are recorded in the database

Maintenance follow up months The number of months after the inspection in which all non-urgent repairs or maintenance was

completed

Wood / steel / composite / concrete Common types of poles replaced

All / targeted The scope of the inspection program. All, the program is across the entire system. Targeted, the

program is aimed at specific areas (usually older)

Visual / sound & bore / excavation / sonic Methods of pole inspections

Serviceable / rejects / reinforce / replace Common categorization of poles post inspection

Remedial treatment / replacement Methods of treatment based on pole inspection results

Urban-suburban /

circuit / pole

Method of retaining past inspection and maintenance records, either for non-rural areas, by poles on

a circuit or individual pole

Internal / vendor The categorization of the actual resources utilized to perform the work

Program cost The total dollar amount spent, by the utility, on inspection and maintenance of their wooden pole

assets

14

Glossary

Substation Refurbishment

Term Definition

Distribution substation

refurbishments

Projects that result in the replacement of multiple substation equipment components at an existing

distribution substation site

# of stations Number of distribution substations in service at the company

Substation demographics Segmentation of substation population by location (urban/suburban/rural), basic design type (e.g., single

transformer versus multiple transformer), voltage levels and size (MVA)

Component demographics Age profile of major substation components

# stations evaluated The number of stations evaluated as potential refurbishment candidates

Specific components evaluated Listing of the specific substation components that are evaluated when determining whether a

refurbishment project should be initiated at a specific substation site

Evaluation methods Description of the methods used to evaluate inspection results and other condition data on specific

substation components

Inspection cycles by component The months between formal inspections of various substation components

Number of inspections archived The number of inspection results that are archived and evaluated for each major substation component

Project initiation criteria The specific asset condition criteria which cause a refurbishment project to be initiated

Component replacement criteria The specific asset condition criteria which cause a specific component to be replaced during a substation

refurbishment project

iMDS Integrated Modular Distribution Station – a prefabricated station containing a transformer and switchgear

mounted on a platform

Traditional substation rebuild Projects that involve replacement of individual substation components (with no integrated modules)

Internal / vendor The categorization of the actual resources utilized to perform the work

Program cost The total dollar amount spent, by the utility, on their distribution substation refurbishment programs

15