appendix a scripts - springer978-3-642-31187-1/1.pdf · appendix a scripts a.1 latin hypercube ......

30
Appendix A Scripts A.1 Latin Hypercube DOE M. Cavazzuti, Optimization Methods: From Theory to Design, DOI: 10.1007/978-3-642-31187-1, Ó Springer-Verlag Berlin Heidelberg 2013 233

Upload: phungtuong

Post on 04-Jul-2018

237 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Appendix A Scripts - Springer978-3-642-31187-1/1.pdf · Appendix A Scripts A.1 Latin Hypercube ... Design and analysis of experiments (5th ed.). New ... & Burman, J. P. (1946). The

Appendix AScripts

A.1 Latin Hypercube DOE

M. Cavazzuti, Optimization Methods: From Theory to Design,DOI: 10.1007/978-3-642-31187-1, � Springer-Verlag Berlin Heidelberg 2013

233

Page 2: Appendix A Scripts - Springer978-3-642-31187-1/1.pdf · Appendix A Scripts A.1 Latin Hypercube ... Design and analysis of experiments (5th ed.). New ... & Burman, J. P. (1946). The

A.2 I-Optimal DOE for Full Quadratic or Full CubicPolynomial Response

234 Appendix A: Scripts

Page 3: Appendix A Scripts - Springer978-3-642-31187-1/1.pdf · Appendix A Scripts A.1 Latin Hypercube ... Design and analysis of experiments (5th ed.). New ... & Burman, J. P. (1946). The

Appendix A: Scripts 235

Page 4: Appendix A Scripts - Springer978-3-642-31187-1/1.pdf · Appendix A Scripts A.1 Latin Hypercube ... Design and analysis of experiments (5th ed.). New ... & Burman, J. P. (1946). The

A.3 Ordinary Kriging RSM

236 Appendix A: Scripts

Page 5: Appendix A Scripts - Springer978-3-642-31187-1/1.pdf · Appendix A Scripts A.1 Latin Hypercube ... Design and analysis of experiments (5th ed.). New ... & Burman, J. P. (1946). The

Appendix A: Scripts 237

Page 6: Appendix A Scripts - Springer978-3-642-31187-1/1.pdf · Appendix A Scripts A.1 Latin Hypercube ... Design and analysis of experiments (5th ed.). New ... & Burman, J. P. (1946). The

A.4 Radial Basis Functions RSM

238 Appendix A: Scripts

Page 7: Appendix A Scripts - Springer978-3-642-31187-1/1.pdf · Appendix A Scripts A.1 Latin Hypercube ... Design and analysis of experiments (5th ed.). New ... & Burman, J. P. (1946). The

Appendix A: Scripts 239

Page 8: Appendix A Scripts - Springer978-3-642-31187-1/1.pdf · Appendix A Scripts A.1 Latin Hypercube ... Design and analysis of experiments (5th ed.). New ... & Burman, J. P. (1946). The

A.5 Wolfe-Powell Line-Search Algorithm

240 Appendix A: Scripts

Page 9: Appendix A Scripts - Springer978-3-642-31187-1/1.pdf · Appendix A Scripts A.1 Latin Hypercube ... Design and analysis of experiments (5th ed.). New ... & Burman, J. P. (1946). The

Appendix A: Scripts 241

Page 10: Appendix A Scripts - Springer978-3-642-31187-1/1.pdf · Appendix A Scripts A.1 Latin Hypercube ... Design and analysis of experiments (5th ed.). New ... & Burman, J. P. (1946). The

242 Appendix A: Scripts

Page 11: Appendix A Scripts - Springer978-3-642-31187-1/1.pdf · Appendix A Scripts A.1 Latin Hypercube ... Design and analysis of experiments (5th ed.). New ... & Burman, J. P. (1946). The

Appendix A: Scripts 243

Page 12: Appendix A Scripts - Springer978-3-642-31187-1/1.pdf · Appendix A Scripts A.1 Latin Hypercube ... Design and analysis of experiments (5th ed.). New ... & Burman, J. P. (1946). The

A.6 Golden Section Line-Search Algorithm

244 Appendix A: Scripts

Page 13: Appendix A Scripts - Springer978-3-642-31187-1/1.pdf · Appendix A Scripts A.1 Latin Hypercube ... Design and analysis of experiments (5th ed.). New ... & Burman, J. P. (1946). The

A.7 Nelder and Mead Simplex Algorithm

Appendix A: Scripts 245

Page 14: Appendix A Scripts - Springer978-3-642-31187-1/1.pdf · Appendix A Scripts A.1 Latin Hypercube ... Design and analysis of experiments (5th ed.). New ... & Burman, J. P. (1946). The

246 Appendix A: Scripts

Page 15: Appendix A Scripts - Springer978-3-642-31187-1/1.pdf · Appendix A Scripts A.1 Latin Hypercube ... Design and analysis of experiments (5th ed.). New ... & Burman, J. P. (1946). The

Appendix A: Scripts 247

Page 16: Appendix A Scripts - Springer978-3-642-31187-1/1.pdf · Appendix A Scripts A.1 Latin Hypercube ... Design and analysis of experiments (5th ed.). New ... & Burman, J. P. (1946). The

248 Appendix A: Scripts

Page 17: Appendix A Scripts - Springer978-3-642-31187-1/1.pdf · Appendix A Scripts A.1 Latin Hypercube ... Design and analysis of experiments (5th ed.). New ... & Burman, J. P. (1946). The

A.8 BFGS Algorithm

Appendix A: Scripts 249

Page 18: Appendix A Scripts - Springer978-3-642-31187-1/1.pdf · Appendix A Scripts A.1 Latin Hypercube ... Design and analysis of experiments (5th ed.). New ... & Burman, J. P. (1946). The

250 Appendix A: Scripts

Page 19: Appendix A Scripts - Springer978-3-642-31187-1/1.pdf · Appendix A Scripts A.1 Latin Hypercube ... Design and analysis of experiments (5th ed.). New ... & Burman, J. P. (1946). The

References

1. Oxford english dictionary. Oxford: Oxford University Press, 2008.2. Wordreference online language dictionaries. http://www.wordreference.com.3. Darwin, C. (1859). On the origin of species by means of natural selection or the

preservation of favoured races in the struggle for life. London: John Murray.4. Montgomery, D. C. (2000). Design and analysis of experiments (5th ed.). New York: Wiley.5. NIST/SEMATECH (2006). NIST/SEMATECH e-handbook of statistical methods. http:

//www.itl.nist.gov/div898/handbook/.6. Fisher, R. A. (1925). Statistical methods for research workers. Edinburgh: Oliver and Boyd.7. Box, G. E. P., & Wilson, K. B. (1951). Experimental attainment of optimum conditions.

Journal of the Royal Statistical Society, 13, 1–45.8. Taguchi, G., & Wu, Y. (1980). Introduction to off-line quality control. Nagoya: Central

Japan Quality Control Association.9. Box, G. E. P., Hunter, W. G., & Hunter, S. J. (1978). Statistics for experimenters. New

York: Wiley.10. Tartaglia, N. (1562). Quesiti et inventioni diverse. Vinegia: Curtio Troiano dee Nauò.11. Box, G. E. P., & Behnken, D. (1960). Some new three level designs for the study of

quantitative variables. Technometrics, 2, 455–475.12. Plackett, R. L., & Burman, J. P. (1946). The design of optimum multifactorial experiments.

Biometrika, 33(4), 305–325.13. Berni, R. (2002). Disegno sperimentale e metodi di Taguchi nel controllo di qualità off-line.

Università di Trieste.14. modeFRONTIERTM 3.1 user manual.15. van der Corput, J. G. (1935). Verteilungsfunktionen. Proceedings of the Koninklijke

Nederlandse Akademie van Wetenschappen, 38, 813–821.16. Quasi-monte carlo simulation. Pontificia Universidade Catòlica do Rio de Janeiro.

http://www.sphere.rdc.puc-rio.br/marco.ind/quasi_mc.html.17. Halton, J. H. (1960). On the efficiency of certain quasi-random sequences of points in

evaluating multi-dimensional integrals. Numerische Matematik, 2(1), 84–90.18. Faure, H. (1982). Discrepance de suites associees a un systeme de numeration (en

dimension s). Acta Aritmetica, 41, 337–351.19. Faure, H. (1992). Good permutations for extreme discrepancy. Journal of Number Theory,

42, 47–56.20. Sobol’ I. M. (1967). On the distribution of points in a cube and the approximate evaluation

of integrals. USSR Computational Mathematics and Mathematical Physics, 7(4), 86–112.21. Olsson, A., Sandberg, G., & Dahlblom, O. (2003). On latin hypercube sampling for

structural reliability analysis. Structural Safety, 25(1), 47–68.

M. Cavazzuti, Optimization Methods: From Theory to Design,DOI: 10.1007/978-3-642-31187-1, � Springer-Verlag Berlin Heidelberg 2013

251

Page 20: Appendix A Scripts - Springer978-3-642-31187-1/1.pdf · Appendix A Scripts A.1 Latin Hypercube ... Design and analysis of experiments (5th ed.). New ... & Burman, J. P. (1946). The

22. Hardin, R. H., & Sloane, N. J. A. (1993). A new approach to the construction of optimaldesigns. Technical report, AT&T Bell Laboratories.

23. Kappele, W. D. (1998). Using I-optimal designs for narrower confidence limits. InProceedings of the IASI Conference, Orlando, FL, February 1998.

24. Gauss, J. C. F. (1825). Combinationis observationum erroribus minimis obnoxiae.Gottingen: University of Gottingen.

25. Edwards, L. A. (1984). An introduction to linear regression and correlation (2nd ed.). SanFrancisco: Freeman.

26. Bates, D. M., & Watts D. G. (1988). Nonlinear regression and its applications. New York:Wiley.

27. Optimus revision 5.0 users manual.28. Krige, D. G. (1951). A statistical approach to some basic mine valuation problems on the

witwatersrand. Journal of the Chemical, Metallurgical and Mining Society of South Africa,52(6), 119–139.

29. Hengl, T. (2007). A practical guide to geostatistical mapping of environmental variables.Technical report, European Commission Joint Research Centre Institute for Environmentand Sustainability.

30. Gstat manual.31. Mackay, D. J. C. (1997). Introduction to Gaussian processes. Technical report, Cambridge

University, Cavendish Laboratory.32. Rasmussen, C. E., & Williams, C. K. I. (2006). Gaussian processes for machine learning.

Cambridge: MIT Press.33. Bayes, T. (1763). An essay towards solving a problem in the doctrine of chances by the late

Rev. Mr. Bayes, F. R. S. communicated by Mr. Price, in a letter to John Canton, A. M. F.R. S. Philosophical Transactions, Giving Some Accounts of the Present Undertakings,Studies and Labours of the Ingenious in Many Considerable Parts of the World, 53,370–418.

34. Baxter, B. J. C. (1992). The interpolation theory of radial basis functions. PhD thesis,Trinity College, Cambridge University.

35. Applied Research Associates New Zealand. http://www.aranz.com/research/modelling/theory/rbffaq.html.

36. Fausett, L. (1993). Fundamentals of neural networks. Architecture, algorithms, andapplications. Englewood Cliffs: Prentice Hall.

37. Freeman, J. A., & Skapura, D. M. (1991). Neural networks. Algorithms, applications, andprogramming techniques. Reading: Addison-Wesley.

38. Veelenturf, L. P. J. (1995). Analysis and applications of artificial neural networks.Englewood Cliffs: Prentice Hall.

39. Rojas, R. (1996). Neural networks. Berlin: Springer.40. Fletcher, R. (1987). Practical methods of optimization (2nd ed.). Chichester: Wiley.41. Goldstein, A. A. (1965). On steepest descent. SIAM Journal on Control and Optimization,

3, 147–151.42. Wolfe, P. (1968). Convergence conditions for ascent methods. SIAM Review, 11, 226–235.43. Powell, M. J. D. (1976). Some global convergence properties of a variable metric algorithm

for minimization without exact line searches. In SIAM-AMS Proceedings, Philadelphia.44. Spendley, W., Hext, G. R., & Himsworth, F. R. (1962). Sequential application of simplex

design in optimization and evolutionary operation. Technometrics, 4, 441–461.45. Nelder, J. A., & Mead, R. (1965). A simplex method for function minimization. Computer

Journal, 7(4), 308–313.46. Davidon, W. C. (1959). Variable metric method for minimization. Technical report, AEC

Research and Development Report ANL-5990.47. Fletcher, R., & Powell, M. J. D. (1963). A rapidly convergent descent method for

minimization. Computer Journal, 6, 163–168.

252 References

Page 21: Appendix A Scripts - Springer978-3-642-31187-1/1.pdf · Appendix A Scripts A.1 Latin Hypercube ... Design and analysis of experiments (5th ed.). New ... & Burman, J. P. (1946). The

48. Broyden, C. G. (1970). The convergence of a class of double rank minimization algorithms,parts I and II. Journal of the Institute of Mathematics and its Applications, 6, 222–231.

49. Fletcher, R. (1970). A new approach to variable metric algorithms. Computer Journal, 13,317–322.

50. Goldfarb, D. (1970). A family of variable metric methods derived by variational means.Mathematics of Computation, 24, 23–26.

51. Shanno, D. F. (1970). Conditioning of quasi-Newton methods for function minimization.Mathematics of Computation, 24, 647–656.

52. Polak, E. (1971). Computational methods in optimization: A unified approach. New York:Academic Press.

53. Courant, R. (1943). Variational methods for the solution of the problems of equilibrium andvibration. Bulletin of the American Mathematical Society, 49, 1–23.

54. Carroll, C. W. (1961). The created response surface technique for optimizing nonlinearrestrained systems. Operations Research, 9, 169–184.

55. Frisch, K. R. (1951). The logarithmic potential method of convex programming. Oslo: OsloUniversity Institute of Economics Memorandum, May 1951.

56. Neumaier, A., & Shcherbina, O. (2004). Safe bounds in linear mixed-integer programming.Mathematical Programming, 99, 283–296.

57. Schittkowski, K. (2001). NLPQLP: A new Fortran implementation of a sequential quadraticprogramming algorithm for parallel computing. Technical report, University of Bayreuth.

58. Schittkowski, K. (1985–1986). NLPQL: A Fortran subroutine solving constrained nonlinearprogramming problems. Annals of Operations Research, 5, 485–500.

59. Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing.Science, 220(4598), 671–680.

60. Kennedy, J., & Eberhart, R. C. (1995). Particle swarm optimization. In IEEE InternationalConference on Neural Networks, Perth, November/December 1995.

61. Mostaghim, S., Branke, J., & Schmeck, H. (2006). Multi-objective particle swarmoptimization on computer grids. In Proceedings of the 9th annual conference on genetic andevolutionary optimization, London.

62. Rao, S. S. (1987). Game theory approach for multiobjective structural optimization.Computers and Structures, 25(1), 119–127.

63. Nash, J. F. (1951). Non-cooperative games. Annals of Mathematics, 54, 286–295.64. Rechenberg, I. (1973). Evolutionsstrategie: Optimierung technischer systeme nach

prinzipien der biologischen evolution. Stuttgart: Fromman-Holzboog.65. Schwefel, H. P. (1981). Numerical optimization for computer models. Chichester: Wiley.66. Holland, J. H. (1975). Adaptation in natural and artificial systems: An introductory analysis

with applications to biology, control, and artificial intelligence. Ann Arbor: University ofMichigan.

67. Pareto, V. (1906). Manuale d’economia politica con una introduzione alla scienza sociale.Milano: Società Editrice Libraria.

68. Reyes-Sierra, M., & Coello Coello, C. A. (2006). Multi-objective particle swarmoptimizers: A survey of the state-of-the-art. International Journal of ComputationalIntelligence Research, 2(3), 287–308.

69. Ahn, C. W. (2006). Advances in evolutionary algorithms. Theory, design and practice.Berlin: Springer.

70. Rothlauf, F. (2006). Representations for genetic and evolutionary algorithms (2nd ed.).Berlin: Springer.

71. Metropolis, N. C., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953).Equations of state calculations by fast computing machines. Journal of Chemical Physics,21(6), 1087–1092.

72. Millonas, M. M. (1994). Swarms, phase transitions, and collective intelligence. InC. G. Langton (Ed.), Artificial life III. Reading: Addison-Wesley.

References 253

Page 22: Appendix A Scripts - Springer978-3-642-31187-1/1.pdf · Appendix A Scripts A.1 Latin Hypercube ... Design and analysis of experiments (5th ed.). New ... & Burman, J. P. (1946). The

73. Clarich, A., Rigoni, E., & Poloni, C. (2003). A new algorithm based on game theory forrobust and fast multi-objective optimisation. Technical report, ESTECO.

74. Fraser, A. S. (1957). Simulation of genetic systems by automatic digital computers.Australian Journal of Biological Sciences, 10, 484–499.

75. Bäck, T., Fogel, D. B., & Michalewicz, Z. (2000). Evolutionary computation 1. Basicalgorithms and operators. Bristol: Institute of Physics Publishing.

76. Bäck, T., Fogel, D. B., & Michalewicz, Z. (2000). Evolutionary computation 2. Advancedalgorithms and operators. Bristol: Institute of Physics Publishing.

77. Karaboga, D., & Ökdem, S. (2004). A simple and global optimization algorithm forengineering problems: differential evolution algorithm. Turkish Journal of Electric andComputer Sciences, 12(1), 53–60.

78. Parsopoulos, K. E., Tasoulis, D. K., Pavlidis, N. G., Plagianakos, V. P., & Vrahatis, M. N.(2004). Vector evaluated differential evolution for multiobjective optimization. In Proceed-ings of the 2004 Congress on Evolutionary Computation.

79. Shokhirev, N. V. Optimization. http://www.shokhirev.com/nikolai/abc/optim/optim.html.80. Schwefel, H. P. (1977). Numerische optimierung von computer-modellen mittels der

evolutionsstrategie. Basel: Birkhäuser.81. Beyer, H. -G., & Deb, K. (1999). On the analysis of self-adaptive evolutionary algorithms.

Technical report, University of Dortmund, May 1999.82. Runarrson, T. P., & Yao, X. (2002). Continuous selection and self-adaptive evolution

strategies. In Proceedings of the 2002 Congress on Evolutionary Computation.83. Giannakoglou, K. C., & Karakasis, M. K. (2006). Hierarchical and distributed metamodel-

assisted evolutionary algorithms. In J. Périaux & H. Deconinck (Eds.), Introduction tooptimization and multidisciplinary design, Lecture Series 2006-03. Brussels: von KarmanInstitute for Fluid Dynamics.

84. Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning.Reading: Addison-Wesley.

85. Mitchell, M. (1998). An introduction to genetic algorithms. Cambridge: MIT Press.86. Fogel, D. B. (2006). Evolutionary computation: Toward a new philosophy of machine

intelligence (3rd ed.). Piscataway: IEEE Press.87. Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. IEEE

Transactions on Evolutionary Computation, 1(1), 67–82.88. Wolpert, D. H., & Macready, W. G. (2005). Coevolutionary free lunches. IEEE Trans-

actions on Evolutionary Computation, 9(6), 721–735.89. Juran, J. M., Gryna, F. M. J., & Bingham, R. S. (1974). Quality control handbook. New

York: McGraw-Hill.90. Crosby, P. B. (1979). Quality is free. New York: McGraw-Hill.91. Jones, D. R. (1989). Exploring quality: What Robert Pirsig’s ‘‘zen and the art of motorcycle

maintenance’’ can teach us about technical communications. IEEE Transactions onProfessional Communication, 32(3), 154–158.

92. ISO 9000 (2005). Quality management systems: Fundamentals and vocabulary. Geneva:International Organization for Standardization.

93. Pyzdek, T. (2003). The six sigma handbook. New York: McGraw-Hill.94. Pediroda, V., & Poloni C. (2006). Robust design, approximation methods and self

organizing map techniques for MDO problems. In J. Périaux & H. Deconinck (Eds.),Introduction to optimization and multidisciplinary design, Lecture Series 2006-03. Brussels:von Karman Institute for Fluid Dynamics.

95. AIAA (1998). Guide for verification and validation of computational fluid dynamicsimulation. AIAA guide G-077-1998.

96. Stocki, R., Kolanek, K., Jendo, S., & Kleiber, M. (2005). Introduction to reliability-baseddesign. Warsaw: Institute of Fundamental Technological Research, Polish Academy ofSciences, Division of Computational Mechanics.

254 References

Page 23: Appendix A Scripts - Springer978-3-642-31187-1/1.pdf · Appendix A Scripts A.1 Latin Hypercube ... Design and analysis of experiments (5th ed.). New ... & Burman, J. P. (1946). The

97. Adhikari, S., & Langley, R. S. (2002). Reduction of random variables in structuralreliability analysis. Technical report, Cambridge University.

98. Cizelj, L., Mavko, B., & Riesch-Oppermann, H. (1994). Application of first and secondorder reliability methods in the safety assessment of cracked steam generator tubing.Nuclear Engineering and Design, 147, 359–368.

99. Schuëller, G. I., Pradlwarter, H. J., & Koutsourelakis, P. S. (2003). A comparative study ofreliability estimation procedures for high dimensions. In Proceedings of the 16th ASCEEngineering Mechanics Conference, University of Washington, Seattle, July 2003.

100. Shah, R. K., & London, A. L. (1978). Laminar flow forced convection in ducts: A sourcebook for compact heat exchanger analytical data (Advances in Heat Transfer, Suppll. 1).New York: Academic Press.

101. Goldstein, L., & Sparrow, E. M. (1977). Heat and mass transfer characteristics for flow in acorrugated wall channel. ASME Journal of Heat Transfer, 99, 187–195.

102. Nishimura, T., Murakami, S., Arakawa, S., & Kawamura, Y. (1990). Flow observations andmass transfer characteristics in symmetrical wavy-walled channels at moderate Reynoldsnumbers for steady flow. International Journal of Heat and Mass Transfer, 33(5), 835–845.

103. Wang, G., & Vanka, S. P. (1995). Convective heat transfer in periodic wavy passages.International Journal of Heat and Mass Transfer, 38(17), 3219–3230.

104. Niceno, B., & Nobile, E. (2001). Numerical analysis of fluid flow and heat transfer inperiodic wavy channels. International Journal of Heat and Fluid Flow, 22(2), 156–167.

105. Stalio, E., & Piller, M. (2007). Direct numerical simulation of heat transfer in converging-diverging wavy channels. ASME Journal of Heat Transfer, 129, 769–777.

106. Hilbert, R., Janiga, G., Baron, R., & Thévenin, D. (2006). Multi-objective shapeoptimization of a heat exchanger using parallel genetic algorithms. International Journalof Heat and Mass Transfer, 49(15–16), 2567–2577.

107. Foli, K., Okabe, T., Olhofer, M., Jin, Y., & Sendhoff, B. (2006). Optimization of micro heatexchanger: CFD, analytical approach and multi-objective evolutionary algorithms.International Journal of Heat and Mass Transfer, 49(5–6), 1090–1099.

108. Kim, H. -M., & Kim, K. -Y. (2004). Design optimization of rib-roughened channel toenhance turbulent heat transfer. International Journal of Heat and Mass Transfer, 47(23),5159–5168.

109. Nobile, E., Pinto, F., & Rizzetto, G. (2006). Geometrical parameterization and multi-objective shape optimization of convective periodic channels. Numerical Heat TransferPart B: Fundamentals, 50(5), 425–453.

110. Cavazzuti, M., & Corticelli, M. A. (2008). Optimization of heat exchanger enhancedsurfaces through multi-objective genetic algorithms. Numerical Heat Transfer, Part A:Applications, 54(6), 603–624.

111. Nishimura, T., Ohori, Y., Kawamura, Y. (1984). Flow characteristics in a channel withsymmetric wavy wall for steady flow. Journal of Chemical Engineering of Japan, 17(5),466–471.

112. Bézier, P. E. (1977). Essai de définition numérique des courbes et des surfacesexpérimentales. PhD thesis, Université Pierre et Marie Curie, Paris.

113. Piegl, L., & Tiller, W. (1997). The NURBS book (2nd ed.). Berlin: Springer.114. Tanda, G. (1997). Natural convection heat transfer in vertical channels with and without

transverse square ribs. International Journal of Heat and Mass Transfer, 40(9), 2173–2185.115. Acharya, S., & Mehrotra, A. (1993). Natural convection heat transfer in smooth and ribbed

vertical channels. International Journal of Heat and Mass Transfer, 36(1), 236–241.116. Bhavnani, S. H., & Bergles, A. E. (1990). Effect of surface geometry and orientation on

laminar natural convection heat transfer from a vertical flat plate with transverse roughnesselements. International Journal of Heat and Mass Transfer, 33(5), 965–981.

117. Aydin, M. (1997). Dependence of the natural convection over a vertical flat plate in thepresence of the ribs. International Communications in Heat and Mass Transfer, 24(4),521–531.

References 255

Page 24: Appendix A Scripts - Springer978-3-642-31187-1/1.pdf · Appendix A Scripts A.1 Latin Hypercube ... Design and analysis of experiments (5th ed.). New ... & Burman, J. P. (1946). The

118. Polidori, G., & Padet, J. (2003). Transient free convection flow on a vertical surface with anarray of large-scale roughness elements. Experimental Thermal and Fluid Science, 27(3),251–260.

119. Onbasioglu, S. U., & Onbas�ioglu, H. (2004). On enhancement of heat transfer with ribs.Applied Thermal Engineering, 24(1), 43–57.

120. Kelkar, K. M., & Choudhury, D. (1993). Numerical prediction of periodically fullydeveloped natural convection in a vertical channel with surface mounted heat generatingblocks. International Journal of Heat and Mass Transfer, 36(5), 1133–1145.

121. Desrayaud, G., & Fichera, A., (2002). Laminar natural convection in a vertical isothermalchannel with symmetric surface-mounted rectangular ribs. International Journal of Heatand Fluid Flow, 23(4), 519–529.

122. ElAlami, M., Najam, M., Semma, E., Oubarra, A., & Penot, F. (2004). Chimney effect in a‘‘T’’ form cavity with heated isothermal blocks: The blocks height effect. EnergyConversion and Management, 45(20), 3181–3191.

123. Bakkas, M., Amahmid, A., & Hasnaoui, M. (2006). Steady natural convection in ahorizontal channel containing heated rectangular blocks periodically mounted on its lowerwall. Energy Conversion and Management, 47(5), 509–528.

124. Cavazzuti, M., & Corticelli, M. A. (2008). Optimization of a bouyancy chimney with aheated ribbed wall. Heat and Mass Transfer, 44(4), 421–435.

125. Cavazzuti, M., Pinto, F., Corticelli, M. A., & Nobile, E. (2007). Radiation heat transfereffect on natural convection in asymmetrically heated vertical channels. In Proceedings ofthe XXV Congresso Nazionale UIT sulla Trasmissione del Calore, Trieste, June 18–20 2007.

126. Walker, G. (1973). Stirling-cycle machines. Oxford: Oxford University Press.127. Reitlinger, J. (1873). Ueber kreisprocesse mit zwei isothermischen curven. Zeitschrift des

Österreicische Ingenieure Vereines, 245–252.128. Schmidt, G. (1871). Theorie der lehmannschen calorischen maschine. Zeit Der Vereines

deutscher Ing, 15, 97–112.129. Urieli, I., & Berchowitz, D. M. (1984). Stirling cycle engine analysis. Bristol: Adam Hilger.130. Naso, V. (1991). La macchina di Stirling. Milano: Editoriale ESA.131. Euler, L. (1768). Institutionum calculi integralis volumen primum in quo methodus

integrandi a primis principiis usque ad integrationem aequationum differentialium primigradus pertractatur. Petropoli: Impenfis Academiae Imperialis Scientiarum.

132. Runge, C. (1895). Ueber die numerische auflösung von differentialgleichungen.Mathematische Annalen, 46, 167–178.

256 References

Page 25: Appendix A Scripts - Springer978-3-642-31187-1/1.pdf · Appendix A Scripts A.1 Latin Hypercube ... Design and analysis of experiments (5th ed.). New ... & Burman, J. P. (1946). The

Index

AActivation function, 66Active set method, 91Actual reduction, 82Adiabatic analysis, 200Adjusted regression parameter, 48Aim, 42, 75Aliasing, 22Allele, 107Anisotropic kriging, 59Anisotropy, 59Approximating, 44Approximation, 71Architecture, 66Archive, 112Axis orthogonal importance latin hypercube

sampling, 139Axis orthogonal importance sampling

Monte Carlo, 136

BB-spline, 157Bézier curve, 157Backpropagated error, 70Backpropagation algorithm, 61Balanced, 21Barrier function, 91Barrier function method, 96Basis functions, 59Bayesian method, 50Bernstein basis polynomials, 158Best fit, 44Best linear unbiased estimator, 51BFGS formula, 87Bias, 67Binary step function, 66

Bipolar sigmoid function, 66Blend cross-over, 119Blocking, 14Blue, see best linear unbiased

estimator, 51Box-Behnken, 25Bracket, 81Bracketing, 80Branch and bound method, 91, 97Broyden family, 87

CCentral composite, 23

circumscribed, 24faced, 24inscribed, 24scaled, 24

Child, 107Chimney, 176Cholesky decomposition, 35Chromosome, 107Coefficient of variation, 135Cognitive learning factor, 111Cold dead volume ratio, 198Combination factor, 117Compact heat exchanger, 153Compression space, 197Conditional probability, 60Confounding, 22Conjugate direction methods, 87Conjugate gradient method, 87Constraint, 3Constraint satisfaction problem, 78Continuous selection, see steady-state

evolution, 118Contour plot, 44

M. Cavazzuti, Optimization Methods: From Theory to Design,DOI: 10.1007/978-3-642-31187-1, � Springer-Verlag Berlin Heidelberg 2013

257

Page 26: Appendix A Scripts - Springer978-3-642-31187-1/1.pdf · Appendix A Scripts A.1 Latin Hypercube ... Design and analysis of experiments (5th ed.). New ... & Burman, J. P. (1946). The

C (cont.)Control factor, see control factor, 15Control points, 157Control variables, 27Cooler, 197Cooperative game, 114Correlation reduction, 34Cost function, 67Courant penalty function, 96Covariance function, 51Covariance matrix, 34, 38Craziness, 111Cross-over, 123Cross-over constant, 117Cross-over operator, 116Crossed array, 27Cumulative distribution, see distribution

curvature, 34Curvature, 78

DData set, 44Degree of freedom, 19Delta rule, 67Derandomized evolution strategy, 116Derandomized evolutionary

strategy, 120Design factor, see primary factor, 15Design of experiments, 6, 13, 149Design point, 134Design resolution, 22Design space, 2Deterministic optimization, 77, 151DFP formula, 87Differential evolution, 116Direct elimination method, 93Direct numerical simulation, 156Direction, 78Direction set method, 87Directional cross-over, 124Displacer, 197Distribution, 34, 121

normal Gaussian, 34Disturbance factors, see

nuisance factor, 15DNA, 107

EEffort, 75Elimination, 90Elitism operator, 124Emissivity, 190

Euler method, 204Evolutionary algorithm, 103Evolutionary algorithms, 116Exact penalty functions, 91Expanded design matrix, 39Expansion space, 197Expected value, see mean value, 30Experiment, 2, 13Experimental design, see design

of experiments, 13External factors, 132

FFactor, 14Failure area, 133Failure probability, 10, 133Faure sequence, 33Feasible point, 90Feasible region, 90Feedforward, 67First order necessary condition, 79First order reliability method, 136Fitness function, 105Follower, 114Fractional factorial, 21

one-half, 21one-quarter, 21

Friction factor, 156Full factorial, 17

adjustable, 19two-levels, 17

Function evaluation, 77Fuzzy recombination, 119

GGame theory, 103Gauss-Newton algorithm, 47Gene, 7, 107General linearly constrained

optimization, 91Generalized elimination method, 94Generation, 107Generational evolution, 124Generational selection, see generational

evolution, 119Generator, 22Genetic algorithm, 103, 121Genotype, 107Global intermediate, 119Golden section method, 81Graeco-latin square, 16Guide, 111

258 Index

Page 27: Appendix A Scripts - Springer978-3-642-31187-1/1.pdf · Appendix A Scripts A.1 Latin Hypercube ... Design and analysis of experiments (5th ed.). New ... & Burman, J. P. (1946). The

HHalton sequence, 33Heater, 197Hessian matrix, 78Hidden layer, 67Hierarchical and distributed metamodel-assis-

ted evolutionary algorithms, 120Hierarchical competitive game, 114Hierarchy, 120Homogeneous covariance function, 62Hot dead volume ratio, 198Hyper-graeco-latin square, 16Hyperbolic tangent sigmoid function, 66

IIdentity function, 66Importance latin hypercube sampling, 138Importance sampling, 137Importance sampling Monte Carlo, 138Individual, 107Inertia factor, 111Initial value problem, 204Inner array, 27Input layer, 67Input parameters, 2Input variable, 2Integrated prediction variance, 38Interaction effect, 19Internal energy, 108Interpolating, 44Interpolation, 71Involute, 182

JJoint probability, 61

KK-nearest, 50Khayyam triangle, see

Tartaglia triangle, 19Kriging, 50

disjunctive, 52indicator, 52IRF-k, 51lognormal, 52multiple-indicator, 52ordinary, 51simple, 51universal, 51

Kriging error, see kriging variance, 52Kriging nearest, 50

Kriging variance, 52Kuhn-Tucker conditions, 92

LLag, 53Lagrange multipliers method, 90Lagrange–Newton method, 97Lagrangian function, 92Lagrangian matrix, 95Lagrangian method, see lagrange

multipliers method, 94Laminar flow, 157Larger-the-better, 29Latin hypercube, 33Latin hypercube sampling, 136, 138Latin square, 16Leader, 11, 114Learning rate, 70Least squares, 44Levels, 14Levenberg–Marquardt methods, 89Levenberg–Marquardt trajectory, 90Limit state function, 133Line, 78Line-search, 79Linear least squares, 45Linear programming, 91Load effect, 133Logistic sigmoid function, 66

MMain interaction, 18Marginal probability, 60Mass flow rate, 178Mathematical programming, 7Mean value, 13, 29, 34Merit function, 98Meta-model, 43Metamodel, 121, 150Micro combined heat and power unit, 195Mixed integer programming, 91, 97Mixing number, 118Model function, 44Mollifier Shepard, 50Moment matrix, 39Monte Carlo simulation, 135Multi-disciplinary optimization, 160Multi-layer, 68Multi-membered

evolution strategy, 116Multi-objective genetic algorithm, 124Multi-objective optimization, 105

Index 259

Page 28: Appendix A Scripts - Springer978-3-642-31187-1/1.pdf · Appendix A Scripts A.1 Latin Hypercube ... Design and analysis of experiments (5th ed.). New ... & Burman, J. P. (1946). The

M (cont.)Multi-objective robust design optimization, 9,

132Mutant individual, 116Mutation constant, 117Mutation operator, 116

NNash equilibrium, 113Neural networks, 66Neuron, 66Newton’s method, 85NLPQLP, 98No free lunch theorem, 130Noise, 71, 131Noise, see noise factors, 13Noise factors, 9Noise variables, 27Nominal-the-best, 30Non uniform rational b-spline, 157Non-smooth optimization, 91Nondimensional analysis, 157Nonlinear least squares, 46Nonlinear programming, 91Nonstationary covariance function, 62Normal regression parameter, 47Normalized average, see integrated prediction

variance, 38Nugget, 51, 55Nuisance factor, 15Number of experiments, 41Number of levels, 41Number of parameters, 41Nusselt number, 156

OObjective, see objective function, 2Objective function, 2Offspring, 107One-point cross-over, 123Operating conditions, 132Operating fluid, 195Optimal design, 36

a-optimal, 40d-optimal, 40e-optimal, 40g-optimal, 40i-optimal, 38

Optimal RSM, 49Optimization problem, 2Optimization, 2, 3

constrained, 7

convex, 8deterministic, 7discrete, 8evolutionary, 7genetic, 7global, 8gradient-based, 7local, 8multi-objective, 3, 8multivariate, 8single objective, 3, 8stochastic, 7unconstrained, 7

Order of convergence, 79Orthogonal, 18Outer array, 27Output layer, 67Output parameters, 2

PParameter, 14, 75Parent, 107Pareto dominance, 105Pareto frontier, 105Pareto optimality, 105Partial sill, 55Particle swarm optimization, 103, 110Pascal triangle, see Tartaglia triangle, 19Penalty function, 91Penalty function method, 96Phenotype, 107Plackett-Burman, 26Player, 113Plenum, 178Population, 107Power piston, 197Practical range, 55Predicted reduction, 82Prediction variance, 39Predictive capability of the model, 48Pressure swing ratio, 199Primal active set method, 95Primary factor, 15Prior probability, see marginal probability, 60Problem, see optimization problem, 2Pseudo-random numbers generator, 32

QQuadratic programming, 91Quality, 131Quasi-Newton condition, 86Quasi-Newton methods, 85

260 Index

Page 29: Appendix A Scripts - Springer978-3-642-31187-1/1.pdf · Appendix A Scripts A.1 Latin Hypercube ... Design and analysis of experiments (5th ed.). New ... & Burman, J. P. (1946). The

RRadial basis function

Gaussian, 62inverse multiquadric, 63multiquadric, 63polyharmonic splines, 63

Radiation heat transfer, 190Random, 32Random search, 109Random seed generator, 77Randomization, 13Randomized complete block design, 15Range, 55Rank one formula, 86Rayleigh number, 177Recirculation, 187Recurrent, 67Reduced dead volume, 198Reduced gradient vector, 94Reduced Hessian matrix, 94Regenerator dead volume ratio, 198Regenerator mean effective temperature, 198Region of interest, 14Regression parameter, 47Regularity, 71Reinforcement learning, 66Reliability, 131Reliability analysis, 9, 132Reliability index, 10, 134Replication, 13Resistance effect, 133Response surface, 20, 43Response surface methodology, see response

surface modelling, 43Response surface modelling, 6, 43, 149Response variable, 14Restricted step, 79Rib, 176Regenerator, 197Robust design analysis, 131, 152, 8Robust engineering design, see robust design

analysis, 8Robust parameter design problem, 27Robustness, 105, 131, 8Rotatability, 25Roulette-wheel selection, 122Runge–Kutta methods, 204

SSafe area, 133Sample, 2Sample size, 15Sample space, 14

Sampling map, 33Scaling factor, 117Schmidt analysis, 197Second order necessary condition, 79Second order reliability method, 137Sectioning, 80Selection, 122Self-adaptive evolution, 116Semivariance, 53Semivariogram, 51Semivariogram cloud, 53Semivariogram model, 53

Bessel, 55circular, 55exponential, 55Gaussian, 55linear, 55pentaspherical, 55spherical, 53

Sequential competitive game, see hierarchicalcompetitive game, 113

Sequential quadratic programming, 91Set of active constraints, 90Shepard, 50Shift vector, 46Signal-to-noise ratio, 29Sill, 55Simple importance latin hypercube

sampling, 139Simplex method for linear optimization, 91Simplex method for nonlinear optimization, 82Simulated annealing, 103, 107Simulated binary cross-over, 119Simulation, 2Simultaneous competitive game, 113Single-layer, 68Sinusoidal wavy channel, 153Slope, 78Smaller-the-better, 29Sobol sequence, 33Social learning factor, 111Solution space, 2Space filling, 30Spatial auto-correlation effect, 53Standard deviation, 13, 29, 34Standard normal space, 134Star points, 23Stationary covariance function, 61Statistical design of experiments, see statistical

experimental design, 14Statistical experimental design, 14Steady-state evolution, 124Steady-state selection, see steady-state

evolution, 118

Index 261

Page 30: Appendix A Scripts - Springer978-3-642-31187-1/1.pdf · Appendix A Scripts A.1 Latin Hypercube ... Design and analysis of experiments (5th ed.). New ... & Burman, J. P. (1946). The

S (cont.)Steepest descent method, 85Stirling cycle, 196Stirling engine, 195Stochastic optimization, 103, 150Strength of the mutation, 119Supervised learning, 66Swarm intelligence, 104

TTaguchi, 27Tartaglia triangle, 19Temperature ratio, 198Tolerance, 132Tournament selection, 122Training algorithm, 66Transformed importance latin hypercube

sampling, 139Transitional flow, 156Travelling salesman problem, 109Treatment factor, see primary factor, 15Trial individual, 116Trust region, 79Turbulence, 111Turbulence model, 156Two-points cross-over, 123

UUncertainty, see noise, 131Uniform cross-over, 123Uniform heat flux condition, 175Uniform wall temperature condition, 175Unimodal normally distributed cross-over, 119Unsupervised learning, 66

VVan der Corput sequence, 32Variable, see input variable, 2Variance, 38Volume ratio, 198

WWavy channel, 153Wear, 132Wetted area, 177Wolfe–Powell conditions, 80Word, see generator, 22Words, 22Working fluid, see operating fluid, 195Working space, 195

262 Index