appendix a questionnaire and re spondentsonlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_682... ·...

52
A-1 APPENDIX A QUESTIONNAIRE AND RESPONDENTS NCHRP PROJECT QUESTIONNAIRE NCHRP Project No.: 24-32 NCHRP Project Title: “Scour at Wide and Skewed Piers” Principal Investigator: D. Max Sheppard OEA, Inc., University of Florida Name: Organization: Address: Telephone Number: Email Address: For the purpose of this study “Wide Pier” is defined as one that satisfies the following criteria: 1. Projected Width >= 10 ft (3 m) AND 2. Projected Width >= 100 x Median Grain Diameter = 100 d50 Survey: 1. How do you and/or your colleagues/consultants compute design local scour depths at wide piers and piers skewed to the flow direction? Please give the reference to the reports and/or papers that describe the methods used. 2. Please list references to published and/or ongoing research on local scour at wide piers and piers skewed to the flow direction with which you are familiar. 3. Please list references to laboratory or field data for local scour at wide piers and piers skewed to the flow direction. 4. Do you take the rate at which local scour occurs into consideration in your design scour calculations? If so, please give references to the methods used. 5. If you are aware of published and/or ongoing research on the rate at which local scour occurs please list the references. 6. Please list references to laboratory or field data for the rate of local scour at structures.

Upload: others

Post on 10-Mar-2020

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: APPENDIX A QUESTIONNAIRE AND RE SPONDENTSonlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_682... · B-1 APPENDIX B FUTURE RESEARCH NEEDS Test Series 1. Live-bed scour tests with large

A-1

APPENDIX A QUESTIONNAIRE AND RESPONDENTS

NCHRP PROJECT QUESTIONNAIRE

NCHRP Project No.: 24-32 NCHRP Project Title: “Scour at Wide and Skewed Piers” Principal Investigator: D. Max Sheppard OEA, Inc., University of Florida Name: Organization: Address: Telephone Number: Email Address: For the purpose of this study “Wide Pier” is defined as one that satisfies the following criteria: 1. Projected Width >= 10 ft (3 m) AND 2. Projected Width >= 100 x Median Grain Diameter = 100 d50 Survey: 1. How do you and/or your colleagues/consultants compute design local scour depths at wide

piers and piers skewed to the flow direction? Please give the reference to the reports and/or papers that describe the methods used.

2. Please list references to published and/or ongoing research on local scour at wide piers and

piers skewed to the flow direction with which you are familiar. 3. Please list references to laboratory or field data for local scour at wide piers and piers

skewed to the flow direction. 4. Do you take the rate at which local scour occurs into consideration in your design scour

calculations? If so, please give references to the methods used. 5. If you are aware of published and/or ongoing research on the rate at which local scour

occurs please list the references. 6. Please list references to laboratory or field data for the rate of local scour at structures.

Page 2: APPENDIX A QUESTIONNAIRE AND RE SPONDENTSonlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_682... · B-1 APPENDIX B FUTURE RESEARCH NEEDS Test Series 1. Live-bed scour tests with large

A-2

RESPONDENTS

RESEARCHERS (15)

• Brian Barkdoll • Roger Bettess • Geoff Blight • Antonio H. Cardoso • Liang Cheng • George Constantinescu • Subhasish Dey • Willi H. Hager • Umesh C. Kothyari • Juan Pedro Martín-Vide • David S. Mueller • Giuseppe Oliveto • Richard Whitehouse • Melih Yanmaz • Tae Hoon Yoon

STATE HYDRAULICS ENGINEERS (18)

• Arkansas DOT-Carl Fuselier • California DOT-Kevin Flora • Hawaii DOT-Curtis Matsuda • Iowa DOT-Dave Claman • Minnesota DOT-Andrea Hendrickson • Mississippi DOT-James Warren Bailey • Missouri DOT-Keith Ferrell • Montana DOT-Mark Goodman. • New Jersey DOT-Richard W. Dunne • New York State DOT-Wayne Gannett • Oklahoma DOT-Leslie Lewis • Rhode Island DOT-Robert F. Fura • South Dakota DOT-Richard Phillips • Tennessee DOT-Jon Zirkle • Texas DOT-John G. Delphia. • Virginia DOT-David M LeGrande, Sr. (for Roy T. Mills) • West Virginia DOT-Doug Kirk • Wisconsin DOT-Najoua Ksontini

STATE TRB REPRESENTATIVES (4)

• Arkansas Highway & Transportation Department-Charles Ellis • Maryland SHA, Office of Bridge Development-Andrzej (Andy) Kosicki • Massachusetts Highway Department-Richard Murphy

Page 3: APPENDIX A QUESTIONNAIRE AND RE SPONDENTSonlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_682... · B-1 APPENDIX B FUTURE RESEARCH NEEDS Test Series 1. Live-bed scour tests with large

A-3

• Vermont Agency of Transportation-Nick Wark

Page 4: APPENDIX A QUESTIONNAIRE AND RE SPONDENTSonlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_682... · B-1 APPENDIX B FUTURE RESEARCH NEEDS Test Series 1. Live-bed scour tests with large

B-1

APPENDIX B FUTURE RESEARCH NEEDS

Test Series 1. Live-bed scour tests with large a/D50 The more recently developed predictive equations for bridge pier scour, while being based on the physics of flow and sediment transport processes, depend heavily on laboratory data for their development and validation. There is a void in laboratory data for conditions that are important for many prototype structure situations, but difficult to achieve in the laboratory. The missing data is for large structure width to sediment diameter ratios (a/D50) AND high velocity flows (i.e., large V1/Vc). Most laboratory flumes capable of producing high velocity flows and recirculating both water and sediment are small in width and depth. The narrow widths of these flumes prevent testing large models and, therefore, large structure to sediment size ratios. In the absence of laboratory data, assumptions have been made regarding the dependence of equilibrium scour depth on flow velocity in this flow regime. Researchers have different interpretations of the very limited data that exists for these conditions and this is reflected in their predictive equations. Since these equations are used for predicting design scour depths it is imperative that data in this regime be obtained.

Laboratory tests have been conducted with structures up to 3 ft (0.915 m) in diameter in sand with median diameters (D50) of 0.22 mm near the transition from clear-water to live-bed scour conditions. The trend in normalized scour depth, ys/a, with normalized depth-averaged velocity, (V1/Vc) is as shown in Figure B- 1, where a is the diameter of the circular pile and Vc is the sediment critical depth-averaged velocity for the sediment. The solid line indicates where laboratory data exists. The dotted lines show where either data is limited or nonexistent. Water depth is greater than 3a in this plot.

Figure B- 1 Schematic drawing indicating the change in normalized equilibrium scour depth with

a/D50

As the Figure shows, the normalized scour depth at transition from clear-water to live-bed conditions decreases with increasing values of a/D50. There is also data in the live bed range for small values of a/D50 as indicated by the solid lines in the plot. The question is: how does the normalized equilibrium

for a single circular pile.

Page 5: APPENDIX A QUESTIONNAIRE AND RE SPONDENTSonlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_682... · B-1 APPENDIX B FUTURE RESEARCH NEEDS Test Series 1. Live-bed scour tests with large

B-2

scour depth change with increasing values of normalized velocity for large values of a/D50. Field data indicates that the normalized scour depth increases beyond that at transition (from clear-water to live bed) as shown by dotted lines in Figure B- 1. However, since the maturity of the scour depth at the time of measurement is seldom known for field data as well as the other problems with field data discussed in this report, the authors of this report do not think it prudent to base predictive equations on data with these uncertainties. For this reason the series of laboratory tests outlined below are highly recommended for Phase III of this study.

As stated above the main reason for this void in laboratory data is facility limitations. To the best of the author’s knowledge, the flume with the greatest capability for conducting tests for these conditions in the United States is the large tilting flume in the Hydraulics Laboratory at Colorado State University in Fort Collins, Colorado. This flume is 5 ft deep (with sideboards) by 8 ft wide by 200 ft long with a flow discharge capability greater than 60 cfs. This flume can also recirculate both water and sediment and tilt up to 2 percent (to insure normal flow). This flume has been used extensively for pier scour tests for many years and has both the manpower in the form of undergraduate and graduate student research assistants and experienced staff for conducting the required tests. The only option would be to have the tests conducted at laboratories outside the U.S. at a much greater cost and in a less timely fashion.

Test Series 2. Equilibrium scour and temporal rate of development of scour at long and skewed piers Very few data are available for long piers and for skewed piers. The majority of the laboratory data have been derived for circular cylindrical piers and few reliable data are available for long piers, which are common.

Laursen and Toch’s (1956) chart of multiplying factors for the effects of skewness is recommended to be used with most existing pier scour equations. The Laursen and Toch chart demonstrates the importance of alignment, that is, the local scour depth at a rectangular pier with l/b=8 is nearly tripled for an angle of attack of 30o. The angle of attack at bridge crossings may change significantly during floods for braided channels, and it may change progressively over a period of time for meandering channels. The data on which the Laursen and Toch chart is based have never been published. Further, the chart is used assuming that it is independent of other local scour influences, including flow intensity V1/Vc, flow depth y/a, and sediment size a/D50. This assumption needs to be investigated further.

A related factor concerns the influence of aspect ratio (ratio of length to width of rectangular piers). This effect would also be investigated.

Test Series 3. Large scale local scour experiments The existing frequently used prediction methods, which are mostly based on laboratory data, yield scour depth estimates that may substantially exceed observed depths at wide piers. Piers of the order of 10s of feet wide are reported as creating scour holes considerably shallower than the maximum depths found from laboratory flume tests. Flume tests with small circular cylinders (e.g., 0.4 ft diameter) produce a maximum scour depth of about 2.2 to 2.4 times cylinder diameter. While some over-estimation of scour depth is acceptable for many piers, over-estimation becomes an increasingly unacceptable economic proposition as pier width increases.

More data are needed from large-scale (clear-water and live-bed) experiments to further elucidate

Page 6: APPENDIX A QUESTIONNAIRE AND RE SPONDENTSonlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_682... · B-1 APPENDIX B FUTURE RESEARCH NEEDS Test Series 1. Live-bed scour tests with large

B-3

these important influences of sediment size and flow depth for wide piers and long piers rendered wide by being skewed to the flow. While some data exist in the clear-water regime, no data are available in the live-bed regime for controlled flow conditions. One of the field data sets from Zhuravlyov in 1978 show large scour depths at large structures when subjected to high velocity flows. This is contrary to measurements by other researchers and by observations by practitioners. The construction of a prototype scale structure (or use of an existing structure) located in a canal with a cohesionless sediment bed and controlled discharges could provide the information needed to resolve this issue. There are canals in India that might be appropriate for these tests. These canals were constructed over many years for irrigation purposes. Typically, they are large, sand-bedded with trapezoidal cross-section. Before confirming their suitability, it will be necessary to ascertain that high enough flow velocities can be generated. An alternative would be to use a large, near prototype scale, laboratory channel that exists in Pakistan. In this respect, it is understood that similar prototype scale facilities exist elsewhere in Pakistan and in India. However, the suitability and availability of these facilities is unknown at this point.

Another possibility would be to use the outdoor flume at Colorado State University where live-bed scour flows can be produced. Since it is not a recirculating flume, sediment must be added near the upstream end of the channel. Measurements of bed elevations at several locations in the flume would have to be monitored and the data used to control the rate at which sediment is introduced.

Test Series 4. Experiments to investigate equilibrium scour depths, and scour evolution rates, at complex and multiple piers Complex piers include all pier shapes other than piers with a uniform cross-sectional shape throughout the water column. Various data sets exist for complex piers, but these are inconsistent and feature significant gaps in the ranges of dependent variables; more data are needed to cover these gaps. Complex pier data are used for design, assuming their independence of other local scour influences; this assumption needs to be verified. A comprehensive investigation of local scour depths at complex pier shapes is needed.

The local scour at piers that are in close proximity (multiple piers) has received limited attention. In such cases, the local scour holes at adjacent piers may overlap and the scour processes for both piers will interfere with each other. An example of this situation occurs where a bridge is to be constructed adjacent to an existing bridge. Experiments are needed to investigate this aspect of local scour.

Test Series 5. Experiments to investigate the influence of sediment gradation on local scour

The significance of the influence of sediment gradation σg on local scour depends on the scour regime, clear-water or live-bed, and on the flow intensity. Sediment gradation influences can be significant. For example, the local scour is less by a factor of 3 or 4 times for a graded material compared to a uniform bed material of the same D50 at the threshold condition.

None of the available predictive methods adequately accounts for the armoring effects that result from large sediment size distributions. With data from carefully designed and performed clear-water and live-bed experiments the effects of σg could be incorporated into the S/M method for computing equilibrium local scour.

Test Series 6. Experiments to investigate local clear-water scour at low values of V1/Vc

Most clear-water laboratory data for local scour at bridge piers have been collected at about the

Page 7: APPENDIX A QUESTIONNAIRE AND RE SPONDENTSonlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_682... · B-1 APPENDIX B FUTURE RESEARCH NEEDS Test Series 1. Live-bed scour tests with large

B-4

threshold of movement of sediment, i.e., V1/Vc = 1, because this condition produces the deepest scour. Relatively few data are available for V1/Vc < 0.7 and the available data in this range show inconsistencies. In particular, many of the Chatou Laboratory data (Chabert and Engeldinger, 1956) feature much deeper scour for V1/Vc < 0.7 than other data sets. Further data are needed in this range, because several of the popular predictive equations underestimate these data.

Test Series 7. Pressure Gradient Tests In 2004, Sheppard published a theoretical explanation for the observed dependence of equilibrium scour depths on the ratio of pier width to sediment diameter. According to this hypothesis, pressure gradients in the vicinity of the structure due to the presence of the structure are much larger for small laboratory scale structures than for prototype structures. Forces on the sediment grains produced by these pressure gradients are thus larger near small structures than for larger prototype structures, thus giving a possible explanation as to why predictive equations based on small scale laboratory data over predict scour depths at prototype scale structures. Stated another way: some of the local scour mechanisms present for laboratory scale structures are significantly reduced in magnitude for prototype structures. Note that this also has implications in 1) estimating prototype scour depths from physical model test data and 2) in interpreting laboratory scale scour evolution rate data.

The analysis in Sheppard’s paper is based on potential flow theory and there are several assumptions that need to be tested in the laboratory. These tests will require measurement of the pressure distribution on the fixed bed in the vicinity of a circular pile for a range of flow velocities for a minimum of two pile diameters.

Page 8: APPENDIX A QUESTIONNAIRE AND RE SPONDENTSonlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_682... · B-1 APPENDIX B FUTURE RESEARCH NEEDS Test Series 1. Live-bed scour tests with large

C-1

APPENDIX C ADDITIONAL MEASURED OVER PREDICTED EQUILIBRIUM SCOUR PLOTS

Figure C- 1 Ratio of measured to predicted scour depth versus normalized depth (y1

0 5 10 150

0.5

1

1.5

2

mea

sure

d/co

mpu

ted

y s

Jain 1981

y1/a0 5 10 15

0

0.5

1

1.5

2

mea

sure

d/co

mpu

ted

y s

Froehlich 1988

y1/a

0 5 10 150

0.5

1

1.5

2

mea

sure

d/co

mpu

ted

y s

Melville 1997-mod.

y1/a0 5 10 15

0

0.5

1

1.5

2

mea

sure

d/co

mpu

ted

y sHEC18

y1/a

0 5 10 150

0.5

1

1.5

2

mea

sure

d/co

mpu

ted

y s

HEC18-no wp corr

y1/a0 5 10 15

0

0.5

1

1.5

2

mea

sure

d/co

mpu

ted

y s

S/M

y1/a

/a) for selected equilibrium scour equations and laboratory data.

Page 9: APPENDIX A QUESTIONNAIRE AND RE SPONDENTSonlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_682... · B-1 APPENDIX B FUTURE RESEARCH NEEDS Test Series 1. Live-bed scour tests with large

C-2

Figure C- 2 Ratio of measured to predicted scour depth versus normalized velocity (V1/Vc

0 2 4 6 80

0.5

1

1.5

2m

easu

red/

com

pute

d y s

Jain 1981

V1/Vc

0 2 4 6 80

0.5

1

1.5

2

mea

sure

d/co

mpu

ted

y s

Froehlich 1988

V1/Vc

0 2 4 6 80

0.5

1

1.5

2

mea

sure

d/co

mpu

ted

y s

Melville 1997-mod.

V1/Vc

0 2 4 6 80

0.5

1

1.5

2m

easu

red/

com

pute

d y s

HEC18

V1/Vc

0 2 4 6 80

0.5

1

1.5

2

mea

sure

d/co

mpu

ted

y s

HEC18-no wp corr

V1/Vc0 2 4 6 8

0

0.5

1

1.5

2

mea

sure

d/co

mpu

ted

y s

S/M

V1/Vc

) for selected equilibrium scour equations and laboratory data.

Page 10: APPENDIX A QUESTIONNAIRE AND RE SPONDENTSonlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_682... · B-1 APPENDIX B FUTURE RESEARCH NEEDS Test Series 1. Live-bed scour tests with large

C-3

Figure C- 3 Ratio of measured to predicted scour depth versus Froude Number (Fr) for selected

equilibrium scour equations and laboratory data.

0 0.5 1 1.50

0.5

1

1.5

2m

easu

red/

com

pute

d y s

Jain 1981

Fr0 0.5 1 1.5

0

0.5

1

1.5

2

mea

sure

d/co

mpu

ted

y s

Froehlich 1988

Fr

0 0.5 1 1.50

0.5

1

1.5

2

mea

sure

d/co

mpu

ted

y s

Melville 1997-mod.

Fr0 0.5 1 1.5

0

0.5

1

1.5

2m

easu

red/

com

pute

d y s

HEC18

Fr

0 0.5 1 1.50

0.5

1

1.5

2

mea

sure

d/co

mpu

ted

y s

HEC18-no wp corr

Fr0 0.5 1 1.5

0

0.5

1

1.5

2

mea

sure

d/co

mpu

ted

y s

S/M

Fr

Page 11: APPENDIX A QUESTIONNAIRE AND RE SPONDENTSonlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_682... · B-1 APPENDIX B FUTURE RESEARCH NEEDS Test Series 1. Live-bed scour tests with large

C-4

Figure C- 4 Ratio of measured to predicted scour depth versus a/D50

101 102 103 1040

0.5

1

1.5

2m

easu

red/

com

pute

d y s

Jain 1981

a/D50

101 102 103 1040

0.5

1

1.5

2

mea

sure

d/co

mpu

ted

y s

Froehlich 1988

a/D50

101 102 103 1040

0.5

1

1.5

2

mea

sure

d/co

mpu

ted

y s

Melville 1997-mod.

a/D50

101 102 103 1040

0.5

1

1.5

2m

easu

red/

com

pute

d y s

HEC18

a/D50

101 102 103 1040

0.5

1

1.5

2

mea

sure

d/co

mpu

ted

y s

HEC18-no wp corr

a/D50

101 102 103 1040

0.5

1

1.5

2

mea

sure

d/co

mpu

ted

y s

S/M

a/D50

for selected equilibrium scour equations and laboratory data.

Page 12: APPENDIX A QUESTIONNAIRE AND RE SPONDENTSonlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_682... · B-1 APPENDIX B FUTURE RESEARCH NEEDS Test Series 1. Live-bed scour tests with large

C-5

Figure C- 5 Ratio of measured to predicted scour depth versus normalized depth (y1

0 5 10 150

0.5

1

1.5

2m

easu

red/

com

pute

d y s

Jain 1981

0 5 10 150

0.5

1

1.5

2

mea

sure

d/co

mpu

ted

y s

Froehlich 1988

0 5 10 150

0.5

1

1.5

2

mea

sure

d/co

mpu

ted

y s

Melville 1997-mod.

0 5 10 150

0.5

1

1.5

2m

easu

red/

com

pute

d y s

HEC18

0 5 10 150

0.5

1

1.5

2

mea

sure

d/co

mpu

ted

y s

HEC18-no wp corr

y1/a*0 5 10 15

0

0.5

1

1.5

2

mea

sure

d/co

mpu

ted

y s

S/M

y1/a*

/a) for selected equilibrium scour equations and field data.

Page 13: APPENDIX A QUESTIONNAIRE AND RE SPONDENTSonlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_682... · B-1 APPENDIX B FUTURE RESEARCH NEEDS Test Series 1. Live-bed scour tests with large

C-6

Figure C- 6 Ratio of measured to predicted scour depth versus normalized velocity (V1/Vc

0 2 4 6 80

0.5

1

1.5

2m

easu

red/

com

pute

d y s

Jain 1981

0 2 4 6 80

0.5

1

1.5

2

mea

sure

d/co

mpu

ted

y s

Froehlich 1988

0 2 4 6 80

0.5

1

1.5

2

mea

sure

d/co

mpu

ted

y s

Melville 1997-mod.

0 2 4 6 80

0.5

1

1.5

2m

easu

red/

com

pute

d y s

HEC18

0 2 4 6 80

0.5

1

1.5

2

mea

sure

d/co

mpu

ted

y s

HEC18-no wp corr

V1/Vc

0 2 4 6 80

0.5

1

1.5

2

mea

sure

d/co

mpu

ted

y s

S/M

V1/Vc

) for selected equilibrium scour equations and field data.

Page 14: APPENDIX A QUESTIONNAIRE AND RE SPONDENTSonlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_682... · B-1 APPENDIX B FUTURE RESEARCH NEEDS Test Series 1. Live-bed scour tests with large

C-7

Figure C- 7 Ratio of measured to predicted scour depth versus Froude Number (Fr) for selected

equilibrium scour equations and field data.

0 0.5 1 1.50

0.5

1

1.5

2

mea

sure

d/co

mpu

ted

y s

Jain 1981

0 0.5 1 1.50

0.5

1

1.5

2

mea

sure

d/co

mpu

ted

y s

Froehlich 1988

0 0.5 1 1.50

0.5

1

1.5

2

mea

sure

d/co

mpu

ted

y s

Melville 1997-mod.

0 0.5 1 1.50

0.5

1

1.5

2m

easu

red/

com

pute

d y s

HEC18

0 0.5 1 1.50

0.5

1

1.5

2

mea

sure

d/co

mpu

ted

y s

HEC18-no wp corr

Fr0 0.5 1 1.5

0

0.5

1

1.5

2

mea

sure

d/co

mpu

ted

y s

S/M

Fr

Page 15: APPENDIX A QUESTIONNAIRE AND RE SPONDENTSonlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_682... · B-1 APPENDIX B FUTURE RESEARCH NEEDS Test Series 1. Live-bed scour tests with large

C-8

Figure C- 8 Ratio of measured to predicted scour depth versus a/D50

for selected equilibrium scour equations and field data.

101 102 103 1040

0.5

1

1.5

2

mea

sure

d/co

mpu

ted

y s Jain 1981

101 102 103 1040

0.5

1

1.5

2

mea

sure

d/co

mpu

ted

y s Froehlich 1988

101 102 103 1040

0.5

1

1.5

2

mea

sure

d/co

mpu

ted

y s Melville 1997-mod.

101 102 103 1040

0.5

1

1.5

2m

easu

red/

com

pute

d y s HEC18

101 102 103 1040

0.5

1

1.5

2

mea

sure

d/co

mpu

ted

y s HEC18-no wp corr

a*/D50

101 102 103 1040

0.5

1

1.5

2

mea

sure

d/co

mpu

ted

y s S/M

a*/D50

Page 16: APPENDIX A QUESTIONNAIRE AND RE SPONDENTSonlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_682... · B-1 APPENDIX B FUTURE RESEARCH NEEDS Test Series 1. Live-bed scour tests with large

C-9

Figure C- 9 Direct comparison between S/M and HEC-18 equilibrium scour equations for a range

of a/D50

using laboratory data.

Figure C- 10 Direct comparison between S/M and HEC-18 equilibrium scour equations for a range of y1

101 102 103 1040

1

2

a*/D50mea

sure

d/co

mpu

ted

y s

HEC18

101 102 103 1040

1

2

a*/D50

mea

sure

d/co

mpu

ted

y s

S/M

/a using laboratory data.

0 5 10 150

1

2

y1/a*mea

sure

d/co

mpu

ted

y s

HEC18

0 5 10 150

1

2

y1/a*

mea

sure

d/co

mpu

ted

y s

S/M

Page 17: APPENDIX A QUESTIONNAIRE AND RE SPONDENTSonlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_682... · B-1 APPENDIX B FUTURE RESEARCH NEEDS Test Series 1. Live-bed scour tests with large

D-1

APPENDIX D EXAMPLE PROBLEM

EXAMPLE PROBLEM The following example problem is given to illustrate the use of the recommended equations.

Consider the long pier skewed to the flow shown in Figure D-1. The rectangular pier is 50 ft wide, 150 ft long, is founded in relatively uniform sand with a median grain diameter of 0.4 mm. The design water depth is 40 ft and the design flow velocity is 7 ft/s. The design flow is skewed to the axis of the pier 20o. A conservative estimate of the duration of the peak flow velocity (see Figure D-2) is 48 hours. Using the equations recommended by this project, determine the following:

1. The local equilibrium scour depth, ys,

2. The time required to reach 90% of the equilibrium scour depth, and

3. The local scour depth at the end of 48 hr, ys48.

Figure D- 1 Schematic diagram of example problem bridge pier.

Figure D- 2 Velocity versus time at the example problem bridge site.

Page 18: APPENDIX A QUESTIONNAIRE AND RE SPONDENTSonlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_682... · B-1 APPENDIX B FUTURE RESEARCH NEEDS Test Series 1. Live-bed scour tests with large

D-2

Solution: Question 1: The local equilibrium scour depth, ys

A. Compute the hydraulic parameter, u*c, for the D50 size. 1 4

c 50 500 5 1

c 50 50 50

u = 0.0115+0.0125D 0.1mm < D 1mm

u = 0.0305D - 0.065D 1mm < D 100mm

.*

.*

≤ ,

Therefore,

( )1 4c

m ftu = 0.0115+0.0125 0 4mm 0.015 0 049s s

.* . .= =

B. Compute the threshold or critical velocity, Vc.

c 1

c 50

V y ft 40ft ft5 175 5 53 0 049 5 175 5 53 1 33ftu D s s0 4mm 0 0032808399mm

*

. log . . * . log . .. * .

= = =

C. Compute the Live Bed Peak velocity, Vlp.

l p1 l p1 l p2lp lp1 c lp2 1

l p2 l p2 l p1

lp 2

V for V VV where, V 5V and V 0 6 g y

V for V V

therefore

ft ftV 0 6 32 2 40ft 21 5s s

.

,

. . * .

≥= = = >

= =

D. Compute the Effective Diameter and the pier, a*.

Effective Diameter = Projected Width * Shape Factor

( ) ( )o oProjected Width = 150ft* 20 50ft* 20 98 3ftsin cos .+ =

4 4

Shape Factor = 0.86 + 0.97 0.86 + 0.97 0 3491 0 904 4

. .π πα − = − =

Effective Diameter = a* = 98 3ft 0 90 88 5ft. * . .=

Page 19: APPENDIX A QUESTIONNAIRE AND RE SPONDENTSonlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_682... · B-1 APPENDIX B FUTURE RESEARCH NEEDS Test Series 1. Live-bed scour tests with large

D-3

E. Compute the Local Equilibrium Scour Depth of the pier, ys.

lp1 1

l ps c c c 11 3

lp lp c c

c c

0 4501

1 3 1 2 0 13

50 50

VV V1 Vy V V V Vf 2 2 2 5f for 1V Va V V1 1V V

where

aDyf and f

a a a0 4 10 6D D

*

*

.

. .* * *

. .

,

tanh

. .−

− −

= + ≤ ≤

− −

= =

+

0 4s

therefore

y 40ft88 5ft 88 5ft

ft7 88 5fts 1 ftft 0 4mm 0 00328083991 33mms2 2 2 5ft21 5

s 88 5ft1 0 4ft ft7 0 4mm 0 0032808399s mm

.

,

tanh *. .

.

. * ... .

...

. * .

=

− +

1 2 0 13

88 5ft10 6 ft0 4mm 0 0032808399mm

ft ft21 5 7s sft ft1 33 1 33s s ft21 5

s 1ft1 33s

Local Equilibr

. . *

... * .

.

. .

.

.

+

sium Scour Depth = y = 60.8 ft

Page 20: APPENDIX A QUESTIONNAIRE AND RE SPONDENTSonlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_682... · B-1 APPENDIX B FUTURE RESEARCH NEEDS Test Series 1. Live-bed scour tests with large

D-4

Question 2: The time required to reach 90% of the equilibrium scour depth, t90.

A. Compute the Reference Time, te.

1 1 1e 2

1 c c

0 251 1 1 1

e 31 c c

1 2 3

V y Vat (days) C 0 4 for 6 0 4V V a V

V y y Vat (days) C 0 4 for 6 0 4V V a a V

where days daysC 0 04, C = 200 , C =127.8sec sec

th

*

*

.*

* *

- . , .

- . , .

,

- .

= > >

= ≤ >

=

0 25

e

e

erefore,ft7 days 88 5ft 40ftst (days) 127.8 0 4ft ftsec 88 5ft7 1 33

s sthereforet = 6437 days

.. - ...

,

=

B. Compute the time required to reach 90% of the equilibrium scour depth, t90.

190 e

c

ft7V st 1 83 t 1 83 6437 days = 0.42 daysftV 1 33s

exp( . ) exp( . )*.

= − = −

Question 3: The local scour depth at the end of 48 hr, ys48.

A. Convert the time to days.

t = 48 hours = 2 days 1 6

1 6

ct 1

1 e

ft1 33V t 2 dayssK C 0 04 0 92ftV t 6437 days7s

.. .

exp ln exp . ln .

= = − =

s ty (48 hr) = 0.92 * 60.8 ft = 55.9 ft

Page 21: APPENDIX A QUESTIONNAIRE AND RE SPONDENTSonlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_682... · B-1 APPENDIX B FUTURE RESEARCH NEEDS Test Series 1. Live-bed scour tests with large

E-1

APPENDIX E EQUILIBRIUM SCOUR DATA

This appendix contains the laboratory and field equilibrium scour data compiled during this study. The quality assurance /quality control (QA/QC) procedures eliminated some of the data from further analyses. These data are designated by a Usage Code of “0”. Data used in the “Wide Pier” analyses are designated by a Usage code of “2”. The data source, pile shape, etc. codes used in Table E-2 and Table E-3 are presented in Table E-1 below. Table E-1 Codes used in the following tables.

Field data source 1 Mueller and Wagner (2005) 2 Gao et al. (1993) 3 Zhuravlyov (1978) 4 Froehlich (1988)

Pile shape for data sources 1 & 4 0 Cylinder 1 Square 2 Round 3 Sharp

Pile shape for data source 3 0 Round 2 Oval 3 Right angular 4 Other 5 Pile foundation

Usage 0 Eliminated by QA/QC 1,2 Used in analyses 2 Used in wide pier analyses

 

Page 22: APPENDIX A QUESTIONNAIRE AND RE SPONDENTSonlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_682... · B-1 APPENDIX B FUTURE RESEARCH NEEDS Test Series 1. Live-bed scour tests with large

E-2

Table E-2 Equilibrium scour laboratory data.

Data source

Pile diameter

(ft) Velocity

(ft/s)

Critical velocity

(ft/s) Depth

(ft) D50

(mm) σg Duration

(min)

Scour depth

(ft) Usage Chabert & Engeldinger(1956) 0.492 1.94 2.17 0.328 3.00 1.3 720 0.646 0 Chabert & Engeldinger(1956) 0.328 1.94 2.17 0.328 3.00 1.3 720 0.479 0 Chabert & Engeldinger(1956) 0.164 1.94 2.17 0.328 3.00 1.3 720 0.305 0 Chabert & Engeldinger(1956) 0.492 0.96 1.79 0.656 1.50 1.3 2430 0.482 0 Chabert & Engeldinger(1956) 0.328 0.96 1.79 0.656 1.50 1.3 2430 0.335 0 Chabert & Engeldinger(1956) 0.164 0.96 1.79 0.656 1.50 1.3 2430 0.226 0 Chabert & Engeldinger(1956) 0.492 1.39 1.79 0.656 1.50 1.3 900 0.712 0 Chabert & Engeldinger(1956) 0.328 1.39 1.79 0.656 1.50 1.3 900 0.571 0 Chabert & Engeldinger(1956) 0.164 1.39 1.79 0.656 1.50 1.3 900 0.312 0 Chabert & Engeldinger(1956) 0.492 1.11 1.79 0.656 1.50 1.3 2640 0.696 0 Chabert & Engeldinger(1956) 0.328 1.11 1.79 0.656 1.50 1.3 2640 0.551 0 Chabert & Engeldinger(1956) 0.164 1.11 1.79 0.656 1.50 1.3 2640 0.322 0 Chabert & Engeldinger(1956) 0.492 1.31 1.60 0.328 1.50 1.3 960 0.584 0 Chabert & Engeldinger(1956) 0.328 1.31 1.60 0.328 1.50 1.3 960 0.489 0 Chabert & Engeldinger(1956) 0.164 1.31 1.60 0.328 1.50 1.3 960 0.308 0 Chabert & Engeldinger(1956) 0.492 1.23 1.79 0.656 1.50 1.3 2460 0.682 0 Chabert & Engeldinger(1956) 0.328 1.23 1.79 0.656 1.50 1.3 2460 0.545 0 Chabert & Engeldinger(1956) 0.164 1.23 1.79 0.656 1.50 1.3 2460 0.351 0 Chabert & Engeldinger(1956) 0.492 1.07 1.94 1.148 1.50 1.3 10500 0.764 0 Chabert & Engeldinger(1956) 0.328 1.07 1.94 1.148 1.50 1.3 10500 0.627 0 Chabert & Engeldinger(1956) 0.164 1.07 1.94 1.148 1.50 1.3 10500 0.374 0 Chabert & Engeldinger(1956) 0.492 1.23 1.60 0.328 1.50 1.3 7620 0.689 0 Chabert & Engeldinger(1956) 0.328 1.23 1.60 0.328 1.50 1.3 7620 0.512 0 Chabert & Engeldinger(1956) 0.164 1.23 1.60 0.328 1.50 1.3 7620 0.381 0 Chabert & Engeldinger(1956) 0.492 1.15 1.79 0.656 1.50 1.3 11460 0.741 0 Chabert & Engeldinger(1956) 0.328 1.15 1.79 0.656 1.50 1.3 11460 0.627 0 Chabert & Engeldinger(1956) 0.164 1.15 1.79 0.656 1.50 1.3 11460 0.407 0 Chabert & Engeldinger(1956) 0.492 1.23 1.94 1.148 1.50 1.3 6780 0.774 0 Chabert & Engeldinger(1956) 0.328 1.23 1.94 1.148 1.50 1.3 6780 0.646 0 Chabert & Engeldinger(1956) 0.164 1.23 1.94 1.148 1.50 1.3 6780 0.377 0 Chabert & Engeldinger(1956) 0.328 0.80 1.04 0.656 0.52 1.3 8520 0.449 0 Chabert & Engeldinger(1956) 0.246 0.80 1.04 0.656 0.52 1.3 8520 0.374 0 Chabert & Engeldinger(1956) 0.164 0.80 1.04 0.656 0.52 1.3 8520 0.262 0 Chabert & Engeldinger(1956) 0.328 1.19 1.04 0.656 0.52 1.3 3000 0.489 0 Chabert & Engeldinger(1956) 0.246 1.19 1.04 0.656 0.52 1.3 3000 0.420 0 Chabert & Engeldinger(1956) 0.164 1.19 1.04 0.656 0.52 1.3 3000 0.390 0 Chabert & Engeldinger(1956) 0.328 0.92 1.04 0.656 0.52 1.3 4320 0.430 0 Chabert & Engeldinger(1956) 0.246 0.92 1.04 0.656 0.52 1.3 4320 0.361 0 Chabert & Engeldinger(1956) 0.164 0.92 1.04 0.656 0.52 1.3 4320 0.318 0 Chabert & Engeldinger(1956) 0.328 0.89 1.11 1.148 0.52 1.3 3000 0.417 0 Chabert & Engeldinger(1956) 0.246 0.89 1.11 1.148 0.52 1.3 3000 0.367 0 Chabert & Engeldinger(1956) 0.164 0.89 1.11 1.148 0.52 1.3 3000 0.312 0 Chabert & Engeldinger(1956) 0.328 1.01 1.11 1.148 0.52 1.3 6960 0.433 0 Chabert & Engeldinger(1956) 0.246 1.01 1.11 1.148 0.52 1.3 6960 0.387 0 Chabert & Engeldinger(1956) 0.164 1.01 1.11 1.148 0.52 1.3 6960 0.335 0 Chabert & Engeldinger(1956) 0.328 0.90 0.94 0.328 0.52 1.3 4200 0.400 0 Chabert & Engeldinger(1956) 0.246 0.90 0.94 0.328 0.52 1.3 4200 0.364 0 Chabert & Engeldinger(1956) 0.164 0.90 0.94 0.328 0.52 1.3 4200 0.289 0 Chabert & Engeldinger(1956) 0.328 1.07 1.04 0.656 0.52 1.3 8520 0.472 0

Page 23: APPENDIX A QUESTIONNAIRE AND RE SPONDENTSonlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_682... · B-1 APPENDIX B FUTURE RESEARCH NEEDS Test Series 1. Live-bed scour tests with large

E-3

Data source

Pile diameter

(ft) Velocity

(ft/s)

Critical velocity

(ft/s) Depth

(ft) D50

(mm) σg Duration

(min)

Scour depth

(ft) Usage Chabert & Engeldinger(1956) 0.246 1.07 1.04 0.656 0.52 1.3 8520 0.387 0 Chabert & Engeldinger(1956) 0.164 1.07 1.04 0.656 0.52 1.3 8520 0.335 0 Chabert & Engeldinger(1956) 0.328 1.23 0.94 0.328 0.52 1.3 9720 0.436 0 Chabert & Engeldinger(1956) 0.246 1.23 0.94 0.328 0.52 1.3 9720 0.377 0 Chabert & Engeldinger(1956) 0.164 1.23 0.94 0.328 0.52 1.3 9720 0.358 0 Chabert & Engeldinger(1956) 0.328 1.15 1.11 1.148 0.52 1.3 900 0.459 0 Chabert & Engeldinger(1956) 0.246 1.15 1.11 1.148 0.52 1.3 900 0.404 0 Chabert & Engeldinger(1956) 0.164 1.15 1.11 1.148 0.52 1.3 900 0.292 0 Chabert & Engeldinger(1956) 0.328 0.82 0.94 0.328 0.52 1.3 6900 0.371 0 Chabert & Engeldinger(1956) 0.246 0.82 0.94 0.328 0.52 1.3 6900 0.295 0 Chabert & Engeldinger(1956) 0.164 0.82 0.94 0.328 0.52 1.3 6900 0.253 0 Chabert & Engeldinger(1956) 0.328 0.82 1.11 1.148 0.52 1.3 4440 0.449 0 Chabert & Engeldinger(1956) 0.246 0.82 1.11 1.148 0.52 1.3 4440 0.364 0 Chabert & Engeldinger(1956) 0.164 0.82 1.11 1.148 0.52 1.3 4440 0.256 0 Chabert & Engeldinger(1956) 0.328 0.56 0.92 0.656 0.26 1.3 6180 0.302 0 Chabert & Engeldinger(1956) 0.246 0.56 0.92 0.656 0.26 1.3 6180 0.256 0 Chabert & Engeldinger(1956) 0.164 0.56 0.92 0.656 0.26 1.3 6180 0.249 0 Chabert & Engeldinger(1956) 0.328 0.69 0.92 0.656 0.26 1.3 1620 0.344 0 Chabert & Engeldinger(1956) 0.246 0.69 0.92 0.656 0.26 1.3 1620 0.325 0 Chabert & Engeldinger(1956) 0.164 0.69 0.92 0.656 0.26 1.3 1620 0.246 0 Chabert & Engeldinger(1956) 0.328 0.74 0.92 0.656 0.26 1.3 5460 0.358 0 Chabert & Engeldinger(1956) 0.246 0.74 0.92 0.656 0.26 1.3 5460 0.328 0 Chabert & Engeldinger(1956) 0.164 0.74 0.92 0.656 0.26 1.3 5460 0.253 0 Chabert & Engeldinger(1956) 0.328 0.83 0.92 0.656 0.26 1.3 1860 0.358 0 Chabert & Engeldinger(1956) 0.246 0.83 0.92 0.656 0.26 1.3 1860 0.308 0 Chabert & Engeldinger(1956) 0.164 0.83 0.92 0.656 0.26 1.3 1860 0.220 0 Chabert & Engeldinger(1956) 0.328 0.66 0.98 1.148 0.26 1.3 6780 0.371 0 Chabert & Engeldinger(1956) 0.246 0.66 0.98 1.148 0.26 1.3 6780 0.318 0 Chabert & Engeldinger(1956) 0.164 0.66 0.98 1.148 0.26 1.3 6780 0.233 0 Chabert & Engeldinger(1956) 0.328 0.72 0.98 1.148 0.26 1.3 5640 0.371 0 Chabert & Engeldinger(1956) 0.246 0.72 0.98 1.148 0.26 1.3 5640 0.299 0 Chabert & Engeldinger(1956) 0.164 0.72 0.98 1.148 0.26 1.3 5640 0.230 0 Chabert & Engeldinger(1956) 0.328 0.59 0.98 1.148 0.26 1.3 11640 0.322 0 Chabert & Engeldinger(1956) 0.246 0.59 0.98 1.148 0.26 1.3 11640 0.236 0 Chabert & Engeldinger(1956) 0.164 0.59 0.98 1.148 0.26 1.3 11640 0.223 0 Chabert & Engeldinger(1956) 0.328 0.66 0.84 0.328 0.26 1.3 4320 0.354 0 Chabert & Engeldinger(1956) 0.246 0.66 0.84 0.328 0.26 1.3 4320 0.246 0 Chabert & Engeldinger(1956) 0.164 0.66 0.84 0.328 0.26 1.3 4320 0.256 0 Chabert & Engeldinger(1956) 0.328 0.75 0.84 0.328 0.26 1.3 1920 0.351 0 Chabert & Engeldinger(1956) 0.246 0.75 0.84 0.328 0.26 1.3 1920 0.295 0 Chabert & Engeldinger(1956) 0.164 0.75 0.84 0.328 0.26 1.3 1920 0.282 0 Chabert & Engeldinger(1956) 0.328 0.82 0.84 0.328 0.26 1.3 810 0.338 0 Chabert & Engeldinger(1956) 0.246 0.82 0.84 0.328 0.26 1.3 810 0.299 0 Chabert & Engeldinger(1956) 0.164 0.82 0.84 0.328 0.26 1.3 810 0.266 0 Chee (1982) 0.262 0.98 0.84 0.328 0.24 1.3 -a 0.253 1 Chee (1982) 0.167 1.15 0.84 0.328 0.24 1.3 -a 0.184 1 Chee (1982) 0.335 1.21 0.84 0.328 0.24 1.3 -a 0.302 1 Chee (1982) 0.167 1.64 0.84 0.328 0.24 1.3 -a 0.220 1 Chee (1982) 0.167 2.13 0.84 0.328 0.24 1.3 -a 0.262 1 Chee (1982) 0.262 2.62 0.84 0.328 0.24 1.3 -a 0.397 1

Page 24: APPENDIX A QUESTIONNAIRE AND RE SPONDENTSonlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_682... · B-1 APPENDIX B FUTURE RESEARCH NEEDS Test Series 1. Live-bed scour tests with large

E-4

Data source

Pile diameter

(ft) Velocity

(ft/s)

Critical velocity

(ft/s) Depth

(ft) D50

(mm) σg Duration

(min)

Scour depth

(ft) Usage Chee (1982) 0.167 0.75 0.88 0.328 0.38 1.2 -a 0.203 1 Chee (1982) 0.167 1.31 0.88 0.328 0.38 1.2 -a 0.203 1 Chee (1982) 0.262 2.13 0.88 0.328 0.38 1.2 -a 0.358 1 Chee (1982) 0.167 3.44 0.88 0.328 0.38 1.2 -a 0.315 1 Chee (1982) 0.335 1.64 1.11 0.328 0.80 1.3 -a 0.348 1 Chee (1982) 0.167 2.62 1.11 0.328 0.80 1.3 -a 0.262 1 Chee (1982) 0.262 3.44 1.11 0.328 0.80 1.3 -a 0.361 1 Chee (1982) 0.262 1.97 1.54 0.328 1.40 1.3 -a 0.318 1 Chee (1982) 0.262 2.62 1.54 0.328 1.40 1.3 -a 0.295 1 Chee (1982) 0.262 3.44 1.54 0.328 1.40 1.3 -a 0.344 1 Chee (1982) 0.335 3.94 1.54 0.328 1.40 1.3 -a 0.384 1 Chee (1982) 0.167 1.21 0.84 0.328 0.24 1.3 -a 0.184 1 Chee (1982) 0.167 1.48 0.84 0.328 0.24 1.3 -a 0.207 1 Chee (1982) 0.335 2.62 0.84 0.328 0.24 1.3 -a 0.472 1 Chee (1982) 0.262 3.61 0.84 0.328 0.24 1.3 -a 0.400 1 Chee (1982) 0.167 0.98 0.88 0.328 0.38 1.2 -a 0.180 1 Chee (1982) 0.262 3.44 0.88 0.328 0.38 1.2 -a 0.433 1 Chee (1982) 0.167 1.64 1.11 0.328 0.80 1.3 -a 0.213 1 Chee (1982) 0.335 2.13 1.11 0.328 0.80 1.3 -a 0.358 1 Chee (1982) 0.167 1.97 1.54 0.328 1.40 1.3 -a 0.220 1 Chee (1982) 0.335 3.44 1.54 0.328 1.40 1.3 -a 0.404 1 Chee (1982) 0.335 0.98 0.84 0.328 0.24 1.3 -a 0.295 1 Chee (1982) 0.167 1.28 0.84 0.328 0.24 1.3 -a 0.190 1 Chee (1982) 0.262 2.13 0.84 0.328 0.24 1.3 -a 0.361 1 Chee (1982) 0.262 2.66 0.84 0.328 0.24 1.3 -a 0.400 1 Chee (1982) 0.262 1.31 0.88 0.328 0.38 1.2 -a 0.285 1 Chee (1982) 0.335 2.62 0.88 0.328 0.38 1.2 -a 0.453 1 Chee (1982) 0.262 1.64 1.11 0.328 0.80 1.3 -a 0.292 1 Chee (1982) 0.335 2.62 1.11 0.328 0.80 1.3 -a 0.407 1 Chee (1982) 0.335 1.97 1.54 0.328 1.40 1.3 -a 0.377 1 Chee (1982) 0.167 3.94 1.54 0.328 1.40 1.3 -a 0.253 1 Chiew (1984) 0.104 0.87 0.89 0.558 0.24 1.3 2700 0.172 1 Chiew (1984) 0.104 0.99 1.06 0.558 0.60 1.2 1020 0.199 1 Chiew (1984) 0.104 1.09 1.06 0.558 0.60 1.2 1740 0.217 1 Chiew (1984) 0.104 1.37 1.71 0.558 1.45 1.2 4200 0.240 1 Chiew (1984) 0.104 2.20 2.54 0.689 3.20 1.3 2520 0.143 1 Chiew (1984) 0.131 0.72 0.89 0.558 0.24 1.3 3120 0.203 1 Chiew (1984) 0.125 1.15 1.06 0.558 0.60 1.2 1020 0.278 1 Chiew (1984) 0.131 1.41 1.77 0.689 1.45 1.2 3060 0.315 1 Chiew (1984) 0.148 2.26 2.54 0.689 3.20 1.3 2820 0.232 1 Chiew (1984) 0.148 1.12 1.06 0.558 0.60 1.2 1200 0.312 1 Chiew (1984) 0.148 1.36 1.71 0.558 1.45 1.2 4080 0.334 1 Chiew (1984) 0.148 5.28 1.89 1.115 1.45 1.2 180 0.260 1 Chiew (1984) 0.164 1.18 1.06 0.558 0.60 1.2 960 0.312 1 Chiew (1984) 0.148 1.01 0.89 0.558 0.24 1.3 -a 0.233 1 Chiew (1984) 0.131 1.14 0.89 0.558 0.24 1.3 -a 0.226 1 Chiew (1984) 0.167 1.18 1.06 0.558 0.60 1.3 -a 0.318 1 Chiew (1984) 0.105 1.29 0.89 0.558 0.24 1.3 -a 0.161 1 Chiew (1984) 0.148 1.43 0.89 0.558 0.24 1.3 -a 0.230 1 Chiew (1984) 0.148 1.50 1.06 0.558 0.60 1.3 -a 0.230 1

Page 25: APPENDIX A QUESTIONNAIRE AND RE SPONDENTSonlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_682... · B-1 APPENDIX B FUTURE RESEARCH NEEDS Test Series 1. Live-bed scour tests with large

E-5

Data source

Pile diameter

(ft) Velocity

(ft/s)

Critical velocity

(ft/s) Depth

(ft) D50

(mm) σg Duration

(min)

Scour depth

(ft) Usage Chiew (1984) 0.125 1.50 1.06 0.558 0.60 1.3 -a 0.197 1 Chiew (1984) 0.105 1.57 1.06 0.558 0.60 1.3 -a 0.197 1 Chiew (1984) 0.105 1.64 0.89 0.558 0.24 1.3 -a 0.177 1 Chiew (1984) 0.131 1.73 0.89 0.558 0.24 1.3 -a 0.200 1 Chiew (1984) 0.148 1.74 1.06 0.558 0.60 1.3 -a 0.256 1 Chiew (1984) 0.148 1.79 0.89 0.558 0.24 1.3 -a 0.253 1 Chiew (1984) 0.105 1.83 1.06 0.558 0.60 1.3 -a 0.180 1 Chiew (1984) 0.105 1.92 1.06 0.558 0.60 1.3 -a 0.194 1 Chiew (1984) 0.105 1.90 1.06 0.558 0.60 1.3 -a 0.161 1 Chiew (1984) 0.125 1.91 1.06 0.558 0.60 1.3 -a 0.213 1 Chiew (1984) 0.148 1.91 1.06 0.558 0.60 1.3 -a 0.249 1 Chiew (1984) 0.131 1.91 0.89 0.558 0.24 1.3 -a 0.236 1 Chiew (1984) 0.167 2.02 1.06 0.558 0.60 1.3 -a 0.223 1 Chiew (1984) 0.105 2.05 0.89 0.558 0.24 1.3 -a 0.190 1 Chiew (1984) 0.148 2.13 1.06 0.558 0.60 1.3 -a 0.243 1 Chiew (1984) 0.105 2.16 1.06 0.558 0.60 1.3 -a 0.167 1 Chiew (1984) 0.148 2.16 0.89 0.558 0.24 1.3 -a 0.266 1 Chiew (1984) 0.105 2.20 1.71 0.558 1.45 1.3 -a 0.164 1 Chiew (1984) 0.148 2.13 1.71 0.558 1.45 1.3 -a 0.253 1 Chiew (1984) 0.131 2.57 1.77 0.689 1.45 1.3 -a 0.210 1 Chiew (1984) 0.131 2.39 0.89 0.558 0.24 1.3 -a 0.253 1 Chiew (1984) 0.105 2.40 1.71 0.558 1.45 1.3 -a 0.161 1 Chiew (1984) 0.131 2.43 0.89 0.558 0.24 1.3 -a 0.253 1 Chiew (1984) 0.105 2.47 0.89 0.558 0.24 1.3 -a 0.200 1 Chiew (1984) 0.148 2.49 1.06 0.558 0.60 1.3 -a 0.249 1 Chiew (1984) 0.148 2.35 1.71 0.558 1.45 1.3 -a 0.233 1 Chiew (1984) 0.105 2.51 1.06 0.558 0.60 1.3 -a 0.171 1 Chiew (1984) 0.131 2.53 0.89 0.558 0.24 1.3 -a 0.256 1 Chiew (1984) 0.148 2.82 2.54 0.689 3.20 1.3 -a 0.226 1 Chiew (1984) 0.167 2.56 1.06 0.558 0.60 1.3 -a 0.246 1 Chiew (1984) 0.105 2.88 2.54 0.689 3.20 1.3 -a 0.115 1 Chiew (1984) 0.131 2.89 1.77 0.689 1.45 1.3 -a 0.203 1 Chiew (1984) 0.131 2.76 0.89 0.558 0.24 1.3 -a 0.256 1 Chiew (1984) 0.148 2.76 0.89 0.558 0.24 1.3 -a 0.282 1 Chiew (1984) 0.105 3.08 2.54 0.689 3.20 1.3 -a 0.121 1 Chiew (1984) 0.148 3.14 2.54 0.689 3.20 1.3 -a 0.210 1 Chiew (1984) 0.148 2.66 1.71 0.558 1.45 1.3 -a 0.223 1 Chiew (1984) 0.105 3.22 2.54 0.689 3.20 1.3 -a 0.112 1 Chiew (1984) 0.148 2.92 1.06 0.558 0.60 1.3 -a 0.262 1 Chiew (1984) 0.131 3.26 1.77 0.689 1.45 1.3 -a 0.200 1 Chiew (1984) 0.125 2.95 1.06 0.558 0.60 1.3 -a 0.217 1 Chiew (1984) 0.105 1.15 1.06 0.558 0.60 2.0 -a 0.213 1 Chiew (1984) 0.131 1.15 1.06 0.558 0.60 2.0 -a 0.269 1 Chiew (1984) 0.148 1.15 1.06 0.558 0.60 2.0 -a 0.249 1 Chiew (1984) 0.105 1.21 1.06 0.558 0.60 5.5 -a 0.049 1 Chiew (1984) 0.148 1.21 1.20 0.558 0.80 2.8 -a 0.102 1 Chiew (1984) 0.105 1.35 1.20 0.558 0.80 2.8 -a 0.092 1 Chiew (1984) 0.131 1.48 1.06 0.558 0.60 2.0 -a 0.236 1 Chiew (1984) 0.105 1.48 1.06 0.558 0.60 2.0 -a 0.157 1 Chiew (1984) 0.148 1.57 1.06 0.558 0.60 5.5 -a 0.128 1

Page 26: APPENDIX A QUESTIONNAIRE AND RE SPONDENTSonlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_682... · B-1 APPENDIX B FUTURE RESEARCH NEEDS Test Series 1. Live-bed scour tests with large

E-6

Data source

Pile diameter

(ft) Velocity

(ft/s)

Critical velocity

(ft/s) Depth

(ft) D50

(mm) σg Duration

(min)

Scour depth

(ft) Usage Chiew (1984) 0.148 1.57 1.20 0.558 0.80 2.8 -a 0.180 1 Chiew (1984) 0.105 1.61 1.20 0.558 0.80 2.8 -a 0.128 1 Chiew (1984) 0.148 1.64 1.71 0.558 1.45 4.3 -a 0.069 1 Chiew (1984) 0.105 1.64 1.06 0.558 0.60 5.5 -a 0.089 1 Chiew (1984) 0.105 1.64 1.06 0.558 0.60 2.0 -a 0.180 1 Chiew (1984) 0.148 1.77 1.06 0.558 0.60 2.0 -a 0.259 1 Chiew (1984) 0.131 1.80 1.06 0.558 0.60 2.0 -a 0.249 1 Chiew (1984) 0.105 1.80 1.06 0.558 0.60 2.0 -a 0.171 1 Chiew (1984) 0.148 1.84 1.06 0.558 0.60 2.0 -a 0.262 1 Chiew (1984) 0.105 1.90 1.20 0.558 0.80 2.8 -a 0.128 1 Chiew (1984) 0.148 1.94 1.20 0.558 0.80 2.8 -a 0.190 1 Chiew (1984) 0.230 2.00 1.06 0.558 0.60 5.5 -a 0.292 1 Chiew (1984) 0.148 2.00 1.06 0.558 0.60 5.5 -a 0.177 1 Chiew (1984) 0.131 2.07 1.06 0.558 0.60 2.0 -a 0.233 1 Chiew (1984) 0.105 2.13 1.06 0.558 0.60 5.5 -a 0.128 1 Chiew (1984) 0.105 2.20 1.06 0.558 0.60 2.0 -a 0.177 1 Chiew (1984) 0.148 2.20 1.06 0.558 0.60 2.0 -a 0.243 1 Chiew (1984) 0.105 2.20 1.06 0.558 0.60 2.0 -a 0.184 1 Chiew (1984) 0.148 2.23 1.06 0.558 0.60 2.0 -a 0.256 1 Chiew (1984) 0.105 2.23 1.20 0.558 0.80 2.8 -a 0.121 1 Chiew (1984) 0.148 2.36 1.06 0.558 0.60 5.5 -a 0.171 1 Chiew (1984) 0.230 2.59 1.06 0.558 0.60 5.5 -a 0.289 1 Chiew (1984) 0.148 2.59 1.20 0.558 0.80 2.8 -a 0.197 1 Chiew (1984) 0.105 2.59 1.06 0.558 0.60 5.5 -a 0.102 1 Chiew (1984) 0.131 2.59 1.06 0.558 0.60 2.0 -a 0.226 1 Chiew (1984) 0.148 2.62 1.06 0.558 0.60 5.5 -a 0.164 1 Chiew (1984) 0.148 2.66 1.06 0.558 0.60 2.0 -a 0.249 1 Chiew (1984) 0.148 2.66 1.06 0.558 0.60 2.0 -a 0.256 1 Chiew (1984) 0.105 2.69 1.06 0.558 0.60 2.0 -a 0.187 1 Chiew (1984) 0.105 2.79 1.06 0.558 0.60 2.0 -a 0.184 1 Chiew (1984) 0.105 2.79 1.20 0.558 0.80 2.8 -a 0.125 1 Chiew (1984) 0.148 2.89 1.06 0.558 0.60 5.5 -a 0.177 1 Melville and Chiew (1999) 0.230 0.76 1.35 0.656 0.96 1.3 5157 0.325 1 Melville and Chiew (1999) 0.230 0.91 1.20 0.312 0.96 1.3 5561 0.400 1 Melville and Chiew (1999) 0.230 0.88 1.08 0.164 0.96 1.3 6510 0.364 1 Melville and Chiew (1999) 0.230 1.00 1.15 0.230 0.96 1.3 5268 0.410 1 Melville and Chiew (1999) 0.164 0.95 1.15 0.230 0.96 1.3 4552 0.299 1 Melville and Chiew (1999) 0.125 0.91 1.35 0.656 0.96 1.3 4230 0.253 1 Melville and Chiew (1999) 0.125 1.06 1.35 0.656 0.96 1.3 4530 0.318 0 Melville and Chiew (1999) 0.164 1.04 1.15 0.230 0.96 1.3 3915 0.299 1 Melville and Chiew (1999) 0.230 0.89 1.35 0.656 0.96 1.3 7638 0.466 1 Melville and Chiew (1999) 0.230 0.89 1.16 0.253 0.96 1.3 4574 0.367 1 Melville and Chiew (1999) 0.230 0.80 1.15 0.230 0.96 1.3 4755 0.279 1 Melville and Chiew (1999) 0.164 0.87 1.15 0.230 0.96 1.3 4197 0.259 1 Melville and Chiew (1999) 0.230 0.59 1.15 0.230 0.96 1.3 2295 0.089 1 Melville and Chiew (1999) 0.230 0.65 1.35 0.656 0.96 1.3 1815 0.141 1 Melville and Chiew (1999) 0.230 0.61 1.15 0.230 0.96 1.3 2581 0.121 1 Melville and Chiew (1999) 0.164 0.65 1.15 0.230 0.96 1.3 2985 0.095 1 Melville and Chiew (1999) 0.230 0.54 1.15 0.230 0.96 1.3 300 0.023 1 Melville and Chiew (1999) 0.230 0.56 1.35 0.656 0.96 1.3 1298 0.066 1

Page 27: APPENDIX A QUESTIONNAIRE AND RE SPONDENTSonlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_682... · B-1 APPENDIX B FUTURE RESEARCH NEEDS Test Series 1. Live-bed scour tests with large

E-7

Data source

Pile diameter

(ft) Velocity

(ft/s)

Critical velocity

(ft/s) Depth

(ft) D50

(mm) σg Duration

(min)

Scour depth

(ft) Usage Melville and Chiew (1999) 0.230 0.72 1.15 0.230 0.96 1.3 4795 0.240 1 Melville and Chiew (1999) 0.230 0.61 1.35 0.656 0.96 1.3 1300 0.092 1 Melville and Chiew (1999) 0.164 0.57 1.35 0.656 0.96 1.3 450 0.036 1 Melville and Chiew (1999) 0.125 0.57 1.35 0.656 0.96 1.3 200 0.013 1 Melville and Chiew (1999) 0.230 0.76 1.15 0.230 0.96 1.3 4608 0.272 1 Melville and Chiew (1999) 0.230 0.65 1.15 0.230 0.96 1.3 3404 0.144 1 Melville and Chiew (1999) 0.164 0.76 1.15 0.230 0.96 1.3 4642 0.203 1 Melville and Chiew (1999) 0.125 0.80 1.35 0.656 0.96 1.3 4035 0.177 1 Melville and Chiew (1999) 0.125 0.76 1.35 0.656 0.96 1.3 2151 0.151 1 Coleman (unpublished) 2.510 1.02 1.08 0.249 0.84 1.3 2452 1.020 2 Coleman (unpublished) 2.510 1.02 1.09 0.256 0.84 1.3 2902 1.110 2 Coleman (unpublished) 2.510 0.98 0.97 0.131 0.84 1.3 5413 0.901 2 Coleman (unpublished) 1.043 0.98 0.97 0.131 0.84 1.3 5385 0.687 2 Coleman (unpublished) 1.043 1.02 1.09 0.262 0.84 1.3 4987 0.876 2 Coleman (unpublished) 2.507 0.98 0.97 0.131 0.84 1.3 3180 0.613 2 Dey et al. (1995) 0.249 0.86 0.88 0.164 0.58 1.3 -a 0.315 1 Dey et al. (1995) 0.213 0.86 0.88 0.164 0.58 1.3 -a 0.282 1 Dey et al. (1995) 0.187 0.86 0.88 0.164 0.58 1.3 -a 0.259 1 Dey et al. (1995) 0.249 0.74 0.85 0.135 0.58 1.3 -a 0.262 1 Dey et al. (1995) 0.213 0.74 0.85 0.135 0.58 1.3 -a 0.223 1 Dey et al. (1995) 0.187 0.74 0.85 0.135 0.58 1.3 -a 0.197 1 Dey et al. (1995) 0.249 0.61 0.82 0.115 0.58 1.3 -a 0.236 2 Dey et al. (1995) 0.213 0.61 0.82 0.115 0.58 1.3 -a 0.203 1 Dey et al. (1995) 0.187 0.61 0.82 0.115 0.58 1.3 -a 0.177 1 Dey et al. (1995) 0.249 0.76 0.76 0.164 0.26 1.4 -a 0.305 1 Dey et al. (1995) 0.213 0.76 0.76 0.164 0.26 1.4 -a 0.276 1 Dey et al. (1995) 0.187 0.76 0.76 0.164 0.26 1.4 -a 0.249 1 Dey et al. (1995) 0.249 0.67 0.74 0.135 0.26 1.4 -a 0.230 1 Dey et al. (1995) 0.213 0.67 0.74 0.135 0.26 1.4 -a 0.207 1 Dey et al. (1995) 0.187 0.67 0.74 0.135 0.26 1.4 -a 0.184 1 Dey et al. (1995) 0.249 0.56 0.73 0.115 0.26 1.4 -a 0.197 2 Dey et al. (1995) 0.213 0.56 0.73 0.115 0.26 1.4 -a 0.184 1 Dey et al. (1995) 0.187 0.56 0.73 0.115 0.26 1.4 -a 0.171 1 Ettema(1976) 0.328 1.15 1.21 1.969 0.55 1.3 -a 0.459 0 Ettema(1976) 0.328 1.15 1.21 1.969 0.55 1.4 -a 0.525 1 Ettema(1976) 0.328 1.15 1.21 1.969 0.55 1.6 -a 0.722 1 Ettema(1976) 0.328 1.15 1.21 1.969 0.55 2.1 -a 0.492 1 Ettema(1976) 0.328 1.15 1.21 1.969 0.55 2.9 -a 0.295 1 Ettema(1976) 0.328 1.15 1.21 1.969 0.55 4.6 -a 0.148 1 Ettema(1976) 0.328 1.38 1.45 1.969 0.85 1.3 -a 0.689 1 Ettema(1976) 0.328 1.38 1.45 1.969 0.85 2.0 -a 0.558 1 Ettema(1976) 0.328 1.38 1.45 1.969 0.85 2.2 -a 0.361 1 Ettema(1976) 0.328 1.38 1.45 1.969 0.85 2.9 -a 0.246 1 Ettema(1976) 0.328 1.38 1.45 1.969 0.85 3.3 -a 0.131 1 Ettema(1976) 0.328 2.24 2.36 1.969 1.90 1.3 -a 0.722 1 Ettema(1976) 0.328 2.24 2.36 1.969 1.90 1.4 -a 0.558 1 Ettema(1976) 0.328 2.24 2.36 1.969 1.90 1.8 -a 0.427 1 Ettema(1976) 0.328 2.24 2.36 1.969 1.90 2.0 -a 0.344 1 Ettema(1976) 0.328 2.24 2.36 1.969 1.90 2.6 -a 0.246 1 Ettema(1976) 0.328 3.14 3.30 1.969 4.10 1.3 -a 0.738 1

Page 28: APPENDIX A QUESTIONNAIRE AND RE SPONDENTSonlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_682... · B-1 APPENDIX B FUTURE RESEARCH NEEDS Test Series 1. Live-bed scour tests with large

E-8

Data source

Pile diameter

(ft) Velocity

(ft/s)

Critical velocity

(ft/s) Depth

(ft) D50

(mm) σg Duration

(min)

Scour depth

(ft) Usage Ettema(1976) 0.328 3.14 3.30 1.969 4.10 1.4 -a 0.640 1 Ettema(1976) 0.328 3.14 3.30 1.969 4.10 1.7 -a 0.574 1 Ettema (1980) 0.094 1.44 1.44 1.969 0.84 1.2 2258 0.238 1 Ettema (1980) 0.333 0.92 1.03 1.969 0.24 1.2 1792 0.527 1 Ettema (1980) 0.787 0.75 0.88 0.328 0.38 1.3 1866 0.575 2 Ettema (1980) 0.787 1.43 1.80 0.328 1.90 1.3 29 0.890 2 Ettema (1980) 0.787 2.37 2.63 0.328 5.35 1.2 2320 0.969 1 Ettema (1980) 0.787 2.02 2.24 0.164 5.35 1.2 4115 0.906 1 Ettema (1980) 0.333 1.44 1.44 1.969 0.84 1.2 7010 0.737 1 Ettema (1980) 0.333 1.98 2.36 1.969 1.90 1.3 5425 0.750 1 Ettema (1980) 0.333 3.47 3.65 1.969 5.35 1.2 2974 0.680 1 Ettema (1980) 0.333 3.96 4.18 1.969 7.80 1.1 4220 0.617 1 Ettema (1980) 0.492 0.92 1.03 1.969 0.24 1.2 5330 0.832 1 Ettema (1980) 0.492 1.44 1.44 1.969 0.84 1.2 17842 1.112 1 Ettema (1980) 0.492 1.98 2.36 1.969 1.90 1.3 10106 1.117 1 Ettema (1980) 0.492 3.47 3.65 1.969 5.35 1.2 3802 1.014 1 Ettema (1980) 0.492 3.96 4.18 1.969 7.80 1.1 2925 0.950 1 Ettema (1980) 0.094 1.98 2.36 1.969 1.90 1.3 2720 0.200 1 Ettema (1980) 0.148 0.92 1.03 1.969 0.24 1.2 1762 0.254 1 Ettema (1980) 0.148 1.00 1.09 1.969 0.38 1.3 2640 0.258 1 Ettema (1980) 0.148 1.44 1.44 1.969 0.84 1.2 5027 0.344 1 Ettema (1980) 0.148 1.98 2.36 1.969 1.90 1.3 3385 0.325 1 Ettema (1980) 0.148 3.10 3.20 1.969 3.80 1.1 2718 0.282 1 Ettema (1980) 0.094 0.87 1.03 1.969 0.24 1.2 2186 0.134 1 Ettema (1980) 0.094 1.37 1.44 1.969 0.84 1.2 1990 0.229 1 Ettema (1980) 0.094 3.47 3.65 1.969 5.35 1.2 2242 0.131 1 Ettema (1980) 0.094 3.76 4.18 1.969 7.80 1.1 2150 0.077 1 Ettema (1980) 0.167 0.87 1.03 1.969 0.24 1.2 1460 0.228 1 Ettema (1980) 0.167 0.95 1.09 1.969 0.38 1.3 2740 0.245 1 Ettema (1980) 0.167 1.35 1.41 1.969 0.80 1.3 4286 0.372 1 Ettema (1980) 0.167 1.37 1.44 1.969 0.84 1.2 4992 0.373 1 Ettema (1980) 0.167 1.88 2.36 1.969 1.90 1.3 4660 0.378 1 Ettema (1980) 0.167 3.29 3.65 1.969 5.35 1.2 5990 0.270 1 Ettema (1980) 0.167 3.76 4.18 1.969 7.80 1.1 1440 0.168 1 Ettema (1980) 0.333 0.87 1.03 1.969 0.24 1.2 6882 0.573 1 Ettema (1980) 0.094 3.96 4.18 1.969 7.80 1.1 2970 0.096 1 Ettema (1980) 0.333 1.35 1.41 1.969 0.80 1.3 11650 0.743 1 Ettema (1980) 0.333 1.37 1.44 1.969 0.84 1.2 14335 0.743 1 Ettema (1980) 0.333 2.93 3.20 1.969 3.80 1.1 2002 0.683 1 Ettema (1980) 0.333 3.76 4.18 1.969 7.80 1.1 2945 0.543 1 Ettema (1980) 0.492 0.87 1.03 1.969 0.24 1.2 12855 0.802 1 Ettema (1980) 0.492 1.35 1.41 1.969 0.80 1.3 18902 1.033 1 Ettema (1980) 0.492 1.37 1.44 1.969 0.84 1.2 18818 1.029 1 Ettema (1980) 0.492 1.88 2.36 1.969 1.90 1.3 9277 1.043 1 Ettema (1980) 0.167 1.00 1.09 1.969 0.38 1.3 1087 0.288 1 Ettema (1980) 0.492 3.29 3.65 1.969 5.35 1.2 5370 1.009 1 Ettema (1980) 0.492 3.76 4.18 1.969 7.80 1.1 2996 0.950 1 Ettema (1980) 0.787 0.87 1.03 1.969 0.24 1.2 2204 0.677 1 Ettema (1980) 0.787 0.95 1.09 1.969 0.38 1.3 2186 0.724 1 Ettema (1980) 0.787 1.35 1.41 1.969 0.80 1.3 836 0.803 1

Page 29: APPENDIX A QUESTIONNAIRE AND RE SPONDENTSonlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_682... · B-1 APPENDIX B FUTURE RESEARCH NEEDS Test Series 1. Live-bed scour tests with large

E-9

Data source

Pile diameter

(ft) Velocity

(ft/s)

Critical velocity

(ft/s) Depth

(ft) D50

(mm) σg Duration

(min)

Scour depth

(ft) Usage Ettema (1980) 0.787 1.88 2.36 1.969 1.90 1.3 872 1.079 1 Ettema (1980) 0.787 3.29 3.65 1.969 5.35 1.2 875 1.150 1 Ettema (1980) 0.148 0.87 1.03 1.969 0.24 1.2 1864 0.204 1 Ettema (1980) 0.148 0.95 1.09 1.969 0.38 1.3 4280 0.252 1 Ettema (1980) 0.148 1.36 1.44 1.969 0.84 1.2 7133 0.322 1 Ettema (1980) 0.167 1.42 1.41 1.969 0.80 1.3 5744 0.405 1 Ettema (1980) 0.148 1.88 2.36 1.969 1.90 1.3 2947 0.306 1 Ettema (1980) 0.148 2.93 3.20 1.969 3.80 1.1 4335 0.239 1 Ettema (1980) 0.167 0.80 1.09 1.969 0.38 1.3 3956 0.240 1 Ettema (1980) 0.167 1.13 1.41 1.969 0.80 1.3 3760 0.268 1 Ettema (1980) 0.167 1.57 2.36 1.969 1.90 1.3 3320 0.280 1 Ettema (1980) 0.167 2.74 3.65 1.969 5.35 1.2 2710 0.138 1 Ettema (1980) 0.167 0.54 1.09 1.969 0.38 1.3 2733 0.050 1 Ettema (1980) 0.167 0.77 1.41 1.969 0.80 1.3 565 0.052 1 Ettema (1980) 0.167 1.05 2.36 1.969 1.90 1.3 580 0.052 1 Ettema (1980) 0.167 1.83 3.65 1.969 5.35 1.2 342 0.053 1 Ettema (1980) 0.167 1.98 2.36 1.969 1.90 1.3 6015 0.382 1 Ettema (1980) 0.094 0.95 1.09 1.969 0.38 1.3 892 0.148 1 Ettema (1980) 0.094 0.83 0.96 0.656 0.38 1.3 360 0.146 1 Ettema (1980) 0.094 0.75 0.88 0.328 0.38 1.3 1524 0.149 1 Ettema (1980) 0.094 1.88 2.36 1.969 1.90 1.3 1990 0.191 1 Ettema (1980) 0.094 1.60 2.01 0.656 1.90 1.3 3725 0.188 1 Ettema (1980) 0.094 1.43 1.80 0.328 1.90 1.3 2184 0.159 1 Ettema (1980) 0.094 1.25 1.58 0.164 1.90 1.3 2455 0.134 1 Ettema (1980) 0.094 3.29 3.65 1.969 5.35 1.2 2894 0.109 1 Ettema (1980) 0.094 2.73 3.03 0.656 5.35 1.2 2270 0.100 1 Ettema (1980) 0.094 2.37 2.63 0.328 5.35 1.2 3007 0.089 1 Ettema (1980) 0.167 3.47 3.65 1.969 5.35 1.2 3180 0.287 1 Ettema (1980) 0.094 3.19 3.55 1.640 5.35 1.2 2864 0.063 1 Ettema (1980) 0.333 0.95 1.09 1.969 0.38 1.3 2844 0.477 1 Ettema (1980) 0.333 0.90 1.05 1.312 0.38 1.3 3105 0.483 1 Ettema (1980) 0.333 0.87 1.01 0.984 0.38 1.3 3053 0.473 1 Ettema (1980) 0.333 0.83 0.96 0.656 0.38 1.3 2830 0.417 1 Ettema (1980) 0.333 0.75 0.88 0.328 0.38 1.3 2780 0.417 1 Ettema (1980) 0.333 0.67 0.80 0.164 0.38 1.3 1440 0.277 2 Ettema (1980) 0.333 1.88 2.36 1.969 1.90 1.3 5640 0.733 1 Ettema (1980) 0.333 1.78 2.23 1.312 1.90 1.3 5582 0.730 1 Ettema (1980) 0.333 1.70 2.14 0.984 1.90 1.3 5615 0.693 1 Ettema (1980) 0.167 3.96 4.18 1.969 7.80 1.1 2785 0.243 1 Ettema (1980) 0.333 1.60 2.01 0.656 1.90 1.3 5360 0.650 1 Ettema (1980) 0.333 1.43 1.80 0.328 1.90 1.3 5286 0.557 1 Ettema (1980) 0.333 1.25 1.58 0.164 1.90 1.3 5320 0.483 1 Ettema (1980) 0.333 1.02 1.29 0.066 1.90 1.3 5625 0.227 1 Ettema (1980) 0.333 3.29 3.65 1.969 5.35 1.2 2214 0.587 1 Ettema (1980) 0.333 3.08 3.42 1.312 5.35 1.2 1498 0.583 1 Ettema (1980) 0.333 2.93 3.26 0.984 5.35 1.2 1780 0.540 1 Ettema (1980) 0.333 2.73 3.03 0.656 5.35 1.2 1765 0.487 1 Ettema (1980) 0.333 2.37 2.63 0.328 5.35 1.2 2205 0.430 1 Ettema (1980) 0.333 2.02 2.24 0.164 5.35 1.2 2216 0.333 1 Graf(1995) 0.361 1.90 2.06 0.558 2.10 1.3 4780 0.571 1

Page 30: APPENDIX A QUESTIONNAIRE AND RE SPONDENTSonlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_682... · B-1 APPENDIX B FUTURE RESEARCH NEEDS Test Series 1. Live-bed scour tests with large

E-10

Data source

Pile diameter

(ft) Velocity

(ft/s)

Critical velocity

(ft/s) Depth

(ft) D50

(mm) σg Duration

(min)

Scour depth

(ft) Usage Graf(1995) 0.328 2.00 2.16 0.761 2.10 1.3 6200 0.640 1 Graf(1995) 0.492 2.00 2.16 0.761 2.10 1.3 6280 0.850 1 Jain and Fischer (1979) 0.167 1.64 0.84 0.335 0.25 1.3 -a 0.276 1 Jain and Fischer (1979) 0.167 2.46 0.84 0.335 0.25 1.3 -a 0.325 1 Jain and Fischer (1979) 0.167 3.28 0.84 0.335 0.25 1.3 -a 0.374 1 Jain and Fischer (1979) 0.167 3.94 0.84 0.335 0.25 1.3 -a 0.515 1 Jain and Fischer (1979) 0.167 1.64 1.60 0.335 1.50 1.3 -a 0.282 1 Jain and Fischer (1979) 0.167 2.13 1.60 0.335 1.50 1.3 -a 0.285 1 Jain and Fischer (1979) 0.167 2.46 1.60 0.335 1.50 1.3 -a 0.282 1 Jain and Fischer (1979) 0.167 2.79 1.60 0.335 1.50 1.3 -a 0.322 1 Jain and Fischer (1979) 0.167 3.28 1.60 0.335 1.50 1.3 -a 0.377 1 Jain and Fischer (1979) 0.167 3.94 1.60 0.335 1.50 1.3 -a 0.423 1 Jain and Fischer (1979) 0.167 4.92 1.60 0.335 1.50 1.3 -a 0.492 1 Jain and Fischer (1979) 0.167 1.64 2.03 0.335 2.50 1.3 -a 0.318 1 Jain and Fischer (1979) 0.167 2.03 2.03 0.335 2.50 1.3 -a 0.240 1 Jain and Fischer (1979) 0.167 2.46 2.03 0.335 2.50 1.3 -a 0.246 1 Jain and Fischer (1979) 0.167 3.28 2.03 0.335 2.50 1.3 -a 0.338 1 Jain and Fischer (1979) 0.167 3.94 2.03 0.335 2.50 1.3 -a 0.351 1 Jain and Fischer (1979) 0.167 2.69 2.36 0.810 2.50 1.3 -a 0.285 1 Jain and Fischer (1979) 0.167 4.63 2.31 0.709 2.50 1.3 -a 0.371 1 Jain and Fischer (1979) 0.167 2.59 2.35 0.791 2.50 1.3 -a 0.308 1 Jain and Fischer (1979) 0.333 1.64 0.84 0.335 0.25 1.3 -a 0.394 1 Jain and Fischer (1979) 0.333 2.46 0.84 0.335 0.25 1.3 -a 0.492 1 Jain and Fischer (1979) 0.333 3.28 0.84 0.335 0.25 1.3 -a 0.522 1 Jain and Fischer (1979) 0.333 3.94 0.84 0.335 0.25 1.3 -a 0.607 1 Jain and Fischer (1979) 0.333 1.64 1.60 0.335 1.50 1.3 -a 0.433 1 Jain and Fischer (1979) 0.333 2.13 1.60 0.335 1.50 1.3 -a 0.404 1 Jain and Fischer (1979) 0.333 2.46 1.60 0.335 1.50 1.3 -a 0.407 1 Jain and Fischer (1979) 0.333 2.79 1.60 0.335 1.50 1.3 -a 0.456 1 Jain and Fischer (1979) 0.333 3.28 1.60 0.335 1.50 1.3 -a 0.505 1 Jain and Fischer (1979) 0.333 3.94 1.60 0.335 1.50 1.3 -a 0.571 1 Jain and Fischer (1979) 0.333 1.64 2.03 0.335 2.50 1.3 -a 0.525 1 Jain and Fischer (1979) 0.333 2.03 2.03 0.335 2.50 1.3 -a 0.463 1 Jain and Fischer (1979) 0.333 2.46 2.03 0.335 2.50 1.3 -a 0.456 1 Jain and Fischer (1979) 0.333 3.28 2.03 0.335 2.50 1.3 -a 0.489 1 Jain and Fischer (1979) 0.333 3.94 2.03 0.335 2.50 1.3 -a 0.522 1 Jones (unpublished) 0.498 1.76 3.12 0.874 5.00 -a 4320 0.288 1 Jones (unpublished) 0.498 2.57 3.12 0.874 5.00 -a 8640 0.751 1 Jones (unpublished) 0.498 1.38 1.63 0.874 1.20 -a 4320 0.718 1 Jones (unpublished) 0.498 0.95 0.96 0.874 0.30 -a 3480 0.541 1 Jones (unpublished) 0.499 2.34 3.12 0.875 5.00 -a 8520 0.886 1 Jones (unpublished) 0.499 1.78 2.34 0.875 2.40 -a 4500 0.820 1 Jones (unpublished) 0.499 1.38 1.63 0.875 1.20 -a 2940 0.755 1 Jones (unpublished) 0.498 1.77 3.12 0.874 5.00 -a 5640 0.311 1 Jones (unpublished) 0.498 1.94 3.12 0.874 5.00 -a 6540 0.423 1 Jones (unpublished) 0.498 1.40 2.34 0.874 2.40 -a 8640 0.390 1 Jones (unpublished) 0.498 1.02 1.63 0.874 1.20 -a 4200 0.354 1 Jones (unpublished) 0.499 1.12 1.63 0.875 1.20 -a 8640 0.722 1 Jones (unpublished) 0.498 1.60 2.34 0.874 2.40 -a 4320 0.469 1 Jones (unpublished) 0.498 1.12 1.63 0.874 1.20 -a 8640 0.570 1

Page 31: APPENDIX A QUESTIONNAIRE AND RE SPONDENTSonlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_682... · B-1 APPENDIX B FUTURE RESEARCH NEEDS Test Series 1. Live-bed scour tests with large

E-11

Data source

Pile diameter

(ft) Velocity

(ft/s)

Critical velocity

(ft/s) Depth

(ft) D50

(mm) σg Duration

(min)

Scour depth

(ft) Usage Jones (unpublished) 0.499 1.40 2.34 0.875 2.40 -a 8640 0.427 1 Jones (unpublished) 0.498 2.34 3.12 0.874 5.00 -a 8640 0.866 1 Jones (unpublished) 0.498 1.77 1.63 0.874 1.20 -a 1440 0.656 1 Melville (1997) 0.052 0.70 1.22 0.656 0.80 1.3 1753 0.079 1 Melville (1997) 0.656 0.95 1.21 0.394 0.90 1.3 5520 0.686 1 Melville (1997) 0.656 0.75 1.21 0.394 0.90 1.3 3780 0.358 1 Melville (1997) 0.656 0.61 1.32 0.755 0.90 1.3 840 0.194 1 Melville (1997) 0.656 1.05 1.28 0.594 0.90 1.3 2610 0.771 1 Melville (1997) 0.082 0.70 1.22 0.656 0.80 1.3 2695 0.082 1 Melville (1997) 0.052 0.82 1.22 0.656 0.80 1.3 1740 0.105 1 Melville (1997) 0.082 0.82 1.22 0.656 0.80 1.3 2895 0.157 1 Melville (1997) 0.052 0.96 1.22 0.656 0.80 1.3 2065 0.125 1 Melville (1997) 0.082 0.96 1.22 0.656 0.80 1.3 2690 0.210 1 Melville (1997) 0.052 0.57 1.30 0.656 0.90 1.3 320 0.033 1 Melville (1997) 0.082 0.57 1.30 0.656 0.90 1.3 1235 0.056 1 Melville (1997) 0.656 0.88 1.23 0.443 0.90 1.3 7140 0.778 1 Melville (1997) 2.513 1.03 1.03 0.180 0.85 1.3 -a 0.829 2 Melville (1997) 1.033 1.02 1.02 0.171 0.85 1.3 -a 0.796 2 Melville (1997) 1.033 1.08 1.15 0.344 0.85 1.3 -a 0.982 2 Melville (1997) 2.513 1.08 1.14 0.328 0.85 1.3 -a 1.432 2 Shen(1969) 0.500 1.44 0.85 0.373 0.24 1.4 -a 0.510 1 Shen(1969) 0.500 1.31 0.92 0.719 0.24 1.4 -a 0.590 1 Shen(1969) 0.500 0.75 0.85 0.385 0.24 1.4 -a 0.410 1 Shen(1969) 0.500 1.05 0.85 0.380 0.24 1.4 -a 0.440 1 Shen(1969) 0.500 1.77 0.86 0.391 0.24 1.4 -a 0.550 1 Shen(1969) 0.500 2.95 0.85 0.377 0.24 1.4 -a 0.574 1 Shen(1969) 0.500 3.35 0.85 0.385 0.24 1.4 -a 0.540 1 Shen(1969) 0.500 2.46 0.88 0.507 0.24 1.4 -a 0.650 1 Shen(1969) 0.500 1.94 0.89 0.520 0.24 1.4 -a 0.590 1 Shen(1969) 0.500 1.61 0.88 0.497 0.24 1.4 -a 0.490 1 Shen(1969) 0.500 1.18 0.89 0.513 0.24 1.4 -a 0.520 1 Shen(1969) 0.500 0.95 0.88 0.493 0.24 1.4 -a 0.462 1 Shen(1969) 0.500 0.49 0.92 0.701 0.24 1.4 -a 0.084 1 Shen(1969) 0.500 0.95 0.92 0.711 0.24 1.4 -a 0.440 1 Shen(1969) 0.500 1.25 0.92 0.675 0.24 1.4 -a 0.560 1 Shen(1969) 0.500 1.44 0.92 0.690 0.24 1.4 -a 0.690 1 Shen(1969) 0.500 1.74 0.92 0.680 0.24 1.4 -a 0.600 1 Shen(1969) 0.500 1.80 0.92 0.699 0.24 1.4 -a 0.590 1 Shen(1969) 0.500 1.35 0.94 0.864 0.24 1.4 -a 0.610 1 Shen(1969) 0.500 1.15 0.94 0.880 0.24 1.4 -a 0.473 1 Shen(1969) 0.500 1.25 0.99 0.578 0.46 2.2 -a 0.544 1 Shen(1969) 3.001 2.17 1.16 2.200 0.46 2.2 -a 2.200 1 Shen(1969) 3.001 1.64 1.15 2.001 0.46 2.2 -a 1.801 1 Sheppard et al. (2004) 0.374 0.94 1.10 3.891 0.22 1.5 6660 0.558 1 Sheppard et al. (2004) 1.001 1.00 1.10 3.904 0.22 1.5 24480 1.345 1 Sheppard et al. (2004) 3.002 1.31 1.54 4.167 0.80 1.3 19320 3.609 1 Sheppard et al. (2004) 3.002 1.26 1.47 2.841 0.80 1.3 54300 3.248 1 Sheppard et al. (2004) 1.001 1.28 1.54 4.160 0.80 1.3 7680 1.673 1 Sheppard et al. (2004) 0.374 1.35 1.54 4.167 0.80 1.3 1740 0.755 1 Sheppard et al. (2004) 3.002 2.48 3.16 4.003 2.90 1.2 9060 4.626 1

Page 32: APPENDIX A QUESTIONNAIRE AND RE SPONDENTSonlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_682... · B-1 APPENDIX B FUTURE RESEARCH NEEDS Test Series 1. Live-bed scour tests with large

E-12

Data source

Pile diameter

(ft) Velocity

(ft/s)

Critical velocity

(ft/s) Depth

(ft) D50

(mm) σg Duration

(min)

Scour depth

(ft) Usage Sheppard et al. (2004) 3.002 2.12 2.84 1.837 2.90 1.2 11160 3.740 1 Sheppard et al. (2004) 3.002 1.87 2.57 0.951 2.90 1.2 20820 3.150 2 Sheppard et al. (2004) 3.002 1.64 2.36 0.571 2.90 1.2 49860 2.362 2 Sheppard et al. (2004) 3.002 2.30 3.34 6.234 2.90 1.2 43200 4.068 1 Sheppard et al. (2004) 1.001 1.31 1.10 4.003 0.22 1.5 4260 1.280 1 Sheppard et al. (2004) 1.001 0.98 0.90 0.600 0.22 1.5 3960 1.017 1 Sheppard et al. (2004) 3.002 1.00 1.14 5.938 0.22 1.5 54780 3.182 1 Sheppard and Miller (2006) 0.500 0.56 1.00 1.380 0.27 1.3 -a 0.420 1 Sheppard and Miller (2006) 0.500 2.03 1.00 1.380 0.27 1.3 -a 0.710 1 Sheppard and Miller (2006) 0.500 2.89 1.00 1.410 0.27 1.3 -a 0.750 1 Sheppard and Miller (2006) 0.500 3.61 1.00 1.310 0.27 1.3 -a 0.820 1 Sheppard and Miller (2006) 0.500 5.38 1.00 1.310 0.27 1.3 -a 0.980 1 Sheppard and Miller (2006) 0.500 2.26 1.00 1.410 0.27 1.3 -a 0.720 1 Sheppard and Miller (2006) 0.500 0.82 1.02 1.610 0.27 1.3 -a 0.500 1 Sheppard and Miller (2006) 0.500 1.21 1.39 1.410 0.84 1.3 -a 0.850 1 Sheppard and Miller (2006) 0.500 1.90 1.37 1.250 0.84 1.3 -a 0.560 1 Sheppard and Miller (2006) 0.500 2.43 1.37 1.250 0.84 1.3 -a 0.830 1 Sheppard and Miller (2006) 0.500 3.44 1.37 1.250 0.84 1.3 -a 0.820 1 Sheppard and Miller (2006) 0.500 3.97 1.37 1.250 0.84 1.3 -a 0.750 1 Sheppard and Miller (2006) 0.500 4.49 1.37 1.250 0.84 1.3 -a 0.820 1 Sheppard and Miller (2006) 0.500 4.99 1.37 1.250 0.84 1.3 -a 0.850 1 Sheppard and Miller (2006) 0.500 4.99 1.32 0.980 0.84 1.3 -a 0.850 1 Sheppard and Miller (2006) 0.500 5.77 1.32 0.980 0.84 1.3 -a 0.860 1 Sheppard and Miller (2006) 0.500 6.07 1.32 0.980 0.84 1.3 -a 0.870 1 Sheppard and Miller (2006) 0.500 6.53 1.32 0.980 0.84 1.3 -a 0.920 1 Sheppard and Miller (2006) 0.500 7.08 1.32 0.980 0.84 1.3 -a 0.970 1 Sheppard and Miller (2006) 0.500 0.82 1.39 1.410 0.84 1.3 -a 0.640 1 Sheppard and Miller (2006) 0.500 4.13 1.00 1.310 0.27 1.3 -a 0.890 1 Sheppard and Miller (2006) 0.500 4.69 1.00 1.310 0.27 1.3 -a 0.870 1 Sheppard and Miller (2006) 0.500 1.80 0.92 0.660 0.27 1.3 -a 0.590 1 Sheppard and Miller (2006) 0.500 2.36 0.92 0.660 0.27 1.3 -a 0.710 1 Yanmaz & Altinbilek(1991) 0.220 0.97 1.41 0.541 1.07 1.1 360 0.335 0 Yanmaz & Altinbilek(1991) 0.220 0.93 1.39 0.499 1.07 1.1 330 0.312 0 Yanmaz & Altinbilek(1991) 0.220 0.87 1.37 0.443 1.07 1.1 360 0.302 0 Yanmaz & Altinbilek(1991) 0.220 0.83 1.34 0.397 1.07 1.1 330 0.256 0 Yanmaz & Altinbilek(1991) 0.220 0.77 1.31 0.344 1.07 1.1 210 0.210 0 Yanmaz & Altinbilek(1991) 0.220 0.70 1.27 0.279 1.07 1.1 235 0.203 0 Yanmaz & Altinbilek(1991) 0.220 0.61 1.21 0.213 1.07 1.1 300 0.184 0 Yanmaz & Altinbilek(1991) 0.220 0.51 1.14 0.148 1.07 1.1 270 0.128 0 Yanmaz & Altinbilek(1991) 0.187 0.97 1.41 0.541 1.07 1.1 360 0.322 0 Yanmaz & Altinbilek(1991) 0.187 0.93 1.39 0.499 1.07 1.1 330 0.295 0 Yanmaz & Altinbilek(1991) 0.187 0.87 1.37 0.443 1.07 1.1 320 0.272 0 Yanmaz & Altinbilek(1991) 0.187 0.83 1.34 0.397 1.07 1.1 330 0.233 0 Yanmaz & Altinbilek(1991) 0.187 0.77 1.31 0.344 1.07 1.1 240 0.200 0 Yanmaz & Altinbilek(1991) 0.187 0.70 1.27 0.279 1.07 1.1 240 0.190 0 Yanmaz & Altinbilek(1991) 0.187 0.61 1.21 0.213 1.07 1.1 300 0.167 0 Yanmaz & Altinbilek(1991) 0.187 0.51 1.14 0.148 1.07 1.1 270 0.105 0 Yanmaz & Altinbilek(1991) 0.154 0.61 1.21 0.213 1.07 1.1 300 0.135 0 Yanmaz & Altinbilek(1991) 0.154 0.77 1.31 0.344 1.07 1.1 240 0.194 0 Yanmaz & Altinbilek(1991) 0.154 0.87 1.37 0.443 1.07 1.1 330 0.253 0

Page 33: APPENDIX A QUESTIONNAIRE AND RE SPONDENTSonlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_682... · B-1 APPENDIX B FUTURE RESEARCH NEEDS Test Series 1. Live-bed scour tests with large

E-13

Data source

Pile diameter

(ft) Velocity

(ft/s)

Critical velocity

(ft/s) Depth

(ft) D50

(mm) σg Duration

(min)

Scour depth

(ft) Usage Yanmaz & Altinbilek(1991) 0.154 0.97 1.41 0.541 1.07 1.1 360 0.312 0 Yanmaz & Altinbilek(1991) 0.220 0.61 1.06 0.213 0.84 1.3 300 0.253 0 Yanmaz & Altinbilek(1991) 0.220 0.70 1.10 0.279 0.84 1.3 300 0.299 0 Yanmaz & Altinbilek(1991) 0.220 0.77 1.14 0.344 0.84 1.3 300 0.315 0 Yanmaz & Altinbilek(1991) 0.220 0.83 1.17 0.397 0.84 1.3 300 0.331 0 Yanmaz & Altinbilek(1991) 0.220 0.87 1.18 0.443 0.84 1.3 300 0.351 0 Yanmaz & Altinbilek(1991) 0.187 0.70 1.10 0.279 0.84 1.3 300 0.246 0 Yanmaz & Altinbilek(1991) 0.187 0.77 1.14 0.344 0.84 1.3 300 0.272 0 Yanmaz & Altinbilek(1991) 0.187 0.83 1.17 0.397 0.84 1.3 300 0.289 0 Yanmaz & Altinbilek(1991) 0.187 0.87 1.18 0.443 0.84 1.3 300 0.312 0 Yanmaz & Altinbilek(1991) 0.154 0.70 1.10 0.279 0.84 1.3 300 0.230 0 Yanmaz & Altinbilek(1991) 0.154 0.77 1.14 0.344 0.84 1.3 300 0.223 0 Yanmaz & Altinbilek(1991) 0.154 0.83 1.17 0.397 0.84 1.3 300 0.253 0 Yanmaz & Altinbilek(1991) 0.154 0.87 1.18 0.443 0.84 1.3 300 0.279 0 Ettema et al. (2006) 1.332 1.51 1.76 3.281 1.05 1.3 2880 1.497 1 Ettema et al. (2006) 1.001 1.51 1.76 3.281 1.05 1.3 1440 1.256 1 Ettema et al. (2006) 0.791 1.51 1.76 3.281 1.05 1.3 1440 1.063 1 Ettema et al. (2006) 0.564 1.51 1.76 3.281 1.05 1.3 1440 0.874 1 Ettema et al. (2006) 0.374 1.51 1.76 3.281 1.05 1.3 1440 0.619 1 Ettema et al. (2006) 0.210 1.51 1.76 3.281 1.05 1.3 1440 0.372 1

a:missing data

Page 34: APPENDIX A QUESTIONNAIRE AND RE SPONDENTSonlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_682... · B-1 APPENDIX B FUTURE RESEARCH NEEDS Test Series 1. Live-bed scour tests with large

E-14

Table E-3 Equilibrium scour field data.

Data source

Pier shape

Shape factor

Pier Width

(ft)

Pier Length

(ft)

Skew angle (deg)

Effective Diameter

(ft) Velocity

(ft/s) Depth

(ft) D50

(mm) σg

Scour depth

(ft) Usage

1 3 -a 5.9 28.9 0 5.9 12.1 18.0 5.0 5.4 3.6 1 1 2 -a 4.9 36.7 0 4.9 4.9 6.9 1.8 4.5 2.0 1 1 2 -a 4.9 36.7 0 4.9 3.0 3.0 1.8 4.5 1.6 1 1 2 -a 4.9 36.7 0 4.9 5.2 6.6 1.8 4.5 2.0 1 1 2 -a 4.9 36.7 0 4.9 3.3 3.0 1.8 4.5 2.0 1 1 2 -a 4.9 36.7 0 4.9 1.6 3.9 0.6 7.0 1.0 1 1 2 -a 4.9 36.7 0 4.9 5.2 9.8 1.8 4.5 3.0 1 1 2 -a 4.9 36.7 0 4.9 3.6 5.9 1.8 4.5 1.6 1 1 2 -a 4.9 36.7 0 4.9 2.6 4.9 0.6 7.0 1.0 1 1 2 -a 4.9 36.7 0 4.9 6.6 10.5 1.8 4.5 3.9 1 1 2 -a 4.9 36.7 0 4.9 3.9 7.9 1.8 4.5 2.0 1 1 2 -a 4.9 36.7 0 4.9 3.0 3.9 0.6 7.0 1.0 1 1 2 -a 4.9 36.7 0 4.9 5.9 9.8 1.8 4.5 4.6 1 1 2 -a 4.9 36.7 0 4.9 3.6 7.5 1.8 4.5 2.6 1 1 2 -a 4.9 36.7 0 4.9 1.0 1.6 0.6 7.0 2.6 2 1 2 -a 4.9 36.7 0 4.9 6.9 8.5 1.8 4.5 3.6 1 1 2 -a 4.9 36.7 0 4.9 3.6 4.9 1.8 4.5 1.6 1 1 2 -a 4.9 36.7 0 4.9 0.7 2.0 0.6 7.0 3.9 2 1 2 -a 4.9 36.7 0 4.9 5.9 9.8 1.8 4.5 5.9 1 1 2 -a 4.9 36.7 0 4.9 3.3 6.6 1.8 4.5 2.6 1 1 2 -a 3.3 0.0 0 3.3 5.2 4.9 7.6 2.4 2.6 1 1 3 -a 4.9 20.0 0 4.9 6.6 19.0 70.0 1.2 2.6 1 1 3 -a 4.9 20.0 0 4.9 9.8 17.4 70.0 1.2 2.0 1 1 3 -a 4.9 20.0 0 4.9 8.5 13.5 70.0 1.2 2.6 1 1 3 -a 4.9 20.0 0 4.9 9.5 21.7 70.0 1.2 2.0 1 1 3 -a 4.9 20.0 0 4.9 6.9 11.2 70.0 1.2 2.0 1 1 3 -a 4.9 20.0 0 4.9 11.5 17.1 70.0 1.2 2.0 1 1 3 -a 4.9 20.0 0 4.9 4.9 13.5 70.0 1.2 4.9 1 1 3 -a 4.9 20.0 0 4.9 9.5 17.4 70.0 1.2 4.9 1 1 2 -a 4.9 30.8 1 22.5 7.2 12.1 14.0 2.9 5.9 1 1 2 -a 4.9 30.8 1 22.5 7.2 12.1 14.0 2.9 6.9 1 1 2 -a 4.9 30.8 1 22.5 6.9 15.1 14.0 2.9 5.9 1 1 2 -a 4.9 44.3 1 30.6 5.6 14.1 14.0 2.9 7.9 2 1 2 -a 3.9 21.0 0 8.2 3.3 6.9 1.2 3.9 2.0 1 1 2 -a 3.9 21.0 0 8.2 3.3 6.9 1.2 3.9 1.3 1 1 2 -a 3.9 21.0 0 3.9 5.2 7.5 1.2 3.9 4.3 1 1 2 -a 3.9 21.0 0 3.9 5.2 7.5 1.2 3.9 1.6 1 1 2 -a 3.9 21.0 0 10.6 2.6 2.3 0.6 1.9 2.0 2 1 2 -a 3.9 21.0 0 10.6 2.6 2.3 0.6 1.9 1.3 2 1 2 -a 3.9 21.0 0 3.9 2.3 2.0 1.2 3.9 1.0 1 1 2 -a 3.9 21.0 0 3.9 2.3 2.0 1.2 3.9 1.0 1 1 2 -a 3.9 21.0 0 3.9 3.3 3.3 1.2 3.9 1.0 1 1 2 -a 3.9 21.0 0 3.9 3.3 3.3 1.2 3.9 1.0 1 1 3 -a 3.0 89.9 0 42.1 5.2 3.9 29.8 2.5 1.6 2 1 3 -a 3.0 89.9 0 42.1 5.2 3.9 29.8 2.5 1.6 2 1 3 -a 3.0 89.9 1 55.2 3.6 1.0 29.8 2.5 1.0 2 1 3 -a 1.6 23.3 0 9.5 4.6 5.9 1.1 4.0 1.0 1 1 3 -a 1.6 23.3 0 9.5 4.6 5.9 1.1 4.0 2.3 1 1 3 -a 1.6 23.3 0 9.5 5.9 5.2 1.1 4.0 1.0 1

Page 35: APPENDIX A QUESTIONNAIRE AND RE SPONDENTSonlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_682... · B-1 APPENDIX B FUTURE RESEARCH NEEDS Test Series 1. Live-bed scour tests with large

E-15

Data source

Pier shape

Shape factor

Pier Width

(ft)

Pier Length

(ft)

Skew angle (deg)

Effective Diameter

(ft) Velocity

(ft/s) Depth

(ft) D50

(mm) σg

Scour depth

(ft) Usage

1 3 -a 1.6 23.3 0 9.5 5.9 5.2 1.1 4.0 2.6 1 1 3 -a 1.6 23.3 1 17.1 3.3 4.6 1.1 4.0 1.6 2 1 3 -a 1.6 23.3 1 17.1 3.3 4.6 1.1 4.0 2.3 2 1 3 -a 1.6 23.3 0 1.6 2.0 2.0 1.8 4.3 1.6 1 1 3 -a 1.6 23.3 0 1.6 2.0 2.0 1.8 4.3 2.3 1 1 3 -a 1.6 23.3 0 9.5 4.6 4.3 1.1 4.0 3.0 2 1 3 -a 1.6 23.3 1 17.1 3.3 3.3 1.1 4.0 1.6 2 1 3 -a 1.6 23.3 1 17.1 2.6 2.3 1.8 4.3 1.3 2 1 1 -a 1.0 24.0 0 11.4 2.6 3.3 0.9 3.3 2.0 2 1 1 -a 1.0 24.0 0 11.4 2.6 3.3 0.9 3.3 2.0 2 1 1 -a 1.0 24.0 0 7.1 2.3 2.0 0.9 3.3 0.7 2 1 1 -a 1.0 24.0 0 7.1 2.3 2.0 0.9 3.3 1.3 2 1 1 -a 1.0 24.0 0 7.1 2.3 0.7 0.7 2.9 1.6 2 1 1 -a 1.0 24.0 0 7.1 2.3 0.7 0.7 2.9 0.0 2 1 1 -a 1.0 24.0 0 11.4 3.6 3.3 0.9 3.3 0.7 2 1 1 -a 1.0 24.0 0 11.4 3.6 3.3 0.9 3.3 1.6 2 1 1 -a 1.0 24.0 0 6.7 3.9 3.3 0.9 3.3 1.0 2 1 1 -a 1.0 24.0 0 6.7 3.9 3.3 0.9 3.3 1.0 2 1 1 -a 1.0 24.0 0 9.1 2.6 1.0 0.9 3.3 1.0 2 1 1 -a 1.0 24.0 0 9.1 2.6 1.0 0.9 3.3 0.0 2 1 1 -a 1.0 24.0 0 10.3 3.9 4.3 0.9 3.3 0.7 2 1 1 -a 1.0 24.0 0 10.3 3.9 4.3 0.9 3.3 1.0 2 1 1 -a 1.0 24.0 0 7.5 3.3 1.0 0.9 3.3 1.3 2 1 1 -a 1.0 24.0 0 7.5 3.3 1.0 0.9 3.3 0.7 2 1 1 -a 1.0 24.0 0 7.5 2.3 3.3 0.7 2.9 1.3 2 1 1 -a 1.0 24.0 0 7.5 3.9 6.2 0.9 3.3 2.0 1 1 1 -a 1.0 24.0 0 7.5 3.9 6.2 0.9 3.3 1.6 1 1 1 -a 1.0 24.0 0 5.5 3.6 1.3 0.9 3.3 1.6 2 1 1 -a 1.0 24.0 0 5.5 3.6 1.3 0.9 3.3 1.3 2 1 1 -a 1.0 24.0 0 5.5 3.6 3.0 0.9 3.3 1.6 1 1 1 -a 1.0 24.0 0 5.5 3.6 3.0 0.9 3.3 1.6 1 1 1 -a 1.0 24.0 0 7.5 3.9 8.9 0.9 3.3 2.3 1 1 1 -a 1.0 24.0 0 7.5 3.9 8.9 0.9 3.3 2.6 1 1 1 -a 1.0 24.0 0 4.3 3.6 1.6 0.9 3.3 1.6 2 1 1 -a 1.0 24.0 0 4.3 3.6 1.6 0.9 3.3 1.3 2 1 1 -a 1.0 24.0 0 4.3 3.6 2.0 0.7 2.9 2.0 2 1 1 -a 1.0 24.0 0 4.3 3.6 2.0 0.7 2.9 2.0 2 1 1 -a 1.0 24.0 0 6.7 5.2 9.2 0.9 3.3 1.3 1 1 1 -a 1.0 24.0 0 6.7 5.2 9.2 0.9 3.3 1.3 1 1 1 -a 1.0 24.0 0 6.3 3.6 2.3 0.9 3.3 1.6 2 1 1 -a 1.0 24.0 0 6.3 3.6 2.3 0.9 3.3 1.3 2 1 1 -a 1.0 24.0 0 6.3 2.3 2.3 0.7 2.9 2.0 2 1 1 -a 1.0 24.0 0 6.3 2.3 2.3 0.7 2.9 3.0 2 1 1 -a 1.0 24.0 0 5.5 4.3 9.5 0.9 3.3 0.7 1 1 1 -a 1.0 24.0 0 5.5 4.3 9.5 0.9 3.3 2.0 1 1 1 -a 1.0 24.0 0 5.5 2.3 2.6 0.7 2.9 0.7 2 1 1 -a 1.0 24.0 0 5.5 2.3 2.6 0.7 2.9 1.0 2 1 1 -a 13.1 38.1 0 20.1 7.9 73.8 0.6 2.1 23.3 1 1 1 -a 13.5 38.1 0 16.1 6.6 73.5 0.6 2.1 20.3 1 1 1 -a 15.4 38.1 0 18.0 5.9 54.8 0.6 2.1 21.3 1

Page 36: APPENDIX A QUESTIONNAIRE AND RE SPONDENTSonlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_682... · B-1 APPENDIX B FUTURE RESEARCH NEEDS Test Series 1. Live-bed scour tests with large

E-16

Data source

Pier shape

Shape factor

Pier Width

(ft)

Pier Length

(ft)

Skew angle (deg)

Effective Diameter

(ft) Velocity

(ft/s) Depth

(ft) D50

(mm) σg

Scour depth

(ft) Usage

1 2 -a 3.0 33.5 0 3.0 1.0 16.7 0.5 3.7 1.3 1 1 2 -a 3.0 33.5 0 3.0 2.6 19.4 0.5 3.7 3.3 1 1 2 -a 3.0 34.4 0 5.9 5.2 30.8 0.3 1.1 2.3 1 1 2 -a 3.0 34.4 0 5.9 5.2 30.8 0.3 1.1 1.6 1 1 2 -a 3.0 47.6 0 7.1 3.6 11.2 0.9 4.4 1.3 1 1 2 -a 3.0 47.6 0 7.1 3.3 10.5 0.9 4.4 1.3 1 1 2 -a 3.0 47.6 0 7.1 3.3 10.5 0.9 4.4 0.7 1 1 2 -a 3.0 43.0 0 3.0 4.3 16.7 0.9 4.4 2.3 1 1 2 -a 2.0 42.0 0 9.2 5.2 21.7 0.9 4.4 3.6 1 1 2 -a 2.0 42.0 0 9.2 6.2 20.3 0.9 4.4 3.9 1 1 3 -a 14.1 54.1 0 14.1 8.5 38.1 0.3 1.4 12.1 1 1 3 -a 14.1 54.1 0 14.1 8.5 40.4 0.3 1.4 3.0 1 1 3 -a 14.1 54.1 0 14.1 6.9 30.8 0.3 1.4 11.5 1 1 3 -a 14.1 54.1 0 14.1 6.9 30.8 0.3 1.4 3.6 1 1 3 -a 14.1 54.1 0 14.1 10.5 39.0 0.3 1.4 23.0 1 1 3 -a 14.1 54.1 0 14.1 10.5 41.3 0.3 1.4 17.1 1 1 3 -a 14.1 54.1 0 14.1 9.5 32.2 0.3 1.4 25.3 1 1 3 -a 14.1 54.1 0 14.1 9.5 32.2 0.3 1.4 18.4 1 1 2 -a 14.1 40.0 0 14.1 8.2 38.4 0.3 1.4 14.4 1 1 2 -a 14.1 40.0 0 14.1 8.2 38.4 0.3 1.4 12.8 1 1 2 -a 14.1 40.0 0 14.1 8.5 35.4 0.3 1.4 10.8 1 1 2 -a 14.1 40.0 0 14.1 8.5 37.1 0.3 1.4 6.9 1 1 2 -a 14.1 40.0 0 14.1 6.9 30.5 0.3 1.4 13.8 1 1 2 -a 14.1 40.0 0 14.1 6.9 30.5 0.3 1.4 12.5 1 1 2 -a 14.1 40.0 0 14.1 9.8 39.4 0.3 1.4 14.8 1 1 2 -a 14.1 40.0 0 14.1 9.8 38.4 0.3 1.4 15.7 1 1 2 -a 14.1 40.0 0 14.1 10.5 36.7 0.3 1.4 18.0 1 1 2 -a 14.1 40.0 0 14.1 10.5 38.4 0.3 1.4 17.1 1 1 2 -a 14.1 40.0 0 14.1 9.5 31.5 0.3 1.4 18.4 1 1 2 -a 14.1 40.0 0 14.1 9.5 31.8 0.3 1.4 12.1 1 1 2 -a 3.9 32.2 0 3.9 2.6 11.5 22.0 2.9 1.3 1 1 2 -a 3.9 32.2 0 3.9 4.3 10.2 22.0 2.9 1.3 1 1 2 -a 3.9 32.2 0 3.9 3.6 7.9 22.0 2.9 2.3 1 1 2 -a 3.9 32.2 0 3.9 5.2 7.9 22.0 2.9 1.6 1 1 2 -a 3.9 32.2 0 3.9 3.3 6.2 22.0 2.9 1.0 1 1 2 -a 3.9 32.2 0 3.9 5.2 6.6 22.0 2.9 1.3 1 1 2 -a 3.9 32.2 0 3.9 5.2 10.2 22.0 2.9 1.6 1 1 1 -a 3.9 35.1 0 3.9 0.3 3.6 0.4 2.4 2.3 1 1 1 -a 3.9 35.1 0 3.9 1.3 7.2 0.4 2.4 2.3 1 1 1 -a 3.9 35.1 0 3.9 0.7 4.9 0.4 2.4 2.0 1 1 1 -a 3.9 35.1 0 3.9 2.3 6.2 0.4 2.4 3.9 1 1 1 -a 3.9 35.1 0 3.9 2.6 10.2 0.4 2.4 5.2 1 1 1 -a 3.9 35.1 0 3.9 2.6 7.2 0.4 2.4 4.3 1 1 1 -a 3.9 35.1 0 3.9 1.0 3.6 0.4 2.4 1.6 1 1 1 -a 3.9 35.1 0 3.9 2.0 6.9 0.4 2.4 2.3 1 1 1 -a 3.9 35.1 0 3.9 1.0 4.9 0.4 2.4 2.3 1 1 3 -a 4.9 41.7 0 4.9 7.5 7.9 108.0 2.0 1.0 1 1 3 -a 4.9 41.7 0 4.9 6.9 6.9 108.0 2.0 1.3 1 1 3 -a 4.9 41.7 0 4.9 8.5 9.8 108.0 2.0 2.6 1 1 3 -a 4.9 41.7 0 4.9 6.2 7.9 108.0 2.0 1.6 1

Page 37: APPENDIX A QUESTIONNAIRE AND RE SPONDENTSonlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_682... · B-1 APPENDIX B FUTURE RESEARCH NEEDS Test Series 1. Live-bed scour tests with large

E-17

Data source

Pier shape

Shape factor

Pier Width

(ft)

Pier Length

(ft)

Skew angle (deg)

Effective Diameter

(ft) Velocity

(ft/s) Depth

(ft) D50

(mm) σg

Scour depth

(ft) Usage

1 1 -a 16.4 32.2 0 16.4 2.3 19.4 0.5 1.6 3.0 1 1 1 -a 15.7 32.2 0 15.7 2.6 21.3 0.5 1.6 3.0 1 1 1 -a 14.8 32.2 0 14.8 3.9 27.9 0.5 1.6 2.6 1 1 1 -a 17.4 32.2 0 17.4 5.2 38.7 0.5 1.6 15.1 1 1 1 -a 17.7 32.2 0 17.7 4.6 31.2 0.5 1.6 13.8 1 1 1 -a 18.0 32.2 0 18.0 3.6 28.5 0.5 1.6 10.2 1 1 1 -a 16.7 32.2 0 16.7 1.6 18.7 0.5 1.6 2.3 1 1 1 -a 10.8 32.2 0 10.8 2.3 14.1 0.5 9.0 1.6 1 1 1 -a 10.8 32.2 0 10.8 2.6 15.7 0.5 9.0 1.3 1 1 1 -a 10.8 32.2 0 10.8 3.9 22.0 0.5 9.0 3.0 1 1 1 -a 10.2 32.2 0 10.2 5.2 32.2 0.5 1.6 2.3 1 1 1 -a 12.1 32.2 0 12.1 4.6 32.2 0.5 1.6 2.6 1 1 1 -a 12.1 32.2 0 12.1 3.6 25.9 0.5 1.6 1.3 1 1 1 -a 13.5 32.2 0 13.5 1.6 15.4 0.5 1.6 1.6 1 1 1 -a 9.2 29.5 0 9.2 0.0 41.3 0.7 2.9 12.1 0 1 1 -a 9.2 29.5 0 9.2 6.2 46.9 0.7 2.9 14.1 1 1 1 -a 9.2 29.5 0 9.2 6.6 49.5 0.7 2.9 12.5 1 1 1 -a 9.2 29.5 0 9.2 3.9 42.3 0.7 2.9 12.5 1 1 1 -a 9.2 29.5 0 9.2 3.6 36.1 0.7 2.9 14.1 1 1 1 -a 9.5 29.5 0 9.5 0.0 43.6 0.7 2.9 13.1 0 1 1 -a 9.5 29.5 0 9.5 7.5 47.9 0.7 2.9 13.1 1 1 1 -a 9.5 29.5 0 9.5 6.6 50.5 0.7 2.9 12.1 1 1 1 -a 9.5 29.5 0 9.5 4.6 42.3 0.7 2.9 12.1 1 1 1 -a 9.5 29.5 0 9.5 3.9 36.1 0.7 2.9 12.1 1 1 3 -a 18.0 67.9 0 18.0 8.5 65.6 1.0 2.4 13.5 1 1 0 -a 7.9 7.9 0 7.9 6.2 9.8 7.5 4.6 3.9 1 1 0 -a 7.9 7.9 0 7.9 6.2 8.5 7.5 4.6 3.3 1 1 0 -a 7.9 7.9 0 7.9 6.9 12.8 7.5 4.6 3.0 1 1 0 -a 7.9 7.9 0 7.9 6.2 8.9 7.5 4.6 3.0 1 1 0 -a 7.9 7.9 0 7.9 6.9 9.5 7.5 4.6 3.9 1 1 0 -a 7.9 7.9 0 7.9 7.5 8.9 7.5 4.6 6.6 1 1 0 -a 7.9 7.9 0 7.9 5.6 9.8 7.5 4.6 4.6 1 1 0 -a 7.9 7.9 0 7.9 6.6 10.2 7.5 4.6 4.6 1 1 1 -a 5.2 26.9 0 11.6 6.9 22.3 6.9 3.7 4.9 1 1 1 -a 5.2 26.9 0 8.9 6.9 24.6 6.9 3.7 2.3 1 1 1 -a 6.2 26.9 0 9.9 6.6 28.2 6.9 3.7 5.2 1 1 1 -a 5.9 26.9 0 10.9 6.6 28.9 6.9 3.7 3.9 1 1 1 -a 5.6 26.6 0 5.6 3.6 26.2 6.9 3.7 5.6 1 1 1 -a 5.6 26.6 0 10.5 5.2 30.2 6.9 3.7 7.5 1 1 3 -a 3.3 36.1 0 3.3 5.2 1.6 8.0 5.9 1.3 1 1 3 -a 3.3 36.1 0 3.3 4.3 1.6 8.0 5.9 1.6 1 1 3 -a 3.3 36.1 0 3.3 4.3 1.3 8.0 5.9 1.6 2 1 3 -a 3.3 36.1 0 3.3 5.2 1.3 8.0 5.9 3.3 2 1 3 -a 3.3 36.1 0 3.3 4.6 1.0 8.0 5.9 3.3 2 1 3 -a 3.3 36.1 0 3.3 5.2 1.6 8.0 5.9 3.6 1 1 3 -a 3.3 36.1 0 3.3 3.9 1.0 8.0 5.9 1.6 2 1 3 -a 3.3 36.1 0 3.3 2.6 0.3 8.0 5.9 1.0 2 1 3 -a 3.3 36.1 0 3.3 2.0 0.7 8.0 5.9 1.3 2 1 3 -a 4.3 49.9 0 8.6 8.2 8.5 39.0 2.3 3.6 1 1 3 -a 4.3 49.9 0 8.6 6.9 6.6 39.0 2.3 2.6 1

Page 38: APPENDIX A QUESTIONNAIRE AND RE SPONDENTSonlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_682... · B-1 APPENDIX B FUTURE RESEARCH NEEDS Test Series 1. Live-bed scour tests with large

E-18

Data source

Pier shape

Shape factor

Pier Width

(ft)

Pier Length

(ft)

Skew angle (deg)

Effective Diameter

(ft) Velocity

(ft/s) Depth

(ft) D50

(mm) σg

Scour depth

(ft) Usage

1 3 -a 4.3 49.9 0 8.6 6.9 7.5 39.0 2.3 2.6 1 1 3 -a 4.3 49.9 0 8.6 4.9 4.6 39.0 2.3 3.3 1 1 3 -a 4.3 49.9 0 8.6 6.6 7.2 39.0 2.3 2.6 1 1 3 -a 4.3 49.9 0 8.6 5.9 5.6 39.0 2.3 3.0 1 1 3 -a 4.3 49.9 0 8.6 6.9 6.2 39.0 2.3 3.0 1 1 3 -a 4.3 49.9 0 8.6 3.6 3.9 39.0 2.3 3.0 1 1 3 -a 3.3 39.4 0 5.3 8.5 4.9 95.0 2.4 0.7 1 1 3 -a 3.3 39.4 0 5.3 5.2 3.3 95.0 2.4 1.3 1 1 3 -a 3.3 39.4 0 5.3 6.2 3.3 95.0 2.4 2.0 1 1 3 -a 3.3 39.4 0 5.3 10.5 5.6 95.0 2.4 5.6 1 1 3 -a 3.3 39.4 0 5.3 6.9 3.6 95.0 2.4 4.6 1 1 3 -a 3.3 39.4 0 5.3 6.9 3.9 95.0 2.4 4.6 1 1 3 -a 3.0 34.1 0 3.0 7.9 8.9 73.0 2.2 2.6 1 1 3 -a 3.0 34.1 0 3.0 8.2 8.2 73.0 2.2 2.3 1 1 3 -a 3.0 34.1 0 3.0 4.9 6.6 73.0 2.2 2.0 1 1 3 -a 3.3 34.1 0 3.3 7.5 8.2 73.0 2.2 1.6 1 1 3 -a 3.0 34.1 0 3.0 7.9 7.9 73.0 2.2 1.6 1 1 3 -a 3.3 34.1 0 3.3 4.9 6.2 73.0 2.2 1.0 1 1 3 -a 3.0 34.1 0 3.0 3.3 7.5 73.0 2.2 0.3 1 1 3 -a 3.0 34.1 0 3.0 3.6 6.9 73.0 2.2 0.3 1 1 3 -a 3.0 34.1 0 3.0 3.6 5.9 73.0 2.2 0.3 1 1 2 -a 4.9 47.9 0 4.9 6.6 12.5 27.0 2.2 1.6 1 1 2 -a 4.9 47.9 0 4.9 13.5 27.2 27.0 2.2 5.2 1 1 2 -a 4.9 47.9 0 4.9 5.9 12.1 27.0 2.2 1.0 1 1 2 -a 4.9 47.9 0 4.9 12.8 31.2 27.0 2.2 3.9 1 1 2 -a 4.9 47.9 0 4.9 7.9 16.1 27.0 2.2 3.0 1 1 2 -a 4.9 47.9 0 4.9 4.9 11.2 27.0 2.2 0.0 1 1 2 -a 4.9 47.9 0 4.9 12.1 31.5 27.0 2.2 3.9 1 1 2 -a 4.9 47.9 0 4.9 10.5 19.0 27.0 2.2 2.3 1 1 2 -a 4.9 47.9 0 4.9 7.5 12.5 27.0 2.2 3.3 1 1 2 -a 4.9 47.9 0 4.9 3.3 7.9 27.0 2.2 0.0 1 1 2 -a 4.9 47.9 0 4.9 11.2 31.8 27.0 2.2 4.3 1 1 2 -a 4.9 47.9 0 4.9 9.5 18.7 27.0 2.2 2.0 1 1 2 -a 4.9 47.9 0 4.9 6.9 12.1 27.0 2.2 0.0 1 1 2 -a 4.9 47.9 0 4.9 2.6 6.6 27.0 2.2 0.0 1 1 2 -a 4.9 47.9 0 4.9 10.5 26.6 27.0 2.2 3.9 1 1 2 -a 4.9 47.9 0 4.9 8.9 17.7 27.0 2.2 2.0 1 1 2 -a 4.9 47.9 0 4.9 6.6 11.8 27.0 2.2 0.0 1 1 2 -a 4.9 47.9 0 4.9 1.6 5.6 27.0 2.2 0.0 1 1 2 -a 4.9 47.9 0 4.9 8.9 19.0 27.0 2.2 2.0 1 1 2 -a 4.9 47.9 0 4.9 7.5 12.5 27.0 2.2 1.0 1 1 2 -a 4.9 47.9 0 4.9 5.2 8.5 27.0 2.2 0.0 1 1 2 -a 9.8 58.1 0 9.8 14.8 25.3 45.0 2.5 3.0 1 1 3 -a 5.9 22.0 0 5.9 9.5 21.0 27.0 1.5 3.3 1 1 2 -a 3.0 40.0 1 22.6 6.9 10.2 32.0 1.7 5.2 2 1 2 -a 5.6 43.0 0 5.6 12.1 18.0 33.0 1.9 2.0 1 1 2 -a 5.6 43.0 0 5.6 11.2 16.7 33.0 1.9 3.6 1 1 2 -a 4.9 40.0 0 4.9 8.2 18.0 28.0 1.9 1.0 1 1 2 -a 4.9 40.0 0 4.9 8.9 18.4 28.0 1.9 1.0 1 1 2 -a 4.9 40.0 0 4.9 7.2 16.7 28.0 1.9 3.3 1

Page 39: APPENDIX A QUESTIONNAIRE AND RE SPONDENTSonlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_682... · B-1 APPENDIX B FUTURE RESEARCH NEEDS Test Series 1. Live-bed scour tests with large

E-19

Data source

Pier shape

Shape factor

Pier Width

(ft)

Pier Length

(ft)

Skew angle (deg)

Effective Diameter

(ft) Velocity

(ft/s) Depth

(ft) D50

(mm) σg

Scour depth

(ft) Usage

1 2 -a 2.6 30.8 1 21.8 1.6 10.5 0.1 17.6 1.6 2 1 2 -a 2.6 30.8 1 25.3 1.0 7.2 0.1 17.6 0.7 2 1 2 -a 3.9 30.8 0 3.9 3.6 10.5 0.2 2.4 3.0 1 1 2 -a 5.2 35.8 0 5.2 4.9 6.9 12.0 4.8 1.3 1 1 2 -a 5.2 35.8 1 36.1 2.6 5.9 9.0 8.5 1.0 2 1 2 -a 3.6 81.7 0 3.6 4.6 12.8 1.8 2.7 1.6 1 1 2 -a 3.6 81.7 0 14.9 4.9 12.1 1.8 2.7 1.3 1 1 2 -a 3.6 81.7 0 3.6 5.9 13.5 1.3 9.0 1.0 1 1 2 -a 3.6 81.7 0 3.6 4.6 13.5 0.8 2.6 1.0 1 1 3 -a 3.0 57.1 1 50.9 0.7 7.2 0.0 -a 0.7 0 1 3 -a 3.0 57.1 1 50.9 0.7 5.9 0.1 -a 0.7 0 1 3 -a 3.0 57.1 1 53.4 0.7 5.2 8.2 5.4 1.6 2 1 3 -a 3.0 57.1 1 53.4 0.7 7.5 0.0 -a 1.3 0 1 3 -a 3.0 57.1 1 53.4 0.7 6.2 0.3 22.9 1.6 2 1 3 -a 3.0 57.1 1 53.4 1.0 5.6 18.0 2.4 1.6 2 1 3 -a 3.0 57.1 1 52.2 1.6 9.2 36.3 3.1 3.3 2 1 3 -a 3.0 57.1 1 52.2 1.6 7.9 22.5 2.9 2.6 2 1 3 -a 3.0 57.1 1 52.2 2.0 7.9 21.0 3.5 3.3 2 1 3 -a 3.0 57.1 1 51.8 2.6 9.8 12.7 4.0 2.3 2 1 3 -a 3.0 57.1 1 52.6 2.0 8.9 14.0 3.6 3.9 2 1 3 -a 3.0 57.1 1 50.9 2.3 7.9 27.0 2.0 4.9 2 1 3 -a 3.0 57.1 1 53.0 2.6 9.5 4.1 2.5 2.0 2 1 3 -a 3.0 57.1 1 53.0 2.0 8.5 29.0 3.0 3.0 2 1 3 -a 3.0 57.1 1 53.4 2.0 7.2 32.0 2.5 2.6 2 1 3 -a 3.0 57.1 1 50.9 2.6 9.5 35.5 3.7 2.6 2 1 3 -a 3.0 57.1 1 49.5 3.0 8.5 31.0 2.1 3.3 2 1 3 -a 3.0 57.1 1 50.9 2.3 7.5 34.0 2.0 3.3 2 1 3 -a 3.0 57.1 1 50.9 2.6 9.8 4.1 10.4 3.0 2 1 3 -a 3.0 57.1 1 50.9 2.3 8.2 56.0 2.1 3.6 2 1 3 -a 3.0 57.1 1 50.9 2.3 7.5 24.0 2.5 3.6 2 1 2 -a 2.6 29.9 0 13.6 4.9 17.4 2.9 2.0 2.6 1 1 2 -a 2.6 29.9 1 18.0 3.0 11.8 11.5 7.4 2.6 1 1 2 -a 2.6 29.9 0 12.7 3.9 11.5 11.5 7.4 2.3 1 1 2 -a 2.6 29.9 0 9.8 5.9 17.1 2.5 3.3 2.3 1 1 2 -a 2.6 29.9 0 10.8 2.3 13.8 0.2 2.1 1.0 1 1 2 -a 2.6 29.9 0 8.8 2.0 7.5 0.2 2.2 1.0 1 1 2 -a 2.6 29.9 0 6.8 3.9 6.6 0.2 2.2 1.0 1 1 2 -a 2.6 29.9 0 2.6 2.6 12.1 0.2 1.8 0.7 1 1 2 -a 3.3 35.8 0 3.3 3.9 6.6 18.0 1.9 1.6 1 1 2 -a 3.0 35.8 0 10.3 3.9 6.9 54.0 1.8 1.3 1 1 2 -a 3.0 35.8 0 3.0 3.9 6.9 54.0 1.8 1.6 1 1 2 -a 2.6 31.5 0 2.6 2.3 7.2 0.2 2.7 1.3 1 1 2 -a 2.6 31.5 0 2.6 3.0 9.2 0.2 2.7 1.3 1 1 2 -a 2.6 24.3 0 2.6 4.6 8.5 35.0 1.3 0.7 1 1 2 -a 2.6 24.3 0 2.6 4.9 7.5 35.0 1.3 2.6 1 1 2 -a 2.6 24.3 0 2.6 3.6 5.6 60.0 1.7 0.7 1 1 2 -a 5.2 37.1 0 5.2 3.3 3.0 19.0 1.7 3.9 1 1 2 -a 5.2 37.1 0 5.2 3.9 5.2 25.0 2.9 4.6 1 1 2 -a 5.2 37.1 0 5.2 4.6 6.6 25.0 2.9 3.3 1 1 3 -a 3.9 53.8 1 31.9 2.6 5.6 17.3 2.9 1.3 2

Page 40: APPENDIX A QUESTIONNAIRE AND RE SPONDENTSonlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_682... · B-1 APPENDIX B FUTURE RESEARCH NEEDS Test Series 1. Live-bed scour tests with large

E-20

Data source

Pier shape

Shape factor

Pier Width

(ft)

Pier Length

(ft)

Skew angle (deg)

Effective Diameter

(ft) Velocity

(ft/s) Depth

(ft) D50

(mm) σg

Scour depth

(ft) Usage

1 3 -a 3.9 53.8 1 35.5 3.6 12.5 17.3 2.9 1.6 2 1 3 -a 3.9 53.8 0 17.7 4.9 19.7 12.0 3.5 0.7 1 1 3 -a 3.9 53.8 1 34.8 3.0 4.9 1.3 2.6 1.0 2 1 3 -a 3.9 53.8 1 31.9 2.6 11.8 1.3 2.6 1.3 2 1 3 -a 3.9 53.8 0 13.2 3.0 19.0 2.9 4.6 0.7 1 1 2 -a 2.6 37.4 0 2.6 2.6 5.2 4.0 5.9 2.6 1 1 2 -a 2.6 37.4 0 2.6 4.3 10.5 4.0 5.9 2.3 1 1 2 -a 2.6 37.4 0 2.6 3.9 7.5 6.8 5.5 1.6 1 1 2 -a 2.6 37.4 0 2.6 0.7 4.9 0.3 12.6 0.7 1 1 2 -a 2.6 37.4 0 2.6 2.3 10.2 0.3 12.6 0.7 1 1 2 -a 4.3 27.2 0 12.5 4.9 14.8 0.3 2.6 2.0 1 1 2 -a 4.3 27.2 0 12.5 5.6 19.7 2.2 3.9 3.0 1 1 3 -a 3.6 33.5 0 8.2 1.3 5.9 0.2 2.7 0.7 1 1 3 -a 3.6 33.5 0 8.2 1.6 8.2 0.2 2.7 0.3 1 1 3 -a 3.6 33.5 0 8.2 2.6 13.8 0.2 2.7 0.7 1 1 2 -a 4.6 60.0 0 4.6 3.0 12.1 6.0 3.9 1.3 1 1 2 -a 4.6 60.0 0 12.9 4.9 19.4 0.6 2.4 4.3 1 1 2 -a 4.6 60.0 0 14.9 4.3 18.7 2.4 11.5 6.2 1 1 2 -a 3.0 61.7 0 3.0 4.3 5.6 21.5 5.4 0.7 1 1 2 -a 3.0 61.7 0 3.0 4.3 5.9 19.0 2.5 0.7 1 1 2 -a 3.3 29.2 0 3.3 3.9 7.5 1.2 2.6 1.6 1 1 2 -a 3.3 29.2 0 3.3 4.9 7.9 10.0 3.5 2.3 1 1 2 -a 3.3 29.2 0 3.3 4.3 9.8 11.5 2.1 1.3 1 1 2 -a 3.3 29.2 0 3.3 4.6 10.2 17.0 2.2 1.6 1 1 2 -a 3.6 39.0 0 3.6 5.2 5.2 5.0 4.0 1.3 1 1 2 -a 3.6 39.0 0 3.6 6.9 9.5 5.0 4.0 2.3 1 1 2 -a 3.6 39.0 0 3.6 5.9 10.2 5.0 4.0 1.6 1 1 2 -a 3.6 39.0 0 3.6 5.9 8.2 30.0 1.5 2.0 1 1 2 -a 4.3 39.0 0 4.3 5.6 6.6 17.0 2.1 2.3 1 1 2 -a 4.3 39.0 0 4.3 6.9 10.5 17.0 2.1 3.0 1 1 2 -a 4.6 39.0 0 4.6 6.6 11.2 17.0 2.1 3.3 1 1 2 -a 4.3 39.0 0 4.3 5.6 8.9 51.0 1.3 3.3 1 1 2 -a 2.0 33.5 0 2.0 3.0 6.6 6.8 2.9 1.6 1 1 2 -a 2.0 33.5 0 2.0 3.9 10.2 6.8 2.9 1.0 1 1 2 -a 2.6 43.0 0 2.6 2.0 8.9 0.9 4.6 2.6 1 1 2 -a 3.3 83.0 0 3.3 5.2 20.3 0.3 1.7 3.6 1 1 2 -a 3.3 83.0 0 3.3 6.2 25.9 0.3 1.7 3.9 1 1 2 -a 3.3 83.0 0 3.3 4.3 19.0 0.3 1.7 2.6 1 1 2 -a 3.3 83.0 0 3.3 7.2 30.5 0.3 1.7 3.6 1 1 2 -a 3.3 83.0 0 3.3 5.6 27.6 0.3 1.7 4.9 1 1 2 -a 2.3 27.9 0 2.3 2.3 5.6 0.7 1.9 1.3 1 1 2 -a 2.3 27.9 0 2.3 2.3 5.9 0.7 1.9 1.3 1 1 2 -a 2.3 27.9 0 2.3 2.0 5.2 0.7 1.9 0.7 1 1 2 -a 2.3 27.9 0 2.3 1.3 3.0 0.7 1.9 1.3 1 1 2 -a 2.3 27.9 0 2.3 1.6 4.6 0.7 1.9 1.3 1 1 2 -a 2.3 27.9 0 2.3 1.6 5.2 0.7 1.9 1.3 1 1 2 -a 2.3 27.9 0 2.3 0.7 3.3 0.7 1.9 1.6 1 1 2 -a 2.3 27.9 0 2.3 1.0 3.0 0.7 1.9 2.3 1 1 2 -a 2.3 27.9 0 2.3 0.7 3.0 0.7 1.9 1.6 1 1 2 -a 2.3 27.9 0 2.3 1.0 2.6 0.7 1.9 1.3 1

Page 41: APPENDIX A QUESTIONNAIRE AND RE SPONDENTSonlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_682... · B-1 APPENDIX B FUTURE RESEARCH NEEDS Test Series 1. Live-bed scour tests with large

E-21

Data source

Pier shape

Shape factor

Pier Width

(ft)

Pier Length

(ft)

Skew angle (deg)

Effective Diameter

(ft) Velocity

(ft/s) Depth

(ft) D50

(mm) σg

Scour depth

(ft) Usage

1 2 -a 2.3 27.9 0 2.3 0.7 2.0 0.7 1.9 1.3 1 1 2 -a 2.3 27.9 0 2.3 1.6 3.6 0.7 1.9 1.6 1 1 2 -a 2.0 29.5 0 2.0 3.9 7.2 37.0 2.0 0.3 1 1 2 -a 2.0 29.5 0 2.0 4.6 7.9 37.0 2.0 0.3 1 1 2 -a 2.0 29.5 0 2.0 4.6 8.5 37.0 2.0 0.7 1 1 2 -a 2.0 29.5 0 2.0 4.6 9.8 37.0 2.0 1.0 1 1 2 -a 2.0 29.5 0 2.0 4.9 9.8 37.0 2.0 0.7 1 1 2 -a 2.0 29.5 0 2.0 5.2 10.8 37.0 2.0 1.3 1 1 2 -a 3.0 32.2 0 3.0 3.0 15.4 0.7 2.5 1.0 1 1 2 -a 3.0 32.2 0 3.0 2.6 16.1 0.7 2.5 1.6 1 1 2 -a 3.0 32.2 0 3.0 3.3 16.4 0.7 2.5 1.3 1 1 2 -a 3.0 32.2 0 3.0 3.3 15.7 0.7 2.5 1.3 1 1 2 -a 3.0 32.2 0 3.0 3.0 14.8 0.7 2.5 1.3 1 1 2 -a 3.0 32.2 0 3.0 3.6 16.4 0.7 2.5 1.3 1 1 2 -a 3.0 32.2 0 3.0 3.3 16.7 0.7 2.5 1.6 1 1 2 -a 3.0 32.2 0 3.0 3.6 15.7 0.7 2.5 2.0 1 1 2 -a 3.0 32.2 0 3.0 3.6 17.1 0.7 2.5 2.0 1 1 2 -a 3.0 32.2 0 3.0 3.6 15.4 0.7 2.5 2.0 1 1 2 -a 3.0 32.2 0 3.0 3.0 14.1 0.7 2.5 1.0 1 1 2 -a 3.0 32.2 0 3.0 2.6 14.4 0.7 2.5 0.7 1 1 2 -a 3.0 32.2 0 3.0 3.0 14.8 0.7 2.5 1.0 1 1 2 -a 3.0 32.2 0 3.0 3.0 14.1 0.7 2.5 1.0 1 1 2 -a 3.0 32.2 0 3.0 3.0 14.4 0.7 2.5 1.6 1 1 2 -a 3.0 32.2 0 3.0 3.3 15.1 0.7 2.5 1.3 1 1 2 -a 3.0 32.2 0 3.0 3.3 14.4 0.7 2.5 1.3 1 1 2 -a 3.0 32.2 0 3.0 3.3 15.1 0.7 2.5 1.6 1 1 2 -a 3.0 32.2 0 3.0 3.3 15.1 0.7 2.5 1.6 1 1 2 -a 3.0 32.2 0 3.0 3.3 15.4 0.7 2.5 1.3 1 1 2 -a 3.0 35.1 0 3.0 4.6 28.5 0.7 2.3 4.9 1 1 2 -a 3.0 35.1 0 3.0 3.3 24.0 0.7 2.3 2.6 1 1 2 -a 3.0 35.1 0 3.0 3.3 16.1 0.7 2.3 4.6 1 1 2 -a 3.0 35.1 0 3.0 3.3 22.6 0.7 2.3 3.6 1 1 2 -a 3.0 35.1 0 3.0 3.0 22.0 0.7 2.3 4.6 1 1 2 -a 3.0 35.1 0 3.0 3.0 21.3 0.7 2.3 5.2 1 1 2 -a 3.0 35.1 0 3.0 3.0 21.7 0.7 2.3 4.3 1 1 2 -a 3.0 35.1 0 3.0 3.3 24.6 0.7 2.3 3.9 1 1 2 -a 3.0 35.1 0 3.0 3.3 24.3 0.7 2.3 3.6 1 1 2 -a 3.0 35.1 0 3.0 3.3 24.9 0.7 2.3 3.6 1 1 2 -a 3.0 35.1 0 3.0 1.6 21.3 0.7 2.3 3.3 1 1 2 -a 3.0 35.1 0 3.0 1.3 16.4 0.7 2.3 1.6 1 1 2 -a 3.0 35.1 0 3.0 1.3 17.4 0.7 2.3 3.0 1 1 2 -a 3.0 35.1 0 3.0 1.0 17.1 0.7 2.3 2.0 1 1 2 -a 3.0 35.1 0 3.0 1.0 15.7 0.7 2.3 1.6 1 1 2 -a 3.0 35.1 0 3.0 1.0 16.4 0.7 2.3 3.0 1 1 2 -a 3.0 35.1 0 3.0 1.6 18.0 0.7 2.3 1.6 1 1 2 -a 3.0 35.1 0 3.0 1.3 18.4 0.7 2.3 2.0 1 1 2 -a 3.0 35.1 0 3.0 1.6 19.0 0.7 2.3 2.3 1 1 2 -a 3.0 35.1 0 3.0 2.0 26.2 0.7 2.3 3.0 1 1 2 -a 3.0 35.1 0 3.0 1.3 19.4 0.7 2.3 1.6 1 1 2 -a 3.0 35.1 0 3.0 1.3 20.0 0.7 2.3 2.0 1

Page 42: APPENDIX A QUESTIONNAIRE AND RE SPONDENTSonlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_682... · B-1 APPENDIX B FUTURE RESEARCH NEEDS Test Series 1. Live-bed scour tests with large

E-22

Data source

Pier shape

Shape factor

Pier Width

(ft)

Pier Length

(ft)

Skew angle (deg)

Effective Diameter

(ft) Velocity

(ft/s) Depth

(ft) D50

(mm) σg

Scour depth

(ft) Usage

1 2 -a 3.0 35.1 0 3.0 0.7 18.7 0.7 2.3 1.3 1 1 2 -a 3.0 35.1 0 3.0 1.0 18.4 0.7 2.3 1.6 1 1 2 -a 3.0 35.1 0 3.0 1.0 19.4 0.7 2.3 1.3 1 1 2 -a 3.0 35.1 0 3.0 1.3 20.7 0.7 2.3 1.6 1 1 2 -a 3.0 35.1 0 3.0 1.0 21.0 0.7 2.3 1.6 1 1 2 -a 3.0 35.1 0 3.0 1.0 23.3 0.7 2.3 3.0 1 1 2 -a 2.0 29.9 0 2.0 3.6 2.6 55.0 1.5 1.6 1 1 2 -a 2.0 29.9 0 2.0 5.6 10.5 55.0 1.5 2.0 1 1 2 -a 2.0 29.9 0 2.0 6.6 10.5 55.0 1.5 1.6 1 1 2 -a 2.0 41.0 0 2.0 2.0 1.6 72.0 2.3 0.7 1 1 2 -a 2.0 41.0 0 2.0 5.2 2.3 72.0 2.3 0.7 1 1 2 -a 2.0 41.0 0 2.0 5.2 5.6 72.0 2.3 1.6 1 1 2 -a 2.0 41.0 0 2.0 3.9 3.9 72.0 2.3 1.0 1 1 2 -a 2.0 41.0 0 2.0 5.2 4.9 72.0 2.3 1.3 1 1 2 -a 2.0 41.0 0 2.0 8.5 8.5 72.0 2.3 2.6 1 2 -a 1 -a -a -a 9.4 4.0 16.9 0.5 -a 9.3 1 2 -a 1 -a -a -a 11.8 7.5 3.6 0.2 -a 13.5 2 2 -a 1 -a -a -a 11.8 6.1 8.2 0.2 -a 17.7 1 2 -a 1 -a -a -a 11.8 8.3 6.2 0.2 -a 11.8 1 2 -a 1 -a -a -a 11.8 6.6 11.5 0.2 -a 14.8 1 2 -a 1 -a -a -a 11.8 4.5 3.0 0.2 -a 10.5 2 2 -a 1 -a -a -a 11.8 5.3 4.9 0.2 -a 12.1 2 2 -a 1 -a -a -a 11.8 4.8 13.1 0.2 -a 9.2 1 2 -a 1 -a -a -a 11.8 5.3 15.7 0.2 -a 7.5 1 2 -a 1 -a -a -a 11.8 7.7 6.2 0.2 -a 13.5 1 2 -a 1 -a -a -a 11.8 8.0 3.3 0.2 -a 17.1 2 2 -a 1 -a -a -a 11.8 6.8 3.6 0.2 -a 13.1 2 2 -a 1 -a -a -a 11.8 6.0 3.9 0.2 -a 13.1 2 2 -a 1 -a -a -a 11.8 6.2 3.3 0.2 -a 12.8 2 2 -a 1 -a -a -a 11.8 5.1 3.0 0.2 -a 12.8 2 2 -a 1 -a -a -a 9.1 7.0 3.9 68.8 -a 6.3 1 2 -a 1 -a -a -a 9.1 7.5 3.6 68.8 -a 7.0 1 2 -a 1 -a -a -a 9.1 8.1 5.2 68.8 -a 6.7 1 2 -a 0.98 -a -a -a 8.9 4.6 7.7 1.0 -a 7.1 1 2 -a 0.98 -a -a -a 8.9 5.1 9.5 1.3 -a 6.6 1 2 -a 0.98 -a -a -a 5.1 2.8 7.0 0.6 -a 3.4 1 2 -a 0.98 -a -a -a 11.4 6.6 6.6 43.0 -a 6.6 1 2 -a 0.98 -a -a -a 4.8 4.0 3.0 1.4 -a 4.0 1 2 -a 0.98 -a -a -a 3.3 7.5 1.0 21.3 -a 2.1 1 2 -a 0.98 -a -a -a 3.3 7.5 1.4 21.3 -a 1.9 1 2 -a 0.98 -a -a -a 3.3 4.7 1.0 21.3 -a 1.1 1 2 -a 0.98 -a -a -a 3.3 9.5 2.0 21.3 -a 2.3 1 2 -a 0.98 -a -a -a 7.7 4.3 9.2 6.0 -a 5.9 1 2 -a 0.98 -a -a -a 7.7 4.1 8.2 7.2 -a 6.2 1 2 -a 0.98 -a -a -a 8.9 3.8 3.7 1.0 -a 3.1 2 2 -a 0.98 -a -a -a 8.9 4.7 4.3 1.0 -a 4.0 2 2 -a 0.98 -a -a -a 8.9 4.0 4.6 1.0 -a 6.0 1 2 -a 0.98 -a -a -a 8.9 2.9 3.0 1.0 -a 3.2 2 2 -a 0.98 -a -a -a 8.9 3.1 2.8 1.0 -a 2.2 2 2 -a 0.98 -a -a -a 8.9 5.5 9.5 1.0 -a 3.6 1

Page 43: APPENDIX A QUESTIONNAIRE AND RE SPONDENTSonlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_682... · B-1 APPENDIX B FUTURE RESEARCH NEEDS Test Series 1. Live-bed scour tests with large

E-23

Data source

Pier shape

Shape factor

Pier Width

(ft)

Pier Length

(ft)

Skew angle (deg)

Effective Diameter

(ft) Velocity

(ft/s) Depth

(ft) D50

(mm) σg

Scour depth

(ft) Usage

2 -a 0.98 -a -a -a 8.9 3.8 4.0 1.0 -a 5.4 2 2 -a 0.98 -a -a -a 8.9 4.5 4.8 1.0 -a 6.0 1 2 -a 0.98 -a -a -a 8.9 1.4 1.9 1.0 -a 3.4 2 2 -a 0.98 -a -a -a 8.9 2.9 3.1 1.0 -a 4.3 2 2 -a 0.98 -a -a -a 8.9 4.5 4.3 1.3 -a 2.5 2 2 -a 0.98 -a -a -a 8.9 4.0 4.0 1.3 -a 4.4 2 2 -a 0.98 -a -a -a 8.9 2.5 1.8 1.3 -a 1.8 2 2 -a 0.98 -a -a -a 8.9 1.7 2.1 1.3 -a 2.6 2 2 -a 0.98 -a -a -a 8.9 1.4 0.4 1.3 -a 2.4 2 2 -a 0.98 -a -a -a 8.9 3.6 3.6 1.3 -a 2.9 2 2 -a 0.98 -a -a -a 8.9 5.6 6.3 1.3 -a 2.4 1 2 -a 0.98 -a -a -a 8.9 5.9 7.2 1.3 -a 5.8 1 2 -a 0.98 -a -a -a 8.9 3.6 5.2 1.3 -a 4.1 1 2 -a 0.98 -a -a -a 8.9 3.7 4.5 1.3 -a 3.4 1 2 -a 0.98 -a -a -a 8.9 5.4 8.7 1.3 -a 4.1 1 2 -a 0.98 -a -a -a 4.8 1.7 2.5 1.6 -a 2.3 1 2 -a 0.98 -a -a -a 4.8 1.6 2.5 1.4 -a 2.6 1 2 -a 0.98 -a -a -a 4.8 1.7 2.5 1.4 -a 2.7 1 2 -a 0.98 -a -a -a 4.8 1.8 3.0 1.4 -a 2.7 1 2 -a 0.98 -a -a -a 4.8 3.1 4.7 1.4 -a 3.3 1 2 -a 0.98 -a -a -a 4.8 2.4 2.8 3.6 -a 3.5 1 2 -a 0.98 -a -a -a 4.8 2.7 2.9 3.6 -a 3.7 1 2 -a 0.98 -a -a -a 4.8 3.0 5.2 3.6 -a 3.3 1 2 -a 0.98 -a -a -a 3.3 7.1 1.0 21.3 -a 2.0 1 2 -a 0.98 -a -a -a 3.3 6.7 0.9 21.3 -a 2.0 1 2 -a 0.98 -a -a -a 3.3 6.9 1.1 21.3 -a 1.9 1 2 -a 0.98 -a -a -a 3.3 15.4 2.1 21.3 -a 2.5 1 2 -a 0.98 -a -a -a 3.3 7.1 1.1 21.3 -a 1.5 1 2 -a 0.98 -a -a -a 3.3 9.4 1.2 21.3 -a 1.5 1 2 -a 0.98 -a -a -a 3.3 8.4 1.3 21.3 -a 1.7 1 2 -a 0.98 -a -a -a 3.3 4.9 0.9 21.3 -a 0.9 1 2 -a 0.98 -a -a -a 3.3 4.8 0.9 21.3 -a 1.0 1 2 -a 0.98 -a -a -a 3.3 11.4 2.3 21.3 -a 2.7 1 2 -a 0.98 -a -a -a 3.3 11.4 2.3 21.3 -a 2.5 1 2 -a 0.98 -a -a -a 3.3 8.5 1.8 21.3 -a 3.1 1 2 -a 0.98 -a -a -a 3.3 6.5 1.3 21.3 -a 2.0 1 2 -a 0.98 -a -a -a 3.3 7.1 1.5 21.3 -a 2.1 1 2 -a 0.98 -a -a -a 3.3 6.5 1.6 21.3 -a 2.0 1 2 -a 0.98 -a -a -a 3.3 6.3 1.6 21.3 -a 1.8 1 2 -a 0.98 -a -a -a 3.3 4.1 0.8 21.3 -a 1.6 1 2 -a 0.98 -a -a -a 3.3 8.6 1.3 21.3 -a 1.5 1 2 -a 0.98 -a -a -a 3.3 8.2 2.3 21.3 -a 2.0 1 2 -a 0.98 -a -a -a 9.2 4.5 0.7 0.3 -a 2.6 2 2 -a 0.98 -a -a -a 9.2 2.2 1.2 0.3 -a 3.4 2 2 -a 0.98 -a -a -a 7.2 8.2 9.4 70.0 -a 1.1 1 2 -a 0.98 -a -a -a 7.7 4.1 8.5 6.0 -a 4.6 1 2 -a 0.98 -a -a -a 7.7 3.8 5.9 6.0 -a 4.9 1 2 -a 0.98 -a -a -a 7.7 3.6 7.4 6.0 -a 5.1 1 2 -a 0.98 -a -a -a 7.7 4.0 8.5 6.0 -a 5.6 1 2 -a 0.98 -a -a -a 7.7 3.8 6.1 6.0 -a 5.7 1

Page 44: APPENDIX A QUESTIONNAIRE AND RE SPONDENTSonlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_682... · B-1 APPENDIX B FUTURE RESEARCH NEEDS Test Series 1. Live-bed scour tests with large

E-24

Data source

Pier shape

Shape factor

Pier Width

(ft)

Pier Length

(ft)

Skew angle (deg)

Effective Diameter

(ft) Velocity

(ft/s) Depth

(ft) D50

(mm) σg

Scour depth

(ft) Usage

2 -a 0.98 -a -a -a 7.7 3.2 4.6 6.0 -a 4.9 1 2 -a 0.98 -a -a -a 7.7 3.9 7.2 6.0 -a 4.6 1 2 -a 0.98 -a -a -a 7.7 3.6 6.2 6.0 -a 5.6 1 2 -a 0.98 -a -a -a 7.7 3.6 4.3 6.0 -a 5.2 1 2 -a 0.98 -a -a -a 7.7 3.5 6.6 6.0 -a 4.6 1 2 -a 0.98 -a -a -a 7.7 3.2 5.2 6.0 -a 5.6 1 2 -a 0.98 -a -a -a 7.7 3.3 4.9 6.0 -a 4.9 1 2 -a 0.98 -a -a -a 7.7 3.2 4.6 6.0 -a 4.6 1 2 -a 0.98 -a -a -a 7.7 4.3 8.9 6.0 -a 5.6 1 2 -a 0.98 -a -a -a 7.7 3.6 7.9 6.0 -a 3.3 1 2 -a 0.98 -a -a -a 7.7 4.1 7.9 7.2 -a 5.9 1 2 -a 0.98 -a -a -a 7.7 3.2 5.2 7.2 -a 4.9 1 2 -a 0.98 -a -a -a 7.7 4.8 6.7 7.2 -a 5.1 1 2 -a 0.98 -a -a -a 7.7 4.8 6.6 7.2 -a 5.2 1 2 -a 0.98 -a -a -a 7.7 3.4 6.2 7.2 -a 4.3 1 2 -a 0.98 -a -a -a 7.7 3.3 4.6 7.2 -a 5.9 1 2 -a 0.98 -a -a -a 7.7 3.4 4.6 7.2 -a 5.9 1 2 -a 0.98 -a -a -a 7.7 3.4 4.9 7.2 -a 4.9 1 2 -a 0.98 -a -a -a 7.7 4.1 5.2 7.2 -a 5.6 1 2 -a 0.98 -a -a -a 3.3 13.6 2.0 21.3 -a 2.5 1 2 -a 0.98 -a -a -a 5.2 6.2 4.8 19.5 -a 5.2 1 2 -a 0.98 -a -a -a 5.2 8.9 3.4 19.5 -a 4.9 1 2 -a 0.98 -a -a -a 3.3 14.2 1.6 21.3 -a 2.6 1 2 -a 0.95 -a -a -a 5.9 4.7 6.9 0.1 -a 11.2 0 2 -a 0.95 -a -a -a 5.9 5.8 8.9 0.1 -a 15.1 0 2 -a 0.95 -a -a -a 5.9 4.1 9.7 0.1 -a 14.9 0 2 -a 0.95 -a -a -a 5.9 5.6 4.6 0.1 -a 18.0 0 2 -a 0.95 -a -a -a 7.5 10.0 19.9 55.0 -a 7.3 1 2 -a 0.95 -a -a -a 5.9 4.2 10.7 0.1 -a 12.0 0 2 -a 0.95 -a -a -a 5.9 3.7 6.1 0.1 -a 9.4 0 2 -a 0.95 -a -a -a 5.9 2.7 4.6 0.1 -a 11.8 0 2 -a 0.95 -a -a -a 3.9 14.2 2.0 21.3 -a 2.1 1 2 -a 0.95 -a -a -a 3.9 11.4 2.0 21.3 -a 2.0 1 2 -a 0.95 -a -a -a 5.9 2.8 4.4 0.1 -a 9.4 0 2 -a 0.95 -a -a -a 5.9 3.3 8.4 0.1 -a 7.7 0 2 -a 0.95 -a -a -a 5.9 2.9 7.1 0.1 -a 7.7 0 2 -a 0.95 -a -a -a 5.9 3.3 6.7 0.1 -a 9.4 0 2 -a 0.95 -a -a -a 5.9 3.5 6.7 0.1 -a 10.7 0 2 -a 0.95 -a -a -a 5.9 2.7 4.3 0.1 -a 7.5 0 2 -a 0.95 -a -a -a 5.9 2.8 5.9 0.1 -a 8.9 0 2 -a 0.95 -a -a -a 5.9 2.7 6.4 0.1 -a 10.7 0 2 -a 0.95 -a -a -a 5.9 3.9 8.5 0.1 -a 12.8 0 2 -a 0.95 -a -a -a 5.9 4.3 10.5 0.1 -a 13.1 0 2 -a 0.95 -a -a -a 7.5 10.0 18.0 55.0 -a 6.6 1 2 -a 0.95 -a -a -a 7.5 9.7 18.9 55.0 -a 6.9 1 2 -a 0.95 -a -a -a 7.5 9.4 18.5 55.0 -a 7.1 1 2 -a 0.95 -a -a -a 7.5 9.8 18.9 55.0 -a 6.7 1 2 -a 0.95 -a -a -a 7.5 8.6 17.0 55.0 -a 5.3 1 2 -a 0.95 -a -a -a 7.5 9.0 15.7 55.0 -a 3.0 1 2 -a 0.95 -a -a -a 7.5 9.0 15.9 55.0 -a 2.8 1

Page 45: APPENDIX A QUESTIONNAIRE AND RE SPONDENTSonlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_682... · B-1 APPENDIX B FUTURE RESEARCH NEEDS Test Series 1. Live-bed scour tests with large

E-25

Data source

Pier shape

Shape factor

Pier Width

(ft)

Pier Length

(ft)

Skew angle (deg)

Effective Diameter

(ft) Velocity

(ft/s) Depth

(ft) D50

(mm) σg

Scour depth

(ft) Usage

2 -a 0.95 -a -a -a 5.9 3.8 8.9 0.1 -a 10.8 0 2 -a 0.94 -a -a -a 8.6 6.8 5.2 36.1 -a 3.0 1 2 -a 0.94 -a -a -a 16.9 7.4 2.9 14.3 -a 4.0 2 2 -a 0.94 -a -a -a 16.8 3.8 1.6 14.3 -a 1.9 2 2 -a 0.94 -a -a -a 16.8 7.2 1.7 14.3 -a 3.2 2 2 -a 0.94 -a -a -a 29.7 2.1 19.7 0.2 -a 6.2 1 2 -a 0.94 -a -a -a 29.5 3.3 21.3 0.2 -a 12.8 1 2 -a 0.94 -a -a -a 8.6 10.0 7.7 36.1 -a 2.6 1 2 -a 0.94 -a -a -a 8.6 6.8 6.2 36.1 -a 2.7 1 2 -a 0.94 -a -a -a 16.8 6.6 2.6 14.3 -a 4.3 2 2 -a 0.94 -a -a -a 16.8 6.2 3.1 14.3 -a 3.8 2 2 -a 0.94 -a -a -a 16.8 6.4 2.7 14.3 -a 3.4 2 2 -a 0.94 -a -a -a 16.8 4.2 1.7 14.3 -a 3.1 2 2 -a 0.94 -a -a -a 16.8 6.8 3.5 14.3 -a 3.3 2 2 -a 0.94 -a -a -a 11.5 5.2 2.5 24.7 -a 2.6 2 2 -a 0.93 -a -a -a 23.4 3.3 13.5 0.2 -a 11.5 1 2 -a 0.93 -a -a -a 6.5 3.7 5.6 2.9 -a 3.8 1 2 -a 0.93 -a -a -a 9.5 8.9 10.6 36.1 -a 5.4 1 2 -a 0.93 -a -a -a 15.6 6.7 4.2 14.3 -a 4.9 2 2 -a 0.93 -a -a -a 28.8 2.0 17.7 0.2 -a 8.9 1 2 -a 0.93 -a -a -a 6.5 3.4 4.9 2.7 -a 3.5 1 2 -a 0.93 -a -a -a 6.5 4.3 6.0 4.2 -a 3.2 1 2 -a 0.93 -a -a -a 6.5 3.9 7.1 2.5 -a 3.1 1 2 -a 0.93 -a -a -a 6.5 3.3 5.3 3.4 -a 3.1 1 2 -a 0.93 -a -a -a 6.5 3.1 5.8 2.6 -a 2.7 1 2 -a 0.93 -a -a -a 6.5 4.2 7.7 3.3 -a 2.7 1 2 -a 0.93 -a -a -a 6.5 3.9 6.8 3.3 -a 3.2 1 2 -a 0.93 -a -a -a 6.5 3.8 6.7 3.0 -a 3.2 1 2 -a 0.93 -a -a -a 6.5 3.1 4.8 3.1 -a 2.0 1 2 -a 0.93 -a -a -a 6.5 3.0 4.9 3.1 -a 2.5 1 2 -a 0.92 -a -a -a 27.2 5.0 25.3 0.2 -a 15.7 1 2 -a 0.92 -a -a -a 8.2 3.8 8.5 3.8 -a 4.7 1 2 -a 0.92 -a -a -a 8.2 3.7 6.9 4.1 -a 4.7 1 2 -a 0.93 -a -a -a 12.3 3.3 2.0 0.3 -a 4.6 2 2 -a 0.92 -a -a -a 14.0 8.5 3.5 64.0 -a 2.3 1 2 -a 0.92 -a -a -a 14.0 7.6 5.2 64.0 -a 7.9 1 2 -a 0.92 -a -a -a 9.9 5.0 2.9 24.7 -a 5.2 2 2 -a 0.91 -a -a -a 26.0 3.2 29.5 0.2 -a 7.5 1 2 -a 0.91 -a -a -a 26.0 3.2 27.2 0.2 -a 7.9 1 2 -a 0.92 -a -a -a 27.6 3.5 17.1 0.2 -a 9.5 1 2 -a 0.92 -a -a -a 27.2 4.5 9.2 0.2 -a 14.4 2 2 -a 0.91 -a -a -a 25.2 3.6 7.5 0.2 -a 6.6 2 2 -a 0.91 -a -a -a 27.4 4.1 8.2 0.2 -a 14.8 2 2 -a 0.92 -a -a -a 24.6 4.7 7.2 0.2 -a 13.8 2 2 -a 0.91 -a -a -a 25.9 3.8 10.5 0.2 -a 9.2 2 2 -a 0.92 -a -a -a 27.2 3.8 11.5 0.2 -a 9.5 2 2 -a 0.91 -a -a -a 27.6 4.5 26.2 0.2 -a 10.5 1 2 -a 0.92 -a -a -a 28.3 3.4 38.1 0.2 -a 6.2 1 2 -a 0.91 -a -a -a 8.2 3.3 5.8 2.5 -a 3.4 1 2 -a 0.91 -a -a -a 8.2 3.2 7.2 3.6 -a 3.8 1

Page 46: APPENDIX A QUESTIONNAIRE AND RE SPONDENTSonlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_682... · B-1 APPENDIX B FUTURE RESEARCH NEEDS Test Series 1. Live-bed scour tests with large

E-26

Data source

Pier shape

Shape factor

Pier Width

(ft)

Pier Length

(ft)

Skew angle (deg)

Effective Diameter

(ft) Velocity

(ft/s) Depth

(ft) D50

(mm) σg

Scour depth

(ft) Usage

2 -a 0.91 -a -a -a 8.2 3.8 8.5 2.3 -a 4.0 1 2 -a 0.91 -a -a -a 8.2 3.8 8.5 3.8 -a 4.7 1 2 -a 0.91 -a -a -a 8.2 4.2 9.0 2.9 -a 4.5 1 2 -a 0.91 -a -a -a 8.2 5.1 12.1 4.6 -a 3.7 1 2 -a 0.91 -a -a -a 8.2 4.7 11.5 4.4 -a 3.0 1 2 -a 0.91 -a -a -a 8.2 4.6 11.0 4.0 -a 3.1 1 2 -a 0.92 -a -a -a 12.2 1.4 0.6 0.3 -a 2.1 2 2 -a 0.92 -a -a -a 9.5 8.6 10.3 36.1 -a 4.9 1 2 -a 0.92 -a -a -a 9.8 6.5 9.8 36.1 -a 4.5 1 2 -a 0.92 -a -a -a 9.8 7.4 9.7 36.1 -a 5.1 1 2 -a 0.92 -a -a -a 9.8 6.4 10.5 36.1 -a 4.3 1 2 -a 0.92 -a -a -a 9.8 7.9 11.2 36.1 -a 4.5 1 2 -a 0.91 -a -a -a 14.0 7.1 5.1 64.0 -a 6.1 1 2 -a 0.91 -a -a -a 14.0 7.4 4.5 64.0 -a 2.0 1 2 -a 0.91 -a -a -a 14.0 6.5 2.2 64.0 -a 2.2 1 2 -a 0.91 -a -a -a 9.9 8.6 5.0 24.7 -a 2.8 1 2 -a 0.91 -a -a -a 13.4 5.6 3.0 14.3 -a 4.1 2 2 -a 0.91 -a -a -a 16.1 5.4 3.2 14.3 -a 3.5 2 2 -a 0.91 -a -a -a 15.3 8.3 5.7 14.3 -a 4.1 2 2 -a 0.91 -a -a -a 15.3 8.8 4.6 14.3 -a 4.3 2 2 -a 0.91 -a -a -a 15.3 6.5 3.6 14.3 -a 3.0 2 2 -a 0.91 -a -a -a 8.2 3.1 5.8 3.7 -a 3.9 1 2 -a 0.93 -a -a -a 12.3 2.9 1.2 0.3 -a 4.0 2 2 -a 0.91 -a -a -a 8.2 5.0 11.9 4.6 -a 4.2 1 2 -a 1.14 -a -a -a 11.8 6.5 5.9 0.2 -a 15.4 1 2 -a 1.03 -a -a -a 6.6 3.9 10.0 1.0 -a 2.6 1 2 -a 1.03 -a -a -a 6.6 2.7 6.4 1.0 -a 1.3 1 2 -a 1 -a -a -a 9.1 5.6 2.3 68.8 -a 9.8 1 2 -a 1 -a -a -a 9.1 6.2 3.9 68.8 -a 5.4 1 2 -a 0.98 -a -a -a 22.0 1.4 21.3 0.2 -a 4.6 1 2 -a 0.98 -a -a -a 4.8 1.1 1.6 1.6 -a 0.3 2 2 -a 0.98 -a -a -a 4.8 1.6 2.3 1.6 -a 2.2 2 2 -a 0.98 -a -a -a 4.8 2.1 2.0 3.7 -a 2.1 2 2 -a 0.98 -a -a -a 4.8 2.0 1.8 3.7 -a 2.1 2 2 -a 0.92 -a -a -a 8.2 2.1 4.9 3.7 -a 4.3 1 2 -a 0.98 -a -a -a 7.2 6.2 6.4 70.0 -a 0.7 1 2 -a 0.98 -a -a -a 7.2 6.8 7.3 70.0 -a 0.8 1 2 -a 0.98 -a -a -a 7.2 7.8 8.9 70.0 -a 1.6 1 2 -a 0.98 -a -a -a 7.2 7.3 8.3 70.0 -a 1.6 1 2 -a 0.98 -a -a -a 7.2 7.1 7.6 70.0 -a 1.6 1 2 -a 0.98 -a -a -a 7.2 6.4 6.8 70.0 -a 1.7 1 2 -a 0.98 -a -a -a 7.7 2.7 4.9 6.0 -a 4.3 1 2 -a 0.98 -a -a -a 7.7 2.6 3.9 6.0 -a 4.6 1 2 -a 0.98 -a -a -a 7.7 2.4 4.6 7.2 -a 3.9 1 2 -a 0.98 -a -a -a 7.7 3.1 4.9 7.2 -a 4.6 1 2 -a 0.98 -a -a -a 7.7 3.2 5.2 7.2 -a 6.6 1 2 -a 0.98 -a -a -a 7.7 2.8 3.0 7.2 -a 5.9 2 2 -a 0.97 -a -a -a 19.2 5.4 5.8 52.0 -a 7.0 2 2 -a 0.98 -a -a -a 6.6 4.2 8.2 17.0 -a 1.1 1 2 -a 0.98 -a -a -a 7.7 2.8 3.0 7.2 -a 5.6 2

Page 47: APPENDIX A QUESTIONNAIRE AND RE SPONDENTSonlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_682... · B-1 APPENDIX B FUTURE RESEARCH NEEDS Test Series 1. Live-bed scour tests with large

E-27

Data source

Pier shape

Shape factor

Pier Width

(ft)

Pier Length

(ft)

Skew angle (deg)

Effective Diameter

(ft) Velocity

(ft/s) Depth

(ft) D50

(mm) σg

Scour depth

(ft) Usage

2 -a 0.98 -a -a -a 7.7 2.7 3.3 7.2 -a 5.9 2 2 -a 0.98 -a -a -a 6.6 3.4 6.6 17.0 -a 1.0 1 2 -a 0.96 -a -a -a 8.0 5.3 5.0 36.1 -a 2.7 1 2 -a 0.92 -a -a -a 9.8 5.4 9.4 36.1 -a 3.8 1 2 -a 0.92 -a -a -a 9.8 4.9 9.1 64.0 -a 3.8 1 2 -a 0.92 -a -a -a 14.1 5.9 4.2 64.0 -a 6.3 1 2 -a 0.92 -a -a -a 14.1 5.9 5.5 64.0 -a 5.7 1 2 -a 0.92 -a -a -a 14.1 5.8 3.9 19.2 -a 5.6 2 2 -a 0.92 -a -a -a 6.9 3.4 1.6 64.1 -a 3.0 1 2 -a 0.92 -a -a -a 14.1 6.0 5.3 64.0 -a 0.7 1 2 -a 0.92 -a -a -a 14.1 6.7 4.5 64.0 -a 1.6 1 2 -a 0.92 -a -a -a 14.1 6.0 5.5 64.0 -a 1.2 1 2 -a 0.92 -a -a -a 14.1 5.8 4.6 19.2 -a 1.0 2 2 -a 0.93 -a -a -a 6.3 3.9 2.1 36.1 -a 2.8 1 2 -a 0.92 -a -a -a 9.8 5.5 9.3 36.1 -a 3.7 1 2 -a 0.92 -a -a -a 9.8 4.8 8.3 36.1 -a 4.2 1 2 -a 1.02 -a -a -a 20.6 5.2 5.0 52.0 -a 8.8 2 3 0 -a -a -a -a 16.1 5.3 50.6 0.3 -a 16.4 1 3 0 -a -a -a -a 15.3 4.4 40.3 0.2 -a 11.8 1 3 0 -a -a -a -a 13.8 2.1 16.4 0.2 -a 8.4 1 3 2 -a -a -a -a -a 7.5 14.4 35.0 -a 12.0 0 3 2 -a -a -a -a -a 6.0 61.7 0.4 -a 16.5 0 3 2 -a -a -a -a -a 7.5 57.1 0.4 -a 11.5 0 3 3 -a -a -a -a -a 2.9 2.7 1.9 -a 1.0 0 3 2 -a -a -a 25 -a 6.9 6.6 110.0 -a 4.3 0 3 2 -a -a -a 15 -a 5.3 3.6 100.0 -a 4.2 0 3 2 -a -a -a -a -a 9.3 19.4 150.0 -a 5.0 0 3 2 -a -a -a 29 -a 8.7 6.6 110.0 -a 4.5 0 3 2 -a -a -a 26 -a 8.5 5.9 110.0 -a 4.3 0 3 2 -a -a -a 17 -a 6.6 3.3 100.0 -a 4.1 0 3 2 -a -a -a 29 -a 8.0 7.9 110.0 -a 3.1 0 3 2 -a -a -a 24 -a 7.5 6.2 110.0 -a 4.1 0 3 2 -a -a -a 15 -a 6.8 2.6 100.0 -a 4.3 0 3 2 -a -a -a -a -a 9.6 15.4 140.0 -a 8.4 0 3 2 -a -a -a 26 -a 8.2 5.6 120.0 -a 7.0 0 3 2 -a -a -a 25 -a 8.2 5.2 120.0 -a 5.1 0 3 2 -a -a -a 14 -a 6.6 3.6 100.0 -a 4.2 0 3 2 -a -a -a -a -a 10.9 13.1 150.0 -a 11.5 0 3 2 -a -a -a 28 -a 6.9 5.9 120.0 -a 5.8 0 3 2 -a -a -a 26 -a 6.0 5.9 110.0 -a 4.6 0 3 2 -a -a -a 14 -a 4.9 3.6 100.0 -a 3.5 0 3 2 -a -a -a -a -a 8.4 9.2 120.0 -a 4.6 0 3 2 -a -a -a -a -a 8.6 12.5 130.0 -a 6.9 0 3 2 -a -a -a 31 -a 4.3 5.2 100.0 -a 2.2 0 3 2 -a -a -a 27 -a 4.5 5.2 100.0 -a 3.8 0 3 2 -a -a -a 14 -a 3.3 3.3 90.0 -a 2.7 0 3 2 -a -a -a -a -a 7.8 4.3 100.0 -a 5.4 0 3 2 -a -a -a -a -a 8.5 10.8 130.0 -a 6.9 0 3 2 -a -a -a 30 -a 4.0 6.6 110.0 -a 4.0 0 3 2 -a -a -a 28 -a 3.9 5.2 110.0 -a 4.4 0

Page 48: APPENDIX A QUESTIONNAIRE AND RE SPONDENTSonlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_682... · B-1 APPENDIX B FUTURE RESEARCH NEEDS Test Series 1. Live-bed scour tests with large

E-28

Data source

Pier shape

Shape factor

Pier Width

(ft)

Pier Length

(ft)

Skew angle (deg)

Effective Diameter

(ft) Velocity

(ft/s) Depth

(ft) D50

(mm) σg

Scour depth

(ft) Usage

3 2 -a -a -a 12 -a 3.7 3.3 110.0 -a 3.7 0 3 2 -a -a -a -a -a 7.6 6.9 110.0 -a 3.4 0 3 2 -a -a -a -a -a 9.3 8.5 120.0 -a 8.4 0 3 2 -a -a -a -a -a 8.9 4.6 100.0 -a 5.4 0 3 2 -a -a -a -a -a 8.6 7.2 120.0 -a 9.2 0 3 2 -a -a -a -a -a 8.1 3.9 100.0 -a 4.6 0 3 2 -a -a -a -a -a 9.3 6.9 120.0 -a 9.6 0 3 2 -a -a -a -a -a 5.4 9.8 110.0 -a 1.5 0 3 5 -a -a -a 20 -a 8.3 5.2 29.0 -a 9.2 0 3 5 -a -a -a 20 -a 7.0 5.2 29.0 -a 3.6 0 3 2 -a -a -a 20 -a 4.6 1.1 34.0 -a 2.8 0 3 2 -a -a -a 20 -a 3.1 1.3 34.0 -a 2.5 0 3 2 -a -a -a 40 -a 6.6 3.6 30.0 -a 1.6 0 3 2 -a -a -a 5 -a 1.6 16.4 0.1 -a 7.3 0 3 2 -a -a -a 4 -a 2.7 23.0 0.1 -a 8.4 0 3 2 -a -a -a 22 -a 4.4 28.5 0.3 -a 12.6 0 3 2 -a -a -a 23 -a 4.2 26.2 0.3 -a 8.6 0 3 2 -a -a -a 7 -a 4.8 33.1 0.3 -a 12.2 0 3 2 -a -a -a 7 -a 4.8 33.5 0.3 -a 11.5 0 3 2 -a -a -a 30 -a 6.1 18.2 0.3 -a 8.3 0 3 2 -a -a -a 39 -a 6.1 16.4 0.3 -a 12.3 0 3 2 -a -a -a 40 -a 7.0 18.7 0.3 -a 6.9 0 3 2 -a -a -a 16 -a 4.0 17.0 0.3 -a 13.8 0 3 2 -a -a -a 24 -a 4.4 17.9 0.3 -a 14.6 0 3 2 -a -a -a 20 -a 5.1 33.1 0.3 -a 14.6 0 3 2 -a -a -a -a -a 3.0 15.3 0.3 -a 10.4 0 3 2 -a -a -a 5 -a 2.7 19.7 0.3 -a 11.5 0 3 2 -a -a -a 5 -a 2.7 18.4 0.3 -a 8.1 0 3 2 -a -a -a 5 -a 2.9 16.7 0.3 -a 10.4 0

3 2 -a -a -a 7 -a 5.5 36.7 -

a99.0 -a 5.0 0

3 2 -a -a -a -a -a 7.9 37.6 -

a99.0 -a 7.7 0

3 2 -a -a -a -a -a 3.6 9.8 -

a99.0 -a 6.9 0 3 0 -a -a -a 16 10.0 4.7 8.9 0.2 -a 5.9 1 3 0 -a -a -a 6 10.0 4.3 7.9 0.2 -a 14.4 1 3 0 -a -a -a 19 10.0 4.7 8.2 0.2 -a 8.5 1 3 0 -a -a -a 20 10.0 4.8 5.9 0.2 -a 10.2 1 3 0 -a -a -a 4 10.0 7.9 26.2 0.2 -a 16.5 1 3 0 -a -a -a 5 10.0 4.4 4.6 0.2 -a 9.8 2 3 0 -a -a -a 16 10.0 6.0 6.6 0.2 -a 7.2 1 3 0 -a -a -a 4 10.0 5.8 10.5 0.2 -a 15.1 1 3 0 -a -a -a -a 10.0 7.1 13.8 0.2 -a 14.1 1 3 0 -a -a -a 6 10.0 8.1 16.4 0.2 -a 16.4 1 3 0 -a -a -a 8 10.0 3.3 7.2 0.2 -a 9.2 1 3 0 -a -a -a 9 10.0 4.6 5.9 0.2 -a 10.8 1 3 0 -a -a -a 16 10.0 4.3 8.2 0.2 -a 11.5 1 3 0 -a -a -a 3 10.0 5.8 7.5 0.2 -a 11.5 1 3 0 -a -a -a 3 10.0 6.7 12.5 0.2 -a 13.1 1 3 0 -a -a -a 6 10.0 8.9 13.1 0.2 -a 17.1 1

Page 49: APPENDIX A QUESTIONNAIRE AND RE SPONDENTSonlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_682... · B-1 APPENDIX B FUTURE RESEARCH NEEDS Test Series 1. Live-bed scour tests with large

E-29

Data source

Pier shape

Shape factor

Pier Width

(ft)

Pier Length

(ft)

Skew angle (deg)

Effective Diameter

(ft) Velocity

(ft/s) Depth

(ft) D50

(mm) σg

Scour depth

(ft) Usage

3 0 -a -a -a 8 10.0 4.8 4.6 0.2 -a 11.2 2 3 0 -a -a -a 9 10.0 5.0 5.9 0.2 -a 13.1 1 3 0 -a -a -a 3 10.0 5.6 10.5 0.2 -a 12.5 1 3 0 -a -a -a 6 10.0 7.2 13.8 0.2 -a 18.0 1 3 0 -a -a -a 16 10.0 3.4 3.0 0.2 -a 8.2 2 3 0 -a -a -a 3 10.0 7.1 6.2 0.2 -a 11.5 1 3 0 -a -a -a -a 10.0 6.1 10.2 0.2 -a 12.1 1 3 0 -a -a -a 8 10.0 6.7 14.1 0.2 -a 15.1 1 3 0 -a -a -a 3 10.0 6.9 21.7 0.2 -a 12.1 1 3 0 -a -a -a 16 10.0 3.6 3.9 0.2 -a 7.5 2 3 0 -a -a -a 3 10.0 4.2 4.3 0.2 -a 8.5 2 3 0 -a -a -a -a 10.0 5.9 9.2 0.2 -a 13.1 1 3 0 -a -a -a 6 10.0 7.2 10.5 0.2 -a 16.4 1 3 0 -a -a -a 6 10.0 4.3 12.1 0.2 -a 9.8 1 3 0 -a -a -a 3 10.0 6.9 35.4 0.2 -a 10.8 1

3 2 -a -a -a 8 -a 9.5 40.0 -

a99.0 -a 18.0 0

3 2 -a -a -a 2 -a 9.5 41.7 -

a99.0 -a 12.7 0 3 2 -a -a -a -a -a 1.7 11.3 0.6 -a 8.2 0 3 2 -a -a -a -a -a 1.7 8.6 0.6 -a 6.0 0 3 2 -a -a -a -a -a 1.7 11.2 0.6 -a 6.3 0 3 2 -a -a -a 20 -a 6.2 18.7 0.4 -a 13.1 0 3 3 -a -a -a -a -a 6.8 11.7 0.2 -a 20.3 0 3 3 -a -a -a -a -a 7.4 9.7 0.2 -a 15.5 0 3 3 -a -a -a -a -a 9.1 15.6 0.2 -a 20.3 0 3 3 -a -a -a -a -a 7.0 10.0 0.2 -a 16.3 0 3 3 -a -a -a -a -a 6.3 10.9 0.2 -a 17.1 0 3 3 -a -a -a -a -a 6.5 12.7 0.2 -a 19.9 0 3 3 -a -a -a -a -a 8.2 15.5 0.2 -a 17.2 0 3 3 -a -a -a -a -a 5.6 18.6 0.2 -a 13.2 0 3 3 -a -a -a -a -a 6.7 11.9 0.2 -a 15.4 0 3 3 -a -a -a -a -a 8.9 15.9 0.2 -a 17.6 0 3 3 -a -a -a -a -a 8.1 14.9 0.2 -a 11.0 0

3 0 -a -a -a -a 1.6 1.8 2.2 -

a99.0 -a 1.7 0 3 0 -a -a -a -a 0.7 1.9 2.6 0.3 -a 0.8 1 3 0 -a -a -a -a 1.6 2.0 2.6 0.3 -a 2.0 1 3 0 -a -a -a -a 1.6 1.8 3.2 0.4 -a 1.5 1 3 0 -a -a -a -a 0.7 2.2 3.5 0.4 -a 1.1 1 3 0 -a -a -a -a 0.7 2.2 3.8 0.4 -a 1.0 1 3 0 -a -a -a -a 0.7 1.9 5.1 0.3 -a 1.0 1 3 0 -a -a -a -a 1.3 2.0 4.6 0.4 -a 1.5 1 3 0 -a -a -a -a 2.1 2.0 3.4 0.4 -a 1.8 1 3 0 -a -a -a -a 3.3 1.5 2.6 0.4 -a 1.7 1 3 0 -a -a -a -a 1.3 2.0 3.9 0.5 -a 1.6 1 3 0 -a -a -a -a 2.1 1.9 3.3 0.3 -a 1.9 1 3 0 -a -a -a -a 1.3 1.4 1.7 0.4 -a 1.3 1 3 0 -a -a -a -a 0.8 1.3 1.3 0.4 -a 1.0 1 3 0 -a -a -a -a 1.3 1.5 1.7 0.4 -a 1.3 1 3 0 -a -a -a -a 2.1 1.4 1.3 0.3 -a 1.7 1

Page 50: APPENDIX A QUESTIONNAIRE AND RE SPONDENTSonlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_682... · B-1 APPENDIX B FUTURE RESEARCH NEEDS Test Series 1. Live-bed scour tests with large

E-30

Data source

Pier shape

Shape factor

Pier Width

(ft)

Pier Length

(ft)

Skew angle (deg)

Effective Diameter

(ft) Velocity

(ft/s) Depth

(ft) D50

(mm) σg

Scour depth

(ft) Usage

3 0 -a -a -a -a 3.3 1.1 1.0 0.3 -a 1.3 2 3 0 -a -a -a -a 2.1 1.4 1.0 0.4 -a 1.7 2 3 0 -a -a -a -a 2.1 1.4 1.1 0.4 -a 2.0 1 3 0 -a -a -a -a 3.3 1.3 1.0 0.5 -a 1.3 2 3 3 -a -a -a -a -a 8.9 26.2 0.2 -a 30.3 0 3 3 -a -a -a -a -a 5.2 23.0 0.2 -a 13.0 0 3 3 -a -a -a -a -a 9.2 21.3 0.2 -a 19.1 0 3 3 -a -a -a -a -a 10.5 14.1 0.2 -a 20.2 0 3 3 -a -a -a -a -a 9.2 18.7 0.2 -a 18.9 0 3 3 -a -a -a -a -a 10.8 24.9 0.2 -a 34.8 0 3 0 -a -a -a -a 0.7 1.6 2.8 0.4 -a 0.6 1 3 0 -a -a -a -a 0.7 2.0 3.4 0.3 -a 0.7 1 3 0 -a -a -a -a 0.7 1.8 2.4 0.3 -a 1.0 1 3 0 -a -a -a -a 1.0 2.3 3.9 0.4 -a 1.3 1 3 0 -a -a -a -a 0.7 2.0 3.4 0.4 -a 1.0 1 3 2 -a -a -a -a -a 1.6 3.6 0.3 -a 0.9 0 3 2 -a -a -a -a -a 2.0 3.5 0.4 -a 2.0 0 3 3 -a -a -a -a -a 2.2 3.0 0.4 -a 1.6 0 3 2 -a -a -a -a -a 2.0 2.8 0.4 -a 1.5 0 3 3 -a -a -a -a -a 1.8 3.0 0.4 -a 1.3 0 3 2 -a -a -a -a -a 1.9 2.9 0.4 -a 2.4 0 3 3 -a -a -a -a -a 1.8 2.6 0.4 -a 1.9 0 3 2 -a -a -a -a -a 1.8 2.5 0.4 -a 1.1 0 3 2 -a -a -a -a -a 2.1 3.9 0.4 -a 2.1 0 3 3 -a -a -a -a -a 2.1 3.6 0.4 -a 0.9 0 3 2 -a -a -a -a -a 2.2 3.7 0.3 -a 1.1 0 3 2 -a -a -a -a -a 2.0 3.6 0.5 -a 1.5 0 3 3 -a -a -a -a -a 2.1 3.5 0.3 -a 1.0 0 3 3 -a -a -a -a -a 1.7 2.5 0.8 -a 1.7 0 3 2 -a -a -a -a -a 1.8 3.1 0.3 -a 2.1 0 3 3 -a -a -a -a -a 1.8 3.8 0.3 -a 1.4 0 3 2 -a -a -a 20 -a 5.4 13.5 1.0 -a 3.8 0 3 2 -a -a -a 20 -a 4.4 14.1 1.0 -a 4.6 0 3 3 -a -a -a 25 -a 2.8 37.4 0.3 -a 15.4 0 3 3 -a -a -a 25 -a 2.1 24.9 0.3 -a 11.5 0 3 0 -a -a -a -a 7.9 2.0 20.0 0.3 -a 6.7 1 3 0 -a -a -a -a 33.5 2.0 19.0 0.3 -a 7.5 1

3 0 -a -a -a -a 9.8 9.8 38.4 -

a99.0 -a 19.7 0 3 4 -a -a -a 45 -a 1.9 18.4 0.3 -a 3.3 0 3 4 -a -a -a 45 -a 1.9 18.4 0.3 -a 5.2 0 3 2 -a -a -a -a -a 8.6 19.7 1.0 -a 13.6 0 3 2 -a -a -a -a -a 3.1 18.4 1.0 -a 13.1 0 3 0 -a -a -a -a 16.1 2.3 47.6 0.3 -a 14.8 1 3 0 -a -a -a -a 15.3 1.7 39.0 0.2 -a 9.8 1 3 0 -a -a -a -a 13.8 1.4 16.1 0.2 -a 5.7 1 3 0 -a -a -a -a 14.8 2.7 22.8 0.6 -a 3.9 1 3 0 -a -a -a -a 15.8 5.2 56.1 0.3 -a 18.9 1 3 0 -a -a -a -a 16.4 5.2 54.3 1.5 -a 15.7 1 3 0 -a -a -a -a 16.5 4.8 50.5 0.4 -a 15.4 1 3 0 -a -a -a -a 16.4 4.7 48.2 1.5 -a 13.8 1

Page 51: APPENDIX A QUESTIONNAIRE AND RE SPONDENTSonlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_682... · B-1 APPENDIX B FUTURE RESEARCH NEEDS Test Series 1. Live-bed scour tests with large

E-31

Data source

Pier shape

Shape factor

Pier Width

(ft)

Pier Length

(ft)

Skew angle (deg)

Effective Diameter

(ft) Velocity

(ft/s) Depth

(ft) D50

(mm) σg

Scour depth

(ft) Usage

3 0 -a -a -a -a 14.9 4.5 45.6 0.4 -a 9.8 1 3 0 -a -a -a -a 14.6 4.2 42.0 0.3 -a 6.1 1 3 0 -a -a -a -a 14.4 3.8 36.7 0.3 -a 5.3 1 3 0 -a -a -a -a 14.1 3.7 34.7 0.9 -a 9.8 1 3 0 -a -a -a -a 14.0 3.5 32.4 0.3 -a 5.6 1 3 0 -a -a -a 13 12.7 2.5 20.6 0.4 -a 5.7 1 3 0 -a -a -a 20 13.5 3.1 30.6 0.6 -a 7.9 1 3 0 -a -a -a 26 13.6 3.0 29.2 1.8 -a 15.5 1 3 0 -a -a -a 19 14.1 3.1 32.8 0.2 -a 14.3 1 3 0 -a -a -a 23 14.2 3.5 36.7 0.2 -a 13.4 1 3 0 -a -a -a 18 14.4 3.6 37.4 0.4 -a 12.0 1 3 0 -a -a -a 13 14.6 3.6 37.8 0.3 -a 13.6 1 3 0 -a -a -a 15 14.8 3.7 40.0 0.4 -a 8.4 1 3 0 -a -a -a 16 14.8 3.9 42.9 0.3 -a 5.7 1 3 0 -a -a -a 21 14.8 4.1 45.0 0.5 -a 5.9 1 4 2 -a 14.8 45.9 0 14.8 6.0 61.7 0.3 2.2 14.1 1 4 2 -a 14.8 45.9 0 14.8 7.5 57.1 0.3 2.2 9.8 1 4 2 -a 6.3 57.0 0 11.2 5.9 17.7 0.5 -a 5.7 1 4 2 -a 27.9 27.9 0 33.1 2.1 29.5 0.7 -a 25.6 1 4 1 -a 7.9 29.0 0 12.8 3.1 11.3 0.8 2.3 9.0 1 4 3 -a 5.0 20.0 0 5.0 6.5 19.0 70.0 -a 2.5 1 4 3 -a 5.0 20.0 0 5.0 8.5 13.5 70.0 -a 2.5 1 4 3 -a 5.0 20.0 0 5.0 7.0 11.2 70.0 -a 2.0 1 4 3 -a 5.0 20.0 0 5.0 10.0 17.4 70.0 -a 2.0 1 4 3 -a 5.0 20.0 0 5.0 9.5 21.7 70.0 -a 2.0 1 4 3 -a 5.0 20.0 0 5.0 11.5 17.1 70.0 -a 2.0 1 4 3 -a 5.9 31.5 0 5.9 12.0 18.0 1.5 -a 2.7 1 4 2 -a 5.0 38.0 0 5.0 1.6 3.9 0.5 -a 1.0 1 4 2 -a 5.0 38.0 0 5.0 2.5 4.9 0.5 -a 1.0 1 4 2 -a 5.0 38.0 0 5.0 2.9 3.9 0.5 -a 1.0 1 4 2 -a 5.0 38.0 0 5.0 0.9 1.6 0.5 -a 2.5 2 4 2 -a 5.0 38.0 0 5.0 0.5 2.0 0.5 -a 4.0 2 4 2 -a 5.0 38.0 0 5.0 5.0 6.9 1.6 -a 2.0 1 4 2 -a 5.0 38.0 0 5.0 5.1 6.6 1.6 -a 2.0 1 4 2 -a 5.0 38.0 0 5.0 5.2 9.8 1.6 -a 3.0 1 4 2 -a 5.0 38.0 0 5.0 6.5 10.5 1.6 -a 4.0 1 4 2 -a 5.0 38.0 0 5.0 5.9 9.8 1.6 -a 4.5 1 4 2 -a 5.0 38.0 0 5.0 6.8 8.5 1.6 -a 3.5 1 4 2 -a 5.0 38.0 0 5.0 6.0 9.8 1.6 -a 6.0 1 4 2 -a 5.0 38.0 0 5.0 3.1 3.0 1.6 -a 1.5 1 4 2 -a 5.0 38.0 0 5.0 3.2 3.0 1.6 -a 2.0 1 4 2 -a 5.0 38.0 0 5.0 3.6 5.9 1.6 -a 1.5 1 4 2 -a 5.0 38.0 0 5.0 3.8 7.9 1.6 -a 2.0 1 4 2 -a 5.0 38.0 0 5.0 3.7 7.5 1.6 -a 2.5 1 4 2 -a 5.0 38.0 0 5.0 3.7 4.9 1.6 -a 1.5 1 4 2 -a 5.0 38.0 0 5.0 3.2 6.6 1.6 -a 2.5 1 4 3 -a 15.1 0.0 0 15.1 0.0 2.0 90.0 -a 2.0 0 4 3 -a 15.1 0.0 0 15.1 9.5 12.1 90.0 -a 4.9 1 4 3 -a 15.1 0.0 0 15.1 11.5 15.1 90.0 -a 5.6 1 4 3 -a 15.1 0.0 0 15.1 2.0 4.9 90.0 -a 3.0 1

Page 52: APPENDIX A QUESTIONNAIRE AND RE SPONDENTSonlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_682... · B-1 APPENDIX B FUTURE RESEARCH NEEDS Test Series 1. Live-bed scour tests with large

E-32

Data source

Pier shape

Shape factor

Pier Width

(ft)

Pier Length

(ft)

Skew angle (deg)

Effective Diameter

(ft) Velocity

(ft/s) Depth

(ft) D50

(mm) σg

Scour depth

(ft) Usage

4 2 -a 5.0 34.0 1 23.6 7.1 12.1 14.0 -a 5.9 1 4 2 -a 5.0 34.0 1 23.6 7.3 12.1 14.0 -a 6.9 1 4 2 -a 5.0 34.0 1 23.6 6.8 15.1 14.0 -a 5.9 1 4 2 -a 5.0 44.5 1 29.6 5.7 14.1 14.0 -a 7.9 2 4 2 -a 10.0 57.7 0 10.0 8.5 22.0 15.0 -a 5.9 1 4 2 -a 3.2 3.2 0 3.2 5.3 5.6 8.0 -a 3.0 1 4 2 -a 16.1 42.0 0 16.1 0.0 5.9 0.1 8.8 13.1 0 4 2 -a 16.1 42.0 0 16.1 0.0 15.1 0.1 8.8 15.1 0 4 2 -a 26.9 26.9 0 26.9 1.5 16.1 0.1 11.5 12.1 0 4 2 -a 26.9 26.9 0 26.9 2.0 14.1 0.1 11.5 14.1 0 4 2 -a 42.7 124.7 0 53.4 1.8 13.5 0.0 8.3 24.0 0 4 2 -a 42.7 124.7 0 73.5 2.2 11.2 0.0 8.3 22.3 0 4 2 -a 42.7 124.7 0 82.7 3.8 17.7 0.0 8.3 27.9 0 4 3 -a 32.2 41.0 0 35.6 2.4 36.1 0.0 18.7 14.1 0 4 3 -a 32.2 41.0 1 48.3 2.7 42.0 0.0 18.7 26.9 0 4 3 -a 32.2 41.0 0 41.7 3.5 44.6 0.0 18.7 15.1 0 4 3 -a 32.2 41.0 0 46.5 4.0 53.5 0.0 18.7 25.9 0 4 3 -a 32.2 41.0 0 41.7 2.7 38.1 0.0 18.7 13.1 0 4 3 -a 32.2 41.0 0 46.5 3.0 44.0 0.0 18.7 24.9 0 4 1 -a 30.8 64.0 0 30.8 5.9 64.0 0.0 6.1 20.0 0 4 2 -a 64.0 124.7 0 94.1 2.2 37.1 0.0 6.3 34.1 0 4 2 -a 12.0 56.8 0 12.0 2.1 11.8 0.1 -a 9.2 0 4 2 -a 4.9 4.9 0 4.9 7.8 10.2 20.0 5.3 4.3 1 4 2 -a 4.9 4.9 0 4.9 8.8 9.8 20.0 5.3 4.3 1 4 2 -a 4.9 4.9 0 4.9 8.3 8.2 20.0 5.3 2.6 1 4 2 -a 4.9 4.9 0 4.9 8.7 4.6 20.0 5.3 3.0 1 4 2 -a 4.9 4.9 0 4.9 8.0 4.3 20.0 5.3 3.0 1 4 2 -a 4.9 4.9 0 4.9 8.8 4.3 20.0 5.3 1.3 1 4 2 -a 4.9 4.9 0 4.9 7.8 3.3 20.0 5.3 1.3 1 4 2 -a 4.9 4.9 0 4.9 7.6 3.0 20.0 5.3 1.6 1 4 2 -a 4.9 4.9 0 4.9 8.4 3.0 20.0 5.3 1.3 1 4 2 -a 4.9 4.9 0 4.9 7.3 2.3 20.0 5.3 1.3 1 4 2 -a 4.9 4.9 0 4.9 0.0 2.0 20.0 5.3 1.3 0 4 1 -a 1.0 12.0 0 4.0 3.4 2.5 1.5 -a 2.0 1 4 1 -a 1.0 12.0 0 4.0 4.5 2.0 1.5 -a 2.0 2 4 1 -a 1.0 12.0 0 4.0 3.8 2.4 1.5 -a 1.7 1 4 1 -a 1.0 12.0 0 3.0 3.7 1.4 2.3 -a 1.9 2 4 1 -a 1.0 12.0 0 3.0 3.3 1.9 2.3 -a 1.5 1 4 1 -a 1.0 12.0 0 3.0 3.7 2.3 2.3 -a 1.6 1 4 1 -a 1.0 12.0 0 4.0 4.0 5.9 2.3 -a 2.2 1 4 2 -a 4.0 21.0 0 4.0 3.8 7.0 0.6 -a 2.1 1 4 2 -a 4.0 21.0 0 4.0 2.3 1.8 0.6 -a 1.3 2 4 2 -a 4.0 21.0 0 4.0 5.6 7.6 0.6 -a 4.0 1 4 2 -a 4.0 21.0 0 4.0 2.2 2.3 0.6 -a 2.0 1 4 3 -a 3.1 90.0 0 3.1 5.1 4.6 7.9 -a 1.2 1 4 3 -a 3.1 90.0 0 3.1 4.4 4.0 4.3 -a 0.5 1 4 3 -a 1.7 27.2 0 6.4 5.5 10.5 1.2 -a 3.2 1 4 3 -a 1.7 27.2 0 6.4 3.8 7.0 1.8 -a 2.1 1

a:missing data