appendix a summary of vector and tensor notation442 a summary of vector and tensor notation the most...

41
439 Appendix A Summary of Vector and Tensor Notation In general, we have used tensorial notation throughout the book. Tensors of rank 0 (scalars) are denoted by means of italic type letters a; tensors of order 1 (vectors) by means of boldface italic letters a and tensors of rank two and higher orders by cap- ital boldface letters A. In some special circumstances, three-dimensional Cartesian coordinates are used: a.a i / vector; A.A ij / tensor of rank 2; Uij / unit tensor ij is Kronecker’s symbol/; J.J ijk / tensor of rank 3: A.1 Symmetric and Antisymmetric Tensors Denoting by superscript T the transpose, the symmetric and antisymmetric tensors are respectively defined as symmetric A D A T .A ij D A ji /; antisymmetric A DA T .A ij D A ji /: (A.1) The trace of a tensor is defined as the sum of its diagonal components, namely trace of a tensor Tr A D X i A ii : (A.2) A.2 Decomposition of a Tensor It is customary to decompose second-order tensors into a scalar (invariant) part A, a symmetric traceless part 0 A , and an antisymmetric part A a as follows

Upload: others

Post on 10-Jun-2020

13 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Appendix A Summary of Vector and Tensor Notation442 A Summary of Vector and Tensor Notation The most usual second-order differential operator in tensorial analysis is the Laplacian,

439

Appendix ASummary of Vector and Tensor Notation

In general, we have used tensorial notation throughout the book. Tensors of rank 0(scalars) are denoted by means of italic type letters a; tensors of order 1 (vectors) bymeans of boldface italic letters a and tensors of rank two and higher orders by cap-ital boldface letters A. In some special circumstances, three-dimensional Cartesiancoordinates are used:

a.ai / vector;

A.Aij/ tensor of rank 2;

U.ıij/ unit tensor .ıij is Kronecker’s symbol/;

J.Jijk/ tensor of rank 3:

A.1 Symmetric and Antisymmetric Tensors

Denoting by superscript T the transpose, the symmetric and antisymmetric tensorsare respectively defined as

symmetric A D AT .Aij D Aji/; antisymmetric A D �AT .Aij D Aji/: (A.1)

The trace of a tensor is defined as the sum of its diagonal components, namely

trace of a tensor Tr A DX

i

Aii : (A.2)

A.2 Decomposition of a Tensor

It is customary to decompose second-order tensors into a scalar (invariant) part A, a

symmetric traceless part0

A , and an antisymmetric part Aa as follows

Page 2: Appendix A Summary of Vector and Tensor Notation442 A Summary of Vector and Tensor Notation The most usual second-order differential operator in tensorial analysis is the Laplacian,

440 A Summary of Vector and Tensor Notation

A D 13.Tr A/UC 0

A CAa D 13Aıij C

0

AijCAaij : (A.3)

Note that this decomposition implies Tr0

A D 0 .Pi

0

Aii D 0/.The antisymmetric part of the tensor is often written in terms of an axial vector

aa whose components are defined as

aai D

Xj;k

"ijkAajk; (A.4)

where the permutation symbol "ijk has the values

"ijk D

8ˆ<ˆ:

C1 for even permutations of indices .i:e: 123; 231; 312/

�1 for odd permutations of indices .i:e: 321; 132; 213/

0 for repeated indices.

(A.5)

A.3 Scalar (or Dot) and Tensorial (Inner) Products

We have used for the more common products the following notation:Dot product between

two vectors a � b DPi

aibi .scalar/;

a vector and a tensor A � b DPj

aijbi .vector/;

a tensor and a vector b � A DPj

bjajk .vector/;

two tensors A � B DPk

aikbkj .tensor/:

(A.6)

Double scalar product between tensors

A W B DXi;k

aikbkj .scalar/: (A.7)

The trace of a tensor may also be written in terms of its double scalar product withthe unit matrix as TrA D A W U.

Page 3: Appendix A Summary of Vector and Tensor Notation442 A Summary of Vector and Tensor Notation The most usual second-order differential operator in tensorial analysis is the Laplacian,

A.6 Differentiation 441

A.4 (Inner) Tensorial Product (also Named Dyadic Product)

between two vectors .ab/ij D aibj .tensor of rank 2/;

a vector and a tensor .aB/ijk D aiBjk .tensor of rank 3/;

a tensor and a vector .Ba/ijk D Bijak .tensor of rank 3/;

two tensors .AB/ijkl D AijBkl .tensor of rank 4/:

(A.8)

A.5 Cross Multiplication Between Two Vectorsand Between a Tensor and a Vector

.a � b/k D "ijkaibj .vector/;

.B � a/ik DXj;l

"jklBijbl .tensor/: (A.9)

A.6 Differentiation

The most usual differential operators acting on tensorial fields may be expressed interms of the so-called nabla operator, defined in Cartesian coordinates as

r D�@

@x1

;@

@x2

;@

@x3

�: (A.10)

Gradient (defined as dyadic product)

.ra/i D @a

@xi

.vector/; .ra/ij D @aj

@xi

.tensor of rank 2/;

.rA/jki D @Ajk

@xi

.tensor of rank 3/:

Divergence (defined as the scalar product)

r � a DX

i

@ai

@xi

.scalar/; .r � A/i DX

j

@Aji

@xj

.vector/: (A.11)

Rotational or curl (defined as the cross product)

.r �a/i DXj;k

"ijk@ak

@xj

.vector/; .r �A/ik DXj;l

"ijk@Aij

@xl

.tensor of rank 2/:

Page 4: Appendix A Summary of Vector and Tensor Notation442 A Summary of Vector and Tensor Notation The most usual second-order differential operator in tensorial analysis is the Laplacian,

442 A Summary of Vector and Tensor Notation

The most usual second-order differential operator in tensorial analysis is theLaplacian, defined as

r � r DX

i

@2

@xi@xi

: (A.12)

A.7 Tensor Invariants

Some combinations of the elements of a tensor remain invariant under changes ofcoordinates. Such invariant combinations are

I1 D TrA D A W U DX

i

Aii;

I2 D TrA � A D A W A DXi;j

AijAji; (A.13)

I3 D TrA � A � A DXi;j;k

AijAjkAki:

Other invariant combinations may also be formed, but they are combinations of I1,I2 and I3; for instance, one often finds the invariants I , II and III defined as

I D I1; II D 12.I 2

1 �I2/; III D 16.I 3

1 �3I1I2C2I3/ D det A: (A.14)

The invariants I , II and III appear as coefficients in the “characteristic equation”det.�U� A/ D 0:It is also possible to form joint invariants of two tensors A and B as

I11 D Tr A �B; I21 D Tr A �A � B; I12 D Tr A �B �B; I22 D Tr A �A �B �B:(A.15)

Page 5: Appendix A Summary of Vector and Tensor Notation442 A Summary of Vector and Tensor Notation The most usual second-order differential operator in tensorial analysis is the Laplacian,

Appendix BUseful Integrals in the Kinetic Theory of Gases

We present here some useful integrals appearing in several calculations based onthe kinetic theory of gases. Let F.C / be any scalar function of the peculiar velocityC such that the integrals appearing below converge, and let Cx and Cy be twocomponents of C . Then

ZF.C /C 2

x dC D 1

3

ZF.C /C 2dC ; (B.1)

ZF.C /C 4

x dC D 1

5

ZF.C /C 4dC ; (B.2)

ZF.C /C 2

xC2y dC D 1

15

ZF.C /C 4dC : (B.3)

The following definite integrals are also useful

Z 1

0

exp.�˛C 2/C rdC Dp�

2

1

2

3

2

5

2: : :

r � 12

˛�.rC1/=2 .r even/; (B.4)

Z 1

0

exp.�˛C 2/C rdC D 1

2Œ.r � 1/=2�Š˛�.rC1/=2 .r odd/: (B.5)

443

Page 6: Appendix A Summary of Vector and Tensor Notation442 A Summary of Vector and Tensor Notation The most usual second-order differential operator in tensorial analysis is the Laplacian,

445

Appendix CSome Physical Constants

Boltzmann’s kB 1:38 � 10�23 J K�1 D 8:62 � 10�5 eV K�1

constantStefan-Boltzmann’s �0 5:67 � 10�8 W m�2 K�4

constantRadiation constant a D 4�0=c 7:56 � 10�16 J m�3 K�4

Atomic mass unit amu 1:66 � 10�27 kgElectron charge e 1:60 � 10�19 CElectron mass me 9:11 � 10�31 kgProton mass mp 1:673 � 10�27 kgPlanck’s constant h 6:63 � 10�34 J s D 4:14 � 10�15 eV s

Page 7: Appendix A Summary of Vector and Tensor Notation442 A Summary of Vector and Tensor Notation The most usual second-order differential operator in tensorial analysis is the Laplacian,

References

Abramo LRW, Lima JAS (1996) Inflationary models driven by adiabatic matter creation. ClassQuant Grav 13:2953–2964

Ackerson BJ, Clark NA (1981) Shear-induced melting. Phys Rev Lett 46:123–127Akcasu AZ, Daniels E (1970) Fluctuation analysis in simple fluids. Phys Rev A 2:962–975Alley WE, Alder BJ (1983) Generalized transport coefficients for hard spheres. Phys Rev A

27:3158–3173Alsemeyer H (1976) Density profiles in argon and nitrogen shock waves measured by absorption

of an electron beam. J Fluid Mech 74:497–513Alvarez FX, Jou D (2007) Memory and the non-local effects in heat transport from diffusive and

ballistic regimes. Appl Phys Lett 90:083109 (3p)

nanosystems. J Appl Phys 105:014317 (5p)Andreev NS, Boiko GG, Bokov NA (1970) Small-angle scattering and scattering of visible light

sodium-silicate glasses of phase separation. J Non-Cryst Solids 5:41–54Anile AM, Majorana A (1981) Shock structure for heat conducting and viscid fluids. Meccanica

16:149–156Anile AM, Muscato O (1995) An improved thermodynamic model for carrier transport in semi-

conductors. Phys Rev B 51:16728–16740Anile AM, Pennisi S (1992) Extended thermodynamics of the Blotekjaer hydrodynamical model

for semiconductors. Continuum Mech Thermodyn 4:187–197Anile AM, Pennisi S, Sammartino M (1991) A thermodynamic approach to Eddington factors.

J Math Phys 32:544–550Anile AM, Pluchino S (1984) Linear wave modes for dissipative fluids with rate type constitutive

equations. Meccanica 19:104–110Anile AM, Allegretto W, Ringhofer C (2003) Mathematical problems in semiconductor physics.

Lecture Notes in Mathematics, vol 1823. Springer, BerlinAnile AM, Marrocco A, Romano V, Sellier JM (2005) 2D numerical simulation of the MEP

energy-transport model with a mixed finite elements scheme. J Comp Electron 4:231–259Antaki PJ (1998) Importance on non-Fourier heat conduction in solid-phase reactions. Combust

Flame 112:329–334Astarita G, Marucci G (1974) Principles of non-Newtonian Fluid Mechanics. McGraw-Hill, New

YorkAziz MJ, Kaplan T (1988) Continuous growth model for interface motion during alloy solidifica-

tion. Acta Metall 36:2335–2347Baccarani G, Wordemann MR (1985) An investigation of steady state velocity over shoot in silicon.

Solid State Electron 28:407–416Bali R, Singh JP (2008) Bulk viscous Bianchi type I cosmological models with time-dependent

cosmological term ƒ. Int J Theor Phys 47:3288–3297

447

Alvarez FX, Jou D, Sellitto A (2009) Phonon hydrodynamics and phonon-boundary scattering in

Page 8: Appendix A Summary of Vector and Tensor Notation442 A Summary of Vector and Tensor Notation The most usual second-order differential operator in tensorial analysis is the Laplacian,

448 References

Bampi F, Morro A (1984) Non-equilibrium thermodynamics: a hidden variable approach. In:Casas-Vazquez J, Jou D, Lebon G (eds) Recent Developments in Non-equilibrium Thermo-dynamics. Lecture Notes in Physics, vol 199. Springer, Berlin

Banach Z (1987) On the mathematical structure of Eu’s modified moment method. Physica A159:343–368

Banach Z (2000) An extended Gibbs relation for the relativistic Boltzmann entropy: classical andquantum gases. Physica A 275:405–428

Banach Z and Pierarski (1993) On the concept of temperature for systems not infinitesimally nearto equilibrium. Mater Sci Forum 123–125:69–78

Baranyai A (2000) Numerical temperature measurements in far from equilibrium systems. PhysRev E 61:R3306–3309

Baranyai A, Cummings PT (1995) Fluctuations close to equilibrium. Phys. Rev. E 52:2198–2203Baranyai A, Evans DJ (1989) Direct entropy calculation from computer simulation of liquids. Phys

Rev A 40:3817–3822Baranyai A, Evans DJ, Daivis PJ (1992) Isothermal shear-induced flow. Phys Rev A 46:7593–7600Barrow JD (1988) String-driven inflationary and deflationary cosmological models. Nucl Phys B

310:743–763Barton G (1979) Some surface effects in the hydrodynamic model of metals. Rep Prog Phys

42:963–1016Bataille J, Kestin J (1975) L’interpretation physique de la thermodynamique rationelle.

J Mecanique 14:365–384Bauer H-J (1965) Phenomenological theories of the relaxation phenomena in gases. In: Mason WP

(ed) Physical Acoustics, vol 2A. Academic, New YorkBeck C, Schlogl F (1993) Thermodynamics of Chaotic Systems. Cambridge University Press,

CambridgeBedeaux D, Albano AM, Mazur P (1976) Boundary conditions and thermodynamics. Physica A

147:438–462Beenakker CWJ (1997) Random-matrix theory of quantum transport. Rev Mod Phys 69:731–808Beesham A (1993) Cosmological models with constant deceleration parameter and bulk viscosity.

Gen Rel Grav 25:561–565Belinskii VA, Nikomarov S, Khalatnikov IS (1979) Investigation of the cosmological evolution of

a viscoelastic matter with causal thermodynamics. Sov Phys JETP 50:213–221Berdichevsky VL (1997) Thermodynamics of Chaos and Order. Longman, EssexBeris AN (2003) Simple non-equilibrium thermodynamics to polymer rheology. In: Binding DM,

Walters K (eds) Rheology Reviews 2003. The British Society of Rheology, Aberystwyth,pp 33–75

Beris AN, Edwards BJ (1994) Thermodynamics of Flowing Systems with Internal Microstructure.Oxford University Press, Oxford

Beris AN, Mavrantzas (1994) Te compatibility between various macroscopic formulations for theconcentration and flow of dilute polymer solutions. J Rheol 38:1235–1250

Berne BJ (ed) (1977) Statistical Mechanics (Part B: Time-dependent Processes). Plenum, NewYork

Berne BJ, Pecora R (1976) Dynamic Light Scattering with Application to Chemistry, Biology andPhysics. Wiley, New York

Bidar H (1997) Non-equilibrium free energy under shear flow. J Non-Equilib Thermodyn 22:156–161

Bidar H, Jou D (1998) A generalized Gibbs equation for nuclear matter out of equilibrium. PhysRev C 57:2068–2070

Bidar H, Jou D, Criado-Sancho M (1997) Thermodynamics of ideal gases under shear: amaximum-entropy approach. Physica A 233:163–174

Binder K, Fratzl P (2001) Spinodal decomposition. In: Kostorz G (ed) Phase Transformations inMaterials. Wiley-VCH, Wienheim

Biot MA (1970) Variational Principles in Heat Transfer. Oxford University Press, OxfordBird RB, De Gennes PG (1983) Discussion about the principle of objectivity. Physica A 118:43–47

Page 9: Appendix A Summary of Vector and Tensor Notation442 A Summary of Vector and Tensor Notation The most usual second-order differential operator in tensorial analysis is the Laplacian,

References 449

Bird RB, Armstrong RC, Hassager O (1987a) Dynamics of polymeric liquids. Fluid Mechanics,2nd edn, vol 1. Wiley, New York

Bird RB, Curtiss CF, Armstrong RC, Hassager O (1987b) Dynamics of polymeric liquids. KineticTheory, 2nd edn, vol. 2. Wiley, New York

Blotekjaer K (1970) Transport equations for electrons in two-valley semiconductors. IEEE TransElectron Devices 17:38–47

Bodenshatz E, Pech W, Ahlers G (2000) Recent developments in Rayleigh-Benard convection.Ann Rev Fluid Mech 32:851–919

Boillat G, Ruggeri T (1996) Relativistic gas: moment equations and maximum wave velocity.J Math Phys 40:6399–6406

Boillat G, Strumia A (1988) Limitation des vitesses d’onde et de choc quand la densite relativisted’entropie ou d’energie est convexe, C R Acad Sci Paris 307:111–114

Boon JP, Yip S (1980) Molecular Hydrodynamics. McGraw-Hill, New YorkBrenner H (1970) Rheology of two-phase systems, Ann Rev Fluid Mech 2:137–176Bressan A (1978) Relativistic Theories of Materials. Springer, BerlinBrey JJ and Santos A (1992) Nonequilibrium entropy of a gas. Phys. Rev A 45:8566–8572Bridgman PW (1943) The Nature of Thermodynamics. Harvard University Press, CambridgeCahn JW, Hilliard JE (1958) Free energy of a nonuniform system. I. Interfacial free energy. J Chem

Phys 28:258–267Callen HB (1985) Thermodynamics and an Introduction to Thermostatistics, 2 edn. Wiley, New

YorkCalvao MO, Salim JM (1992) Extended thermodynamics of Friedmann–Robertson–Walker models

in the Landau-Lifshitz frame. Class Quant Grav 9:127–135Calvao MO, Lima JAS, Waga I (1992) On the thermodynamics of matter creation in cosmology.

Phys Lett A 162:223–226Camacho J (1995) Third law of thermodynamics in the presence of a heat flux. Phys Rev E 51:

220–225Camacho J, Jou D (1990) On the thermodynamics of dilute dumbbell solutions under shear. J Chem

Phys 92:1339–1344Camacho J, Jou D (1992) H theorem and the telegrapher type kinetic equations. Phys Lett A

171:26–30Camacho J, Zakari M (1994) Irreversible thermodynamic analysis of a two-layer system. Phys Rev

E 50:4233–4236Caplan SR, Essig A (1983) Bioenergetics and Linear Non-equilibrium Thermodynamics. The

Steady State. Harvard University Press, CambridgeCarrassi M, Morro A (1972) A modified Navier–Stokes equations and its consequences on sound

dispersion. Nuovo Cimento B 9:321–343; (1984), 13:281–289Carreau PJ (1972) Rheological equations from molecular network theories. Trans Soc Rheol

16:99–127Casas-Vazquez J, Jou D (2003) Temperature in non-equilibrium states: a review of open problems

and current proposals. Rep Prog Phys 66:1937–2023Casas-Vazquez J, Jou D, Lebon G (eds) (1984) Recent Developments in Non-equilibrium

Thermodynamics. Lecture Notes in Physics, vol. 199. Springer, BerlinCasimir HBG (1945) On Onsager’s principle of microscopic irreversibility. Rev Mod Phys 17:

343–350Castillo VM, Hoover WM (1988) Comment on Maximum of the local entropy production becomes

minimal in stationary processes. Phys Rev Lett 81:5700 (1p)Cattaneo C (1948) Sulla conduzione del calore, Atti Seminario Mat. Fis. Univ. Modena

3:83–101Cavalli-Sforza LL, Menozzi P, Piazza A (1993) Demic expansions and human evolution. Science

259:639–646Chapman S, Cowling TG (1970) The Mathematical Theory of Non-uniform Gases. Cambridge

University Press, CambridgeChen G (2001) Ballistic-diffusion heat conduction equation. Phys Rev Lett 86:2297–2300

Page 10: Appendix A Summary of Vector and Tensor Notation442 A Summary of Vector and Tensor Notation The most usual second-order differential operator in tensorial analysis is the Laplacian,

450 References

Chen G (2002) Ballistic-diffusive equations for transient heat conduction from nano-tomacroscales. J Heat Transf 124:320–329

Chen G (2004) Nanoscale Energy Transport and Conversion. Oxford University Press, OxfordChen M (1999) On the geometric structure of thermodynamics. J Math Phys 40:830–837Chester M (1963) Second sound in solids. Phys Rev 131:2013–2015Chester M (1966) High-frequency thermometry. Phys Rev 145:76–80Chiu HY, Desphbande VV, Postma HWC, Lau CN, Miko C, Forro L, Bockrath M (2005) Ballistic

phonon thermal transport in multiwalled carbon nanotubes. Phys Rev Lett 95:226101 (4p)Christiansen RF, Leppard WR (1974) Steady-state and oscillatory flow properties of polymer

solutions. Trans Soc Rheol 18:65–86Chung C-H, Yip S (1969) Generalized hydrodynamics and time correlation functions. Phys Rev

182:323–339Ciancio V, Verhas J (1991) A thermodynamic theory for heat radiation through the atmosphere.

J Non-Equilib Thermodyn 16:57–65Ciancio V, Restuccia L, Kluitenberg GA (1990) A thermodynamic derivation of equation for

dielectric relaxation phenomena in anisotropic polarisable media. J Non-Equilib Thermodyn15:157–172

Cimmelli VA (2002) Boundary conditions in the presence of internal variables. J Non-EquilibThermodyn 27:327–348

Cimmelli VA, Frischmuth K (2005) Nonlinear effects in thermal wave propagation near zeroabsolute temperature. Physica B 355:147–157

Cimmelli VA, Kosinsky W (1991) Nonequilibrium semiempirical temperature in materials withthermal relaxation Arch Mech 43:753–767

Clause PJ and Balescu R (1982) A non-linear approach to the kinetic theory of heat conductivityin a plasma. Plasma Phys 24:1429–1450

Coleman BD (1964) Thermodynamics of materials with memory. Arch Rat Mech Anal 17:1–46Coleman BD, Newman D (1988) Implications of a nonlinearity in the theory of second sound in

solids. Phys Rev B 37:1492–1498Coleman BD, Noll W (1963) The thermodynamics of elastic materials with heat conduction and

viscosity. Arch Rat Mech Anal 13:167–178Coleman BD, Truesdell C (1960) On the reciprocal relations of Onsager. J Chem Phys 33:28–31Coleman BD and Owen DR (1974) A mathematical foundation for thermodynamics, Arch Rat

Mech Anal 54:1Coleman BD, Markowitz H, Noll W (1966) Viscometric Flows of Non-Newtonian Fluids. Springer,

New YorkConforto F, Giambo S (1996) An extended thermodynamics description of thermal, viscous and

dielectric phenomena in fluid systems. J Non-Equilib Thermodyn 21:260–269Corbet AB (1974) New thermodynamic variables for a nonequilibrium system. Phys Rev A

9:1371–1384Crank J (1975) The Mathematics of Diffusion. Clarendon, OxfordCriado-Sancho M, Casas-Vazquez J (2004) Termodinamica Quımica y de los Processos Irre-

versibles, 2nd edn. Pearson/Addison-Wesley, MadridCriado-Sancho M, Llebot JE (1993) Behaviour of entropy in hyperbolic heat transport. Phys Rev

E 47:4104–4108Criado-Sancho M, Jou D, Casas-Vazquez J (1999) Ginzburg-Landau expression for the free energy

of polymer solutions under flow. Physica A 274:466–475Criado-Sancho M, Llebot JE (1993b) On the admissible values of the heat flux in hyperbolic heat

transport. Phys Lett A 177:323–326Criado-Sancho M, Jou D, Casas-Vazquez J (2006) Nonequilibrium kinetic temperatures in flowing

gases. Phys Lett A 350:339–341Criminale WO, Ericksen JL, Filbey GL (1957) Steady shear flow of non-Newtonian fluids. Arch

Rat Mech Anal 1:410–417Crisanti A, Ritort F (2003) Violation of the fluctuation-dissipation theorem in glassy systems: basic

notions and the numerical evidence. J Phys A: Math Gen 36:R181–R290

Page 11: Appendix A Summary of Vector and Tensor Notation442 A Summary of Vector and Tensor Notation The most usual second-order differential operator in tensorial analysis is the Laplacian,

References 451

Crochet MJ, Davies A, Walters K (1984) Numerical Simulations of Non-Newtonian Flow. Elsevier,Amsterdam

Curzon FL, Ahlborn B (1975) Efficiency of a Carnot engine at maximum power output Am J Phys43:22–24

Daivis PJ (2008) Thermodynamic relationships for shearing linear viscoelastic fluids. Non-Newtonian Fluid Mech 152:120–128

Danielewicz P (1984) Transport properties of excited nuclear matter and the shock-wave profile.Phys Lett B 146:168–175

D’Anna G, Mayor P, Barrat A, Loreto V, Nori F (2003) Observing Brownian motion in vibration-fluidized granular matter. Nature 424:909–912

Datta S (2002) Electronic Transport in Mesoscopic Systems. Cambridge University Press,Cambridge, UK

Dauby PC, Lebon G (1990) Constitutive equations of rheological materials: towards a thermody-namic unified approach. Appl Math Lett 3:45–48

Davies PCW (1987) Cosmological horizons and the generalised second law of thermodynamics.Class Quantum Grav 4:L225–L228

Day W (1977) An objection against using entropy as a primitive concept in continuum thermody-namics. Acta Mech 27:251–255

De Groot SR, Mazur P (1962) Non-equilibrium Thermodynamics. North-Holland, AmsterdamDe Felice LJ (1981) Introduction to Membrane Noise. Plenum, New YorkDedeurwaerdere T, Casas-Vazquez J, Jou D, Lebon G (1996) Foundations and applications of a

mesoscopic thermodynamic theory of fast phenomena. Phys Rev E 53:498–506Del Castillo LF, Davalos-Orozco LA (1990) Dielectric relaxation in polar and viscoelastic fluids.

J Chem Phys 93:5147–5155Del Castillo LF, Rodrıguez RF (1989) Extended thermodynamics and membrane transport. J Non-

Equilib Thermodyn 14:127–142Del Castillo LF, Davalos-Orozco LA, Garcıa-Colın LS (1997) Ultrafast dielectric relaxation

response of polar liquids. J Chem Phys 106:2348–2354Dempsey J, Halperin BI (1992) Magnetoplasma excitations in parabolic quantum wells: Hydrody-

namic model. Phys Rev B 45:1719–1735Denbigh RG (1950) The Thermodynamics of the Steady State. Wiley, New YorkDenicol GS, Kodama T, Koide T, Mota Ph (2007) Effects of finite size and viscosity in relativistic

hydrodynamics. Nucl Phys A 787:60c–67cDenicol GS, Kodama T, Koide T, Mota Ph (2008) Shock propagation and stability in causal

dissipative hydrodynamics. Phys Rev C 78:034901 (12p)Doi M, Edwards SF (1986) The Theory of Polymer Dynamics. Clarendon, OxfordDomınguez R, Jou D (1995) Thermodynamic pressure in nonequilibrium gases. Phys Rev E

51:158–162Domınguez-Cascante R, Faraudo J (1996) Non-equilibrium corrections to the pressure tensor due

to an energy flux. Phys Rev E 54:6933–6935Dreyer W, Struchtrup H (1993) Heat pulse experiments revisited. Continuum Mech Thermodyn

5:3–50Dreyer W, Weiss W (1986) The classical limit of relativistic extended thermodynamics. Ann Inst

Henri Poincare 45:401–418Drucker DC (1967) Introduction to Mechanics of Deformable Bodies. McGraw-Hill, New YorkDufty JW and McLennan JA (1974) Persistent correlation in diffusion. Phys Rev A 9:1266–1272Duhem P (1911) Traite d’energetique ou de thermodynamique generale. Gauthier-Villars, ParisDunn JE, Fosdick RL (1974) Thermodynamics, stability, and boundedness of fluids of complexity

2 and fluids of second grade. Arch Rat Mech Anal 56:191–252Durning CJ, Tabor M (1986) Mutual diffusion in concentrated polymer solutions under a small

driving force. Macromolecules 19:2220–2232Eckart C (1940) The thermodynamics of irreversible processes. I–III. Phys Rev 58:267–269,

269–275, 919–924; IV, Phys. Rev. (1948), 73:373–382

Page 12: Appendix A Summary of Vector and Tensor Notation442 A Summary of Vector and Tensor Notation The most usual second-order differential operator in tensorial analysis is the Laplacian,

452 References

Edelen DGD, McLennan JA (1973) Material indifference: a principle or a convenience. Int J EngSci 11:813–817

Eringen AC (1967) Mechanics of Continua. Wiley, New YorkErnst MH, Hauge EH, van Leeuwen JMJ (1976) Asymptotic time behaviour of correlation func-

tions. III. Local equilibnrium and mode-coupling theory. J. Stat Phys. 15:23–58Eu BC (1991) Revision of the modified moment method and a differential form for the compen-

sated part of the entropy. Physica A 171:285–312Eu BC (1992) Kinetic Theory and Irreversible Thermodynamics. Wiley, New YorkEu BC (1998) Nonequilibrium Statistical Mechanics: Ensemble Method. Kluwer, DordrechtEu BC and Garcia-Colın LS (1996) Nonequilibrium thermodynamics and temperature. Phys Rev

E 54:2510–2512Evans DJ (1989) On the entropy of nonequilibrium states. J Stat Phys 57:745–758Evans DJ, Hanley HJM (1980) A thermodynamics of steady homogeneous shear flows. Phys Lett

A 80:175–179Evans DJ, Morriss GP (1990) Statistical Mechanics of Non-equilibrium Liquids. Academic,

LondonEvans DJ, Searles DJ (2002) The fluctuation theorem. Adv Phys 51:1529–1585Fai G, Danielewicz P (996) Non-equilibrium modifications of the nuclear equation of state. Phys

Lett B 373(1):5–8Fedotov S (1998) Traveling waves in a reaction-diffusion system: Diffusion with finite velocity

and Kolmogorov–Petrovskii–Piskunov kinetics. Phys Rev E 58:5143–5145Ferrer M, Jou D (1995) Information-theoretical analysis of a classical relativistic gas under a steady

heat flow. Am J Phys 63:437–441Finlayson B (1972) The Method of Weighted Residuals and Variational Principles. Academic, New

YorkFort J, Jou D and Llebot JE (1998) Measurable temperatures in nonequilibrium radiative systems,

Physica A 248:97–110Fort J, Jou D and Llebot JE (1999) Temperature and measurement: comparison between two

models of nonequilibrium radiation. Physica A 269:439–454Fort J, Mendez V (2002) Wavefronts in time-delayed reaction-diffusion systems. Theory and

comparison with experiments. Rep Prog Phys 65:895–954Frankel NA, Acrivos A (1970) The constitutive equations for a dilute emulsion. J Fluid Mech

44:65–78Friedrichs KO and Lax PD (1971) Systems of conservation equations with a convex extension.

Proc. Natl. Acad Sci USA 68:1686Frisch HL (1980) Sorption and transport in glassy polymers-a review. Polym Eng Sci 20:2–13Frohlich H, Kremer F (eds) (1983) Coherent Excitations in Biological Systems. Springer, BerlinGalenko P (2004) Morphological transitions in crystal patterns at high solidification rates. In:

Vincenzini, Faenza P (ed) Computational Modeling and Simulation of Materials III. TechnaGroup Publishers, Italy, pp 551–558

Galenko P (2007) Solute trapping and diffusionless solification in a binary system. Phys Rev E76:031606 (9 p)

Galenko P, Danilov DA (2000) Selection of the dynamically stable regime of rapid solidificationfront motion in an isothermal binary alloy. J Cryst Growth 216:512–526

Galenko PK and Danilov DA (2000b) Steady-state shapes of growing crystals in the field of localnonequilibrium diffusion. Phys Lett A 272:207–217

Galenko P, Danilov DA (2004) Linear morphological stability analysis of the solid-liquid interfacein rapid solidification of a binary system. Phys Rev E 69:051608 (14p)

Galenko P, Krivilyov MD (2000) Modelling of crystal pattern formation in isothermal undercooledalloys. Model Simul Mater Sci Eng 8:81–94

Galenko P, Lebedev V (2008) Nonequilibrium effects in spinodal decomposition of a binarysystem. Phys Lett A 372:985–989

Garcıa-Colın LS (1991) Extended irreversible thermodynamics beyond the linear regime: a criticaloverview. J Non-Equilib Thermodyn 16:89–128

Page 13: Appendix A Summary of Vector and Tensor Notation442 A Summary of Vector and Tensor Notation The most usual second-order differential operator in tensorial analysis is the Laplacian,

References 453

Garcıa-Colın LS (1995) Extended irreversible thermodynamics: an unfinished task. Mol Phys86:697–706

Garcıa-Colın LS, Lopez de Haro M, Rodrıguez RF, Casas-Vazquez J, Jou D (1984) On thefoundations of extended irreversible thermodynamics. J Stat Phys 37:465–484

Gariel J, Le Denmat G (1994) Relationship between two theories of dissipative relativistic hydro-dynamics applied to cosmology. Phys Rev D 50:2560–2566

Garrido PL, Hurtado P, Nadrowski B (2001) Simple one-dimensional model of heat conduction,which obeys Fourier’s law. Phys Rev Lett 86:5486–5489

Garzo V, Santos A (2003) Kinetic Theory of Gases in Shear Flows. Nonlinear Transport. Kluwer,Dordrecht

Germain P (1973) Cours de mecanique des milieux continus, Masson, ParisGhosh K, Dill KA, Inamdar MM, Seitaridou E, Phillips R (2006) Teaching the principles of

statistical dynamics. Am J Phys 74:123–133Giannozzi P, Grosso G, Moroni S, Parravicini GP (1988) The ordinary and matrix continued frac-

tions in the thermodynamic analysis of Hermitian and relaxation operators. Appl Numer Math4:273–295

Giardina R, Livi R, Politi A, Vassalli M (2000) Finite thermal conductivity in 1-D lattices. PhysRev Lett 84:4029–4032

Gibbons GW, Hawking SW (1977) Cosmological events horizons, thermodynamics, and particlescreation. Phys Rev D 15:2738–2751

Gibbs JW (1948) The collected works of J.W. Gibbs. Thermodynamics, vol 1. Yale UniversityPress, Yale

Giesekus H (1982) A simple constitutive equation for polymer fluids based on the concept ofdeformation dependent tensorial mobility. J Non-Newtonian Fluid Mech 11:69–109

Glansdorff P, Prigogine I (1964) On a general evolution criterion in macroscopic physics. Physica30:351–374

Glansdorff P, Prigogine I (1971) Thermodynamics of Structure, Stability and Fluctuations. Wiley,New York

Godoy S, Garcıa-Colın LS (1999) Compatibility of the Landauer diffusion coefficient withclassical transport theory. Physica A 268:65–74

Goldstein H (1975) Classical Mechanics, 2nd edn. Addison-Wesley, Reading, MAGoldstein S (1951) On diffusion by discontinuous movements and on the telegraph equation. Quart

J Mech Appl Math 4:129–156Gollub JP, Langer JS (1999) Pattern formation in non-equilibrium physics. Rev Mod Phys

71:S396–S403Gorban AN, Karlin IV (2005) Invariant Manifolds for Physical and Chemical Kinetics. Lectures

Notes in Physics. Springer, BerlinGorban AN, Karlin IV, Zinovyev AY (2004) Constructive methods of invariant manifolds for

kinetic problems. Phys Rep 396:197–403Grabert H (1981) Projection Operator Techniques in Non-equilibrium Statistical Mechanics,

Springer, BerlinGrad H (1958) Principles of the kinetic theory of gases. In: Flugge S (ed) Hd. der Physik, vol XII.

Springer, BerlınGrandy WT (1987–1988) Foundations of Statistical Mechanics, 2 vol. D. Riedel, DordrechtGreco A, Muller I (1983) Extended thermodynamics and superfluidity. Arch Rat Mech Anal.

83:279–301Green AE, Rivlin RS (1957) The mechanics of non-linear materials with memory. Arch Rat Mech

Anal 1:410–417Green HS (1969) The molecular theory of fluids. Dover, New YorkGreenspan M (1965) Transmission of sound waves in gases at very low pressures. In: Mason WP

(ed) Physical Acoustics, vol 2A. Academic, New YorkGriffin JJ, Kan KK (1976) Colliding heavy ions: nuclei as dynamical fluids. Rev Mod Phys 48:467–

477

Page 14: Appendix A Summary of Vector and Tensor Notation442 A Summary of Vector and Tensor Notation The most usual second-order differential operator in tensorial analysis is the Laplacian,

454 References

Grmela M (1984) Bracket formulation of dissipative fluid mechanics equations. Phys Lett A102:355–358

Grmela M (1993) Thermodynamics of driven systems. Phys. Rev E 48:919–930Grmela M (2001) Complex fluids subjected to external influences. J Non-Newtonian Fluid Mech

96:221–254Grmela M, Lebon G (1990) Hamiltonian extended thermodynamics. J Phys A: Math Gen 23:

3341–3351Grmela M, Ottinger HC (1997) Dynamics and thermodynamics of complex fluids. I. Development

of a general formalism. Phys Rev E 56:6620–6632Grmela M, Elafif A, Lebon G (1998) Isothermal nonstandard diffusion in a two-component fluid

mixture: a Hamiltonian approach. J Non-Equilib Thermodyn 23:312–327Grmela M, Karlin IV, Zmievski (2002) Boundary layer variational principles: a case study. Phys

Rev E 65:011201–011213Grmela M, Lebon G, Lhuillier D (2003) A comparative study of the coupling of flow with non-

Fickean thermodiffusion. Part II: GENERIC. J Non-Equilib Thermodyn 28:23–50Grmela M, Lebon G, Dauby PC, Bousmina M (2005) Ballistic-diffusive heat conduction at

nanoscale: a GENERIC approach. Phys Lett A 339:237–245Guyer RA, Krumhansl JA (1966) Solution of the linearized Boltzmann phonon equation. Phys Rev

148:766–778, 778–788Gyarmati I (1970) Non-equilibrium Thermodynamics. Springer, BerlinHaase R (1969) Thermodynamics of Irreversible Processes. Addison-Wesley, Reading, MAHafskold B, Kjelstrup S (1995) Criteria for local equilibrium in a system with transport of heat and

mass. J Stat Phys 78:463–494Haken H (ed) (1977) Synergetics, a workshop. Springer, BerlinHanley HJM, Evans DJ (1982) A thermodynamics for a system under shear. J Chem Phys 76:

3225–3232Hanley HJM, Rainwater JC, Clark NA, Ackerson BJ (1983) Liquid structure under shear:

Comparison between computer simulation and colloidal suspensions. J Chem Phys 79:4448–4458

Hansch W (1991) The Drift-diffusion Equation and its Application in MOSFET Modeling.Springer, Berlin

Harris S (1971) An introduction to the theory of the Boltzmann equation. Holt, Rinehart andWinston, New York

Hatano T and Jou D (2003), Measuring temperature of forced oscillators. Phys Rev E 67:026121(6p)

Hayward G, Pavon D (1989) Primordial black holes in the very early Universe. Phys Rev D40:1748–1752

Herlach D, Galenko P, Holland-Moritz D (2007) Metastable Solids from Undercooled Melts.Pergamon Materials Series, Elsevier, Amsterdam

Herrera L, Falcon N (1995) Convection theory before relaxation. Astrophys Space Sci 234:139–152

Herrera L, di Prisco A, Hernandez-Pastora JL, Martın J, Martınez J (1997) Thermal conduction insystems out of hydrostatic equilibrium. Class Quantum Grav 14:2239–2247

Hess S (1977) On nonlocal constitutive relations, continued fraction expansion for the wave vectordependent diffusion coefficient. Z Naturforsch 32a:678–684

Hiscock WA, Lindblom L (1983) Stability and causality in dissipative relativistic fluids. Ann Phys(NY) 151:466–496

Hiscock WA, Lindblom L (1985) Generic instabilities in first-order dissipative relativistc fluidstheories. Phys Rev D 31:725–733

Hiscock WA, Salmonson T (1991) Dissipative Boltzmann-Robertson-Walker cosmologies. PhysRev D 43:3249–3258

Holway LH (1964) Existence of kinetic theory solutions to the shock structure problem. PhysFluids 7:911–913

Page 15: Appendix A Summary of Vector and Tensor Notation442 A Summary of Vector and Tensor Notation The most usual second-order differential operator in tensorial analysis is the Laplacian,

References 455

Hoover WH (1999) Time Reversibility, Computer Simulations and Chaos. World Scientific,Singapore

Hoover WG, Holian BL, Posch HA (1992) Comments to A possible experiment to check the realityof a nonequilibrium temperature. Phys. Rev 48:3196–3198

Hoover W, Moran B, More R, Ladd A (1981) Heat conduction in a rotating disk via non-equilibrium molecular dynamics. Phys Rev A 24:2109–2115

Hopfenberg HB, Stannett V (1973) In: Haward RN (ed) The Physics of Glassy Polymers. AppliedScience, London

Hopfenberg HB, Holley RH, Stannett V (1969) The effect of penetrant activity and temperature onthe anomalous diffusion of hydrocarbons and solvent crazing in polystyrene part I: Biaxiallyoriented polystyrene. Polym Eng Sci 9:242–249

Hu BL (1982) Vacuum viscosity description of quantum processes in the early universe. Phys LettA 90:375–380

Hutter K, Johnk K (2004) Continuum Methods of Physical Modelling. Springer, BerlinIchiyanagi M (1990) A contribution to the theory of non-equilibrium statistical mechanics. V.

A microscopic foundation of extended irreversible thermodynamics. J Phys Soc Japan 59:1970–1980

Ichiyanagi M (1991) A projection-operator approach to extended irreversible thermodynamics.Prog Theor Phys 84:810–823

Ichiyanagi M (1994) Variational principles in irreversible processes. Phys Rep 243:125–182Ilg P, Ottinger HC (1999) Non-equilibrium relativistic thermodynamics in bulk viscous cosmology.

Phys Rev D 61:023510 (10p)Israel W (1976) Nonstationay irreversible thermodynamics: a causal relativistic theory. Ann Phys

(NY) 100:310–331Israel W (1981) Thermodynamics of relativistic systems. Physica A 106:204–214Israel W, Stewart JM (1979) Transient relativistic thermodynamics and kinetic theory. Ann Phys

(NY) 118:341–372Jackson H, Walker C, McNelly T (1976) Second sound in NaF. Phys Rev Lett 25:26–28Jahnig E, Richter PH (1976) Fluctuations in spatially homogeneous chemical steady states. J Chem

Phys 64:4645Jaynes ET (1963) Information theory and statistical mechanics. In: Ford WK (ed) Statistical

Physics. Benjamin, New YorkJaynes ET (1963) In: Ford WK (ed) Statistical Physics. Benjamin, New YorkJeffrey A, Taniuti T (1964) Nonlinear Wave Propagation. Academic, New YorkJoseph DD, Preziosi L (1989) Heat waves. Rev Mod Phys 61:41–74; (1990) 62:375–392Joshi AA, Majumdar A (1993) Transient ballistic and diffusive phonon heat transport in thin films.

J Appl Phys74:31–39Jou D, Camacho J (1990) On the non-equilibrium thermodynamics of some complex dynamical

behaviours. J Phys A 23:4603–4617Jou D, Llebot JE (1990) Introduction to the Thermodynamics of Biological Processes. Prentice-

Hall, Englewood Cliffs, NJJou D, Pavon D (1991) Non local and nonlinear effects in shock waves. Phys Rev. A 44:496–6502Jou D, Zakari M (1995) Information theory and heat transport in relativistic gases. J Phys A: Math

Gen 28:1585–1592Jou D, Casas-Vazquez J, Lebon G (1979) A dynamical interpretation of second-order constitutive

equations of hydrodynamics. J Non-Equilib Thermodyn 4:349–362Jou D, Bampi F, Morro A (1982) Thermodynamic description of ultrasonic attenuation in metals.

J Non-Equilib Thermodyn 7:201–212Jou D and Casas-Vazquez J (1983), Equilibrium third moments and nonequilibrium second

moments of fluctuations of dissipative fluxes. J Non-EquilibThermodyn 8:127–142Jou D, Perez-Garcıa C, Casas-Vazquez J (1984) On a non-equilibrium partition function for heat

conduction. J Phys A: Math Gen 17:2799–2805Jou D, Perez-Garcıa C, Garcıa-Colın LS, Lopez de Haro M, Rodrıguez RF (1985) Phys Rev A

31:2502

Page 16: Appendix A Summary of Vector and Tensor Notation442 A Summary of Vector and Tensor Notation The most usual second-order differential operator in tensorial analysis is the Laplacian,

456 References

Jou D, Ferrer-Suquet F, Perez-Vicente C (1986) On the nonequilibrium chemical potential of openpores in a membrane. J Chem Phys 85:5314–5316

Jou D, Casas-Vazquez J, Lebon G (1988) Extended irreversible thermodynamics. Rep Prog Phys51:1105–1179

Jou D, Zakari M (1995) Information theory and heat transport in a relativistic gas. J Phys A: MathGen 28:1585–1592

Jou D, Casas-Vazquez J, Lebon G (1999) Extended irreversible thermodynamics revisited (1988–1998). Rep Prog Phys 62:1035–1142

Jou D, Casas-Vazquez J, Criado-Sancho M (2001) Thermodynamics of Fluids under Flow.Springer, Berlin, Heidelberg

Jou D, Casas-Vazquez J, Lebon G (2001) Extended Irreversible Thermodynamics, 3rd edn.Springer, Berlin

Jou D, Casas-Vazquez J, Lebon G, Grmela M (2005) A phenomenological scaling approach forheat transport in nanosystems. Appl Math Lett 18:963–967

Jou D, Criado-Sancho M, del Castillo LF, Casas-Vazquez J (2001) A simple thermodynamic modelof shear-induced polymer banding and separation. Polymer 46:6239–6245

Junk M, Romano V (2005) Maximum entropy moment system of the semiconductor Boltzmannequation using Kane’s dispersion relation. Cont Mech Thermodyn 17:247–267

Kaplan SR and Essig A (1983) Bioenergetics and linear non-equilibrium Thermodynamics. Thesteady state, Harvard University Press, Cambridge MA

Karlin IV (2000) Exact summation of the Chapman-Enskog expansion from moment equations. JPhys A Math Gen 33:8037–8046

Kestin J (1968) A Course in Thermodynamics. Blaisdell, WalthamKeizer J (1983) On the relationship between fluctuating irreversible thermodynamics and

‘extended’ irreversible thermodynamics. J Stat Phys 31:485–497Keizer J (1987) Statistical Thermodynamics of Nonequilibrium Processes. Springer, BerlınKestin J (1990) A note on the relation between the hypothesis of local equilibrium and the Clausius-

Duhem inequality. J Non-Equilib Thermodyn 15:193–212Kestin J (1992) Local-equilibrium formalism applied to mechanics of solids. Int J Solids Struct

29:1827–1836Kestin J, Bataille J (1980) Thermodynamics of solids. In: Continuum Models of Discrete Systems.

University of Waterloo Press, WaterlooKhalatnikov IM (1965) An introduction to the Theory of Superfluidity. W.A. Benjamin,

New YorkKivelson D, Keyes T (1972) A unified theory of orientational relaxation. J Chem Phys 57:4599Kjelstrup S, Bedeaux D (2008) Non-equilibrium Thermodynamics of Heterogeneous Systems.

World Scientific, SingaporeKleidon A, Lorenz RD (eds) (2005) Non-equilibrium Thermodynamics and the Production of

Entropy. Life, Earth and Beyond. Springer, BerlinKluitenberg G (1962) Thermodynamical theory of elasticity and plasticity. Physica 28:

217–232Kluitenberg G (1984) Plasticity and Non-equilibrium Thermodynamics (CISM Course 281).

Springer, WienKnesser HO (1965) Relaxation processes in gases. In: Mason WP (ed) Physical Acoustics. vol. 2A.

Academic, New YorkKoide T, Denicol GS, Mota Ph, Kodama T (2007) Relativistic dissipative hydrodynamics: a

minimal causal theory. Phys Rev C 75:034909 (5p)Kondepudi D, Prigogine I (1998) Modern Thermodynamics: From Heat Engines to Dissipative

Structures. Wiley, New YorkKozlowski M (1989) The temperature pulse propagation in interacting nuclear slabs. Nucl Phys A

492:285–293Krall AN, Trivelpiece AW (1973) Principles of Plasma Physics. McGraw-Hill, New YorkKranys M (1967) General relativistic thermodynamics with finite transport velocity of interaction

in matter. Nuovo Cimento B 50: 48–64

Page 17: Appendix A Summary of Vector and Tensor Notation442 A Summary of Vector and Tensor Notation The most usual second-order differential operator in tensorial analysis is the Laplacian,

References 457

Kranys M (1972) Kinetic derivation of non-stationary general relativistic thermodynamics. NuovoCimento B 8:417–441

Kranys M (1977) Hyperbolic elasticity of dissipative media and its wave propagation modes. J PhysA 10:689–709

Kreuzer H. J (1981) Non-Equilibrium Thermodynamics and Its Statistical Foundations, Clarendon,Oxford

Kroner E (1963) Dislocation: a new concept in the continuum theory of plasticity. J Math Phys42:27–37

Kurz W, Fisher DJ (1992) Fundamentals of Solidification, 3rd edn. Trans Tech Publications,Aedermannsdorf

Lambermont J (1974) On the unification of the mathematical theory of plasticity and dislocationtheory by using thermodynamics. Int J Eng Sci 12:937–952, 953–965

Lambermont J, Lebon G (1973) On a generalization of the Gibbs equation for heat conduction.Phys Lett A 42:499–500

Lambermont J, Lebon G (1974) On the derivation of the Gibbs equation for a class of rheologicalbodies. Int J Non-Linear Mech 9:55–74

Landau LD (1965) On the theory of superconductivity. In: Ter Haar (ed) Collected papers.Pergamon, Oxford

Landau LD, Lifshitz EM (1980) Statistical Physics, 3rd edn. Pergamon, OxfordLandau LD, Lifshitz EM (1985) Mechanics of Fluids. Pergamon, OxfordLandsberg PT, Tonge G (1980) Thermodynamic energy conversion efficiencies. J Appl Phys

51:R1–R18Larecki W (1993) Symmetric conservative form of low-temperature phonon-gas hydrodynamics

II. Equations of heat transport and thermal equations of state. Nuovo Cimento D 14:141–176Larson BC, Tischler JZ, Mills DM (1986) Nanosecond resolution time-resolved x-ray study of

silicon during pulsed-laser irradiation. J Mater Res 1:144–154Lavenda B (1979) Thermodynamics of Irreversible Processes. McMillan, LondonLax PD (1957) Hyperbolic systems of conservation laws II. Comm Pure Appl Math 10:

537–566Lebon G (1980) Variational Principles in Thermomechanics. In CISME Courses and Lecture

Notes, vol 262. Springer, WienLebon G (1992) Extended Thermodynamics. In CISME Courses and Lecture Notes, vol 336.

Springer, Wien, pp 139–204Lebon G, Boukary MS (1988) Objectivity, kinetic theory, and extended irreversible thermodynam-

ics. Ing J Eng Sci 26:471–483Lebon G, Cloot A (1989) Propagation of ultrasonic sound waves in dissipative dilute gases and

extended irreversible thermodynamics. Wave Motion 11:23–32Lebon G, Dauby PC (1990) Heat transport in dielectric crystals at low temperature: a variational

formulation based on extended irreversible thermodynamics. Phys Rev A 42:4710–4715Lebon G, Jou D (1979) A continuum theory of liquid helium II based on the classical theory of

irreversible processes. J Non-Equilib Thermodyn 4:259–276Lebon G, Jou D (1983) Linear irreversible thermodynamics and the phenomenological theory of

liquid helium II. J Phys C 16:L199–L204Lebon G, Jou D, Casas-Vazquez J (1980) An extension of the local equilibrium hypothesis. J Phys

A: Math Gen 13:275–290Lebon G, Dauby PC, Palumbo A, Valenti G (1990) Rheological properties of dilute polymer

solutions: an extended thermodynamic approach. Rheol Acta 29:127–136Lebon G, Casas-Vazquez J, Jou D (1992) Questions and answers about a thermodynamic theory

of the third type. Contemp Phys 33:41–51Lebon G, Jou D, Casas-Vazquez J, Muschik W (1998) Weakly nonlocal and nonlinear heat

transport in rigid solids. J Non-Equil Thermodyn 23:176–191Lebon G, Depireux N, Lhuillier D (2001) An extended thermodynamic description of colloidal

suspensions. Proc 9th Natl Cong Theor Appl Mech 1:205

Page 18: Appendix A Summary of Vector and Tensor Notation442 A Summary of Vector and Tensor Notation The most usual second-order differential operator in tensorial analysis is the Laplacian,

458 References

Lebon G, Grmela M, Lhuillier D (2003) A comparative study of the coupling of flow withnon-Fickian thermodiffusion. Part I: Extended irreversible thermodynamics. J Non-EquilibThermodyn 28:1–22

Lebon G, Baltov A, Grmela M (2004) Extended thermodynamics of thermoelasticity, viscoelastic-ity and viscoplasticity. J Theor Appl Mech 34:3–20

Lebon G, Desaive Th, Dauby PC (2006) Two-fluid diffusion as a model for heat transport atmicro and nanoscales. In Proceedings of 7th International Meeting on Thermodiffussion. SanSebastian

Lebon G, Desaive Th, Dauby PC (2006) A unified extended thermodynamic description ofdiffusion, thermo-diffusion, suspensions, and porous media. J Appl Mech 73:16–20

Lebon G, Lhuillier D, Palumbo A (2007) A thermodynamic description of thermo-diffusion insuspensions of rigid particles. Eur Phys J ST 146:3–12

Lebon G, Ruggieri M, Valenti A (2008a) Extended thermodynamics revisited: renormalized fluxvariables and second sound in rigid solids. J Phys C 20:025223 (11p)

Lebon G, Jou D, Casas-Vazquez J (2008b) Understanding Non-equilibrium Thermodynamics,Foundations, Applications, Frontiers. Springer, Berlin, Heidelberg

Lebon G, Grmela M, Dubois Ch. (2010) From ballistic to diffusive regimes in heat transport anano-scales, in Proceedings of IMT 9 meeting, Toulouse, June 2010

Lebowitz JL (1999) Microscopic origins of irreversible macroscopic behaviour. Physica A263:516–527

Lepri S, Livi R, Politi A (2003) Thermal conduction in classical low-dimensional lattice. Phys Rep377:1–80

Levermore;D (1984) Relating Eddington factors to flux limiters. J Quant Spec Rad Transfer31:149–160

Levermore CD (1996) Moment closure hierarchies for kinetic theories. J Stat Phys 83:1021–1065Levermore CD, Pomraning GC (1981) A flux-limited diffusion theory. Astrophys J 348:321–334Levine RD, Tribus M (eds) (1979) The Maximum Entropy Formalism. MIT Press, Cambridge,

MALhuillier D (1995) From molecular mixtures to suspensions of particles. J Phys II France 5:19–36Lhuillier D (2001) Internal variables and the non-equilibrium thermodynamics of colloidal

suspensions. J Non-Newtonian Fluid Mech 96:19–30Lhuillier D, Ouibrahim A (1980) A thermodynamic model for solutions of deformable molecules.

J Mecanique 19:725–741Lhuillier D, Grmela M, Lebon G (2003) A comparative study of the coupling of flow with non-

Fickian thermodiffusion. Part III: internal variables. J Non-Equilib Thermodyn 28:51–68Li B, Barrow JD (2009) Does bulk viscosity create a viable unified dark matter model? Phys Rev

D 79:103521 (9p)Lima JAS, Portugal R, Waga I (1988) Bulk-viscosity-driven asymmetric inflationary universe. Phys

Rev D 37:2755–2760Liu I-S (1972) Method of Lagrange multipliers for exploitation of the entropy principle. Arch Rat

Mech Anal 46:131–148Liu W, Asheghi M (2004) Phonon-boundary scattering in ultrathin single-crystal silicon layers

Appl Phys Lett 84:3819–3821Liu I-S, Muller I, Ruggeri T (1986) Relativistic thermodynamics of gases. Ann Phys (NY)

169:191–219Liu I-S, Rincon MA, Muller I (2002) Iterative approximation of stationary heat conduction in

extended thermodynamics. Cont Mech Thermodyn 14:483–493Llebot JE, Jou D, Casas-Vazquez J (1983), A thermodynamic approach to heat and electrical

conduction in solids. Physica A 121:552–562Lodge AS (1989) An attempt to measure the first normal-stress difference N1 in shear flow for a

polyisobutylene/decalin solution “D2b” at shear rates up to 108 s�1. J Rheol 33:821–841Loose W, Hess S (1989) Rheology of dense model fluids via nonequilibrium molecular dynamics:

Shear thinning and ordering transition. Rheol Acta 28:91–101

Page 19: Appendix A Summary of Vector and Tensor Notation442 A Summary of Vector and Tensor Notation The most usual second-order differential operator in tensorial analysis is the Laplacian,

References 459

Luikov AV, Bubnov VA, Soloviev A (1976) On wave solutions of heat conduction equations. Int JHeat Mass Transf 19:175–245

Lumley J (1983) Turbulence modeling. J Appl Mech 50:1097–1103Luzzi R, Vasconcellos AR, Casas-Vazquez J, Jou D (1997) Characterization and measurement

of a nonequilibrium temperature-like variable in irreversible thermodynamics. Physica A 234:699–714

Luzzi R, Vasconcellos AR, Casas-Vazquez J, Jou D (1998) On the selection of the state space innon-equilibrium thermodynamics. Physica A 248:111–137

Luzzi R, Vasconcellos AR, Ramos JG (2001) Statistical Foundations of Irreversible Thermody-namics. Teubner, Leipzig

Luzzi R, Vasconcellos AR, Ramos JG (2002) Predictive Statistical Mechanics: A Non-equilibriumEnsemble Formalism. Kluwer, Dordrecht

Maartens R (1995) Dissipative cosmology. Class Quant Grav 12:1455–1466Maartens R, Mendez V (1997) Nonlinear bulk viscosity and inflation. Phys Rev D 55:1937–1942MacDonald MJ, Muller SJ (1996) Experimental study of shear-induced migration of polymers in

dilute solutions. J Rheol 40:259–283Machlup S, Onsager L (1953) Fluctuations and irreversible process. II Systems with kinetic energy.

Phys Rev 91:1512–1515Madruga S, Perez-Garcıa C, Lebon G (2003) Convective instabilities in two laterally superposed

horizontal layers heated. Phys Rev E 68:041607, 1–12.Madureira J, Vasconcellos AR, Luzzi R, Casas-Vazquez J, Jou D (1998) Evolution of dissipative

processes via a statistical thermodynamical approach. II. Thermodynamic properties of a fluidof bosons. J Chem Phys 108:7580–7586

Magnasco MO (1994) Molecular combustion motors. Phys Rev Lett 72:2656–2659Mahan G, Sales B, Sharp J (1997) Thermoelectric materials: new approaches to an old problem.

Phys Today 50:42–47Majumdar A (1993) Microscale heat conduction in dielectric thin films. J Heat Transf 115:

7–16Mandel J (1978) Proprietes Mecaniques des Materiaux. Eyrolles, ParisMartınez J (1996) Transport processes in the gravitational collapse of an anisotropic fluid. Phys

Rev D 53:6921–6940Martınez J, Pavon D (1994) Radiating gravitational collapse with bulk viscosity. Mon Not R Astron

Soc 268:654–664Masoliver J, Porra JM, Weiss GH (1992) Solutions to the telegrapher’s equation in the presence of

traps. Phys Rev A 45:2222–2227Matzner RA (1972) Dissipative effects in the expansion of the universe. II. A multicomponent

model for neutrino dissipation of anisotropy in the early universe. Astrophys J 171:433–448Matzner RA, Misner CW (1972) Dissipative effects in the expansion of the universe. I. Astrophys

J 171:415–432Maugin G (1999) The Thermodynamics of Nonlinear Irreversible Behaviours. World Scientific,

SingaporeMaugin G (1992) The Thermodynamics of Plasticity and Fracture. Cambridge University Press,

CambridgeMaugin G, Muschik W (1994) Thermodynamics with internal variables. J Non-Equilib Thermodyn

19:217–249, 250–289Maurer MJ, Thomson HA (1973) Non-Fourier effects at high heat flux. J Heat Transf 95:

284–286Maxwell JC (1867) On the dynamical theory of gases. Philos Trans Roy Soc Lond 157:49–88Mc Dougall JC, Turner JS (1982) Influence of cross-diffusion on ‘finger’ double-diffusive convec-

tion. Nature 299:812–814Mc Quarrie DA (1976) Statistical Mechanics. Harper & Row, New YorkMeixner J (1943) Zur thermodynamik der irreversiblen prozesse in gasen mit chemisch rea-

gierenden, dissozierenden und anregbaren komponenten. Ann Phys (Leipzig) 43:244–269

Lyapunov M (1966) Stability of Motion (English translation). Academic, New York

Page 20: Appendix A Summary of Vector and Tensor Notation442 A Summary of Vector and Tensor Notation The most usual second-order differential operator in tensorial analysis is the Laplacian,

460 References

Meixner J (1954) Thermodynamische Theorie der elastische Relaxation. Z Naturforsch 9a:654Meixner J (1973) The entropy problem in thermodynamics of processes. Rheol Acta 12:

272–283Meixner J (1973) On the foundations of thermodynamics of processes. In: Stuart E, Gal-Or B,

Brainard A (eds) A Critical Review of Thermodynamics. Mono Book Corp., Baltimore, MDMeixner J, Reik HG (1959) Thermodynamik der Irreversible Prozesse. in Handbuch der Physik,

Bd 3/ II, Springer, BerlinMendez V, Compte A (1998) Wavefronts in bistable hyperbolic reaction-diffusion systems. Physica

A 260:90–98Mendez V, Fort J (1999) Irreversible thermodynamics of Poisson processes with reaction. Phys

Rev E 60:6168–6171Mendez V, Llebot JE (1997) Hyperbolic reaction-diffusion equations for a forest fire model. Phys

Rev E 56:6557–6563Mendez V, Fort J, Farjas J (1999) Speed of wave-front solutions to hyperbolic reaction-diffusion

equations. Phys Rev E 60:5231–5243Mendez V, Fedotov S, Horsthemke W (2009) Reaction-Transport Systems: Mesoscopic Founda-

tions, Fronts, and Spatial Instabilities. Springer, BerlinMendez V, Pavon D (1996) Expanding models with a varying cosmological term and bulk stress.

Gen Rel Grav 28:679–689Metiu H, Freed KF (1977) Bulk viscosity of polymer solutions. J Chem Phys 67:3303–3315Meyer E, Sessler G (1957) Schallausbreitung in Gasen bei hohen Frequenzen und sehr niedrigen

Drucken. Z fur Phys 149:15–39Mihalas D, Mihalas BW (1984) Radiation hydrodynamics. Oxford University Press, OxfordMiller DG (1960) Thermodynamics of irreversible processes: the experimental verification of the

Onsager reciprocal relations. Chem Rev 60:15–37Miller BN, Larson PM (1979) Heat flow in a linear harmonic chain: An information-theoretic

approach to the nonequilibrium stationary state. Phys Rev A 20:1717–1727Mises R von (1928) Mechanik der plastischen formanderung von kristallen. Z Angew Math Mech

8:161–185Modest MF (1993) Radiative Heat Transfer. McGraw-Hill, New YorkMogilner A, Fisher JJ, Baskin RJ (2001) Structural changes in the neck linker of kinesin explain

the load dependence of the motor’s mechanical cycle. J Theor Biol 211:143–157Mongiovı MS (1993) Extended irreversible thermodynamics of liquid helium II. Phys Rev B

48:6276–6283Mongiovı MS (2001) Extended irreversible thermodynamics of liquid helium II: Boundary

conditions and propagation of fourth sound. Physica A 292:55–74Mongiovı MS, Jou D (2007) Thermodynamical derivation of a hydrodynamical model of inhomo-

geneous superfluid turbulence. Phys Rev B 75:024507 (12p)Mori H (1965) A continued-fraction representation of the time-correlation functions. Prog Theoret

Phys 34:399–416Morse PM, Feshbach H (1953) Mathematical Methods of Theoretical Physics. McGraw-Hill, New

York

Math Mech 23:686–700Mroz Z, Oliferuk W (2002) Energy balance and identification of hardening moduli in plastic

deformation processes. Int J Plasticity 18:379–397Muller I (1967) Zum Paradoxon der Warmetheorie. Z Phys 198:329–344Muller I (1969) Toward relativistic thermodynamics. Arch Rat Mech Anal 34:259–282Muller I (1971) The coldness, a universal function in thermoelastic bodies. Arch Rat Mech Anal

41:319Muller I (1972) On the frame dependence of stress and heat flux. Arch Rat Mech Anal 45:

241–250Muller I, Ruggeri T (1998) Rational Extended Thermodynamics, 2nd edn. Springer, New York

Movchan A (1959) The direct method of Lyapunov in stability problems of elastic systems. J Appl

Page 21: Appendix A Summary of Vector and Tensor Notation442 A Summary of Vector and Tensor Notation The most usual second-order differential operator in tensorial analysis is the Laplacian,

References 461

Muller I, Wilmanski K (1986) Extended thermodynamics of a non-Newtonian fluid. Rheol Acta25:335–349

Murdoch AI (1983) On material frame-indifference, intrinsic spin and certain constitutive relationsmotivated by the kinetic theory of gases. Arch Rat Mech Anal 83:185–194

Murphy GL (1973) Big-bang model without singularities. Phys Rev D 8:4231–4233Muscato O, Di Stefano V (2008) Modelling heat generation in a submicrometric nC � n � nC

silicon diode. J Appl Phys 104:124501–124510Muschik W (1977) Empirical foundation and axiomatic treatment of non-equilibrium temperature.

Arch Rat Mech Anal 66:379–401Muschik W (1990) Aspects of Non-equilibrium Thermodynamics. World Scientific, SingaporeNagano K, Karasudani T, Okamoto H, Mori H (1980) Reduced equations of motion for generalized

fluxes and forces in the continued-fraction expansion. Prog Theoret Phys 63:1904–1911Naqvi KR, Waldenstrom A (2005) Brownian motion description of heat conduction by phonons.

Phys Rev Lett 95:065901 (4p)Narayanamurti V, Dynes RC (1972) Observation of second sound in bismuth. Phys Rev Lett

28:1461–1465Neogi P (1983) Anomalous diffusion of vapors through solid polymers. Part I. Irreversible

thermodynamics of diffusion and solution processes. AIChE J 29:829–833Nettleton RE (1959) Thermodynamics of viscoelasticity in liquids. Phys Fluids 2:256–263Nettleton RE (1960) Relaxation theory of thermal conduction in liquids. Phys Fluids 3:

216–225Nettleton RE (1987) Shear-rate non-analicity in simple liquids. J Non-Equilib Thermodyn 12:

273–290Nettleton RE (1988) Information-theoretic extended entropy for steady heat conduction in dense

fluids. J Phys A 21:3939–3949Nettleton RE (1990) The Gibbs equation for maximum entropy. J Chem Phys 93:8247–8253Nettleton RE (1994) On the relation between thermodynamic temperature and kinetic energy per

particle. Can J Phys 72:106–112Nicolis G, Prigogine I (1977) Self-organization in Nonequilibrium Systems. Wiley, New YorkNicolis G, Prigogine I (1989) Exploring Complexity. Freeman, New YorkNigmatulin RY (1990) Dynamics of Multiphase Media. Hemisphere, New YorkNisbet RM, Gurney WSC (1974) Comment on the information-theoretic derivation of non-

equilibrium velocity distributions. Phys Rev A 10:720–723Noll W (1974) The Foundations of Mechanics and Thermodynamics. Springer, BerlinOldroyd JG (1958) Non-Newtonian effects in steady motion of some idealized elastico-viscous

fluids. Proc Roy Soc London A 245:278–297Oliveira HP, Salim JM (1988) Non-equilibrium Friedman cosmologies. Acta Phys Pol B 19:

649–657Olson TS, Hiscock WA (1989) Relativistic dissipative hydrodynamics and the nuclear equation of

state. Phys Rev C 39:1818–1826Olson TS, Salim WA (1988) Relativistic dissipative hydrodynamics and the nuclear equation of

state. Phys Rev C 39:1818–1826Onsager L (1931) Reciprocal relations in irreversible processes. Phys Rev 37:405–426; 38:

2265–2279Onuki A (1997) Phase transitions of fluids in shear flow. J Phys: Condens Mater 9:6119–6157Onuki A (2002) Phase Transitions Dynamics. Cambridge University Press, CambridgeOrtiz de Zarate JM, Sengers JV (2006) Hydrodynamic Fluctuations in Fluids and Fluid Mixtures.

Elsevier, AmsterdamOttinger HC (1999a) A thermodynamically admissible reptation model for fast flows of entangled

polymers. J Rheol 43:1461–1493Ottinger HC (1999b) Thermodynamically admissible equations for causal dissipative cosmology,

galaxy formation, and transport processes in gravitational collapse. Phys Rev D 60: 103507,1–9

Page 22: Appendix A Summary of Vector and Tensor Notation442 A Summary of Vector and Tensor Notation The most usual second-order differential operator in tensorial analysis is the Laplacian,

462 References

Ottinger HC (2000) Derivation of a two-generator framework on non-equilibrium thermodynamicsfor quantum systems. Phys Rev E 62:4720–4724

Ottinger HC (2005) Beyond Equilibrium Thermodynamics. Wiley, HobokenOttinger HC, Grmela M (1997) Dynamics and thermodynamics of complex fluids. II. Illustrations

of a general formalism. Phys Rev E 56:6633–6655Ozawa H, Ohmura A, Lorenz RD, Pujol T (2003) The second law of thermodynamics and the

global climate system: A review of the maximum entropy production principle. Rev Geophys41:4/1018 (24p)

Ozisik MN, Tzou DY (1994) On the wave theory in heat conduction. J Heat Transf Trans ASME116:526–535

Pavon D (1990) The generalized second law and extended thermodynamics. Class Quant Grav7:487–491

Pavon D, Jou D and Casas-Vazquez J (1980) About the relativistic temperature gradient. Phys LettA 78:317–318

Pavon D, Jou D, Casas-Vazquez J (1982) On a covariant description of dissipative phenomena.Ann Inst Henri Poincare A 36:79–88

Pavon D, Bafaluy J, Jou D (1991) Causal Friedmann–Robertson–Walker cosmology. Class QuantGrav 8:347–360

Peebles PJE (1993) Principles of Physical Cosmology. Princeton University Press, PrincetonPerez-Garcıa C, Jou D, Lopez de Haro M, Rodrıguez RF, Garcıa-Colın LS (1986) An extended

thermodynamic approach for the longitudinal velocity correlation function. Physica A135:251–260

Perez-Garcıa C, Casas-Vazquez J, Lebon G (1989) A nonequilibrium thermodynamic descriptionof dilute polymer solutions. J Polym Sci Part B: Polym Phys 27:1807–1821

Perzyna P (1966) Fundamental problems in plasticity. Adv Appl Mech 9:243–377Ponter ARS, Bataille J, Kestin J (1979) A thermodynamic model for the time dependent plastic

deformation of solids. J Mecanique 18:511–539Prager W (1955) Probleme des Plasticitatstheorie. Birkauser, BalePradhan A, Pandey P, Jotania K, Yadav MK (2007) Plane symmetric viscous fluid cosmological

models with varying ƒ-term. Int J Theor Phys 46:2774–2787Prakash JR, Mashelkar RA (1991) The diffusion tensor for a flowing dilute solution of Hookean

dumbbells: anisotropy and flow rate dependence. J Chem Phys 95:3743Prigogine I (1947) Etude Thermodynamique des Phenomenes Irreversibles. Desoer, LiegePrigogine I (1949) Le domaine de validite de la thermodynamique des phenomenes irreversibles.

Physica 15:272–284Prigogine I (1961) Introduction to Thermodynamics of Irreversible Processes. Interscience, New

YorkQiu TQ, Tien CL (1992) Short-pulse laser heating of metals. Int J Heat Mass Transfer 35:719–726Qiu TQ, Tien CL (1993) Heat transfer mechanisms during short-pulse laser heating of metals.

ASME J Heat Transfer 33:835–841Rangel-Nafaile C, Metzner A, Wissbrun K (1984) Analysis of stress-induced phase separations in

polymer solutions. Macromolecules 17:1187–1195Reguera D (2004) Mesoscopic nonequilibrium kinetics of nucleation processes. J Non-Equilib

Thermodyn 29:327–344Reguera D, Rubı JM, Vilar JM (2005) The mesoscopic dynamics of thermodynamic systems.

J Phys Chem B 109:21502–21515Reichl LE (1980) A Modern Course in Statistical Physics. University Texas Press, Austin, TXReiner M (1945) A mathematical theory of dilatancy. Am J Math 67:350–362Resibois P, De Leener M (1977) Classical Kinetic Theory of Fluids. Wiley, New YorkReynolds O (1885) On the dilatancy of media composed of rigid particles in contact. With

experimental illustrations. Phil Mag 20:469–481Rice SA and Gray P (1965) The statistical mechanics of simple liquids, Wiley-Interscience, New

York

Page 23: Appendix A Summary of Vector and Tensor Notation442 A Summary of Vector and Tensor Notation The most usual second-order differential operator in tensorial analysis is the Laplacian,

References 463

Rivlin RS (1948) The hydrodynamics of non-Newtonian fluids I. Proc Roy Soc A 193:260–281

Rivlin RS, Ericksen JL (1955) Stress-deformation relations for isotropic materials. J Rat MechAnal 4:323–425

Robertson B (1967) Equations of motion in nonequilibrium statistical mechanics. Phys Rev160:175–183

Rodrıguez RF, Garcıa-Colın LS, del Castillo LF (1987) Fluids with internal degrees of freedom.Extended thermodynamics approach. J. Chem. Phys. 86:4208–4215

Roldughin VI (1995) Non-equilibrium thermodynamics and the moment method. J Non-EquilibThermodyn 20:230–244

Romano V (2001) Non parabolic band hydrodynamical model of silicon semiconductors andsimulation of electron devices. Math Meth Appl Sci 24:439–471.

Romano V (2007) Quantum corrections to the semiclassical hydrodynamical model of semicon-ductors based on the maximum entropy approach. J Math Phys 48:123504 (24p)

Romano V, Pavon D (1994) Dissipative effects in Bianchi-III type cosmologies. Phys Rev D50:2572–2580

Romano V, Russo G (2000) Numerical solutions for hydrodynamical models of semi-conductors.Math Models Meth Appl Sci 10:1099–1120

Rosenau P (1993) Random Walker and the telegrapher’s equation: a paradigm of a generalizedhydrodynamics. Phys Rev E 48:R655–R657

Rouse PE (1953) A theory of the linear viscoelastic properties of dilute solutions of coilingpolymers. J Chem Phys 21:1272–1280

Rubı JM (2004) The non-equilibrium thermodynamics approach to the dynamics of mesoscopicsystems. J Non-Equilib Thermodyn 29:315–325

Rubı JM, Casas-Vazquez J (1980) Thermodynamical aspects of micropolar fluids. A non-linearapproach. J Non-Equilib Thermodyn 5:155–164

Ruelle D (1991) Chance and Chaos. Princeton University Press, Princeton, NJRuggeri T, Muracchini A, Seccia L (1994) Continuum approach to phonon gas and shape changes

of second sound via shock wave theory. Nuovo Cimento D 16:15–44Ruggeri T (1993) Breakdown of shock wave structure solutions. Phys Rev E 47:4135–4140Ruggeri T Recent Results on Wave Propagation in Continuum Models. In CISM Courses and

Lectures Notes, vol 344. Springer, Wien, New York, pp 105–154Ruggeri T (2000) Maximum of entropy density in equilibrium and minimax principle for an hyper-

bolic system of balance laws. In: Albers B (ed) Contribution to Continuum Theories, vol 18.WIAS report

Ryskin G (1988) Brownian motion in a rotating fluid: diffusivity is a function of the rotating rate.Phys Rev Lett 61:1442–1445

Salamon P, Sieniutycz S (ed) (1991) Finite-time Thermodynamics and Optimization. Taylor &Francis, New York

Salamon P, Nitzan A, Andresen B, Berry RS (1980) Minimum entropy production and theoptimization of heat engines. Phys Rev A 21:2115–2129

Santos A and Brey JJ (1991) Far from equilibrium velocity distribution of a dilute gas. Physica A174:355–390

Schlesinger MF (1988) Fractal time in condensed matter. Ann Rev Phys Chem 39:269–290Schlogl F (1980) Stochastic measures in nonequilibrium thermodynamics. Phys Rep 62:

267–380Schmitz R (1988) Fluctuations in nonequilibrium fluids. Phys Rep 171:1–58Schultz BE (1985) A First Course in General Relativity. Cambridge University Press, CambridgeSchweizer MA (1985) Transient elastic photon diffusion. Astron Astrophys 151:79–89Scriven LE, Sternling CV (1964) On cellular convection driven by surface tension gradients: effect

of mean surface tension and viscosity. J Fluid Mech 19:321–340Seeger A (1963) Electron Microscopy and Strength of Crystals. Wiley, New YorkSeitaridou E, Inamdar MI, Phillips R, Ghosh K, Dill K (2007) Measuring flux distributions for

diffusion in the small-numbers limit. J Phys Chem B 111:2288–2292

Page 24: Appendix A Summary of Vector and Tensor Notation442 A Summary of Vector and Tensor Notation The most usual second-order differential operator in tensorial analysis is the Laplacian,

464 References

Shannon C (1948) A mathematical theory of communication. Bell System Tech J 27:379–423,623–656

Shluter A, Lortz D, Busse FH (1965) On the stability of steady finite amplitude convection. J FluidMech 23:129–144

Shvart D, Delettrez J, McCrory RL, Verdon CP (1981) Self-consistent reduction of the Spitzer-Harm electron thermal heal flux in steep temperature gradients in laser-produced plasmas. PhysRev Lett 47:247–260

Sidoroff FJ (1975) Variables internes en viscoelasticite. J Mecanique 14:545–566, 571–595;(1976), 15:95–118

Sieniutycz S (1994) Conservation Laws in Variational Thermohydrodynamics. Kluwer, DordrechtSieniutycz S, Farkas H (eds) (2004) Variational and Extremum Principles in Macroscopic Systems.

Elsevier Science, OxfordSieniutycz S, Berry RS (1991) Field thermodynamic potentials and geometric thermodynamics

with heat transfer and fluid flow. Phys Rev A 43:2807–2818Sieniutycz S, Salamon P (eds) (1992) Extended Thermodynamic Systems. Taylor & Francis, New

YorkSilhavy M (1997) The Mechanics and Thermodynamics of Continuous Media. Springer, BerlınSmith GF (1965) On isotropy integrity bases. Arch Rat Mech Anal 18:282–292Snider RF, Lewchuk KS (1967) Irreversible thermodynamics of a fluid system with spin. J Chem

Phys 46:3163–3172Snyder GJ, Ursell TS (2003) Thermoelectric efficiency and compatibility. Phys Rev Lett 91:148301Sobolev SL (1995) Two-temperature Stefan problem. Phys Lett A 197:243–246Sparrow C (1982) The Lorenz Equations: Bifurcations, Chaos and Strange Attractors. Springer,

New YorkSpencer AJM, Rivlin RS (1959) Further results in the theory of matrix polynomials. Arch Rat

Mech Anal 4:214–230Spohn H, Lebowitz JL (1977) Stationary non-equilibrium states of infinite harmonic systems.

Comm Math Phys 54:97–123Stewart JM (1977) Non-transient relativistic thermodynamics and kinetic theory. Proc Roy Soc

London A 357:59–75Stocker H, Greiner W (1986) High energy heavy ion collisions-probing the equation of state of

highly excited hadronic matter. Phys Rep 137:277–392Struchtrup H (1998) Projected moments in relativistic kinetic theory. Physica A 253:555–593Struchtrup H, Torrilhon M (2007) H theorem, regularization, and boundary conditions for

linearized 13-moment equations. Phys Rev Lett 99:014502–014504Struchtrup H, Weiss W (1998) Maximum of the local entropy production in stationary processes.

Phys Rev Lett 80:5048–505Stuart JT (1958) O the non-linear mechanics of hydrodynamic instability. J Fluid Mech 4:

1–21Sudharan P, Johri VB (1994) Cosmological models with particle production and bulk viscosity.

Gen Relat Grav 26:41–51Sussman RA (1994) Bulk viscosity and matter creation in inhomogeneous cosmologies with a

shear free fluid source. Class Quant Grav 11:1445–1451Tanner RI (1988) Engineering rheology, Clarendon Press, OxfordThom R (1972) Stabilite Structurelle et Morphogenese. Benjamın, Reading, MAThomas NL, Windle AH (1982) A theory of case II diffusion. Polymer 23:529–542Todd BB, Evans DJ, Daivis PJ (1965) Pressure tensor for inhomogeneous fluids. Phys Rev E

52:1627–1638Todd BD, Evans DJ (1995) The heat flux vector for highly inhomogeneous nonequilibrium fluids

in very narrow pores. J Chem Phys 103:9804–9809Todd BD, Daivis PJ, Evans DJ (1995) Heat flux vector in highly inhomogeneous nonequilibrium

fluids. Phys Rev E 51:4362–4368Tokatly IV, Pankratov O (1999) Hydrodynamic theory of an electron gas. Phys Rev B 60:15550–

15553

Page 25: Appendix A Summary of Vector and Tensor Notation442 A Summary of Vector and Tensor Notation The most usual second-order differential operator in tensorial analysis is the Laplacian,

References 465

Tokatly IV, Pankratov O (2000) Hydrodynamics beyond local equilibrium: application to electrongas. Phys Rev B 62:2759–2772

Tremblay AMS (1984) Theories of fluctuations in nonequilibrium systems. In: Casas-VazquezJ, Jou D, Lebon G (eds) Recent Developments in Nonequilibrium Thermodynamics. LectureNotes in Physics 199. Springer, Berlin

Tremblay AMS, Siggia ED, Arai, R (1981) Fluctuations about simple nonequilibrium steady states.Phys Rev 23:1451–1480

Tremblay A-MS, Vidal F (1982) Fluctuations in dissipative steady state of thin metallic films. PhysRev B 25:7562–7576

Triginer J, Pavon D (1994) Particle production in a viscous cosmological fluid. Gen Relat Grav26:513–524

Triginer J, Zimdahl W, Pavon D (1996) Kinetic theory for particle production. Class Quant Grav13:403–416

Truesdell C (1968) Thermodynamics for beginners. In: Parkus H, Sedov L (eds) IrreversibleAspects of Continuum Mechanics. Springer, Wien

Truesdell C (1984) Rational Thermodynamics. 2nd edn. Springer, New YorkTruesdell C, Noll W (1965) The Non-Linear Field Theories. In: Handbuch der Physik, Bd. III/3.

Springer, BerlinTruesdell C, Toupin R (1960) The Classical Field Theories. In: Handbuch der Physik, Bd. III/1.

Springer, BerlinTurok N (1988) String-driven inflation. Phys Rev Lett 60:549–552Tzou DY (1997) Macro-to-Microscale Heat Transfer. The Lagging Behaviour. Taylor & Francis,

New YorkUdey N, Israel w (1982) General relativistic radiative transfer: the 14-moment approximation. Mon

Not R Astr Soc 199:1137–1147Valenti A, Torrisi M, Lebon G (1997) Heat pulse propagation by second sound in dielectric crystals.

J Phys C 9:3117–3127Valenti A, Torrisi M, Lebon G (2002) Shock waves in crystalline dielectrics at low temperature.

J Phys Condens Matter 14:3553–3564Van den Broeck C (1990) Taylor dispersion revisited. Physica A 168:677–696Van den Hoogen RJ, Coley AA (1995) Qualitative analysis of causal anisotropic viscous-fluid

cosmological models. Class Quant. Grav 12:2335–2354Van Kampen NG (2000) Views of a physicist. World Scientific., Singapore

140:133–162Vasconcellos AR Luzzi R, Garcıa-Colin LS (1991) A microscopic approach to irreversible

thermodynamics (I): General theory. Phys Rev A 43:6622–6632Vasconcellos AR, Luzzi R, Garcıa-Colin LS (1995) A microscopic approach to Irreversible Ther-

modynamics (VIII): Diffusion and mobility and generalized Einstein relation. Physica A221:495–510

Velasco RM, Garcıa-Colın LS (1992) The kinetic foundations of extended irreversible thermody-namics revisited. J Stat Phys 69:217–229

Velasco RM, Garcıa-Colın LS (1993) The kinetic foundations of non-local nonequilibriumthermodynamics. J Non-Equilib Thermodyn 18:157–172

Velasco RM, Garcıa-Colın LS (1995) Generalized hydrodynamics in gases. J Non-Equilib Ther-modyn 20:1–18

Vernott P (1958) La veritable equation de la chaleur. Compt Rend Acad Sci Paris 247:2103–2107

Vidal C, Dewel G, Borckmans P (1994) Au dela de l’equilibre. Hermann, ParisVillar JMG, Rubı JM (2001) Thermodynamics beyond local equilibrium. Proc Natl Acad Sci USA

98:11081–11084Vlad MO, Ross J (1993) H theorem for telegrapher-type master equation. Phys Lett A 184:403–408Wald RM (1984) General Relativity. University of Chicago Press, Chicago, IL

Van Weert CG (1982) Maximum entropy principle and relativistic hydrodynamics. Ann Phys (NY)

Page 26: Appendix A Summary of Vector and Tensor Notation442 A Summary of Vector and Tensor Notation The most usual second-order differential operator in tensorial analysis is the Laplacian,

466 References

Waldmann L (1967) Non-equilibrium thermodynamics and boundary conditions. Z Natur-forschung 22a:269–280

Waldman L and Vestner H (1975) On the theory of boundary condition. Physica A 80:528Wang J, Wang J-S ( 2006) Carbon nanotube thermal transport: Ballistic to diffusive. Appl Phys

Lett 88:111909Weinberg S (2008) Cosmology. Oxford University Press, OxfordWeiss W (1990) Hierarchie der Erweitereten Thermodynamik. Dissertation Tech. Univ. Berlin,

BerlinWeiss W (1996) Comments on “Existence of kinetic theory solutions to the shock structure

problem” [PhysFluids 7:(1964)], Phys Fluids A 8:1689–1690Wilhelm HE, Choi SH (1975) Nonlinear hyperbolic theory of thermal waves in metals. J Chem

Phys 63:2119Wilmanski K (1998) Thermodynamics of Continua. Springer, BerlınWolf BA (1984) Thermodynamic theory of flowing polymer solutions and its application to phase

separation. Macromolecules 17:615–618Wong CK, McLennan JA, Lindenfeld M, Dufty JW (1978) Theory of nonlinear transport in Burnett

order. J Chem Phys 68:1563–1573Woods LC (1975) The Thermodynamics of Fluid Systems. Clarendon, OxfordWoods LC (1981/1982) The bogus axioms of continuum mechanics. Bull Inst Math Appl 17:

98–102; 18:64–67Woods LC, Troughton H (1980) Transport processes in dilute gases over the whole range of

Knudsen numbers. Part 2: ultrasonic sound waves. J Fluid Mech 100:321–331Woods LC (1994) Kinetic theory of gases and magnetoplasmas, Oxford University Press, OxfordYang R, Chen G, Laroche M, Taur Y (2005) Simulation of nanoscales multidimensional transient

heat conduction problems using ballistic-diffusive equations and phonon Boltzmann equation.J Heat Transf 127:298–306

Zakari M, Jou D (1993) Equations of state and transport equations in viscous cosmological model.Phys Rev D 48:1597–1601

Zemansky MW (1951) Heat and Thermodynamics. McGraw-Hill, New YorkZhang ZM (2007) Nano/Microscale Heat Transfer. McGraw-Hill, New YorkZhang H, Lu Z, Tian L, Tan Z, Liu L, Li Z (2006) Measurement of thermal conductivity

of ultra-thin single crystal silicon film using symmetric structure. Chin J Semicond 27:1961–1965

Zienkiewics OC, Morgan K (1983) Finite elements and approximation, Wiley, New YorkZimdahl W, Pavon D, Jou D (1993) Cosmological perturbations in a universe with particle

production. Class Quant Grav 10:1775–1789Zimdahl W, Pavon D (1993), Cosmology with adiabatic matter creation. Phys Lett A 176:57–61Zimdahl W, Pavon D (1994), Cosmology with adiabatic matter creation, Int J Mod Phys D 3:

327–330Zimdahl W, Triginer J, Pavon D (1996) Collisional equilibrium, particle production, and the

inflationary universe. Phys Rev D 54:6101–6110Zimm BH (1956) Dynamics of polymer molecules in dilute solution: viscoelasticity, flow

birefringence and dielectric loss. J Chem Phys 24:269–278Zubarev DN, Morozov V, Ropke G (1997) Statistical mechanics of nonequilibrium processes.

Basic Concepts, Kinetic Theory, vol 1.;elaxation and Hydrodynamic Processes, vol 2.Akademie Verlag, Berlin

General Books and Popularizations

Atkins PW (2007) Four Laws that drive the Universe. Oxford University Press, OxfordBerge P, Pomeau Y, Vidal C (1984) L’ordre dans le chaos. Hermann, ParisCoveney P, Highfield R (1990) The Arrow of Time. Flamingo, London

Page 27: Appendix A Summary of Vector and Tensor Notation442 A Summary of Vector and Tensor Notation The most usual second-order differential operator in tensorial analysis is the Laplacian,

References 467

Davies PCW (1974) The Physics of Time Asymmetry. University of California Press, BerkeleyDenbigh K, Denbigh J (1985) Entropy in Relation with Incomplete Knowledge. Cambridge

University Press, CambridgeLandsberg PT (2001) Seeking Ultimates. An Intuitive Guide to Physics. Institute of Physics

Publishing, Bristol/PhiladelphiaLeggett AJ (1987) The Problems of Physics. Oxford University Press, OxfordPrigogine I (1980) From Being to Becoming. Freeman, San FranciscoPrigogine I (1996) La fin des certitudes. O. Jacob, ParisPrigogine I, Stengers I (1979) La nouvelle alliance, metamorphose de la science. Gallimard; Order

out of Chaos: Man’s new dialogue with nature. Bantam, New York, 1984Prigogine I, Stengers I (1988) Entre le temps et l’eternite. Fayard, ParisSegre G (2002) Einstein’s Refrigerator: Tales of the Hot and Cold. Penguin, LondonSegre G (2002) A Matter of Degrees: What Temperature Reveals about the Past and Future of our

Species, Planet, and Universe. Penguin, LondonSchneider ED, Sagan D (2005) Into the Cool: Energy Flow, Thermodynamics, and Life. Chicago

University Press, Chicago, IL/LondonVidal Ch, Lemarchand H (1988) La reaction creatrice. Herman, ParisWinfree A (1980) The Geometry of Biological Time. Springer, HeidelbergWinfree A (1987) The Timing of Biological Clocks. Scientific American Library, Freeman, New

YorkWinfree A (1987) When Time Breaks Down. Princeton University Press, Princeton, NJ

Page 28: Appendix A Summary of Vector and Tensor Notation442 A Summary of Vector and Tensor Notation The most usual second-order differential operator in tensorial analysis is the Laplacian,

Author Index

A

Abramo, L.R.W., 431Ackerson, B.J., 187Alder, B.J., 285Alley, W.E., 285Alsemeyer, H., 269Alvarez, F.X., 234, 237, 238, 240Andreev, N.S., 295, 296Anile, A.M., 118, 156, 221, 240, 254, 260,

261, 269, 270, 334–337Antaki, P.J., 206–208Archimedes, 317Arrhenius, 206, 208Asheghi, M., 237Astarita, G., 366, 367

B

Baccarani, G., 335, 336Balescu, 113Bali, R., 429Banach, Z., 80, 148, 414Baranyai, A., 81, 184, 190Barrow, J.D., 426, 427, 430Barton, G., 338Basedow, 395–397Bataille, J., 347Bauer, H.-J., 262Bauschinger, 359Bedeaux, D., 3, 215Bekenstein, 432Belinskii, V.A., 425, 427, 429Benard, 35Beris, A.N., 32, 33, 399Berne, B.J., 169, 276Bidar, H., 150, 189, 419Binder, K., 297

Bird, R.B., 31, 359, 360, 362, 363, 365, 373,385

Bloch, 338Blotekjaer, K., 335Boillat, G., 85, 414Boltzmann, 8, 77, 79, 93–97, 99, 101,

103–107, 111, 113, 124, 129, 134,138, 144, 164, 170, 210, 234, 236,240, 241, 245, 249–251, 269, 301,327, 334, 360, 361, 363, 413, 414,417, 418, 430, 445

Boon, J.P., 276, 280, 284, 287Bose, 130, 156, 161, 162, 225, 243, 426Boukary, M.S., 31Brenner, 316Bressan, A., 413Brey, 80, 113, 133Brillouin, 279–282, 334Brown, 300, 360Burnett, 31

C

Cahn, J.W., 291, 293–397Callaway, 210Callen, H.B., 125Calvao, M.O., 426Camacho, J., 84, 110, 161, 162, 300, 329, 365Carnot, 8, 76Carrassi, M., 254, 258–260Carreau, P.J., 366Casas-Vazquez, J., 75, 77–79, 152, 397Casimir, H.B.G., 21, 135, 245Castillo, V.M., 214Cattaneo, C., 42, 44, 46, 47, 50–53, 58, 59,

62, 63, 200–202, 204–209, 211,218, 233, 234, 239–241, 244, 245,248–251, 259, 280, 303–306, 347,350, 358

469

Page 29: Appendix A Summary of Vector and Tensor Notation442 A Summary of Vector and Tensor Notation The most usual second-order differential operator in tensorial analysis is the Laplacian,

470 Author Index

Cauchy, 6, 349Cavalli-Sforza, L.L., 306Chapman, S., 15, 93, 99, 100Chen, G., 74, 234, 240, 245, 246, 248, 250,

251Chester, M., 201Christiansen, R.F., 374Christoffel, 415Chu, 254Chung, C.-H., 285, 287Ciancio, V., 340Cimmelli, V.A., 80Clark, N.A., 187, 288Clause, 113Clausius, 8, 23, 24, 28–31, 45, 47, 60, 72–74Cloot, A., 254, 259–261Cole, 343Coleman, B.D., 3, 23, 26, 28, 30, 216, 218, 347Compte, A., 307, 308Conforto, F., 340Corbet, A.B., 148Coriolis, 21, 31, 137Couette, 81, 88, 113, 151, 152, 363, 365Cowling, T.G., 93, 99Crank, J., 302Criado-Sancho, M., 47, 81, 86, 152, 387, 388,

391, 392, 396, 402Criminale, W.O., 368Crisanti, A., 75, 81Crochet, M.J., 368Curie, 18

D

Daivis, P.J., 184Danielewicz, P., 418Daniels, E., 175, 287Danilov, D.A., 320, 321D’Anna, G., 81Dauby, P.C., 376Davalos-Orozco, L.A., 341Davies, P.C.W., 435, 459Day, W., 30Debye, 161, 201, 218, 243, 340, 342Dedeurwaerdere, T., 217De Felice, L.J., 331De Gennes, P.G., 31De Groot, S.R., 3, 8, 16, 309, 333, 340Del Castillo, L.F., 341, 343, 402, 403De Leener, M., 169Dempsey, J., 338Denbigh, R.G., 3

Denicol, G.S., 419de Sitter, 433Dirac, 130, 131, 331Di Stefano, V., 338Doi, M., 359Domınguez, R., 83, 146, 153, 156Doppler, 84Dreyer, W., 217, 414Drucker, D.C., 357–359Dufour, 37, 311Dufty, 105Duhamel, 350Duhem, P., 3, 24, 28, 29, 31, 60Dunn, J.E., 367, 371Durning, C.J., 303–305Dynes, R.C., 218

E

Eckart, C., 3, 407, 408, 410, 433Eddington, 156, 221Edelen, D.G.D., 31Edwards, S.F., 359Einstein, 123, 124, 129, 130, 135, 156, 161,

162, 164, 225, 243, 330, 424–426,431

Enskog, 15, 99, 100Ericksen, J.L., 31, 347, 367–371Eringen, C., 349Ernst, 105, 133Eu, B.C., 48, 74, 99, 110–113, 143, 148Euclid, 5, 25, 26, 64Euler, 4, 7, 308, 338, 356Evans, D.J., 139, 183–188, 190Eyring, 113

F

Fai, G., 418Falcon, N., 435Faraudo, J., 83, 156Fedotov, S., 306, 307Fermi, 79, 130, 331, 338, 340Fick, 19, 137, 138, 291, 293, 301–304, 306,

311, 315, 402Fisher, D.J., 320, 321Flory, 385, 387, 388, 392, 402Fokker, 299Fort, J., 79, 306–308Fosdick, R.L., 367, 371

Page 30: Appendix A Summary of Vector and Tensor Notation442 A Summary of Vector and Tensor Notation The most usual second-order differential operator in tensorial analysis is the Laplacian,

Author Index 471

Fourier, 19, 22, 23, 30, 42, 43, 50, 51, 53, 58,116, 179, 201, 203–210, 220–222,233–236, 239–241, 244, 245, 250,255, 264–266, 269, 276–278, 282,307, 315, 335, 336, 342, 343, 350,410

Fratzl, P., 297Friedmann, 424, 425, 429, 434Friedrichs, 85Frisch, H.L., 301Frohlich, H., 162Furth, 297

G

Galenko, P., 296, 297, 319–321Galileo, 5, 6, 12Garcıa-Colın, L.S., 48, 80, 114, 288Gariel, J., 431Garrido, P.L., 234Garzo, V., 104Gauss, 5, 13, 126, 131, 137, 138, 184, 288,

395Germain, 357Ghosh, K., 138, 149Giambo, S., 340Giannozzi, P., 117Giardina, R., 234Gibbons, G.W., 433Gibbs, J.W., 3, 15, 22, 30, 32, 48, 49, 51–54,

56, 62–64, 74, 82, 85, 93, 102, 103,115, 123, 125–127, 143, 146, 149,151, 186, 212, 292–294, 308–310,313, 315, 316, 318, 328, 331, 332,341, 349, 352, 355, 369, 375, 384,385, 393, 395, 407, 418, 431

Giesekus, H., 348, 364, 365, 369, 375–376Ginzburg, 34, 293Goldstein, H., 158Goldstein, S., 297Gorban, A.N., 103Grabert, H., 169Grad, H., 31, 93, 99–103, 110, 114, 149, 153,

214, 263, 267, 269–271, 414, 415,417

Grandy, W.T., 143Gray, 106Greco, A., 225Green, A.E., 106, 107, 127, 174, 184, 202,

331, 348, 349, 368Greenspan, M., 254, 260, 261Griffin, 417

Grmela, M., 4, 32, 33, 35, 74, 113, 214, 215Gurney, W.S.C., 148Guyer, R.A., 208–211, 222, 223, 234Gyarmati, I., 3, 48

H

Haase, R., 3Hafskjold, B., 184Halperin, B.I., 338Hamilton, 3, 32, 33, 83, 113, 145, 157, 158,

170, 172, 293, 383Hanley, H.J.M., 184–187Hansch, W., 334, 335Harris, 100Hatano, 81Hawking, S.W., 432, 433Hayward, G., 426Helmholtz, 8, 24, 125, 186, 212, 292, 294,

385Herlach, D., 224, 233, 321Hermite, 100, 149, 171, 174, 270Herrera, L., 435Hess, S., 118, 184Hilliard, J.E., 291, 293–397Hiscock, W.A., 407, 411–413, 419, 426, 430Holway, L.H., 270Hooke, 157, 358–360, 363Hoover, 79, 187Hoover, W.G., 31Hoover, W.H., 184Hoover, W.M., 214Hopfenberg, H.B., 301, 304Hubble, 425, 427–429, 433Hu, B.L., 426Huggins, 385, 387–389, 392, 402Hugoniot, 265–268

I

Ichiyanagi, M., 148Israel, W., 134, 407, 408, 414, 416, 417

J

Jackson, H., 218Jacobi, 33–35Jahnig, E., 165

Page 31: Appendix A Summary of Vector and Tensor Notation442 A Summary of Vector and Tensor Notation The most usual second-order differential operator in tensorial analysis is the Laplacian,

472 Author Index

Jaumann, 27, 64Jaynes, E.T., 138, 143Jeffrey, A., 215, 234, 353, 354, 358, 376Johri, V.B., 431Jones, 113, 183, 186Joseph, D.D., 201Joshi, A.A., 204, 205, 234, 240, 241, 243,

244Jou, D., 48, 75, 77–79, 81, 83, 84, 110, 130,

131, 133, 146, 148, 150, 152, 153,161, 162, 201, 221, 225, 234, 237,238, 240, 253, 262, 270, 284, 286,291, 300, 328, 329, 331, 365, 383,385, 402, 419, 426, 430

Joule, 8, 328Junk, M., 338Juttner, 414

K

Karlin, I.V., 103Kausch, 384, 395Kawasaki, 383Keizer, J., 80, 81, 123, 131, 165Kelvin, 347, 353, 354Kelvin, Lord, 8, 76Kestin, J., 65, 347Keyes, 343Kirchhoff, 255, 256, 258, 349Kivelson, 343Kjelstrup, S., 3, 5, 184, 215Kluitenberg, G., 347Knesser, H.O., 262Knudsen, 233, 234, 239, 240, 250Kohlrausch, 329Koide, T., 419Kozlowski, 419Krall, A.N., 328Kramers, 299, 364Kranys, M., 262, 414Kremer, F., 162Kreuzer, 3Kronecker, 127Kroner, E., 359Krumhansl, J.A., 208–211, 222, 223,

234Kubo, 127, 174, 184, 331Kurz, W., 320, 321

L

Lagrange, 6, 13, 29, 31, 60–62, 64, 143–146,149–154, 159–161, 164, 189, 348

Lambermont, J., 15, 82, 354, 359Lame, 353Landau, L.D., 4, 34, 125, 129, 131, 224, 265,

266, 280, 293, 407, 408Langevin, 173Laplace, 12, 179, 180, 202, 254, 258, 266, 277,

278, 282, 284, 342, 343, 442Larecki, W., 156Larson, B.C., 237, 240, 399Larson, P.M., 157, 161Lavenda, B., 3Lax, P.D., 85, 268Lebedev, V., 296, 297Lebon, G., 3, 15, 31, 48, 52, 56, 61, 65,

82, 213, 214, 225, 254, 259–261,268, 292, 294, 306, 309, 328, 352,374–376, 402

Lebowitz, J.L., 157Le Denmat, G., 431Legendre, 52, 138, 355, 356Lennard, 113, 183, 186Leppard, W.R., 374Lepri, S., 235, 238, 239Levermore, C.D., 156Levermore, D., 219, 221Levine, R.D., 143Lhuillier, D., 311, 314, 316, 317Li, B., 237, 430Lifshitz, E.M., 125, 131, 265, 266, 293, 407Lima, J.A.S., 426, 427, 431Lindblom, L., 407, 411–413Liouville, 169–171, 174Liu, I.-S., 29, 31, 60, 61, 130, 214, 407, 414Liu, W., 237Llebot, J.E., 332Lodge, A.S., 366, 374Loose, W., 184, 383Lorentz, 12, 21, 137, 156, 221, 279–281Lotka, 306Luikov, A.V., 201, 202Lumley, J., 31Luzzi, R., 81, 143, 144, 147

M

Maartens, R., 430MacDonald, 399–402

Lyapunov, M., 43

Page 32: Appendix A Summary of Vector and Tensor Notation442 A Summary of Vector and Tensor Notation The most usual second-order differential operator in tensorial analysis is the Laplacian,

Author Index 473

Mach, 224, 266, 268–270Machlup, S., 48, 131Madureira, J., 180Majorana, A., 269, 270Majumdar, A., 204, 205, 234, 240, 241,

243–245Markov, 298Marshak, 249,Martınez, J., 435Marucci, G., 366, 367Mashelkar, 399Masoliver, J., 297Maugin, G., 65, 311, 347, 357, 383Mavrantzas, 32, 33, 399Maxwell, J.C., 8, 22, 42, 58, 59, 72, 73, 80,

97, 127, 129, 152, 170, 186, 200,201, 240, 259, 260, 280, 283, 288,303–306, 347, 353, 354, 358, 362,368, 371, 385, 388, 398, 435

Mayer, 8Mazur, P., 3, 8, 16, 309, 333, 340McLennan, J.A., 31, 105McQuarrie, D.A., 169Meixner, J., 3, 17, 80, 347Mendez, V., 306, 307Metzner, 373Meyer, E., 254, 260, 261Mihalas, 156Miller, B.N., 22, 157, 161Mongiovı, M.S., 225, 253Monte Carlo, 251, 327, 335–337Morgan, 213Mori, 173, 179, 284, 341Morriss, G.P., 183, 188Morro, A., 254, 258–260Moyal, 299, 354Muller, I., 31, 48, 60, 80, 86, 130, 225, 258,

268, 288, 370, 399–402Murdoch, 31Murphy, G.L., 426Muscato, O., 334, 335, 338Muschik, W., 80, 347, 383

N

Nagano, 116Naqvi, K.R., 240, 241Narayanamurti, V., 218Navier, 23, 260, 261, 264–266, 269, 283, 284,

286, 371Neogi, P., 303, 304Nettleton, R.E., 48, 59, 79, 83, 148, 186

Neumann, 350Newman, D., 216, 218Newton, 19, 27, 30, 58, 65, 84, 211, 255,

312–314, 347, 353, 354, 358, 361,366, 367, 369, 370, 375, 423–425

Nguyen, 384, 394Nicolis, G., 43Nigmatulin, R.Y., 312, 317Nisbet, R.M., 148Noll, W., 3, 18, 23, 26, 347Nose, 184Nozieres, 398Nyquist, 331

O

Ohm, 19, 328Oldroyd, 368, 376Oliveira, H.P., 426, 427Olson, T.S., 419Onsager, L., 3, 20–22, 30, 34, 42, 48, 57, 123,

131, 135–137, 309–311, 315, 327,331–333, 336, 342, 350

Onuki, A., 383, 384, 398Ortiz de Zarate, J.M., 162Ostwald, 366, 372, 373Ottinger, H.C., 4, 32, 34, 35, 113, 383, 399Owen, 30Ozisik, M.N., 201, 243

P

Pankratov, O., 338, 339Pavon, D., 131, 133, 270, 407, 410, 426, 427,

429–432, 434, 435Pecora, R., 276Peebles, P.J.E., 433Peltier, 333Pennisi, S., 334, 335, 337Perez-Garcıa, C., 284, 286, 287, 361Perzyna, P., 354Peshkov, 201Piola, 349Placzek, 280Planck, 3, 23, 98, 124, 130, 144, 299, 424, 426,

432, 445Pluchino, S., 118, 240, 254, 260, 261Poiseuille, 190, 191, 222Poisson, 33–35, 113, 114, 170, 335, 338Pomraning, 246

Page 33: Appendix A Summary of Vector and Tensor Notation442 A Summary of Vector and Tensor Notation The most usual second-order differential operator in tensorial analysis is the Laplacian,

474 Author Index

Ponter, A.R.S., 354Poynting, 347, 353, 354Pradhan, A., 429Prager, W., 354Prakash, 399Preziosi, L., 201Prigogine, I., 3, 15, 43, 214, 431

Q

Qiu, 224Quemada, 398

R

Rangel-Nafaile, 383, 385, 387–389, 391Rankine, 265, 267, 268Rayleigh, 279, 280, 282Reichl, L.E., 105Reik, H.G., 3Reiner, M., 366, 367, 370, 371Resibois, P., 169Reynolds, O., 6, 13, 22Ricci, 424Rice, 106Richter, P.H., 165Ritort, F., 75, 81Rivlin, R.S., 31, 347, 366–371Robertson, B., 118, 143, 147, 424Rodrıguez, R.F., 341Romano, V., 337, 338, 430, 432Rosenau, P., 299Ross, J., 301Rouse, P.E., 348, 359–361, 363, 365, 375, 385,

388–393Ruggeri, T., 60, 86, 214, 267–270, 414Russo, G., 337Ryskin, 31

S

Sackur, 98, 103Salamon, P., 48, 201Salim, J.M., 426, 427Salmonson, 426, 430Santos, A., 80, 104, 113Sato, H., 131Schlesinger, M.F., 329

Schlogl, F., 143Schmitz, R., 165Schultz, B.E., 424, 426, 433Schweizer, M.A., 301, 414Searles, D.J., 139Seebeck, 333Seeger, A., 359Seitaridou, E., 137, 138Senger, J.V., 162Sessler, G., 254, 260, 261Sharts, 219Sieniutycz, S., 48, 201Silhavy, M., 30Smoluchowski, 300Sobolev, S.L., 224Solderhom, 241Soret, 37, 311, 315Spohn, H., 157Stannett, V., 301Stefan, 134, 245, 445Stewart, J.M., 134, 413, 414, 416, 417Stocker, H., 417Stokes, 19, 23, 28, 30, 58, 211, 260, 261,

264–266, 269, 279, 283–286, 328,329, 359, 361, 371, 423

Struchtrup, H., 118, 213–215, 217, 414Strumia, 85Sudharan, P., 431Sussman, R.A., 431

T

Tabor, M., 303–305Taniuti, T., 215Tanner, 372Taylor, G.I., 212, 291, 297, 299Tetrode, 98, 103Thomas, N.L., 303–305Thomson, N.L., 333, 347, 353, 354, 411Thomson, William, 76Tien, 224Todd, B.D., 190Tokatly, I.V., 338, 339Torrilhon, M., 214, 215Toupin, R., 5, 26Tremblay, A.M.S., 162, 163, 165, 331Tribus, M., 143Triginer, J., 431, 432Trivelpiece, A.W., 328Troughton, H., 260Truesdell, C., 3, 5, 8, 18, 21, 23, 26Turok, N., 426Tzou, D.Y., 201, 223, 224, 234, 243

Page 34: Appendix A Summary of Vector and Tensor Notation442 A Summary of Vector and Tensor Notation The most usual second-order differential operator in tensorial analysis is the Laplacian,

Author Index 475

U

Udey, N., 416Uehling, 418Uhlenbeck, 418

V

Valenti, A., 211, 220, 268, 269van den Hoogen, R.J., 430van Weert, 413Vasconcellos, A.R., 144Velasco, R.M., 114, 288Verhas, J., 340Vernotte, P., 201Vidal, F., 331Vlad, M.O., 301Vlasov, 338Voigt, 347, 353, 354, 358Volterra, 306von Mises, 357Vostner, 118

W

Waldenstrom, A., 240Waldmann, L., 118, 215Wald, R.M., 424

Walker, 424Wards, 201Watts, 329Weinberg, S., 424, 426Weissenberg, 366Weiss, W., 213, 214, 269, 270, 288, 414Wilks, 201Williams, 329Wilmanski, K., 85, 370Wilson, 293Windle, A.H., 303–305Wolf, 387, 389Wong, 133Woods, L.C., 3, 8, 29, 100, 260Wordeman, M.R., 335, 336

Y

Yang, R., 251Yip, S., 276, 280, 284, 285, 287

Z

Zakari, M., 221, 426, 430Zhang, Z.M., 234Zienkiewics, 213Zimdahl, W., 430, 432Zimm, B.H., 348, 359–361, 365, 375, 385,

388–393Zubarev, D.N., 143, 147Zwanzig, 284

Page 35: Appendix A Summary of Vector and Tensor Notation442 A Summary of Vector and Tensor Notation The most usual second-order differential operator in tensorial analysis is the Laplacian,

Subject Index

A

Absolute temperature, 86, 329, 341, 360classical, 15, 23, 54non-equilibrium, 54, 71, 73, 76, 78, 140,

146, 153, 161, 167Absorption coefficients, 255, 258, 260, 261Acceleration, waves, 26, 42, 215–218,

262–264, 304, 317, 410, 419Admissible process, 24Affinity, 16, 36, 393–394Angular velocity, 21, 26, 27, 31, 37, 68,

137, 230Anomalous diffusion, 321–322Astrophysics, 407, 423, 435Availability, 125

B

Balance laws, 4–12, 24, 28, 29, 41, 61, 266,292, 319

of charge, 11, 340of energy, 4, 11, 49, 54, 60, 68, 247, 272,

313, 340, 369of entropy, 54, 313, 369of mass, 4, 9, 11, 54, 272, 295, 313of momentum, 4, 11, 272, 313

Ballistic transport, 233, 234, 245, 252, 337Big-bang singularity, 426Biological membranes, 331Black holes, 426, 432Boltzmann equation, 79, 93–95, 97, 99, 103,

104, 119, 170, 210, 226, 234, 236,241, 249, 250, 327, 334, 414, 417,418

entropy, 98, 288Boltzmann-Planck formula, 124

Bose-Einstein statistics, 130Boundary conditions, 18, 157, 206, 213, 214,

243, 249, 252Brillouin peaks, 279–282, 289Bulk viscous pressure, 8, 41, 99, 256, 280,

384, 408, 417, 423, 424, 429, 434viscosity, 134

Burnett equations, 31, 290

C

Cahn-Hilliard’s model, 294–297Calortropy, 74, 111Carnot’s cycle, 39Carreau’s model, 366Casimir limit, 245, 252Cattaneo equation, heat transport, 201, 202,

208–221, 227, 248Cattaneo’s law, 47, 51, 52, 58, 59, 62, 204, 205,

233, 239, 241, 244, 245, 248–251,259, 305

Chapman-Enskog expansion, 100Characteristic speeds, 85, 299, 304, 411–413Charged systems, 10–12Chemical potential, 85, 130, 137, 295, 305,

313, 328, 344, 384–388classical, 15, 36, 146, 394, 401non-equilibrium, 71, 146, 195, 345, 384,

386, 395, 402–404, 409Chemical reactions, 8–10, 15–17, 19, 35–36,

38, 205, 206, 208, 262, 291, 292,306, 308, 351, 383, 393–397, 404

Christoffel symbols, 415Classical irreversible thermodynamics, 3,

14–23, 82, 93, 118, 123, 192, 215,275, 309, 310, 327, 341, 347

Clausius-Duhem inequality, 24, 28, 29, 31, 60Clausius-Planck inequality, 23

477

Page 36: Appendix A Summary of Vector and Tensor Notation442 A Summary of Vector and Tensor Notation The most usual second-order differential operator in tensorial analysis is the Laplacian,

478 Subject Index

Coldness, 80Collision time, 111, 114, 119, 222, 259, 370,

427, 436Computer simulations, 71, 79, 83, 183–195,

234, 235, 275, 276, 282, 285, 336Concavity of the entropy, 15, 64, 85, 309,

375Conduction current, 11Configurational distribution function, 363Configuration tensor, 383Constitutive equations, 17–24, 27–32, 37, 38,

56, 57, 60, 66, 68, 99, 190, 194, 209,223, 290, 314, 315, 317, 331–333,335, 336, 350, 351, 366, 369, 370,376, 379, 399, 425

Contact temperature, 80Continued-fraction expansions, 114–119,

179–181, 252Convected derivatives, 27Convected Maxwell’s model, 378, 379,

385, 398Coriolis force, 21, 31, 137Corotational time derivative, 56Correlated random walk, 291, 297–299Cosmic scale factor, 424Cosmological horizons, 423–438Cosmology, 35, 407, 423, 425, 430Couette flow. See Shear flowCritical, Mach number, 270

Crystallization front, 324Curie’s principle, 18Current density, 10, 277, 329, 330, 344

D

Dark energy, 423, 429Dark matter, 423, 429Debye’s model of solids, 89, 166, 225Degeneracy requirements, 33, 34Degenerate gases, 130Degradation of polymers, 393Degree of coupling, 38Dendritic patterns, 320–322Density correlation function, 275–277Detailed balance, 36Dielectric relaxation, 340–343Diffusion, 9, 11, 16, 19, 36, 43, 81, 87, 137,

138, 141, 142, 149, 202–204, 209,221, 224, 226, 234, 240, 245–251,

260, 291–325, 335, 341, 345, 354,384, 392, 397–403, 405

case II, 302–305Diffusion coefficient, 81, 142, 293, 299, 303,

315, 324, 345, 392, 398, 400, 401,403

Dissipation, 17, 29, 32, 35, 59, 62, 81, 140,147, 152, 167, 173, 184, 221, 314,316, 351, 352, 354–356, 359, 407,423, 426

Dominant energy condition, 433, 435, 438Drift-difffusion model, 335Drude’s relation, 331Dufour’s law, 37, 311Dumbbell solutions, 376–378Dynamical temperature, 69, 80

E

Eckart’s reference frame, 408Eddington’s factor, 156, 221Effective relaxation times, 114, 117–118, 217Effective thermal conductivity, 220, 236, 238,

239, 251, 252Efficiency of energy conversion, 38Einstein’s formula for diffusion coefficient, 81

equation (general relativity), 345, 424formula for fluctuations, 130, 135, 330

Electrical systems, 327–346Energy-momentum tensor, 408, 423Entropy

classical, 43, 44, 46, 47, 102, 123, 194,330, 437

extended, 44, 52, 141flux, classical, 179flux, extended, 46, 48, 76, 138, 161, 221,

260, 275, 290flux fourvector, 414, 430flux, kinetic, 57, 75, 209information, 56, 88, 126, 144, 147–149,

414, 420microscopic definition, 98production, 13–17, 20, 22, 32, 37, 39, 43,

47–57, 60, 64, 67, 68production, generalized, 55–57

Equations of state, non-equilibrium, 71–89,143, 185–188, 384, 399, 403, 418,419

Equilibrium constant, 394, 395, 404, 405Equipartition, breaking of, 165Equipresence principle, 24, 25, 63Euclidean transformations, 25–27

point, 387

Page 37: Appendix A Summary of Vector and Tensor Notation442 A Summary of Vector and Tensor Notation The most usual second-order differential operator in tensorial analysis is the Laplacian,

Subject Index 479

Evolution equations for the fluxes, 41, 71, 93,101, 109, 270, 285, 294, 305, 308,310, 314, 317, 318, 336, 409, 410,417, 419

Extensional flow, 379Eyring’s formula, 113

F

Fermi-Dirac statistics, 130, 331Fick’s law, 19, 137, 138, 142, 291, 293, 301,

311First law of thermodynamics, 5, 45Flory-Huggins’ formula, 385Fluctuation-dissipation theorem, 81, 152, 173Fluctuations, equilibrium, 75, 80, 123–128,

130under an electric field, 81of the fluxes, 82, 126, 127under a heat flux, 89, 166under a shear flow, 394

Fluxes, 7, 41, 71, 93, 123, 144, 169, 211, 235,253, 275, 292, 327, 355, 399, 408

Flux fluctuation theorems, 137–139, 165Flux limiters, 219–221, 437Fokker-Planck equation, 299Forces (thermodynamic), 3–70, 77, 104, 135,

146, 174, 214, 292, 310, 314, 317,327, 332, 333, 348, 355, 359–363,399

Fourier’s law, 19, 42, 43, 50, 53, 201, 204, 205,209, 210, 220, 221, 235, 252, 315,350

Fourth-order terms in the entropy, 67, 344Frame indifference principle, 25–28, 31, 56,

68, 367Friedmann-Robertson-Walker metric, 424

G

Galilean invariance, 5Gaussian distribution, 126Generalised Newtonian fluid, hydrodynamics,

222Generating functional, 32GENERIC formulation, 311Gibbs’ equation, classical, 146

for electrical conductors, 341for fluids, 15generalized, 54, 63, 195, 227

for heat conductors, 52for mixtures, 15for viscoelastic bodies, 194

Gibbs’ free energy, 32, 292, 385, 403, 404Giesekus’ four-parameter model, 369, 375Ginzburg-Landau equation, 34Grad’s method, 100, 103, 114Green-Kubo formulae, 127Guyer-Krumhansl’s equation, 210, 222, 223,

226, 228

H

Hamiltonian thermodynamics, 3–40, 383Harmonic chain, 157–162, 166Heat conductivity. See Thermal conductivityHeat conductors, 59–63, 86–88, 230, 233–241,

293, 302flux, 16, 42, 52, 56, 57, 69, 86, 157, 237,

293pulses, 202, 217waves, 47, 70, 225

Helmholtz free energy, 24, 38, 212, 385Hermite polynomials, 100, 110, 120, 149, 270Hierarchy of evolution equations, 181, 235Higher-order fluxes, 66, 74, 114, 118, 179,

259, 288–289, 331, 340H -theorem, 96–99, 119, 120, 148, 182,

300–301Hubble’s factor, 425, 429, 437Hyperbolic heat transport, 87, 199–231

I

Ideal gas, 36, 65, 78, 79, 81–84, 87–89, 96,100, 128–130, 141, 147–157, 165,166, 225, 235, 262–264, 266, 270,273, 283, 362, 378, 399, 404, 410

Ignition, 205–208, 306Inertia of heat, 42, 410Inflationary expansion, 428Information theory, 143–167Integrability conditions, 51, 74, 212, 230, 341Interfaces, 93, 224, 228, 229, 233, 294,

319–321, 323Internal degrees of freedom, 65, 110, 223, 262,

280, 281Internal energy, 5–7, 9–12, 14, 23, 24, 28, 42,

48, 49, 53, 60, 69, 71, 77, 79, 80, 84,89, 95, 96, 124, 140, 144, 151, 154,

Page 38: Appendix A Summary of Vector and Tensor Notation442 A Summary of Vector and Tensor Notation The most usual second-order differential operator in tensorial analysis is the Laplacian,

480 Subject Index

156, 157, 185, 186, 194, 211–213,229, 230, 242, 245, 247, 249, 254,263, 308, 313, 327, 328, 340, 344,345, 348, 349, 351, 352, 360, 363,378, 408, 420

Internal variables theory, 69, 311, 316, 318Irreversibility, 14

J

Jacobi’s identity, 33–35Jaumann’s time derivative, 27, 64, 68, 370, 379Jeffrey’s model, 353, 376Jump condition, 5

K

Kelvin-Voigt’s model, 347, 379Kinetic constants, 36, 395Kinetic theory

of gases, 15, 31, 56, 87, 88, 93–121, 130,165, 259, 271, 331, 361, 362, 383,432, 443

of polymers, 359–365Knudsen number, 233, 234, 239, 240, 250Kohlrausch-Williams-Watts law, 329Kramers-Moyal’s expansion, 299

L

Lagrange multipliers, 29, 31, 60–62, 64,143–146, 149–154, 159–161, 164,167, 189, 226

Lame’s coefficient, 353Landau–Lifschitz

hydrodynamic noise, 131reference frame, 265

Landau–Placzek’s ratio, 280Langevin’s equation, 140, 173Laser, 81, 113, 202, 205, 208, 220, 223, 224,

228, 289, 301, 351Legendre’s transform, 52, 138, 195, 355, 356Light scattering, 42, 163, 173, 253, 275,

278–280, 282, 288Linear response, 169–182Liouville’s equation, 170Local equilibrium hypothesis, 14–15, 22, 47,

81, 103, 323

Longitudinal velocity correlation function,282, 285–287

Lorentz force, 11, 12, 21, 137Lyapunov time, 43

M

Mach number, 224, 266, 268–270, 273Magnetic field, 21, 137Mass action law, 35, 36, 39, 395Mass fraction, 9, 11, 14, 16, 20, 292, 295, 308,

312, 313, 318, 396Master equation, 182Material indifference. See Frame indifference

principleMaximum-entropy formalism, 111, 124,

138, 147, 153, 163, 189, 214, 221,335

Maxwell-Boltzmann’s distribution, 97, 129,152, 362

Maxwell-Cattaneo equations, 58, 59, 68–70,73, 127, 170, 195, 200, 201,227, 280, 303–305, 435. See alsoCattaneo equation, heat transport

Maxwell’s viscoelastic model, 283, 347, 353,354

Mean free path, 18, 23, 88, 103, 140, 157,165, 184, 221, 233, 235–238,243–245, 249, 251, 258, 264, 269,270, 272, 273, 289, 331, 337, 345,426, 436

Memory functions, 68, 118, 169, 170, 173,174, 177, 180, 181, 276, 284, 285,287

Memory principle, 25Metals, 202, 224, 227, 262, 272Metric tensor, 408, 420, 424Microelectronic devices, 327, 337Microfluidic system, 137, 149Micropolar fluids, 37Minimum entropy production, 39, 214, 226Mixtures, 8–10, 15, 84, 133, 140, 292–297,

308–312, 314, 321, 384, 388, 395,396, 410, 426, 436, 437

Modified moment method, 111, 112Molecular dynamics, 71, 81, 113, 183–185,

192, 282, 283, 405Moments of the distribution, 100, 110, 235,

334, 335Monte Carlo simulations, 251, 327, 336, 337

Page 39: Appendix A Summary of Vector and Tensor Notation442 A Summary of Vector and Tensor Notation The most usual second-order differential operator in tensorial analysis is the Laplacian,

Subject Index 481

N

Nanosystems, 199, 208, 233, 275Nanowires, 223, 237, 252Neutrinos, 133, 407, 431, 435–437Neutron scattering, 23, 42, 163, 173, 175, 253,

275, 280, 282Newtonian fluids, 84, 222, 312–314, 354, 361,

366, 369, 375Newton-Stokes’ law of viscosity, 19, 30, 58,

211Non-Fickian diffusion, 291, 301–305, 316Non-ideal gases, 66, 93, 106–110, 139Non-linear transport, 110–114, 183Non-Newtonian fluids, 84, 347, 348, 354,

365–376Normal modes, 360, 363, 365Normal stress coefficients, 366, 372, 374, 375,

379Nuclear collisions, 71, 79, 421Nuclear equation of state, 417, 419Nyquist formula, 331

O

Objective quantities, 27Objective time derivatives, 27, 31, 264, 368,

370Objectivity, 25, 26, 64Ohm’s law, 19, 328Oldroyd’s model, 368, 376Onsager-Casimir’s relations, 20–22, 34,

135–137, 315Ostwald power law, 366, 373

P

Pair-correlation function, 106, 139, 187Partition function, 145, 149, 150, 154, 159,

160, 166, 319Phase diagrams under flow, 383–388,

390Phenomenological coefficients, 18–20, 31, 38,

39, 50, 53, 56, 68, 82, 210, 211,214, 236, 238, 260, 309–311, 315,350, 352

Phonon hydrodynamics, 199, 218, 222–223,252

Phonon radiative transfer, 204, 234, 241–245

Photons, 133, 140, 156, 167, 219, 221, 243,301, 410, 420, 426, 436

Plasmas, 81, 113, 219, 220, 328, 334–340,407, 417, 419

Plasticity, 348, 354–359Poisson brackets, 4, 32–35, 40, 113, 114,

170Polymers, 42, 65, 66, 85, 103, 107, 110, 141,

193, 264, 291, 301–305, 347, 348,354, 359–365, 371, 383–406

Poynting-Thomson’s model, 347, 353, 354,379, 380

Pressure, non-equilibrium, 54, 71, 73, 75, 76,82–85, 185–188, 392, 421

Pressure tensor, 6, 8–10, 16, 21, 24, 27, 37, 38,54, 63, 65, 82–84, 96, 100, 105–107,111, 129, 139, 141, 148, 150, 156,174–176, 178, 187, 188, 190, 191,225, 260, 262, 273, 280, 290, 313,314, 333, 347, 348, 355, 361, 365,368, 384, 385, 398, 399, 405, 408,414, 418

Projection operators, 133, 169–174, 178, 179,284

Propagation speed of signals, 199, 201, 407,423, 425

R

Radiation hydrodynamics, 246Radiative gas, 133–134, 167Random force, 172, 173Random walk, 291, 297–299, 346Rankine-Hugoniot equation, 265, 267, 268Rational extended thermodynamics, 41,

59–64Rational thermodynamics, 3, 23–32, 35, 38,

59, 347, 367, 371Rayleigh’s peak, 279, 280, 282Reaction-diffusion systems, 291, 306–308,

324Reciprocal relations. See Onsager-Casimir’s

relationsReiner-Rivlin fluid, 366, 367, 371Relativistic formulation of extended

thermodynamics, 407–409, 414, 419Relativistic ideal gas, 154–157Relaxation-time approximation, 104–106, 120,

139, 226, 236, 241, 328Relaxation times of the fluxes, 41, 58, 106,

114, 163, 174, 253, 275Representation theorems of tensors, 29

Page 40: Appendix A Summary of Vector and Tensor Notation442 A Summary of Vector and Tensor Notation The most usual second-order differential operator in tensorial analysis is the Laplacian,

482 Subject Index

Rheological models, 369, 373, 376Ricci’s tensor, 424Rivlin-Ericksen’s fluid, 31, 367–371Rotating cylinder, 230Rotational viscosity, 37Rouse-Zimm’s model, 361, 385, 388–383,

392

S

Sackur-Tetrode’s formula, 98, 103Second law of thermodynamics, 13, 28, 45,

349, 371, 434Second-order fluid, 367, 368Second sound, 67, 199–202, 217, 225, 230,

231, 413Semiconductors, 81, 331, 334–340Shear flow, 84, 141, 150–153, 166, 187,

188, 190, 191, 193, 367, 377–379,383–406

Shear modulus, 284Shear rate, 81, 84, 88, 107, 113, 119, 183–191,

193, 194, 347, 363, 366, 368, 369,372–375, 377, 378, 383, 385, 386,388, 390–393, 396, 397, 403, 404,421

Shear thinning, 113, 189Shock waves, 42, 253–273Solidification front, 291, 324Soret law, 37, 311, 315Sorption experiments, 301, 302Sound propagation, 253–262, 280, 413Specific heat, 15, 80, 85, 126, 141, 162, 176,

225, 319, 330Spectrum of density fluctuations, 277, 279Spinodal decomposition, 293–297Spinodal line, 386–391Stability conditions, 67, 186, 187, 383, 398,

413Steady-state compliance, 385, 388, 406Stefan-Boltzmann’s law, 134, 245Stochastic noise, 131Stochastic processes, 291, 297–301Stoichiometric coefficients, 9, 36, 393Stokes’ law, 19, 58, 285, 328, 329Stretched exponential decay, 329Subtracted heat flux, 128Superfluids, 42, 201, 224–225, 253

Suspensions, 36, 42, 71, 185, 186, 291–325,398

Symmetric hyperbolicity, 85

T

Taylor’s dispersion, 291Telegrapher’s equation, 86, 200–202, 224,

228, 239, 294, 297–301, 306, 308,323

Temperature. See Absolute temperatureThermal conductivity, 19, 58, 89, 112, 116,

119, 139, 140, 166, 174, 202, 221,223, 225, 227, 228, 236, 241, 287,333, 407, 418, 419

effective, 220, 236, 238, 239, 251, 252,336

Thermodiffusion, 21, 22Thermoelasticity, 348–351Thermometer, 71, 78, 81, 84, 192Third law, 162Thirteen-moment approximation. See Grad’s

methodThomson’s relation, 333Time-reversal invariance, 21, 59Transverse velocity correlations function,

282–285, 289, 290Transverse waves, 273Turbulence, 31, 225Two-layer model, 323

U

Ultrarelativistic gas, 410, 413Ultrasound propagation in gases, 42, 240,

253Uncompensated heat, 73

V

Variational principles, 213Velocity gradient, 7, 28, 37, 38, 56, 68, 104,

183, 184, 191, 230, 291, 303, 347,361–363, 367, 368, 377–379

Viscoelastic fluids, 194Viscoelasticity, 351–354, 358, 360

Page 41: Appendix A Summary of Vector and Tensor Notation442 A Summary of Vector and Tensor Notation The most usual second-order differential operator in tensorial analysis is the Laplacian,

Subject Index 483

Viscometric functions, 348, 366, 367,371–374, 379

Viscositybulk, 19, 30, 58, 134, 140, 237, 255, 262,

267, 407, 423, 425–427, 430–433,436, 437

rotational, 37shear, 19, 20, 30, 58, 112, 119, 127, 139,

140, 189, 284, 289, 353, 375, 377,401, 418, 426

Viscous fluids, 63–64, 88–89, 283, 321,413

pressure tensor, 63Vlasov regime, 338Volterra functional derivative, 33

W

Wavesin fluids, 253–273in plasmas, 338

Weissenberg’s effect, 366Williams-Watts’s law, 329

Z

Zeroth law, 75–79, 190–192