appendix b deployment position analysisworld.350.org/vancouver/files/2017/02/2_bbyfiredept... ·...

143
Subject: Trans Mountain Tank Farm Tactical Risk Analysis 2015 May 01 ................................................ Appendix B 1 Appendix B Deployment Position Analysis

Upload: others

Post on 11-Jun-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 ................................................ Appendix B ‐ 1 

 

Appendix B Deployment Position Analysis    

Page 2: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 ................................................ Appendix B ‐ 2 

 

Tank 71

Original Trans Mountain Tank Farm Deployment Position Analysis 

 

Page 3: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 ................................................ Appendix B ‐ 3 

 

Tank 72

Original Trans Mountain Tank Farm Deployment Position Analysis 

 

Page 4: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 ................................................ Appendix B ‐ 4 

 

Tank 73

Original Trans Mountain Tank Farm Deployment Position Analysis 

 

Page 5: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 ................................................ Appendix B ‐ 5 

 

Tank 74

Original Trans Mountain Tank Farm Deployment Position Analysis 

 

Page 6: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 ................................................ Appendix B ‐ 6 

 

Tank 81

Original Trans Mountain Tank Farm Deployment Position Analysis 

 

Page 7: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 ................................................ Appendix B ‐ 7 

 

Tank 82

Original Trans Mountain Tank Farm Deployment Position Analysis 

 

Page 8: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 ................................................ Appendix B ‐ 8 

 

Tank 83

Original Trans Mountain Tank Farm Deployment Position Analysis 

 

Page 9: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 ................................................ Appendix B ‐ 9 

 

Tank 84

Original Trans Mountain Tank Farm Deployment Position Analysis 

 

Page 10: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 .............................................. Appendix B ‐ 10 

 

Tank 85

Original Trans Mountain Tank Farm Deployment Position Analysis 

 

Page 11: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 .............................................. Appendix B ‐ 11 

 

Tank 86

Original Trans Mountain Tank Farm Deployment Position Analysis 

 

Page 12: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 .............................................. Appendix B ‐ 12 

 

Tank 87

Original Trans Mountain Tank Farm Deployment Position Analysis 

 

Page 13: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 .............................................. Appendix B ‐ 13 

 

Tank 88

Original Trans Mountain Tank Farm Deployment Position Analysis 

 

Page 14: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 .............................................. Appendix B ‐ 14 

 

Tank 90

Original Trans Mountain Tank Farm Deployment Position Analysis 

 

Page 15: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 .............................................. Appendix B ‐ 15 

 

Tank 71

Proposed Trans Mountain Expansion Project Tank Farm Deployment Position Analysis 

Page 16: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 .............................................. Appendix B ‐ 16 

 

Tank 72

Proposed Trans Mountain Expansion Project Tank Farm Deployment Position Analysis 

 

Page 17: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 .............................................. Appendix B ‐ 17 

 

Tank 73

Proposed Trans Mountain Expansion Project Tank Farm Deployment Position Analysis 

 

Page 18: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 .............................................. Appendix B ‐ 18 

 

Tank 74

Proposed Trans Mountain Expansion Project Tank Farm Deployment Position Analysis 

 

Page 19: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 .............................................. Appendix B ‐ 19 

 

Tank 75

Proposed Trans Mountain Expansion Project Tank Farm Deployment Position Analysis 

 

Page 20: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 .............................................. Appendix B ‐ 20 

 

Tank 76

Proposed Trans Mountain Expansion Project Tank Farm Deployment Position Analysis 

 

Page 21: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 .............................................. Appendix B ‐ 21 

 

Tank 77

Proposed Trans Mountain Expansion Project Tank Farm Deployment Position Analysis 

 

Page 22: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 .............................................. Appendix B ‐ 22 

 

Tank 78

Proposed Trans Mountain Expansion Project Tank Farm Deployment Position Analysis 

 

Page 23: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 .............................................. Appendix B ‐ 23 

 

Tank 79

Proposed Trans Mountain Expansion Project Tank Farm Deployment Position Analysis 

 

Page 24: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 .............................................. Appendix B ‐ 24 

 

Tank 80

Proposed Trans Mountain Expansion Project Tank Farm Deployment Position Analysis 

 

Page 25: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 .............................................. Appendix B ‐ 25 

 

Tank 81

Proposed Trans Mountain Expansion Project Tank Farm Deployment Position Analysis 

 

Page 26: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 .............................................. Appendix B ‐ 26 

 

Tank 82

Proposed Trans Mountain Expansion Project Tank Farm Deployment Position Analysis 

 

Page 27: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 .............................................. Appendix B ‐ 27 

 

Tank 83

Proposed Trans Mountain Expansion Project Tank Farm Deployment Position Analysis 

 

Page 28: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 .............................................. Appendix B ‐ 28 

 

Tank 84

Proposed Trans Mountain Expansion Project Tank Farm Deployment Position Analysis 

 

Page 29: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 .............................................. Appendix B ‐ 29 

 

Tank 85

Proposed Trans Mountain Expansion Project Tank Farm Deployment Position Analysis 

 

Page 30: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 .............................................. Appendix B ‐ 30 

 

Tank 86

Proposed Trans Mountain Expansion Project Tank Farm Deployment Position Analysis 

 

Page 31: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 .............................................. Appendix B ‐ 31 

 

Tank 87

Proposed Trans Mountain Expansion Project Tank Farm Deployment Position Analysis 

 

Page 32: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 .............................................. Appendix B ‐ 32 

 

Tank 88

Proposed Trans Mountain Expansion Project Tank Farm Deployment Position Analysis 

 

Page 33: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 .............................................. Appendix B ‐ 33 

 

Tank 89

Proposed Trans Mountain Expansion Project Tank Farm Deployment Position Analysis 

 

Page 34: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 .............................................. Appendix B ‐ 34 

 

Tank 90

Proposed Trans Mountain Expansion Project Tank Farm Deployment Position Analysis 

 

Page 35: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 .............................................. Appendix B ‐ 35 

 

Tank 91

Proposed Trans Mountain Expansion Project Tank Farm Deployment Position Analysis 

 

Page 36: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 .............................................. Appendix B ‐ 36 

 

Tank 93

Proposed Trans Mountain Expansion Project Tank Farm Deployment Position Analysis 

 

Page 37: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 .............................................. Appendix B ‐ 37 

 

Tank 95

Proposed Trans Mountain Expansion Project Tank Farm Deployment Position Analysis 

 

Page 38: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 .............................................. Appendix B ‐ 38 

 

Tank 96

Proposed Trans Mountain Expansion Project Tank Farm Deployment Position Analysis 

 

Page 39: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 .............................................. Appendix B ‐ 39 

 

Tank 97

Proposed Trans Mountain Expansion Project Tank Farm Deployment Position Analysis 

 

Page 40: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 .............................................. Appendix B ‐ 40 

 

Tank 98

Proposed Trans Mountain Expansion Project Tank Farm Deployment Position Analysis 

  

Page 41: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 ................................................ Appendix C ‐ 1 

 

 

Appendix C

Tank Distance to Fenceline    

Page 42: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 ................................................ Appendix C ‐ 2 

 

 

Original Trans Mountain Tank Farm

Tank Distance to Fenceline 

 

Page 43: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 ................................................ Appendix C ‐ 3 

 

 

Proposed Trans Mountain Expansion Project Tank Farm

Tank Distance to Fenceline 

  

Page 44: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

201May 01 ................................................... Appendix D ‐ 1 

 

Appendix D Burnaby Fire Department General Tank Fire Protocols  

 

 

 

 

 

 

ContentsGeneral Strategy Type  Burnaby Fire Department General Tank Fire Protocol .............................. D ‐ 2  

Internal Floating Roof Tanks Burnaby Fire Department General Tank Fire Protocol ..................... D ‐ 5  

External Floating Roof Tanks Burnaby Fire Department General Tank Fire Protocol .................. D ‐ 13  

Fixed Cone Roof Tanks Burnaby Fire Department General Tank Fire Protocol ............................ D ‐ 21  

Bolted & Riveted Seam Tanks Burnaby Fire Department General Tank Fire Protocol ................. D ‐ 30  

Protecting Adjacent Tanks Burnaby Fire Department General Tank Fire Protocol ...................... D ‐ 31 

 

 

Page 45: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

201May 01 ................................................... Appendix D ‐ 2 

 General Strategy Type Burnaby Fire Department General Tank Fire Protocol PASSIVE STRATEGY:

Passive tactics are utilized when more aggressive tactics may significantly endanger responders. 

Indicators of incidents that may require a passive strategy: 

Insufficient firefighting resources to mount the required fire attack. (personnel, training, foam stocks, water supply, discharge appliances, tank access for effective application of suppression streams) 

Safety concerns due to imminent event escalation due to boilover, or tank failure. 

Passive strategic tactics: 

Initiate measures to reduce the loss and negative effects of the incident, such as pumping the tank out to reduce the burn time of the tank.  Consideration should be given for the temperature of the product being pumped out and the effects it will have on the receiving tank and product. 

Evacuation of personnel from areas exposed to potential incident escalations. 

 

DEFENSIVE STRATEGY:

Defensive tactics are utilized when current resources are required for the protection of exposed tanks / facility components as a means of minimizing the escalation of the incident. 

Defensive tactics may be used as an initial action while: resources are mustered, a command structure is formed, during size‐up and actions plan development.  

Defensive strategy priorities: 

Safety of responders. 

Protection of exposed components. 

Protecting the environment. (Containing products, managing water runoff, etc.) 

Defensive strategic considerations: 

Assess the outfall effects of the incident (life hazard, environmental, corporate image) 

Identify the heat load experienced on exposed tanks. 

Assess product characteristics, product levels and levels of water bottoms. 

Assess the potential for event escalation. (boilover, floating roof failure, fixed roof failure, tank shell structural failure, dynamic spill fire exposures) 

Assess status of floating roof, and levee drains. 

Assess the status of transfer isolation valves. 

Page 46: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

201May 01 ................................................... Appendix D ‐ 3 

  Conduct a Risk‐Benefit assessment of the current strategy versus changing to passive or offensive 

strategies. 

Defensive strategic tactics: 

Manage all flame impingements (cool exposed tanks and consider pumping the product out) priorities: 

I. Exposed pressurized tanks Cool above the liquid level 

II. Extinguish non‐impinging pressure fires by blocking in the product at the source 

III. Exposed atmospheric tanks Cool the roof and tank shell above the liquid level Ensure roof drain valves are open on external floating roof tanks 

IV. Exposed product flanges and line valves Cool to prevent failure of flanges and gaskets 

V. Exposed piping Cool and attempt to maintain minimal flow to limit the build‐up of heat 

Contain the incident by applying protective streams to exposed components. (cool adjacent tanks, protect fixed firefighting systems) 

Initiate action to minimize the negative effects of the incident. (pump the tank out) 

 

OFFENSIVE STRATEGY:

Defensive tactics are utilized when all the components for an effective mitigating response are in place. 

Offensive strategy considerations: 

Sufficient resources are available and mustered (personnel, training, foam stocks, water supply, discharge appliances, tank access for effective application of suppression streams) 

Weather conditions are favorable based on application technique to be employed (high winds can significantly increase foam losses due to “drop out”, heavy rain can deteriorate intact foam blankets) 

Has the product fire been burning for a prolonged period, establishing a heat wave (minimum foam application rates in the order 0.20 usgpm/ft2 may be required) 

The management of multiple event scenarios (levee fire first ‐ tank fire second, multiple tank fires – tank posing greatest risk to life / property / escalation first) 

Continual assessment of effectiveness of current strategies and applications employed 

Utilize strategies that minimize potentials for incident escalation (manage the application stream so as not to sink floating roofs) 

Page 47: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

201May 01 ................................................... Appendix D ‐ 4 

  

   

Page 48: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

201May 01 ................................................... Appendix D ‐ 5 

 Internal Floating Roof Tanks Burnaby Fire Department General Tank Fire Protocol  

DESCRIPTION:

Permanently attached exterior roof with an internal floating roof directly on top of the liquid level. 

Tanks may have a weak (frangible) roof‐to‐shell seam that in the event of an over pressurization (such as an internal explosion) the roof will separate from the vertical shell to prevent failure at the bottom seam which would release the entire tank contents. 

Tanks without a frangible roof seam can fail at the bottom of the tank when exposed to an internal over pressurization, causing significant or total loss of tank integrity and/or tank launching. 

The venting provided around the tank shell just below the roof joint ensures the space between the floating roof and the fixed roof stays free from an ignitable mixture.  An ignitable mixture may be present during periods of initial tank fill and up to 25 hours thereafter, or in the event of roof seal leakage. 

 

INHERENT HAZARDS:

Fires often occur due to overfilling of the tank or ignition by lightning during tank filling operations. 

Subsurface foam application is not recommended for this type of tank as the roof when sunken restricts the travel of foam solution to the surface of the fire 

Boilover is a potential hazard any time a full surface tank fire occurs in a storage tank containing crude petroleum or derivative with components having a wide range of boiling points and where free water or a water‐in‐oil emulsion also is present within the tank. 

 

VENT FIRE:

Vent fires are typically caused by lightning. 

Vent fires are commonly extinguished with minimal damage and low risk to personnel using dry chemical applications or by reducing the tanks internal pressure. 

Generally (but not mandatory) pressure and vacuum vents are designed to fail open in case of any component failure. 

Assuming that the majority of vents will fail in the open position in case of fire, the valve can continue to vent products and therefore remain a fuel source. 

Vent Fire with Yellow‐Orange Flame and Black Smoke 

Indicates that the vapor/air mixture in the tank is above its flammable or explosive limits. 

Extinguished with dry chemical fire extinguishers. 

 

 

Vent Fire with Snapping Blue‐Red, Nearly Smokeless Flame 

Page 49: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

201May 01 ................................................... Appendix D ‐ 6 

  Indicates that the vapor or air mixture in the tank is flammable or explosive. 

As long as the tank is breathing through the pressure‐vacuum valve, the flame cannot flash back into the tank because of the high‐velocity flow through the valve. 

Extinguishment Options: 

I. Pressure reduction in the tank (caused by cooling) can snuff out the fire when the pressure‐vacuum valve closes. 

When the tank is exposed to fire, this can be accomplished by applying cooling water to the tank roof and shell. 

If pumping into the tank is pressurizing the tank, a pressure reduction can be obtained by stopping movement into the tank or pumping product out of the tank. 

As there is no guarantee the vent will close “bubble tight” there may be vapor leakage and a need to follow‐up with a hose or dry chemical application. 

II. A positive pressure is maintained in the tank by introducing fuel gas. 

When a fuel‐rich condition is indicated by a change of flame character (to Vent Fire with Yellow‐Orange Flame and Black Smoke), extinguishment may be accomplished with dry chemical extinguishers. 

Following any vent fire, the vents should be inspected and replaced as needed.  A damaged vent will continue to release flammable vapors resulting in continuing fire and environmental liability. 

 

OBSTRUCTED RIM SEAL FIRE:

Obstructed rim seal fires occurring in Internal floating roof tanks without or with damaged foam systems are extremely difficult to extinguish.  The only pre‐existing structural accesses to apply foam through are the small vent openings on the top perimeter of the tank shell.  Applying foam through these openings is complicated by the presence of vent screens and their shear size that makes this application all but ineffective.  Should the tank roof experience an explosion causing a roof to shell tear; foam may be applied in a topside monitor strategy at a minimum application rate commensurate with a full liquid surface fire. 

Pumping out the tank should only be undertaken if the assessed chances of tank fire extinguishment are poor.  Pumping out the tank will reduce the amount of fuel for the fire, minimizing burn time, but will cause more structural damage to the tank shell. 

Foam system components, if present, should be protected with cooling water streams until fire fighting resources can be mustered and extinguishment efforts initiated. 

Rim seal fire in tanks equipped with pan type floating roofs can be expected to escalate quickly into obstructed full liquid surface fires. 

   

Page 50: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

201May 01 ................................................... Appendix D ‐ 7 

  

Where a rim seal fire has occurred in an internal floating roof tank with an intact and operational fixed or semi‐fixed foam system; extinguish by supplying the foam system with the inlet pressure, and flow volume as per design requirements.  Foam systems on internal floating roof tanks may have been originally designed to either extinguish a rim seal fire or to extinguish a full liquid surface fire.  The foam flow volume application rates as per NFPA 11 requirements are as follows: 

I. Rim Seal Fire Foam System Type II Foam Chamber above the seal application  0.30 usgpm/ft2    (12.3 lpm/m2)  20 minutes    Class I  Hydrocarbon 20 minutes    Crude Petroleum 20 minutes    Alcohols & Oxygenates (application rates, foam conc % vary per product) 20 minutes    Class II Hydrocarbon 

II. Rim Seal Fire Portable Equipment Type III Monitor / Hoseline above the seal application 0.50 usgpm/ft2    (20.5 lpm/m2)  20 minutes    Class I  Hydrocarbon 20 minutes    Crude Petroleum 20 minutes    Alcohols & Oxygenates (application rates, foam conc % vary per product) 20 minutes    Class II Hydrocarbon 

Wind conditions and appliance nozzle characteristics can cause foam loss due to “drop‐out”.  Foam losses due to “drop‐out” from monitor applications are typically from 30% to 60%.  The increased Type III minimum application rate of 0.16 usgpm/ft2 versus the Type II application as per NFPA 11, accounts only for the foam loss incurred by a less gentle application of the foam to the fire surface.  Foam losses due to “drop‐out” must be quantified and overcome by increasing the discharge rate to ensure the required minimum application rate is meet or exceeded at the application to the fire surface. 

Foam streams applied via Type III foam monitors may experience limited access points through the damaged roof, and may incur significant foam losses due to “roll‐off” as a portion of the foam stream contacts the roof and does not flow to the surface of the fire.  The foam losses due to the “roll‐off” must be quantified and overcome by increasing the discharge rate to ensure the required minimum application rate is met or exceeded at the application to the fire surface. 

The gentle application of foam during topside application limits submerging of the foam into the product which causes product entrainment and foam destruction. 

III. Rim Seal Fire Foam System Type II Foam Chamber below the seal application 0.50 usgpm/ft2    (20.5 lpm/m2)  10 minutes    Class I  Hydrocarbon 10 minutes    Crude Petroleum 10 minutes    Alcohols & Oxygenates (application rates, foam conc % vary per product) 10 minutes    Class II Hydrocarbon 

IV. Full Liquid Surface Fire Foam System Type II Foam Chamber / Fixed Nozzle Application 0.10 usgpm/ft2    (4.1 lpm/m2)  55 minutes    Class I  Hydrocarbon 55 minutes    Crude Petroleum 

Page 51: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

201May 01 ................................................... Appendix D ‐ 8 

 55 minutes    Alcohols & Oxygenates (application rates, foam conc % vary per product) 30 minutes    Class II Hydrocarbon 

 

 

Supplying a foam system designed to extinguish a full liquid surface fire will extinguish the rim seal fire if present, but it will also likely sink the internal floating roof tank due to the lack of foam dams to retain foam against the shell wall and the larger volume of foam application.  Application of the foam solution must be continued as specified to assume the rim seal fire will escalate into a full liquid surface fire. 

In the event of foam loss from the fixed or semi‐fixed foam system; quantify the volume rate loss and increase the supply to the system appropriately such that the minimum application rate is achieved at the fire surface. 

In the event of a fixed system proportioning failure; supply the system with foam generated from mobile fire apparatus. 

In the event of a rim seal fire with a long preburn period, water streams may be required to cool the tank allowing more affective foam sealing to the tank shell. 

Foam type must be compatible with both product type and application technique. 

Cooling the exterior tank shell above the liquid level with water streams will assist in:  

keeping the tank shell erect, minimize the potential for folding inward. 

increasing the sealing ability of the foam against the tank shell. 

 

OBSTRUCTED FULL LIQUID SURFACE FIRE:

Full liquid surface fires occur when the internal floating roof partially or fully sinks. 

Depending on the circumstance of the tank internal pressurization or explosion, the roof may remain intact, “fishmouth”, lift into the air and fall back into the tank, or blow off leaving segments of the structure still intact, all of which at least partially obstruct the surface of the fire 

Pumping out the tank should only be undertaken if the assessed chances of tank fire extinguishment are poor.  Pumping out the tank will reduce the amount of fuel for the fire, minimizing burn time, but will cause more structural damage to the tank shell.  For some events where the internal floating roof has sunk, the tank can be pumped out down to the roof level to ease extinguishment. 

Extinguishment Options: 

I. Type III Topside Foam Monitor Application through roof tear opening if present 0.16 usgpm/ft2    (6.5 lpm/m2)  0.20 usgpm/ft2    (8.1 lpm/m2):  if prolonged burning – if heat wave established 65 minutes    Class I  Hydrocarbon 65 minutes    Crude Petroleum 65 minutes    Alcohols & Oxygenates (application rates, foam conc % vary per product) 50 minutes    Class II Hydrocarbon 

Extended foam application may be required to seal the obstructed area and prevent burn‐back and re‐ignition, this may require significantly more foam concentrate resources than the stated minimum by NFPA 11. 

Page 52: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

201May 01 ................................................... Appendix D ‐ 9 

  Wind conditions and appliance nozzle characteristics can cause foam loss due to “drop‐out”.  Foam 

losses due to “drop‐out” from monitor applications are typically from 30% to 60%.  The increased Type III minimum application rate of 0.16 usgpm/ft2 versus the Type II application as per NFPA 11, accounts only for the foam loss incurred by a less gentle application of the foam to the fire surface.  Foam losses due to “drop‐out” must be quantified and overcome by increasing the discharge rate to ensure the required minimum application rate is met or exceeded at the application to the fire surface. 

 

Foam streams applied via Type III foam monitors may experience limited access points through the damaged roof, and may incur significant foam losses due to “roll‐off” as a portion of the foam stream contacts the roof and does not flow to the surface of the fire.  The foam losses due to the “roll‐off” must be quantified and overcome by increasing the discharge rate to ensure the required minimum application rate is met or exceeded at the application to the fire surface. 

Fire apparatus with elevated master streams can be utilized to increase the accuracy of discharge streams through restricted openings therefore minimizing foam losses. 

The gentle application of foam during topside application limits submerging of the foam into the product which causes product entrainment and foam destruction. 

When tanks exceed 100’ in diameter, foam application will often need to be significantly increased due to the decreased fire extinguishing ability of the applied foam as its water drops out during a long travel distance over a hot surface.  Multiple discharge streams can be merged into a single application stream to affect the higher application requirements. 

II. For tanks with fixed or semi‐fixed foam systems designed to extinguish a full liquid surface fire and where the system has remained intact and operational, extinguish by supplying the foam system with the inlet pressure, and flow volume as per design requirements.  Foam flow volume application rates should meet or exceed NFPA 11 requirements  Full Liquid Surface Fire Foam System Type II Foam Chamber / Fixed Nozzle Application 0.10 usgpm/ft2:    (4.1 lpm/ft2) 0.20 usgpm/ft2    (8.1 lpm/m2):  if prolonged burning – if heat wave established 55 minutes    Class I  Hydrocarbon 55 minutes    Crude Petroleum 30 minutes    Class II Hydrocarbon 

In the event of foam loss from the fixed or semi‐fixed foam system; quantify the volume rate loss and increase the supply to the system appropriately such that the minimum application rate is achieved at the fire surface. 

In the event of a fixed system proportioning failure; supply the system with foam generated from mobile fire apparatus. 

The fixed or semi‐fixed foam system may not be capable of operating at a flow volume of 0.20 usgpm/ft2 as this rate may significantly exceed the design parameters of the system 

When a long preburn period has occurred and the tank fire surface is accessible, water streams can be fanned across the fire surface to cool the product.  The application of water will generally produce some level of frothing.  It is critical that the water is not applied as a stream to penetrate the product surface, but fanned across the surface to achieve cooling through the complete conversion of water to steam.  The application rate should be adjusted to minimize frothing while still providing cooling.  The surface level of the product can 

Page 53: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

201May 01 ................................................. Appendix D ‐ 10 

 be lowered to minimize the amount of frothover by partially pumping the tank out.  Cooling streams of water will be required to protect the tank shell above the liquid level from damage.  As the frothing subsides, the water application rate can be increased to affect a higher cooling rate.  Constant monitoring of the presence and movement of a heat wave front is required to assess for boilover potential.  Once the product surface is sufficiently cooled, foam application can commence to extinguish the surface fire. 

Boilover is a potential tank fire escalation scenario for crude oil tanks, or tanks containing heavy fuels with multiple fractions having a wide range of boiling points.  As the crude oil burns the light ends vaporize and burn at the liquid surface.  A hot dense layer of the heavier components forms and begins to travel downwards to the bottom of the tank.  The hot dense layer moves at an approximate rate of 1 ‐2 meters per hour.  When the hot dense layer reaches the water inherent in the bottom of the tank, the water is heated and turns to steam.  The steam travels upward from the bottom of the tank causing a massive eruption of the burning fuel, spreading molten product a potential distance of 5 – 10 tank diameters. 

In the event that the tank fire has burned for an extended period of time (~6+ hours) expect a build up of burning residue to accumulate on the underside of the roof.  Once the fire is extinguished and a thick foam blanket is established, knock the embers from the roof, preferably using a crane’s “Head‐ache ball”. 

Foam type must be compatible with both product type and application technique. 

Cooling the exterior tank shell above the liquid level with water streams will assist in:  

keeping the tank shell erect, minimize the potential for folding inward. 

increasing the sealing ability of the foam against the tank shell. 

 

GROUND FIRES:

Ground fires can be caused from tank or piping leakage or overflow. 

Drain valves should be closed and the product confined within the levee of origin. 

Isolate the spill supply by: 

I. Closing pertinent valves (roof drain valves, water bottom drain valves, etc.) under the cover of water spray streams for protection.  Extinguishing pressure fires without isolating the source of the release may result in the formation of flammable vapor clouds. 

II. Displacing enough product with water to produce a water leak rather than a product leak.  The water pressure in the line or tank must be greater than the product pressure in the line or tank.  Care should be exercised to avoid overfilling the tank. 

Exercise caution when applying foam to unignited flammable spills, where a source of ignition does not exist.  Consider the potential for static charge build‐up generated by the foam stream (API 2021 Appendix I.2) 

Do not apply foam streams unless: 

i Personnel require protection from potential ignition 

ii Uncontrollable ignition sources exist 

iii Vapour emissions present a greater hazard potential 

If foam streams are to be applied: 

i Apply foam streams gently to the product surface.   Avoid plunging as it presents a greater potential for static charge ignition. 

Page 54: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

201May 01 ................................................. Appendix D ‐ 11 

 ii Utilize foam systems that generate foam solution from built‐in inductors or proportioners.   

Avoid the use of portable foam inductors, as these present a greater potential for static charge ignition. 

iii Initiate foam solution generation by applying the foam stream away from the product spill area or tank wall,  Once the foam solution discharge has been established, the stream can be repositioned and applied to the spill, indirectly if possible. 

 

High emphasis should be placed on cooling and maintaining ambient temperatures of tanks exposed to the ground fire.  Increased temperatures will increase the rate of vapor release and cause heat‐triggered reactions in some products.  Direct flame impingement usually commands the highest cooling priority; unless a product is present that is especially heat sensitive.  Tanks exposed to ground fires have the potential for a flammable mixture to be generated due to an increase in product temperature, and ignition by the hot metal of the tank shell. 

Large ground fires are typically extinguished by applying a foam blanket. 

Water spray alone can be used to extinguish a ground fire involving products with flash points well above the temperature of the water applied (>100oF, 38oC).  The water application cools the temperature of the product surface below its flash point, and the steam generated displaces the air required for combustion.  Once the product is cooled sufficiently it ceases to produce the vapor required for combustion. 

Three‐Dimensional fire from mixers or flange leaks can be extinguished by applying foam solution in such massive magnitude that the fire is simply overwhelmed.  The dual agent application of foam and dry chemical simultaneously is often very effective for three‐dimensional fires by providing the means for prompt extinguishment of the pressure fire using the dry chemical and the product sealing of the foam to allow personnel to safely manage the spill fire. 

In extinguishing a levee fire it is not necessary to make foam application to the entire fire surface simultaneously.  Based on the foam discharge capabilities present; divide the spill area into sections that can be effectively extinguished by applying foam streams at or above the minimum application rate as per NFPA 11.  Apply foam and extinguish one section before proceeding to the next section.  Extinguished sections of the ground fire must be monitored and foam reapplied to maintain an intact foam blanket. 

Wind conditions and appliance nozzle characteristics can cause foam loss due to “drop‐out”.  Foam losses due to “drop‐out” from monitor applications typically range from 30% to 60%.  Foam losses due to “drop‐out” must be quantified and overcome by increasing the discharge rate to ensure the required minimum application rate is meet or exceeded at the application to the fire surface. 

In the event that a containment area drain valve was open and product escaped to the waste water system: 

Close the drain valve under the protection of water streams. 

Establish a foam discharge at the containment area outlet, allowing foam to spread to blanket the product through the waste water system.  

It is not advisable for personnel to operate within spill area even when a foam blanket is in place. 

Extinguishment priorities in the event of a multiple fire incident: 

Ground fire first, tank fire second. 

Tank fire first, ground fire second, pressure fire third.  

Page 55: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

201May 01 ................................................. Appendix D ‐ 12 

  Minimum Monitor Application Rates for Foam Solution: 

I. Non In‐depth, Uncontained Spill Fire (<1” depth) 

i Foam Type:  AFFF, FFFP, AR‐AFFF, AR‐FFFP 0.10 usgpm/ft2    (4.1 lpm/m2)  15 minutes    Class I  Hydrocarbon 15 minutes    Class II Hydrocarbon 

ii Foam Type:  Protein, Fluorprotein 0.16 usgpm/ft2    (6.5 lpm/m2) 15 minutes    Class I Hydrocarbon 15 minutes    Class II Hydrocarbon 

Alcohols & Oxygenates: 15 minute minimum application time application rates, and foam concentrate percentage vary per product 

II. In‐depth, Contained Spill Fire (>1” depth) 0.16 usgpm/ft2:    (6.5 lpm/m2) 30 minutes    Class I  Hydrocarbon 20 minutes    Class II Hydrocarbon 

Alcohols & Oxygenates: application rates, and foam concentrate percentage vary per product 

The gentle application of foam during topside application limits submerging of the foam into the product which causes product entrainment and foam destruction. 

Foam type must be compatible with both product type and application technique. 

   

Page 56: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

201May 01 ................................................. Appendix D ‐ 13 

 External Floating Roof Tanks Burnaby Fire Department General Tank Fire Protocol  

DESCRIPTION:

A tank with a single roof that floats on the liquid product surface. 

The roof is constructed to float, rising and falling with the product level via a pontoon or double deck roof design. 

The outer edge of the roof at its periphery where the roof meets the tank shell wall, a rim seal system is utilized to minimize vapor release from the product surface. 

The floating roof many be equipped with a foam dam fitted around the roof periphery to keep foam off of the roof area and retain it to the seal area. 

 

INHERENT HAZARDS:

Lightning often provides the induced charge, without the direct strike, sufficient to cause ignition of most rim seal fires. 

Subsurface foam application is not recommended for this type of tank as the roof when sunken restricts the travel of foam solution to the surface of the fire. 

Boilover is a potential hazard any time a full surface tank fire occurs in a storage tank containing crude petroleum or derivative with components having a wide range of boiling points and where free water or a water‐in‐oil emulsion also is present within the tank. 

 

RIM SEAL FIRE:

Pumping out the tank should only be undertaken if the assessed chances of tank fire extinguishment are poor.  Pumping out the tank will reduce the amount of fuel for the fire, minimizing burn time, but will cause more structural damage to the tank shell. 

Foam system components should be protected with cooling water streams until fire fighting resources can be mustered and extinguishment efforts initiated. 

Application of water/foam to the roof area must be strictly controlled to ensure the floating roof is not flooded, overloaded and sunk leading to an incident escalation from rim seal fire to full liquid surface fire. 

Where a rim seal fire has occurred in an external floating roof tank with an intact and operational fixed or semi‐fixed foam system extinguish by supplying the foam system with the inlet pressure, and flow volume as per design requirements. 

Where foam application through fixed or semi‐fixed systems is not possible due to malfunction or lack of presence; foam streams can be applied directly to the rim seal fire area. 

Where foam dams are present on the floating roof, foam can be applied to the shell wall and will flow down to the seal fire and around the tank shell circumference effecting extinguishment as the application is continued. 

Page 57: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

201May 01 ................................................. Appendix D ‐ 14 

  Where foam dams are not present; foam will need to be applied from monitors or handlines to 

multiple landing areas on the shell wall to apply foam to the rim seal area and effect extinguishment.  A controlled and conservative application rate will be required to ensure that foam is applied only as required for extinguishment.  Excessive foam application rates to a single landing area will likely cause foam to flood and potentially sink the floating roof causing a significant incident escalation to a full liquid surface fire.  Monitor application of foam from the ground level is not recommended due to the difficulty in directing and controlling the application.  Elevated streams from fire apparatus may increase the safety of monitor applications but must be appropriately controlled and applied against the tank shell wall for foam to gently flow down onto the seal area..  Foam hose streams can be utilized to extinguish rim seal fires operated from the floating roof (this may constitute a confined space entry, and managing a burning seal area around the stairway platform will complicate this strategy) or wind girder (appropriate fall protection should be in place to operate personnel from the wind girder).  Hose stream application are often most effective when two (2) handlines are employed operating around the wind girder in opposite directions.  A specifically designed portable foam monitor can be positioned on the tank shell periphery at the platform to apply to the inner shell wall and run the foam down to the rim seal areas. 

Minimum application rates based on NFPA 11 for application to rim seal fires: 

I. Rim Seal Fire Foam System Type II Foam Chamber above the seal application  0.30 usgpm/ft2    (12.3 lpm/m2)  20 minutes    Class I  Hydrocarbon 20 minutes    Crude Petroleum 20 minutes    Alcohols & Oxygenates (appl’n rates, foam conc% vary per product) 20 minutes    Class II Hydrocarbon 

II. Rim Seal Fire Portable Equipment Type III Monitor / Hoseline above the seal application 0.50 usgpm/ft2    (20.5 lpm/m2)  20 minutes    Class I  Hydrocarbon 20 minutes    Crude Petroleum 20 minutes    Alcohols & Oxygenates (appl’n rates, foam conc % vary per product) 20 minutes    Class II Hydrocarbon 

Wind conditions and appliance nozzle characteristics can cause foam loss due to “drop‐out”.  Foam losses due to “drop‐out” from monitor applications are typically from 30% to 60%.  The increased Type III minimum application rate of 0.16 usgpm/ft2 versus the Type II application as per NFPA 11, accounts only for the foam loss incurred by a less gentle application of the foam to the fire surface.  Foam losses due to “drop‐out” must be quantified and overcome by increasing the discharge rate to ensure the required minimum application rate is meet or exceeded at the application to the fire surface. 

The gentle application of foam during topside application limits submerging of the foam into the product which causes product entrainment and foam destruction. 

   

Page 58: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

201May 01 ................................................. Appendix D ‐ 15 

 III. Rim Seal Fire Foam System 

Type II Foam Chamber below the seal application 0.50 usgpm/ft2    (20.5 lpm/m2)  10 minutes    Class I  Hydrocarbon 10 minutes    Crude Petroleum 10 minutes    Alcohols & Oxygenates (appl’n rates, foam conc % vary per product) 10 minutes    Class II Hydrocarbon 

In the event of foam loss from the fixed or semi‐fixed foam system; quantify the volume rate loss and increase the supply to the system appropriately such that the minimum application rate is achieved at the fire surface. 

In the event of a fixed system proportioning failure; supply the system with foam generated from mobile fire apparatus. 

Rim seal fire management priorities: 

i Ensuring the floating roof stays undamaged and in place.  Many rim seal fire can burn for extended periods of time without escalation to a full liquid surface fire. 

ii Extinguishment of the rim seal fire. 

In the event of a rim seal fire with a long preburn period, water streams may be required to cool the tank allowing more affective foam sealing to the tank shell. 

Foam type must be compatible with both product type and application technique. 

Cooling the exterior tank shell above the liquid level with water streams will assist in:  

keeping the tank shell erect, minimize the potential for folding inward. 

increasing the sealing ability of the foam against the tank shell. 

 

OBSTRUCTED FULL LIQUID SURFACE FIRE:

Obstructed full liquid surface fires occur when the external floating roof partially sinks. 

Pumping out the tank should only be undertaken if the assessed chances of tank fire extinguishment are poor.  Pumping out the tank will reduce the amount of fuel for the fire, minimizing burn time, but will cause more structural damage to the tank shell.  For some events where the internal floating roof has sunk, the tank can be pumped out down to the roof level to ease extinguishment. 

Extinguishment Options: 

I. Type III Topside Foam Monitor Application  0.16 usgpm/ft2    (6.5 lpm/m2)  0.20 usgpm/ft2    (8.1 lpm/m2):  if prolonged burning – if heat wave established 65 minutes    Class I  Hydrocarbon 65 minutes    Crude Petroleum 65 minutes    Alcohols & Oxygenates (application rates, foam conc % vary per product) 50 minutes    Class II Hydrocarbon 

Wind conditions and appliance nozzle characteristics can cause foam loss due to “drop‐out”.  Foam losses due to “drop‐out” from monitor applications are typically from 30% to 60%.  The increased Type III minimum application rate of 0.16 usgpm/ft2 versus the Type II application as per NFPA 11, accounts only for the foam loss incurred by a less gentle application of the foam to the fire surface.  Foam losses due to “drop‐out” must be quantified and overcome by increasing the discharge rate to 

Page 59: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

201May 01 ................................................. Appendix D ‐ 16 

 ensure the required minimum application rate is meet or exceeded at the application to the fire surface. 

Extended foam application may be required to seal the obstructed area and prevent burn‐back and re‐ignition, this may require significantly more foam concentrate resources than the stated minimum by NFPA 11. 

The gentle application of foam during topside application limits submerging of the foam into the product which causes product entrainment and foam destruction. 

When tanks exceed 100’ in diameter, foam application will often need to be significantly increased due to the decreased fire extinguishing ability of the applied foam as its water drops out during a long travel distance over a hot surface.  Multiple discharge streams can be merged into a single application stream to affect the higher application requirements. 

II. For tanks with fixed or semi‐fixed foam systems designed to extinguish a full liquid surface fire and where the system has remained intact and operational, extinguish by supplying the foam system with the inlet pressure, and flow volume as per design requirements.  Foam flow volume application rates should meet or exceed NFPA 11 requirements.  Full Liquid Surface Fire Foam System Type II Foam Chamber / Fixed Nozzle Application 0.10 usgpm/ft2:    (4.1 lpm/ft2) 0.20 usgpm/ft2    (8.1 lpm/m2):  if prolonged burning – if heat wave established 55 minutes    Class I  Hydrocarbon 55 minutes    Crude Petroleum 30 minutes    Class II Hydrocarbon 

Extended foam application may be required to seal the obstructed area and prevent burn‐back and re‐ignition, this may require significantly more foam concentrate resources than the stated minimum by NFPA 11. 

The fixed or semi‐fixed foam system may not be capable of operating at a flow volume of 0.20 usgpm/ft2 as this rate significantly exceeds the design parameters of the system. 

Foam type must be compatible with both product type and application technique. 

When a long preburn period has occurred, water streams can be fanned across the fire surface to cool the product.  The application of water will generally produce some level of frothing.  It is critical that the water is not applied as a stream to penetrate the product surface, but fanned across the surface to achieve cooling through the complete conversion of water to steam.  The application rate should be adjusted to minimize frothing while still providing cooling.  The surface level of the product can be lowered to minimize the amount of frothover by partially pumping the tank out.  Cooling streams of water will be required to protect the tank shell above the liquid level from damage.  As the frothing subsides, the water application rate can be increased to affect a higher cooling rate.  Constant monitoring of the presence and movement of a heat wave front is required to assess for boilover potential.  Once the product surface is sufficiently cooled, foam application can commence to extinguish the surface fire. 

Boilover is a potential tank fire escalation scenario for crude oil tanks, or tanks containing heavy fuels with multiple fractions having a wide range of boiling points.  As the crude oil burns the light ends vaporize and burn at the liquid surface.  A hot dense layer of the heavier components forms and begins to travel downwards to the bottom of the tank.  The hot dense layer moves at an approximate rate of 1 ‐2 meters per hour.  When the hot dense layer reaches the water inherent in the bottom of the tank, the water is heated 

Page 60: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

201May 01 ................................................. Appendix D ‐ 17 

 and turns to steam.  The steam travels upward from the bottom of the tank causing a massive eruption of the burning fuel, spreading molten product a potential distance of 5 – 10 tank diameters. 

Subsurface foam injection is recommended only as a last resort for tanks with floating roof as the partially sunken roof impedes the foam from reaching the surface of the burning product. 

Subsurface Foam Injection 0.10 usgpm/ft2:    (4.1 lpm/m2) 0.20 usgpm/ft2    (8.1 lpm/m2):  if prolonged burning – if heat wave established 55 minutes    Class I  Hydrocarbon 55 minutes    Crude Petroleum 30 minutes    Class II Hydrocarbon 

The foam injection point must be above any water bottom in the tank to avoid excessive dilution of the foam. 

High back pressure foam makers are required to allow foam injection to overcome the tank head pressure and viscosity characteristics of the tank product. 

Low discharge velocity of the foam provides an application that limits surface turbulence and fuel entrainment which causes deteriorating of the foam blanket. 

Subsurface injection is not recommended for Polar Solvents with high water miscibility. 

Cooling the exterior tank shell above the liquid level with water streams will assist in:  

keeping the tank shell erect, minimize the potential for folding inward. 

increasing the sealing ability of the foam against the tank shell. 

 

UNOBSTRUCTED FULL LIQUID SURFACE FIRE:

The floating roof has fully sunk and does not obstruct foam application to any portion of the full liquid surface fire. 

Pumping out the tank should only be undertaken if the assessed chances of tank fire extinguishment are poor.  Pumping out the tank will reduce the amount of fuel for the fire, minimizing burn time, but will cause more structural damage to the tank shell.  For some events where the internal floating roof has sunk, the tank can be pumped out down to the roof level to ease extinguishment. 

Extinguishment Options: 

Type III Topside Foam Monitor Application 0.16 usgpm/ft2    (6.5 lpm/m2)  0.20 usgpm/ft2    (8.1 lpm/m2):  if prolonged burning – if heat wave established 65 minutes    Class I  Hydrocarbon 65 minutes    Crude Petroleum 65 minutes    Alcohols & Oxygenates (application rates, foam conc % vary per product) 50 minutes    Class II Hydrocarbon 

Wind conditions and appliance nozzle characteristics can cause foam loss due to “drop‐out”.  Foam losses due to “drop‐out” from monitor applications typically range from 30% to 60%.  The increased Type III minimum application rate of 0.16 usgpm/ft2 versus the Type II application as per NFPA 11, accounts only for the foam loss incurred by a less gentle application of the foam to the fire surface.  Foam losses due to “drop‐out” must be quantified and overcome by increasing the discharge rate to 

Page 61: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

201May 01 ................................................. Appendix D ‐ 18 

 ensure the required minimum application rate is meet or exceeded at the application to the fire surface. 

The gentle application of foam during topside application limits submerging of the foam into the product which causes product entrainment and foam destruction. 

When tanks exceed 100’ in diameter, foam application will often need to be significantly increased due to the decreased fire extinguishing ability of the applied foam as its water drops out during a long travel distance over a hot surface.  Multiple discharge streams can be merged into a single application stream to affect the higher application requirements. 

Shorter duration times (due to higher application rates; in the range of  0.20 – 0.30 usgpm/ft2) are acceptable but may not be decreased below 70% of the recommended time. 

Foam type must be compatible with both product type and application technique. 

Subsurface foam injection is recommended only as a last resort for tanks with floating roof as the fully sunken roof impedes the foam from reaching the surface of the burning product. 

Subsurface Foam Injection 0.10 usgpm/ft2:    (4.1 lpm/m2) 0.20 usgpm/ft2    (8.1 lpm/m2):  if prolonged burning – if heat wave established 55 minutes    Class I  Hydrocarbon 55 minutes    Crude Petroleum 30 minutes    Class II Hydrocarbon 

The foam injection point must be above any water bottom in the tank to avoid excessive dilution of the foam. 

High back pressure foam makers are required to allow foam injection to overcome the tank head pressure and viscosity characteristics of the tank product. 

Low discharge velocity of the foam provides an application that limits surface turbulence and fuel entrainment which causes deteriorating of the foam blanket. 

Subsurface injection is not recommended for Polar Solvents with high water miscibility. 

Cooling the exterior tank shell above the liquid level with water streams will assist in:  

keeping the tank shell erect, minimize the potential for folding inward. 

increasing the sealing ability of the foam against the tank shell. 

 

GROUND FIRES:

Ground fires can be caused from tank or piping leakage or overflow. 

Drain valves should be closed and the product confined within the levee of origin. 

Isolate the spill supply by: 

I. Closing pertinent valves (roof drain valves, water bottom drain valves, etc.) under the cover of water spray streams for protection.  Extinguishing pressure fires without isolating the source of the release may result in the formation of flammable vapor clouds. 

Page 62: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

201May 01 ................................................. Appendix D ‐ 19 

 II. Displacing enough product with water to produce a water leak rather than a product leak.  The water 

pressure in the line or tank must be greater than the product pressure in the line or tank.  Care should be exercised to avoid overfilling the tank. 

Exercise caution when applying foam to unignited flammable spills, where a source of ignition does not exist.  Consider the potential for static charge build‐up generated by the foam stream (API 2021 Appendix I.2) 

Do not apply foam streams unless: 

i Personnel require protection from potential ignition 

ii Uncontrollable ignition sources exist 

iii Vapour emissions present a greater hazard potential 

If foam streams are to be applied: 

i Apply foam streams gently to the product surface.   Avoid plunging as it presents a greater potential for static charge ignition. 

ii Utilize foam systems that generate foam solution from built‐in inductors or proportioners.   Avoid the use of portable foam inductors, as these present a greater potential for static charge ignition. 

iii Initiate foam solution generation by applying the foam stream away from the product spill area or tank wall,  Once the foam solution discharge has been established, the stream can be repositioned and applied to the spill, indirectly if possible. 

 

High emphasis should be placed on cooling and maintaining ambient temperatures of tanks exposed to the ground fire.  Increased temperatures will increase the rate of vapor release and cause heat‐triggered reactions in some products.  Direct flame impingement usually commands the highest cooling priority; unless a product is present that is especially heat sensitive.  Tanks exposed to ground fires have the potential for a flammable mixture to be generated due to an increase in product temperature, and ignition by the hot metal of the tank shell. 

Large ground fires are typically extinguished by applying a foam blanket. 

Water spray alone can be used to extinguish a ground fire involving products with flash points well above the temperature of the water applied (>100oF, 38oC).  The water application cools the temperature of the product surface below its flash point, and the steam generated displaces the air required for combustion.  Once the product is cooled sufficiently it ceases to produce the vapor required for combustion. 

Three‐Dimensional fire from mixers or flange leaks can be extinguished by applying foam solution in such massive magnitude that the fire is simply overwhelmed.  The dual agent application of foam and dry chemical simultaneously is often very effective for three‐dimensional fires by providing the means for prompt extinguishment of the pressure fire using the dry chemical and the product sealing of the foam to allow personnel to safely manage the spill fire. 

In extinguishing a levee fire it is not necessary to make foam application to the entire fire surface simultaneously.  Based on the foam discharge capabilities present; divide the spill area into sections that can be effectively extinguished by applying foam streams at or above the minimum application rate as per NFPA 11.  Apply foam and extinguish one section before proceeding to the next section.  Extinguished sections of the ground fire must be monitored and foam reapplied to maintain an intact foam blanket. 

Wind conditions and appliance nozzle characteristics can cause foam loss due to “drop‐out”.  Foam losses due to “drop‐out” from monitor applications are typically from 30% to 60%.  Foam losses due to “drop‐out” must 

Page 63: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

201May 01 ................................................. Appendix D ‐ 20 

 be quantified and overcome by increasing the discharge rate to ensure the required minimum application rate is meet or exceeded at the application to the fire surface. 

In the event that a containment area drain valve was open and product escaped to the waste water system: 

Close the drain valve under the protection of water streams. 

Establish a foam discharge at the containment area outlet, allowing foam to spread to blanket the product through the waste water system. It is not advisable for personnel to operate within spill area even when a foam blanket is in place. 

Extinguishment priorities in the event of a multiple fire incident: 

Ground fire first, tank fire second. 

Tank fire first, ground fire second, pressure fire third. 

Minimum Monitor Application Rates for Foam Solution: 

I. Non In‐depth, Uncontained Spill Fire (<1” depth) 

i Foam Type:  AFFF, FFFP, AR‐AFFF, AR‐FFFP 0.10 usgpm/ft2    (4.1 lpm/m2)  15 minutes    Class I  Hydrocarbon 15 minutes    Class II Hydrocarbon 

ii Foam Type:  Protein, Fluorprotein 0.16 usgpm/ft2    (6.5 lpm/m2) 15 minutes    Class I Hydrocarbon 15 minutes    Class II Hydrocarbon 

Alcohols & Oxygenates: 15 minute minimum application time application rates, and foam concentrate percentage vary per product 

II. In‐depth, Contained Spill Fire (>1” depth) 0.16 usgpm/ft2:    (6.5 lpm/m2) 30 minutes    Class I  Hydrocarbon 20 minutes    Class II Hydrocarbon 

Alcohols & Oxygenates: application rates, and foam concentrate percentage vary per product 

The gentle application of foam during topside application limits submerging of the foam into the product which causes product entrainment and foam destruction. 

Foam type must be compatible with both product type and application technique. 

 

 

 

 

 

Page 64: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

201May 01 ................................................. Appendix D ‐ 21 

 Fixed Cone Roof Tanks Burnaby Fire Department General Tank Fire Protocol  

PRODUCTS:

Typically store combustible liquids with flash points exceeding 100oF, 38oC. 

Can store liquids with lower flash points; crude oil, polar solvents, contaminated combustible liquids. 

Environmental regulations typically prevent storage of Class I flammable liquids in larger fixed roof tanks. 

For volatile liquid, the rich vapor space typically prevents ignition within the tank. 

 

DESCRIPTION:

Permanently attached roof. 

Vapor space between the liquid surface and the underside of the roof. 

Tanks may be equipped with emergency vents, or a frangible roof seam to allow for emergency venting. 

Larger tanks, 35’ (10 m) or greater in diameter, the roof is typically constructed with a weak roof‐to‐shell seam, so that in the event of over pressurization (such as an internal explosion) the roof will separate from the vertical shell to prevent failure at the tank bottom seam which would release the entire contents of the tank. 

Tanks without a frangible roof seam can fail at the bottom of the tank when exposed to an internal over pressurization, causing significant or total loss of tank integrity and/or tank launching. 

Tanks may have open vents or be equipped with a pressure‐vacuum vent to prevent the release of vapors during small changes in pressure resulting from changes in the liquid level or temperature. 

 

INHERENT HAZARDS:

Fire associated with this type of tank is commonly attributed to leaks or fire extension from other incidents.  Fixed roof tanks that are grouped together within common levees are especially vulnerable to ground fires. 

Non‐volatile stock such as diesel may become heated by radiant or convective heat from a source such as a nearby ground fire or tank fire, causing the vapor space to pass into the explosive range. 

Boilover is a potential hazard any time a full surface tank fire occurs in a storage tank containing crude petroleum or derivative with components having a wide range of boiling points and where free water or a water‐in‐oil emulsion also is present within the tank.  Consider checking the tank water draw and removing the water component if present. 

Fixed roof tanks without frangible seams exposed to fire conditions must be monitored closely and cooled appropriately to ensure internal over pressurization does not occur.  Fixed roof tanks without frangible seams are not designed for service above 93oC (200oF) or pressures exceeding 15 psi (1 kg/cm2).  Catastrophic failure of the tank due to over pressurization may cause tank launching, and a flash fire followed by a large ground fire. 

 

   

Page 65: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

201May 01 ................................................. Appendix D ‐ 22 

 VENT FIRE:

Vent fires are typically caused by lightning. 

Vent fires are commonly extinguished with minimal damage and low risk to personnel using dry chemical applications or by reducing the tanks internal pressure. 

Generally (but not mandatory) pressure and vacuum vents are designed to fail open in case of any component failure. 

Assuming that the majority of vents will fail in the open position in case of fire, the valve can continue to vent products and therefore remain a fuel source. 

Vent Fire with Yellow‐Orange Flame and Black Smoke 

Indicates that the vapor/air mixture in the tank is above its flammable or explosive limits. 

Extinguished with dry chemical fire extinguishers. 

Vent Fire with Snapping Blue‐Red, Nearly Smokeless Flame 

Indicates that the vapor or air mixture in the tank is flammable or explosive. 

As long as the tank is breathing through the pressure‐vacuum valve, the flame cannot flash back into the tank because of the high‐velocity flow through the valve. 

Extinguishment Options: 

I. Pressure reduction in the tank (caused by cooling) can snuff out the fire when the pressure‐vacuum valve closes. 

When the tank is exposed to fire, this can be accomplished by applying cooling water to the tank roof and shell. 

If pumping into the tank is pressurizing the tank, a pressure reduction can be obtained by stopping movement into the tank or pumping product out of the tank. 

As there is no guarantee the vent will close “bubble tight” there may be vapor leakage and a need to follow‐up with a hose or dry chemical application. 

II. A positive pressure is maintained in the tank by introducing fuel gas. 

When a fuel‐rich condition is indicated by a change of flame character (to Vent Fire with Yellow‐Orange Flame and Black Smoke), extinguishment may be accomplished with dry chemical extinguishers. 

Following any vent fire, the vents should be inspected and replaced as needed.  A damaged vent will continue to release flammable vapors resulting in continuing fire and environmental liability. 

 

   

Page 66: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

201May 01 ................................................. Appendix D ‐ 23 

  

UNOBSTRUCTED FULL LIQUID SURFACE FIRE:

The roof has totally separated at a frangible (weak) seam leaving the total liquid surface uncovered. 

The roof usually separates in one piece. 

Foam chambers if present are not operationally functional. 

Pumping out the tank should only be undertaken if the assessed chances of tank fire extinguishment are poor.  Pumping out the tank will reduce the amount of fuel for the fire, minimizing burn time, but will cause more structural damage to the tank shell. 

Extinguishment Options: 

II. Type III Topside Foam Monitor Application 0.16 usgpm/ft2    (6.5 lpm/m2)  0.20 usgpm/ft2    (8.1 lpm/m2):  if prolonged burning – if heat wave established 65 minutes    Class I  Hydrocarbon 65 minutes    Crude Petroleum 65 minutes    Alcohols & Oxygenates (application rates, foam conc % vary per product) 50 minutes    Class II Hydrocarbon 

Wind conditions and appliance nozzle characteristics can cause foam loss due to “drop‐out”.  Foam losses due to “drop‐out” from monitor applications are typically from 30% to 60%.  The increased Type III minimum application rate of 0.16 usgpm/ft2 versus the Type II application as per NFPA 11, accounts only for the foam loss incurred by a less gentle application of the foam to the fire surface.  Foam losses due to “drop‐out” must be quantified and overcome by increasing the discharge rate to ensure the required minimum application rate is meet or exceeded at the application to the fire surface. 

Shorter duration times (due to higher application rates; in the range of  0.20 – 0.30 usgpm/ft2) are acceptable but may not be decreased below 70% of the recommended time. 

The gentle application of foam during topside application limits submerging of the foam into the product which causes product entrainment and foam destruction. 

When tanks exceed 100’ in diameter, foam application will often need to be significantly increased due to the decreased fire extinguishing ability of the applied foam as its water drops out during a long travel distance over a hot surface.  Multiple discharge streams can be merged into a single application stream to affect the higher application requirements. 

 

III. Subsurface Foam Injection 0.10 usgpm/ft2:    (4.1 lpm/m2) 0.20 usgpm/ft2    (8.1 lpm/m2):  if prolonged burning – if heat wave established 55 minutes    Class I  Hydrocarbon 55 minutes    Crude Petroleum 30 minutes    Class II Hydrocarbon 

The foam injection point must be above any water bottom in the tank to avoid excessive dilution of the foam. 

Page 67: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

201May 01 ................................................. Appendix D ‐ 24 

  High back pressure foam makers are required to allow foam injection to overcome the tank head 

pressure and viscosity characteristics of the tank product. 

Low discharge velocity of the foam provides an application that limits surface turbulence and fuel entrainment which causes deteriorating of the foam blanket. 

Subsurface injection is not recommended for Polar Solvents with high water miscibility. 

 

When a long preburn period has occurred, water streams can be fanned across the fire surface to cool the product.  The application of water will generally produce some level of frothing.  It is critical that the water is not applied as a stream to penetrate the product surface, but fanned across the surface to achieve cooling through the complete conversion of water to steam.  The application rate should be adjusted to minimize frothing while still providing cooling.  The surface level of the product can be lowered to minimize the amount of frothover by partially pumping the tank out.  Cooling streams of water will be required to protect the tank shell above the liquid level from damage.  As the frothing subsides, the water application rate can be increased to affect a higher cooling rate.  Constant monitoring for the presence and movement of a heat wave front is required to assess for boilover potential.  Once the product surface is sufficiently cooled, foam application can commence to extinguish the surface fire.  

Boilover is a potential tank fire escalation scenario for crude oil tanks, or tanks containing heavy fuels with multiple fractions having a wide range of boiling points.  As the crude oil burns the light ends vaporize and burn at the liquid surface.  A hot dense layer of the heavier components forms and begins to travel downwards to the bottom of the tank.  The hot dense layer moves at an approximate rate of 1 ‐2 meters per hour.  When the hot dense layer reaches the water inherent in the bottom of the tank, the water is heated and turns to steam.  The steam travels upward from the bottom of the tank causing a massive eruption of the burning fuel, spreading molten product a potential distance of 5 – 10 tank diameters. 

Foam type must be compatible with both product type and application technique. 

Cooling the exterior tank shell above the liquid level with water streams will assist in:  

keeping the tank shell erect, minimize the potential for folding inward. 

increasing the sealing ability of the foam against the tank shell. 

 

OBSTRUCTED FULL LIQUID SURFACE FIRE:

Depending on the circumstance of the tank internal pressurization or explosion, the roof may “fishmouth”, lift into the air and fall back into the tank, or blow off leaving segments of the structure still intact, all of which partially obstruct the surface of the fire. 

Foam chambers, if present, are not operationally functional. 

Pumping out the tank should only be undertaken if the assessed chances of tank fire extinguishment are poor.  Pumping out the tank will reduce the amount of fuel for the fire, minimizing burn time, but will cause more structural damage to the tank shell. 

Extinguishment Options: 

I. Type III Topside Foam Monitor Application through roof tear opening if present 0.16 usgpm/ft2    (6.5 lpm/m2)  0.20 usgpm/ft2    (8.1 lpm/m2):  if prolonged burning – if heat wave established 65 minutes    Class I  Hydrocarbon 65 minutes    Crude Petroleum 

Page 68: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

201May 01 ................................................. Appendix D ‐ 25 

 65 minutes    Alcohols & Oxygenates (application rates, foam conc % vary per product) 50 minutes    Class II Hydrocarbon 

Extended foam application may be required to seal the obstructed area and prevent burn‐back and re‐ignition, this may require much more foam concentrate resources than the stated minimum by NFPA 11. 

Wind conditions and appliance nozzle characteristics can cause foam loss due to “drop‐out”.  Foam losses due to “drop‐out” from monitor applications are typically from 30% to 60%.  The increased Type III minimum application rate of 0.16 usgpm/ft2 versus the Type II application as per NFPA 11,   accounts only for the foam loss incurred by a less gentle application of the foam to the fire surface.  Foam losses due to “drop‐out” must be quantified and overcome by increasing the discharge rate to ensure the required minimum application rate is met or exceeded at the application to the fire surface. 

Foam streams applied via Type III foam monitors may experience limited access points through the damaged roof, and may incur significant foam losses due to “roll‐off” as a portion of the foam stream contacts the roof and does not flow to the surface of the fire.  The foam losses due to the “roll‐off” must be quantified and overcome by increasing the discharge rate to ensure the required minimum application rate is met or exceeded at the application to the fire surface. 

Fire apparatus with elevated master streams can be utilized to increase the accuracy of discharge streams through restricted openings therefore minimizing foam losses. 

The gentle application of foam during topside application limits submerging of the foam into the product which causes product entrainment and foam destruction. 

When tanks exceed 100’ in diameter, foam application will often need to be significantly increased due to the decreased fire extinguishing ability of the applied foam as its water drops out during a long travel distance over a hot surface.  Multiple discharge streams can be merged into a single application stream to affect the higher application requirements. 

 

II. Subsurface Foam Injection 0.10 usgpm/ft2:    (4.1 lpm/ft2) 0.20 usgpm/ft2    (8.1 lpm/m2):  if prolonged burning – if heat wave established 55 minutes    Class I  Hydrocarbon 55 minutes    Crude Petroleum 30 minutes    Class II Hydrocarbon 

The foam injection point must be above any water bottom in the tank to avoid excessive dilution of the foam. 

High back pressure foam makers are required to allow foam injection to overcome the tank head pressure and viscosity characteristics of the tank product. 

Low discharge velocity of the foam provides an application that limits surface turbulence and fuel entrainment which causes deteriorating of the foam blanket. 

Subsurface injection is not recommended for Polar Solvents with high water miscibility. 

 

Page 69: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

201May 01 ................................................. Appendix D ‐ 26 

  In the event that the tank fire has burned for an extended period of time (~6+ hours) expect a build up of 

burning residue to accumulate on the underside of the roof.  Once the fire is extinguished and a thick foam blanket is established, knock the embers from the roof, preferably using a crane’s “Head‐ache ball”. 

Foam type must be compatible with both product type and application technique. 

Cooling the exterior tank shell above the liquid level with water streams will assist in:  

keeping the tank shell erect, minimize the potential for folding inward. 

increasing the sealing ability of the foam against the tank shell. 

 

FULL LIQUID SURFACE FIRE WITH INTACT ROOF:

The roof of the tank has remained mostly undamaged but provides sufficient air to the internal tank vapor space, such that a full liquid surface fire is possible. 

Pumping out the tank should only be undertaken if the assessed chances of tank fire extinguishment are poor.  Pumping out the tank will reduce the amount of fuel for the fire, minimizing burn time, but will cause more structural damage to the tank shell. 

Foam system components should be protected with cooling water streams until fire fighting resources can be mustered and extinguishment efforts initiated. 

Extinguishment Options: 

I. Type II Foam Chamber / Fixed Nozzle Application 0.10 usgpm/ft2    (4.1 lpm/m2)  0.20 usgpm/ft2    (8.1 lpm/m2):  if prolonged burning – if heat wave established 55 minutes    Class I  Hydrocarbon 55 minutes    Crude Petroleum 55 minutes    Alcohols & Oxygenates (application rates, foam conc % vary per product) 30 minutes    Class II Hydrocarbon 

In the event of foam loss from the fixed or semi‐fixed foam system; quantify the volume rate loss and increase the supply to the system appropriately such that the minimum application rate is achieved at the fire surface. 

In the event of a fixed system proportioning failure; supply the system with foam generated from mobile fire apparatus. 

The fixed or semi‐fixed foam system may not be capable of operating at a flow volume of 0.20 usgpm/ft2 as this rate may significantly exceed the design parameters of the system. 

 

II. Subsurface Foam Injection 0.10 usgpm/ft2:    (4.1 lpm/m2) 0.20 usgpm/ft2    (8.1 lpm/m2):  if prolonged burning – if heat wave established 55 minutes    Class I  Hydrocarbon 55 minutes    Crude Petroleum 30 minutes    Class II Hydrocarbon 

The foam injection point must be above any water bottom in the tank to avoid excessive dilution of the foam. 

Page 70: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

201May 01 ................................................. Appendix D ‐ 27 

  High back pressure foam makers are required to allow foam injection to overcome the tank head 

pressure and viscosity characteristics of the tank product. 

Low discharge velocity of the foam provides an application that limits surface turbulence and fuel entrainment which causes deteriorating of the foam blanket. 

Subsurface injection is not recommended for Polar Solvents with high water miscibility. 

 

In the event that the tank fire has burned for an extended period of time (~6+ hours) expect a build up of burning residue to accumulate on the underside of the roof.  Once the fire is extinguished and a thick foam blanket is established, knock the embers from the roof, preferably using a crane’s “Head‐ache ball”. 

Foam type must be compatible with both product type and application technique. 

 

Cooling the exterior tank shell above the liquid level with water streams will assist in:  

keeping the tank shell erect, minimize the potential for folding inward. 

increasing the sealing ability of the foam against the tank shell. 

 

GROUND SPILL / FIRES:

Ground fires can be caused from tank or piping leakage or overflow. 

Drain valves should be closed and the product confined within the levee of origin. 

Isolate the spill supply by: 

I. Closing pertinent valves (roof drain valves, water bottom drain valves, etc.) under the cover of water spray streams for protection.  Extinguishing pressure fires without isolating the source of the release may result in the formation of flammable vapor clouds. 

II. Displacing enough product with water to produce a water leak rather than a product leak.  The water pressure in the line or tank must be greater than the product pressure in the line or tank.  Care should be exercised to avoid overfilling the tank. 

Exercise caution when applying foam to unignited flammable spills, where a source of ignition does not exist.  Consider the potential for static charge build‐up generated by the foam stream (API 2021 Appendix I.2) 

Do not apply foam streams unless: 

i Personnel require protection from potential ignition 

ii Uncontrollable ignition sources exist 

iii Vapour emissions present a greater hazard potential 

If foam streams are to be applied: 

iv Apply foam streams gently to the product surface.   Avoid plunging as it presents a greater potential for static charge ignition. 

v Utilize foam systems that generate foam solution from built‐in inductors or proportioners.   Avoid the use of portable foam inductors, as these present a greater potential for static charge ignition. 

Page 71: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

201May 01 ................................................. Appendix D ‐ 28 

 vi Initiate foam solution generation by applying the foam stream away from the product spill 

area or tank wall,  Once the foam solution discharge has been established, the stream can be repositioned and applied to the spill, indirectly if possible. 

High emphasis should be placed on cooling and maintaining ambient temperatures of tanks exposed to the ground fire.  Increased temperatures will increase the rate of vapor release and cause heat‐triggered reactions in some products.  Direct flame impingement usually commands the highest cooling priority; unless a product is present that is especially heat sensitive.  Tanks exposed to ground fires have the potential for a flammable mixture to be generated due to an increase in product temperature, and ignition by the hot metal of the tank shell. 

Large ground fires are typically extinguished by applying a foam blanket. 

Water spray alone can be used to extinguish a ground fire involving products with flash points well above the temperature of the water applied (>100oF, 38oC).  The water application cools the temperature of the product surface below its flash point, and the steam generated displaces the air required for combustion.  Once the product is cooled sufficiently it ceases to produce the vapor required for combustion. 

 

Three‐Dimensional fire from mixers or flange leaks can be extinguished by applying foam solution in such massive magnitude that the fire is simply overwhelmed.  The dual agent application of foam and dry chemical simultaneously is often very effective for three‐dimensional fires by providing the means for prompt extinguishment of the pressure fire using the dry chemical and the product sealing of the foam to allow personnel to safely manage the spill fire. 

When extinguishing a levee fire it is not necessary to make foam application to the entire fire surface simultaneously.  Based on the foam discharge capabilities present; divide the spill area into sections that can be effectively extinguished by applying foam streams at or above the minimum application rate as per NFPA 11.  Apply foam and extinguish one section before proceeding to the next section.  Extinguished sections of the ground fire must be monitored and foam reapplied to maintain an intact foam blanket. 

Wind conditions and appliance nozzle characteristics can cause foam loss due to “drop‐out”.  Foam losses due to “drop‐out” from monitor applications are typically from 30% to 60%.  Foam losses due to “drop‐out” must be quantified and overcome by increasing the discharge rate to ensure the required minimum application rate is met or exceeded at the application to the fire surface. 

In the event that a containment area drain valve was open and product escaped to the waste water system: 

Close the drain valve under the protection of water streams. 

Establish a foam discharge at the containment area outlet, allowing foam to spread to blanket the product through the waste water system.  

It is not advisable for personnel to operate within spill area even when a foam blanket is in place. 

Extinguishment priorities in the event of a multiple fire incident: 

Ground fire first, tank fire second. 

Tank fire first, ground fire second, pressure fire third.  

Minimum Monitor Application Rates for Foam Solution: 

I. Non In‐depth, Uncontained Spill Fire (<1” depth) 

Page 72: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

201May 01 ................................................. Appendix D ‐ 29 

 i Foam Type:  AFFF, FFFP, AR‐AFFF, AR‐FFFP 

0.10 usgpm/ft2    (4.1 lpm/m2)  15 minutes    Class I  Hydrocarbon 15 minutes    Class II Hydrocarbon 

ii Foam Type:  Protein, Fluorprotein 0.16 usgpm/ft2    (6.5 lpm/m2) 15 minutes    Class I Hydrocarbon 15 minutes    Class II Hydrocarbon 

Alcohols & Oxygenates: 15 minute minimum application time application rates, and foam concentrate percentage vary per product 

II. In‐depth, Contained Spill Fire (>1” depth) 0.16 usgpm/ft2:    (6.5 lpm/m2) 30 minutes    Class I  Hydrocarbon 20 minutes    Class II Hydrocarbon 

Alcohols & Oxygenates: application rates, and foam concentrate percentage vary per product 

 

 

The gentle application of foam during topside application limits submerging of the foam into the product which causes product entrainment and foam destruction. 

Foam type must be compatible with both product type and application technique. 

 

 

 

Page 73: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

201May 01 ................................................. Appendix D ‐ 30 

 Bolted & Riveted Seam Tanks Burnaby Fire Department General Tank Fire Protocol  

DESCRIPTION:

These tanks are constructed with shell and roof sections fastened together with bolts and rivets with a rubber or elastomeric material as a gasket between the plates. 

 

INHERENT HAZARDS:

These Tanks typically are not originally equipped with frangible roof seams. 

Any type of fire occurring to this type of tank structure has the potential to burn hot enough to melt the rubber or elastomeric gasket material between the plates causing tank leakage and fire escalation down the outside of the tank. 

 

3D FIRES:

Three‐Dimensional fires occurring with leaking light product may be extinguished with a dry chemical application. 

Three‐Dimensional fires occurring with leaking heavy product may be quenched with water streams. 

Cooling of the tank shell is required for all fire events occurring to bolted and riveted seam tanks. 

 

 

 

 

Page 74: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

201May 01 ................................................. Appendix D ‐ 31 

 Protecting Adjacent Tanks Burnaby Fire Department General Tank Fire Protocol  

Cooling adjacent tanks is only required when exposed to elevated heat levels.

Cooling adjacent tanks can be conducted simultaneously with fire suppression operations where sufficient discharge resources are present. 

Tanks and components exposed to Thermal Flux: 

350 kW/m2     In Flame 

+32 kW/m2     Flame Impingement                        Tank Escalation probable                        Tank cooling required immediately 

8 kW/ m2        Elevated heating of tank                        Escalation if long exposure without cooling 

5 kW/m2         Personnel experience 2nd and 3rd degree burns 

1 kW/m2         Personnel experience 1st degree burns  

Cooling Distance from radiant heat for tank spacing of: 

2 diameters     In downwind direction 

1 diameter       In all other directions 

Generally tank fire escalation is unlikely if tank spacing >0.5 diameter. 

Heat scorching of paint on exposed tank is positive indicator of a cooling requirement. 

Exposed tanks can be assessed for cooling requirements by use of heat gauging equipment and detectors or by applying a water stream to the tank shell surface; steam generation indicates an elevated surface temperature.  Negative effects on exposed tanks to radiant heat below the liquid level: 

Heat exposure on the shell of a cone roof tank containing combustible liquids can bring the vapor space into flammable range. 

Heat exposure on the shell of tanks with low flash point products can cause the internal tank pressure to increase and exceed the vent capacity causing structural roof failure at the weak roof‐to‐shell seam where present.  Escalation from the structural failure may include a full surface tank fire. 

Heat exposure to floating roof tanks may cause vapor leakage and potential ignition at the rim seal area. Tank components especially vulnerable to heat exposure damage: 

Shell area above the liquid level. 

Vents, valves, mixers and gauging equipment. 

Uninsinuated structural supports. 

Inactive foam systems. Cooling Application Rates: 

Page 75: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

201May 01 ................................................. Appendix D ‐ 32 

 0.05 usgpm/ft2 (2.0 lpm/m2)  Theoretical 

Generally much higher discharge rates are required due to range issues and “drop‐out” associated with monitor streams. 

Water Application Considerations: 

Water streams application priority to mitigate: 

I. Flame impingement 

II. Heating of tank vapor space 

III. Heating of tank liquid space 

Cooling water should be applied from the windward side if possible. 

Apply water streams fanned out across the tank shell surface utilizing a partial fog nozzle setting.  

Apply streams to the roof area of fixed roof tanks, letting the water run down the tank shell. 

Do not apply water to the roof areas of external floating roof tanks, as the addition weight due to water collection may sink the floating roof. 

Water streams must be applied carefully when use in proximity to foam streams or intact foam blankets.  Water streams may disrupt the sealing nature of foam applications and cause re‐ignition of extinguished areas. 

High volume monitor streams, when applied as a straight stream, have the potential to damage small diameter piping. 

Excessive use of cooling water may: 

Decrease the water resources available for fire suppression operations. 

Overfill containment areas and drainage flumes. 

Float empty tanks from their foundations 

 

Page 76: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 ................................................ Appendix E ‐ 1 

 

Appendix E Emergency Management Evaluation  

For  the purposes of clarity, attached  is a draft matrix  for defining  the adequacy of an HSE Case Study process (i.e. Risk identification, preventative barriers and applicable recovery controls.  

 

 

Trans Mountain & Westridge Site Densification

Critical Issue Consequences / Requirements

Control Processes

What are the proposed construction and operational change impacts in regard to the encroachment of the facility to neighboring communities?

Increased Tank-Levee proximity to Fenceline

Decrease in the inherent isolation of facility hazards due to distances to life & environmental sensitivities

Multiple Isolation Phases prior to event exposure to adjacent risk/assets

Provided by MOVs controlled:

Automatically by HC detector & UV/IR sensors Remotely in Control Room Locally at safe field access locations

Isolation valve assurance process including:

Engineering paper describing component selection, failure frequency measures, inspection & maintenance requirements

Quarterly test & exercise procedures

Tank Levee containment at minimum volume to retain tank full capacity & fire water application requirements without requiring draw off operations (for all new construction assets & legacy assets)

Provide Tank fill management system to prevent all Tank Overfill events, including (but not limited to):

High Level Alarms High-High Level Alarms Control Room Monitoring during all transfer operations

Impervious Tank Levee walls with concrete reinforcement to ensure levees provided on hills are maintained during seismic events (for all new construction assets & legacy assets)

Exterior Levee outfall isolation control valves (MOV requirements as above)

Routing of Levee outfall away from critical exposures including critical adjacent assets/risk & directionally away from Fenceline exposures

 

   

Page 77: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 ................................................ Appendix E ‐ 2 

 

Continued: Trans Mountain & Westridge Site Densification

Critical Issue Consequences / Requirements

Objective Commitments

Increased Tank-Levee proximity to Fenceline

Decrease in the elapse time from event occurrence to event impact on life & environment, reduction in notification & escape time prior to direct impact

Provide in field at Tank/Pump Station/Manifold/Loading Arm hydrocarbon monitoring to provide earliest possible detection

Provide constant Fenceline atmospheric outfall monitoring systems with automated notification system

Notification System to include Tiered & Cascading mass notification capability, based on concentration & rate of change modelling for impact exterior to Fenceline

Increase in the threat to life & environment due to greater proximity

Aggressive secondary berming provisions at proximity to Fenceline to ensure liquid release retention prior to release from facility, with special consideration given to outfalls creating immediate impact to areas of life & environmental susceptibility.

Increase in the Tank to Tank proximity

Reduction of the safe protective distances, creating higher potential for single event occurrence to develop into a multiple risk event

Provide an absolute minimum One (1) Tank Diameter, or greater spacing throughout facility

Position highest risk & highest consequence storage Tanks strategically in order to prevent proximity clustering of high potentials

Greater requirement to protect adjacent risks while simultaneously mitigating initial hazard, added complexity, coordination & resource requirements

Emergency Management Protocols, Mobile Fire Protection Equipment & Water/Foam resources identified & detailed to include the proximity event escalation protection operations simultaneously with actual event mitigation operations.

Waste Water Retention & Treatment Systems consistent with the volume per minute to maintain proximity areas without accumulating cooling water, for all risk potentials, inclusive of event mitigation in concert with proximity hazard protection operations

Increased fire water requirement

Interior Fenceline & Exterior Fenceline water demands identified & provided such that sufficient cooling/foam firefighting water is present to conduct:

1. Direct event mitigation 2. Proximity Risk Protection 3. Exterior Fenceline Exposure Protection Operations 4. Outfall Structure Fire potential in geographical area impacted by

potential water use within facility

 

   

Page 78: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 ................................................ Appendix E ‐ 3 

 

Continued: Trans Mountain & Westridge Site Densification

Critical Issue Consequences / Requirements

Objective Commitments

Increase in the Tank to Tank proximity

Increased fire water requirement

Fire Water System provided with:

Capability to provide water at the volume required to provide direct event mitigation at a rate of not less than 0.30 usgpm/ft2 (this application rate to facilitate extinguishment in a potential reduced time frame & accounts for the likely event set-up requirement that may establish tank heat wave conditions) based on the large full surface tank fire event, including an additional 60% (requirement for foam stream loss attributed to Drop-Out) for a continually (NFPA 11 identifies a minimum of 0.16 usgpm/ft2 + American Petroleum Institute recommendation of 30 – 60% added for Drop-Out of foam streams due to the impact of wind on Type III Mobile Monitor discharges, for a minimum of 65 minutes. A period of 80 minutes, is a potential concession time frame, with 65 minutes as the absolute minimum time requirement)

Capability to provide water at the volume required to provide proximity fire protection streams to all risks within 2 Tank diameters downwind & 1 Tank diameter in all other directions, at a rate of not less than 0.05 usgpm/ft2 to all potential exposure surfaces

Placement of Fire Water Hydrants/Manifolds based on the tactical wind-direction considered event mitigation protocols, to ensure mobile equipment can easily facilitate water supply operations from all necessary deployment locations

Redundant Fire Water pumping systems to ensure Fire Water Main is provide charged throughout event, with the ability to maintain full capability with partial system failure

Engineering Business Case with maintenance process assurances Frequency test & exercise commitments Pump curve testing annually at a minimum

Increased fixed fire protection resources

Fixed System Rim Seal Foam Application systems

Fixed Foam capable spray systems to protect critical non-tank risks

Fixed remote controlled Dock Monitor system sufficient to mitigate a dock based fire/release event

Increased semi-fixed fire protection resources

Provide semi-fixed fire protection systems to areas that:

Create proximity hazards to responders operating With poor access right of way provisions Surfaces requiring fire stream application, but are provided without

unimpeded stream flight access

Increased mobile fire protection resource requirements

Commitment & maintenance of sufficient mobile resources to provide a flexible application of emergency resource to the remaining emergency risk potentials

Trained personnel sufficient to operate the fire protection resources in a immediate need emergency deployment timeframe

Commitment & maintenance of sufficient personnel to operate all required specialized hydrocarbon & industrial firefighting equipment in a timeframe consistent with immediate action to prevent the growth of a precipitating emergency response incident

 

Page 79: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 ................................................ Appendix E ‐ 4 

 

Continued: Trans Mountain & Westridge Site Densification

Critical Issue Consequences / Requirements

Objective Commitments

Increase in the Tank to Tank proximity

Increase fire protection response needs above minimum event type

Due to the complex, highly sensitive & critical nature of the proposed facility expansion, emergency response protection should be provided as a principal at a commitment to exceed the minimum requirement

Decrease in the safety of establish safe access right of ways within the facility, to facilitate the appropriate deployment of ER resources for all wind directions & hazard types

Provide all sided Levee access right of ways accessible for deployment of mobile fire protection resources at safe working distance & distances that allow for foam stream application to rear opposite tank interior tank wall

Increased facility operations in close proximity to highly dynamic rail transportation lines

Increased hydrocarbon rail tank traffic in close proximity to dense facility operations

Increased environmental risks, risks of loss to sensitive waterway areas inherent due to location

Note: Marine transfer of product on the foreshore is federally regulated

Provide multiple phase marine spill containment provisions around loading operations to capture the highest percentage of release and to control the dispersal of remaining release volume such that comprehensive spill recovery provisions can be deployed and limited release extension to the immediate loading facility area.

Note: Marine transfer of product on the foreshore is federally regulated

Provide soil, water & airborne release monitoring, testing & recovery mechanisms, programs & processes to ensure retention, remediation & reporting of all product releases

Provide multiple phase land based spill containment provisions around pipeline & storage facility operations to capture the highest percentage of release and to control the dispersal of remaining release volume such that comprehensive spill recovery provisions can be deployed and limited release extension to the immediate area of incident occurrence.

Increase in potential size of fire/release event due to density of risks on the Westridge foreshore

Land based facility & exposure protection planning & resources required to manage impacts of marine based, partial marine-land based & land based events in & around the Westridge facility, on the areas regulated municipally by the City of Burnaby

Increased risk of event occurrence due to dynamic nature of rail traffic hazard

Emergency Response planning, resources & response commitment required to respond to event potential presented

Increased risk due to frequency of rail traffic hazard

 

   

Page 80: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 ................................................ Appendix E ‐ 5 

 

Continued: Trans Mountain & Westridge Site Densification

Critical Issue Consequences / Requirements

Objective Commitments

Increased facility operations in close proximity to highly dynamic rail transportation lines

Increased hydrocarbon rail tank traffic in close proximity to dense facility operations

Increased due to the inherent lack of distance available to create security-based isolation zones along Westridge rail line cross-sectioning of marine based loading operations

Strategic planning in the decompression of facility risk clustering by facility design, provision of sufficient setbacks and isolation distances to reduce proximity to potential, reduce the potential of multiple risk event occurrence

Provide fixed & semi-fixed fire protection systems to provide fire/release suppression capabilities within complex proximity areas

Increased in utilities demand

Increased City water input, required to be securely, fully & redundantly allocated

Identify the Business Case for water requirements of the proposed facilities including:

Emergency water Basic operational water requirement Impact analysis on the water use stakeholders Plan to offset City infrastructure requirement to facilitate

Increased electrical service input, required to be securely, fully & redundantly allocated

Identify the Business Case for electricity service requirements of the proposed facilities including:

Viability of existing grid system Sustainable electrical during all environmental & emergency impacts

Increased operating capacity & operations undertaken at high facility capacity

Decreased amount of reserved storage capacity to facilitate pump-over transfer operations in order to reduce adjacent risks

Provide constant ability in allocated capacity to pump out and transfer product from a tank creating an emergency condition

 

   

Page 81: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 ................................................ Appendix E ‐ 6 

  

Risk of Products Present

Critical Issue Consequences / Requirements

Objective Commitments

What risks are associated with the product being transferred, stored & loaded?

Hazard risk increase due to volume & type of materials present within proposed facility

Risk of airborne release hazard due to tight tank to fence distance ratio, reduces safe notification & self-evacuation time

Mitigation requirements to identify, respond to & suppress the release of flammable vapors created by a release event (including but not limited to) in an immediate time frame, for:

Releases to levee 3 Dimensional releases from a pressurized source (flange, valve, etc.) Release pat primary containment Ignited release mitigation Pipeline releases Releases remote to isolation provisions

Immediate close range proximity of proposed large storage tank & elementary school

Flammable products, presence of light end will exhibit combustion similar to gasoline with long sustained burn off of heavier ends

Significant Risk of Boilover event for Tank Fire preparedness

Management & notification provisions required to completely evacuate within 15 Tank Diameters

Comprehensive Tank-Event specific Fire/Release Pre-Plans required to identify procedures, resources & responsibilities during full spectrum Tank Fire/Release events

Increased risk of Hot Work hazard potentials

Internal permitting, testing & hazard control processes to be established, managed & adequately supervised throughout work

 

   

Page 82: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 ................................................ Appendix E ‐ 7 

 

Emergency Management Scope

Critical Issue Consequences / Requirements

Objective Commitments

What will Kinder Morgan undertake in order to appropriately initiate, plan, prepare, maintain, exercise & audit their emergency management programs?

Increase burden on compliance authorities to ensure appropriate emergency management preparedness

Requirement to ensure appropriate, approved & maintained accurate & compliant emergency response preparedness

Including (but not limited to):

Emergency Response Plan CSA Z731-03 compliant CEPA compliant

Oil Spill Control Plan – Federally Regulated Individual Hazard comprehensive all condition-event response

protocol & procedures, including contingency control provisions Resource availability Personnel with necessary skills, knowledge & abilities

Requirement to ensure appropriate, approved & maintained accurate & compliant engineered hazard reductions process

Detailed engineering business case for material selection criteria, including documentation for audit of quantitative risk assessment & frequency determinations

Critical component is the comprehensive parameter identification around the variables for quantitative risk assessment & frequency, such as inspection & maintenance frequency & quality to ensure variable management issues are fully complied with calculations

Requirement to ensure appropriate frequency, quality, scope & certification of maintenance & processes

Detailed engineering business case & established operational process to maintain equipment & risk rate at the ALARP level

Detail on the specific expectation on the level & commitments to the describer “Reasonably” having cost not as a driver for reasonable

Requirement to ensure appropriate operational procedures are in-place, utilized, maintained current & provided frequent high quality staff training

Documentation & firm commitment of auditable operational procedures compliance

Displaced scrutiny & responsibility from facility operator to City of Burnaby

Commitments documented & openly available for reference & consultation by all stakeholders

 

   

Page 83: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 ................................................ Appendix E ‐ 8 

 

Continued: Emergency Management Scope

Critical Issue Consequences / Requirements

Objective Commitments

Increase in major event planning requirement within the City of Burnaby & their Departments

City of Burnaby expansion of emergency management preparations & pre-planned protocols for KM site events

Include Specifically (but not limited to):

Tank Fire events extinguishable Tank Fire events not extinguishable Boilover events Mass evacuation events Mass decontamination events Released flammable vapor ignition Inside Fenceline Released flammable vapor ignition outside Fenceline Land based product release Marine based product release Marine fire impacting City of Burnaby Security event KM Seismic event management Environmental event Service utility interruption

Increase in the required emergency response resources in order to support Kinder Morgan event management

Proximity of risk clusters inside Fenceline create the greater likelihood of BFD engagement in support activities interior Fenceline

Current on-shift BFD resources would be fully deployed to exterior Fenceline operations in the event of a Kinder Morgan event. The increase in interior Fenceline potential would encroach on the Call-Out fire company capability, & their ability to both continue to respond to likely high volume spin-off incident occurrence, standard fire service response & significantly increased requirements for interior Fenceline support operations

Increased Training requirements of Burnaby Fire Department

Critical new training required to familiarize BFD responders to the changing risks & configurations within the facilities & pipeline

Internal Fenceline support for non-specialized fire protection operations will include, site specific:

Fire water system capabilities & features Product considerations High proximity simultaneous fire protection operations Enhanced airborne outfall monitoring operations

(these considerations assume no service level change move to BFD responsibility as the primary response agency – currently Kinder Morgan)

 

   

Page 84: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 ................................................ Appendix E ‐ 9 

 

Management of Security Potentials

Critical Issue Consequences / Requirements

Objective Commitments

What will Kinder Morgan provide in order to ensure the Trans Mountain, Westridge facilities & pipeline areas in Burnaby are maintained fully protected from a security threat perspective?

Increased risk of a Security Event occurring

Increased need for automated monitoring provision

Automated Systems for monitoring:

Visual/Camera systems Motion/Entry Sensors Pass Card Locked Access facility exclusion mechanisms

throughout

Increased need for human based oversight monitoring provision

Security Patrols for early detection

Security response and investigation capability consistent with protection of critical infrastructure

Increased potential impact of a Security Event

Increase levels of security provided at facilities & pipeline

Comprehensive Security Plan for prevention, response, mitigation & recovery from (but not limited to):

Unauthorized Entry Civil Protest Civil Disobedience Mischief Willful Damage Armed Intruder Threat Management Violent Action Marine based Security

RCMP Interface & Support requirement

Technical representatives available with pre-establish briefing information & isolation-safetying provisions at the time of RCMP arrival

Product Movement Control / Isolation procedures to accompany security event procedures

Decreased employee monitoring per operating Tank, moving litre of product

Increased need for automated & physical monitoring of facility & pipeline operations by trained operations based technicians

Commitment of minimum staffing, sufficient for constant & uninterrupted:

Product storage monitoring Transfer monitoring Capability to provide immediate remote or local (in-field) isolation of

product bearing tanks, piping, pipelines, loading arms & facility systems.

Capability to respond to the field to investigate alarm occurrence Capability to initiate emergency response, by:

Increased complexity/volume of operations

Operational staffing consistent with risk & complex of large critical infrastructure facility

Additional operations personnel on-duty 24 hours per day

   

Page 85: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 .............................................. Appendix E ‐ 10 

  

Page 86: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 ................................................ Appendix F ‐ 1 

 

Appendix F Industry Related Emergency Incident Occurrence - Timeline  

Tank Farm Incidents ‐ Historical 

Burnaby Fire Department Analysis 

Date  Country  City  Company  Event Type  Magnatude of Event  Root Cause Event 

Duration 

2013  4  29  England  Essex  Vopak Terminal Diesel Stroage Tank Fire Empty Tank Fire No information available > 1 year 

2013  1  5  India  Surat  Indian Oil Corporation Tank Fire 4 killed No information available > 1 year 

2012  11  20  USA  Mokena,IL Enbridge Tank Farm Crude Oil Tank Farm Spill 38,000 usgal Under Investigation > 1 week 

2012  10  29  USA  Sewaren, NJ Arthur Kill Storage Tank Spill 1,130 Tonnes Hurricane Sandy > 1 year 

2012  8  6  USA  Richmond,CA Chevron Refinery Tanks Fire 24 hour Tank Fire Corroded Pipeline > 1 week 

2012  5  8  USA  Samford, TX Merit Energy Tank Fire no information available Lightning Strike > 1 year 

2012  2  21  Canada  Burnaby, BC Chevron Burrard Inlet Refinery 

Gasoline Release  26 Barrels  Loose Pipe Flange  > 1 week 

2012  1  24  Canada  Abbotsford, BC Kinder Morgan Spill Release to Levee 90 m3 Crude to Levee Snow/Ice Roof Drain Damage < 24 hours 

2011  8  30  China  Dalian  Petro China Diesel Tank Fire no information available Connecting Pipe explosion > 1 year 

2011  6  2  Wales  Pembrooke Chevron Tank Fire 4 Dead No information available > 1 year 

2011  5  31  Gibraltar  Sea Port North Mole Tank Fire Full Surface Tank Fire No information available > 1 year 

2010  9  10 Dutch 

Bonaire Petroleos de 

Tank Fire  Full Surface Tank Fire  Lightning Strike  > 1 year 

Page 87: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 ................................................ Appendix F ‐ 2 

 Caribbean  Venezuela

2010  5  27  Canada  Burnaby, BC Chevron Burrard Inlet Refinery 

Oil Loss to Burrard Inlet On going long term unidentifierd loss 

Loss of Containment  > 1 week 

2009  10  29  India  Jaipur  Sitatpur  Tank Farm Fire 11 Tank ‐ Full Surface Tank Fires 

Possible earthquake initiation  > 1 year 

2009  10  9  Puerto Rico  San Juan  Caribbean Petroleum  Tank Farm Fire 30 Tank ‐ Full Surface Tank Fires 

Vapour release ignition  > 1 year 

2010  6  13  USA  Greensboro, NC Colonial Pipelines Tank Fire Full Surface Tank Fire Lightning Strike > 1 year 

2009  7  23  USA  Texas City Teppco Tank Fire Crude Oil Rim Seal Tank Fire Lightning Strike > 1 year 

2009  5  6  Canada  Burnaby, BC  Kinder Morgan Crude Release to Tertiary Containment 

305 m3 Crude Release past Primary Containment Wildlife impact (20 birds) 

Failure of Pumping Systems  > 1 week 

2008  12  10  USA  Woodward, OK J&R Transport Explosion & Tank Fire 1/4 mile Debris damage Transfer from Transport Truck > 1 year 

2008  6  3  USA  Fairfax, VA Magellan Midstream Partners LP 

Tank Fire Full Surface Gasoline Tank Fire 

Lightning Strike & Collapsed Floating Roof of Tank 

> 1 year 

2006  7  19  USA  Lake Charles, LA  Citgo Refinery Oil release from Tank to waterways 

25,000,000 usgal  No information available  > 1 week 

2005  12  13  England  Hertfordshire Hertfordshire Oil Storage Ltd. 

Full Terminal Fire  Tank Farm Fire ‐ 20 Tanks Unconfined Vapour Cloud Explosion 

> 1 year 

2005  8  30  USA  Louisiana  Hurrican Katerina  Tank Farm Release  33,000 Tonnes Tanks moved from based due to levee flooding 

> 1 year 

2001  6  7  USA  Norco, LA  Orion  270' Full Surface Tank Fire  2 day Tank Fire Fight Lightning Strike with Partially Sunken Floating Roof 

> 1 year 

2001  5  29  Canada  Burnaby, BC Chevron Burrard Inlet Refinery 

MTBE Release Unnotified Release of High Hazard & Toxicity Product 

No information available    

Page 88: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 ................................................ Appendix F ‐ 3 

 1989  12  24  USA  Baton Rouge, LA Exxon Refinery Refinery Explosion Fire Tank Farm Fire ‐ 5 Tanks Ignition of Hydrocarbon release > 1 year 

1988  10  25  Singapore  Pulau Merlimau Singapore Refining Company 

Tank Farm Fire  3 Involving Storage Tanks viacommon Levee 5 Day Burn‐Out 

Heavy Rain & a partially choked roof drain 

> 1 year 

1987  6  11  Scotland  Dalmeny British Petroleum Crude Oil Tank Tank Fire Maintenance work > 1 year 

1983  8  30  England  Milford Haven  Amoco Refinery  Boilover Crude Oil Tank  256' Tank Fire Roof Cracks causing ignitable surface via Cat Cracker  

> 1 year 

   

Page 89: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 ................................................ Appendix F ‐ 4 

 Pipeline Incidents ‐ Historical 

Burnaby Fire Department Analysis 

Date  Country  City  Company  Event Type  Magnatude of Event  Root Cause Event 

Duration 

2013  10  29  USA  Smithville, TX  Koch Industries  Crude Pipeline Spill 400 barrels overflowing 2 reserviors 

Under Investigation  > 1 week 

2013  10  7  USA Columbia County, AR 

Lion Oil Trading & Transportation 

Crude Oil Pipeline Spill Extension of Spill to Water tributary 

Under Investigation  > 1 week 

2013  9  25  USA  Tioga, ND  Tesoro  Pipeline  Crude Oil Pipeline   865,000 usgal, 7 acre coverage Corrosion of Pipeline Components 

> 1 week 

2013  7  26  usa Washington County, OK 

British Petroleum  Crude Oil Pipeline Spill 100 barrels released to water reservoir 

Under Investigation  > 1 week 

2013  6  27  Canada  Hope, BC  Kinder Morgan Pipeline Release 25 barrels  No information available < 24 hours

2013  6  12  Canada  Merritt  Kinder Morgan Pipeline Release small scale  No information available < 24 hours

2013  5  9  USA  Indianapolis, IN  Marathon Pipeline Diesel Pipeline Spill 20,000 usgal  undetected by SCADA system > 1 week

2013  3  18  USA  Ogden, UT  Chevron  Diesel Pipeline spill 25,000 usgal released into Willard Bay State Park 

Seam Rupture  > 1 week 

2013  3  9  USA  Mayflower, AK ExxonMobil Pegasus Crude Pipeline 

Crude Oil Spill 300,000 usgal impacting wildlife,  homes & waterways 

Hook cracks & low quality pipeline materials 

> 1 week 

2012  8  27  USA  Palos Heights, IL  West Shore Pipeline  Jet Fuel Pipeline Spill 42,000 usgal into Calumet Sag Channel 

External Pipeline Corrosion  > 1 week 

2012  7  30  USA  Grand Marsh, WI  Enbridge Light Crude Pipeline Spill 1,200 barrels   Under Investigation > 1 week

2012  7  17  USA  Jackson, WI  West Shore Pipeline  Gasoline Pipeline Release   54,000 usgal Gasoline & benezene contamination of water 

Seam Failure  > 1 week 

Page 90: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 ................................................ Appendix F ‐ 5 

 & homes 

2012  6  18  Canada  Elk Point, AB  Enbridge Synthetic Crude Spill  60,760 usgal  No information available > 1 week

2012  6  7  Canada  Sundre,AB Plains Midstream Canada 

 Sour Crude Pipeline Spill  120,000 usgal to Red Deer River  Pipeline Rupture  > 1 week 

2011  7  1  USA  Billings, MT  ExxonMobil Pipeline Oil Pipeline Spill to State Park Waterway 

1,500 barrelsto Yellowstone River&135 Million in Clean‐Up Costs 

Delayed Shutdown Errosion by water 

> 1 year 

2011  4  29  Canada  Little Buffalo, AB Plains Midstream Canada 

Oil Pipeline Release  3,800 Tonnes  Pipeline Settling / Break  > 1 week 

2011  4  4  Canada  Peace River, AB Plains Midstream Canada 

Pipeline Release >1,000,000 usgal Light Crude largest AB spill in 36 years 

Pipeline Corrosion  > 1 year 

2010  6  11  USA  Salt Lake City, UT  Red Butte Creek Pipeline Release 107 Tonnes  Pipeline Rupture  > 1 week

2010  5  25  USA  Anchorage, AK  Trans‐Alaska Pipeline Pipeline Spill 1,200 Tonnes  No information available > 1 week

2007  7  24  Canada  Burnaby, BC Kinder Morgan Pipeline 

Synthetic Crude Spill 224 m3 Pipeline release 100 m3 Stormdrain impact 6 m3 unrecovered 

Construction  Evacation Accident 

> 1 year 

2006  3  2  USA  North Slope, AK  Pruhoe Bay Pipeline Oil Spill 270,000 usgal of crude Corroded Transit Pipeline > 1 week

2005  7  15  Canada  Attotsford, BC  Kinder Morgan  Spill Release 210 m3 pipeline release 14,300 m2 Wetland impact 

Unauthorized Stockpiling of Soil 

> 1 week 

2004  11  9  USA  Walnut Creek, CA  Kinder Morgan  Ignited Release Spill Fire  124,000 usgal Diesel spill KM failed toaccurately mark Pipeline, Excavation 

> 1 week 

 

   

Page 91: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 ................................................ Appendix F ‐ 6 

 Refinery Incidents ‐ Historical 

Burnaby Fire Department Analysis 

Date  Country  City  Company  Event Type  Magnatude of Event  Root Cause Event 

Duration 

2014  3  1  Japan  Tokyo  TonenGeneral Sekiyu KK  Hydrocaracking Unit Fire  small scale fire  Maintenance Work < 24 hours 

2014  2  27  USA  Baton Rouge, LA  ExxonMobil Refinery  Small Unit Fire small scale fire within fenceline 

Under Investigation < 24 hours 

2014  2  26  Russia  Budyonnovsk  Lukoil Ethylene Plant Fire no information available Pressure Let Down 

2014  2  25  USA  Convent, La  Motiva Enterprises LLC  Unit Fire small scale fire within fenceline 

Under Investigation < 24 hours 

2014  2  20  USA Corpus Christi, TX 

Citgo Refinery  Explosion East Plant partial involvement 

Under Investigation < 24 hours 

2014  2  19  USA Corpus Christi, TX 

Citgo Refinery  Crude Tower Fire small scale fire within fenceline 

Unconfined Vapour Cloud Explosion 

< 24 hours 

2014  2  16  Indonesia  Jakarta  Pertamina Refinary  Hydrocracking Unit small scale fire within fenceline 

Attempted temperature increase 

< 24 hours 

2014  2  14  USA  Salt Lake City, UT  Tesoro Refinery  Unit Fire Fire with Area power loss 3 hours 

Under Investigation < 24 hours 

2014  2  13  Russia  Moscow  Rosneft Ryazan Refinery  Rail Car Fire  Multiple Rail Car Crude Fire Rail Car Crash,  Lack of Securing 

1 week 

2014  2  10 South Korea 

Yeosu  GS Caltex Corp Yeosu Refinery  CCR Unit Fire combined with Pipeline crack 

Under Investigation  1 week 

2013  12  24  Canada  Regina  Co‐op Refinery  Explosion & Fire 7 Hospitalized 4th event in 2 years 

LPG Gas Build Up  > 1 week 

Page 92: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 ................................................ Appendix F ‐ 7 

 2012  2  20  USA  Cherry Point, WA British Petroleum Refinery Explosion no information available No information available > 1 year

2012  2  21  Canada  Burnaby, BC  Chevron Burrard Inlet Refinery Gasoline Release 26 Barrels Loose Pipe Flange > 1 week

2010  5  27  Canada  Burnaby, BC  Chevron Burrard Inlet Refinery  Oil Loss to Burrard Inlet On going long term  

Loss of Containment  > 1 week 

2010  4  2  USA  Anacortes, WA  Tesoro Corp.  Refinery Explosion & Fire Naphtha Hydrotreater Unit 7 killed 

Maintenance Work  > 1 year 

2005  3  23  USA  Texas City, TX  British Petroleum Explosion in Isomerization Process Unit 

15 Dead, 170 injured Vapour Cloud ingnited on Vehicle 

> 1 year 

2001  5  29  Canada  Burnaby, BC  Chevron Burrard Inlet Refinery  MTBE Release Unnotified Release of  High Hazard & Toxicity Product 

No information available    

1989  12  24  USA  Baton Rouge, LA  Exxon Refibery  Refinery Explosion Fire  Tank Farm Fire ‐ 5 Tanks  Ignition of release  > 1 year 

 

Page 93: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 ................................................ Appendix G ‐ 1 

 

Appendix G Information Request Round 1 – NEB Application  

 

4A Project Design and Execution - Engineering

3.4.3 Burnaby Terminal Reference: Filing A55987, Trans Mountain Expansion Project Application, Vol. 4A, s.3.4.3, P

4A-66, thru P 4A-71, Burnaby Terminal

Preamble: This section identifies the existed and planned tank farm layout for the Burnaby Trans Mountain Tank Farm facility. This section identifies tanks that will share containment provisions, partial remote impounding areas, tertiary containment areas, intermediate storm sewer water retention areas and new manifold, booster pumps and meters.

Request: a) Will KM TMEP changes to the Burnaby Trans Mountain Tank Farm, provide access for mobile fire suppression equipment to be safely deployed to all areas adjacent to the tank levee, such that the foam discharge equipment provided is capable of applying the minimum required foam solution application rates to the tank surface while accounting for foam solution losses due to drop-out, negative wind conditions and burn off, in order to effectively extinguish and full surface storage tank fire, for all potential tank sizes, tank products, pre-burn times, all wind directions, strengths and outfall heat directions?

b) Will KM TMEP changes to the Burnaby Trans Mountain Tank Farm, provide access for mobile fire suppression equipment to be safely deployed to all areas adjacent to tank levees, such that cooling water fire streams can be applied against heat exposed exterior tank shells of adjacent storage tanks with 2 diameters of the outfall wind direction and 1 tank diameter in all other directions?

c) Will KM TMEP changes to the Burnaby Trans Mountain Tank Farm, provide access for mobile fire suppression equipment to be safely deployed to all areas adjacent to tank levees, such that cooling water fire streams and foam solution extinguishment stream can be utilized simultaneously?

 

 

Page 94: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 ................................................ Appendix G ‐ 2 

 3.4.3.8.2 Burnaby Terminal – Fire Protection Systems Reference: Filing A55987, Trans Mountain Expansion Project Application, Vol. 4A, s.3.4.3.8.2, P

4A-77, Burnaby Terminal – Fire Protection Systems Preamble: This section identifies the planned fire protection system to be provide, both to

upgrade existing tank systems and for the new tank builds. This section includes content on fire-water systems, fixed foam suppression systems and foam solution proportioning components

Request: a) Will the fire-water reservoir and the fire water make-up connection at the Burnaby Trans Mountain Tank Farm Terminal be capable of constant fire water discharge for 80 minutes at a volume rate per minute that effects extinguishment of the full surface tank fire on the largest potential tank diameter, with the highest class product, with a significant pre-burn time prior to cooling application, with a minimum 60% loss of firefighting foam stream due to wind drop-out, up-draft burn off and stream plunging, while simultaneously also providing a minimum of 1,000 usgpm cooling water stream per adjacent storage tank located within 1 tank diameter?

b) Will the fire-water pumps at the Burnaby Trans Mountain Tank Farm Terminal be capable of constant fire water discharge for 80 minutes at a volume rate per minute that effects extinguishment of the full surface tank fire on the largest potential tank diameter, with the highest class product, with a significant pre-burn time prior to cooling application, with a minimum 60% loss of firefighting foam stream due to wind drop-out, up-draft burn off and stream plunging, while simultaneously also providing a minimum of 1,000 usgpm cooling water stream per adjacent storage tank located within 1 tank diameter, at sufficient discharge pressure to allow water/foam solution supply to enter discharge fire pumping appliances without the need for relay water pumping?

c) Will the foam solution proportioning systems at the Burnaby Trans Mountain Tank Farm Terminal be capable of generating a constant foam solution discharge at a volume rate per minute that effects extinguishment of the full surface tank fire on the largest potential tank diameter, with the highest class product, with a significant pre-burn time prior to cooling application, with a minimum 60% loss of firefighting foam stream due to wind drop-out, up-draft burn off and stream plunging,?

d) Will the foam concentrate stocks at the Burnaby Trans Mountain Tank Farm Terminal be capable of constant foam solution discharge for 80 minutes at a volume rate per minute that effects extinguishment of the full surface tank fire on the largest potential tank diameter, with the highest class product, with a significant pre-burn time prior to cooling application, with a minimum 60% loss of firefighting foam stream due to wind drop-out, up-draft burn off and stream plunging?

e) In the event of a rim seal pourer failure, will the fire suppression resources and deployment access areas at the Burnaby Trans Mountain Tank Farm Terminal be capable of provided for a highly accurate mobile fire monitor application against the rim seal fire area without creating the potential for application onto the floating roof or creating the potential to sink the floating roof, while achieving sufficient application volume rate to affect

Page 95: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 ................................................ Appendix G ‐ 3 

 extinguishment?

 

   

Page 96: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 ................................................ Appendix G ‐ 4 

 7 Risk Assessment and Management of Pipeline and Facility Spills

2.0 Measures to Prevent and Mitigate Oil Spills Reference: Filing A55987, Trans Mountain Expansion Project Application, Vol. 7, s.2.0, P 7-3,

Measures to Prevent and Mitigate Oil Spills Preamble: This section states the commitment of Kinder Morgan to the prevention

mitigation of Oil Spill occurrence, and sets the parameters and scope of the efforts to which Kinder Morgan will prepare and respond.

Request: f) Has Kinder Morgan undertaken a Health, Safety & Environmental (HSE) Case Study for the Trans Mountain Expansion Project?

g) What were the specific parameters of the HSE Case Study?

h) What were the specific assumptions taken within the HSE Case Study?

i) What specific risk potentials within the HSE Case Study were included and identified as requiring management?

j) What specific risk potentials within the HSE Case Study were discounted, or identified as not requiring management?

k) Has Kinder Morgan undertaken a quantitative risk assessment for the Trans Mountain Expansion Project?

l) Within the Kinder Morgan Trans Mountain Expansion Project quantitative risk assessment what was the utilized frequency of occurrence that differentiated acceptable risk from unacceptable risk?

m) Has Kinder Morgan undertaken a qualitative risk assessment for the Trans Mountain Expansion Project?

n) Which risk potentials identified in the qualitative risk assessment conducted by Kinder Morgan for the Trans Mountain Expansion Project, have been identified as requiring management because of their high consequences of occurrence?

o) Which risk potentials that present a high consequence of occurrence, have been discounted due to a low frequency of occurrence?

p) What frequency of spill occurrence does Kinder Morgan deem acceptable?

q) In its operating history throughout all of its operating regions and divisions, has Kinder Morgan met its goals in respect to spill occurrence frequency?

r) What criteria does Kinder Morgan use to classify a prevention or mitigation measure as available or unavailable?

s) What commitment does Kinder Morgan make to the stakeholders and the environment, for the provision of prevention and mitigation measures for

Page 97: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 ................................................ Appendix G ‐ 5 

 high consequence - low frequency event potentials?

t) To what degree does Kinder Morgan deem the provision of prevention and mitigation measures unavailable on the basis of corporate cost, for high consequence - low frequency event potentials?

u) What consequences of a spill does Kinder Morgan deem acceptable?

v) With spill prevention and mitigation measures imbedded throughout the project lifecycle, how will Kinder Morgan assure that these measures remain effective and unimpeded?

w) What specific spill risks have been controlled through engineering design?

x) Which spill risks could not be controlled through engineering design?

y) What frequency of occurrence does the Kinder Morgan Integrity Management Plans deem acceptable?

z) Is the magnitude of consequence related to an event occurrence evaluated, or considered as a modifying parameter to identify risk potentials requiring management even though they may be acceptable by occurrence frequency?

aa) What is the frequency of Kinder Morgan Integrity Management Program internal audit?

bb) What is the scope of the Kinder Morgan Integrity Management Program internal audit?

cc) What is the scope of the Kinder Morgan Integrity Management Program internal audit?

dd) What process does Kinder Morgan use to perform an Integrity Management Program internal audit?

ee) Who executes a Kinder Morgan Integrity Management Program internal audit?

ff) What is the frequency of Kinder Morgan Integrity Management Program external audit?

gg) Who executes a Kinder Morgan Integrity Management Program external audit?

hh) Which regulatory requirements does Kinder Morgan deem applicable with respect to their Integrity Management Programs?

ii) Which regulatory requirements does Kinder Morgan not deem applicable with respect to their Integrity Management Programs?

jj) Do current Kinder Morgan facilities comply with these applicable regulatory

Page 98: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 ................................................ Appendix G ‐ 6 

 requirements with respect to Integrity Management Programs?

 

 

   

Page 99: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 ................................................ Appendix G ‐ 7 

 2.1 Measures to Prevent and Mitigate Oil Spills - Pipeline Reference: Filing A55987, Trans Mountain Expansion Project Application, Vol. 7, s.2.1, P 7-3, 7-

4, Measures to Prevent and Mitigate Oil Spills – Pipeline

Preamble: This section states the commitment of Kinder Morgan to the prevention mitigation of Oil Spill occurrence, and sets the parameters and scope of the efforts to which Kinder Morgan will prepare and respond to pipeline risk potentials.

Request: a) To what standards of Safety are TMEP pipelines constructed?

b) What additional safety measures will be utilized specifically for the unique theatre of the TMEP?

c) Do the specific design decisions that contribute to spill prevention and mitigation account for:

a. The unique geographical area of use?

b. The risk potential of severe weather event occurrence?

c. The risk of severe geological event occurrence?

d. The risk of sudden earth based natural disaster potential?

d) What degree of resistivity will the pipelines have and maintain to the above stated potentials of question 2.1 c)?

e) What external forces have been identified as requiring mechanical protection to minimize the risk of damage?

f) Are communications systems and instrumentation that allow for state-of-the-art control, monitoring and leak detection provided with redundantly to ensure accurate operation through emergency events, ruptures, power failures and major asset loss?

g) To what extent are communications systems and instrumentation that allow for state-of-the-art control, monitoring and leak detection reliant on the appropriate monitoring, analysis, action and intervention of human personnel?

h) Is Kinder Morgan committed to providing and continually updating TMEP communications systems and instrumentation responsible for control, monitoring and leak detection to the stated level of “state-of-the-art” throughout the life span of the facility?

i) Is Kinder Morgan committed to maintaining frequent and timely reconfirmation of pipe material, pipe wall thickness, depth of cover, mechanical protection and hydraulic analysis once construction is complete?

j) With what frequency will Kinder Morgan reconfirmation of pipe material,

Page 100: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 ................................................ Appendix G ‐ 8 

 pipe wall thickness, depth of cover, mechanical protection and hydraulic analysis once construction is complete?

k) What assurance process will Kinder Morgan utilize to ensure reconfirmation of pipe material, pipe wall thickness, depth of cover, mechanical protection and hydraulic analysis once construction is complete?

l) What has Kinder Morgan TMEP identified as the spill volume basis for selecting valve locations in High Consequence Areas (HCAs)?

m) What areas has Kinder Morgan identified as High Consequence Areas (HCAs)?

n) What parameters have Kinder Morgan utilized to account for or discount areas as HCAs?

o) What is the designed potential exposure to HCAs of a spill based on valve locations selected?

p) Will annual risk assessments will be conduct on both a quantitative and qualitative basis?

q) If annual risk assessments won’t include a qualitative basis, how will Kinder Morgan ensure appropriate prevention and mitigation measures are undertaken or corrected in order to manage high consequence event potentials regardless of occurrence frequency?

r) What current issues within the KM TMEP would require specific attention for annual risk assessments and incremental risk reduction?

s) With what frequency and to what performance standard will KM ensure that pipe movement and the presence of metal loss, mechanical damage, cracking and material defects are monitored?

t) What deviations from new construction state will be accepted for with regard to that pipe movement and the presence of metal loss, mechanical damage, cracking and material defects?

u) With what frequency, and by what triggers will KM TMEP systems be evaluated for unstable soils and low depth of cover at water crossings?

v) To what standards must KM TMEP systems be maintained with respect to unstable soils and low depth of cover at water crossings, to facilitate operational use?

w) To what extent will KM TMEP components be protected from the impact natural occurring weather and geo-technical events?

x) How will KM TMEP components be protected from the impact natural occurring weather and geo-technical events?

Page 101: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 ................................................ Appendix G ‐ 9 

 y) What events are managed within the KM TMEP Natural Hazard Program?

z) What resultant risk potentials exist within KM TMEP Natural Hazard Program present a high consequence of occurrence?

aa) What resultant risk potentials exist within KM TMEP Natural Hazard Program present a potential impact to HCAs?

bb) What engineering measures are present within KM TMEP Natural Hazard Program to prevent risk potentials from occurring or minimize the consequences of event occurrence?

cc) What response measures are present within KM TMEP Natural Hazard Program to prevent risk potentials from occurring or minimize the consequences of event occurrence?

dd) What KM’s ability to and resource plan for the execution of response measures present within KM TMEP Natural Hazard Program to prevent risk potentials from occurring or minimize the consequences of event occurrence?

ee) How will KM ensure the spill prevention during the period between scheduled annual cathodic protection surveys?

ff) Will annual surveys encompass and ensure 100% appropriate operation of cathodic protection systems?

gg) How will KM ensure the spill prevention during the period between scheduled close interval pipe to soil surveys?

hh) Will 5 year surveys encompass and ensure 100% appropriate compliance with close pipe to soil parameters?

ii) Will pipeline repairs be completed to pipeline industries best practices?

jj) What is the highest standard for pipeline repair requirements utilized around the world?

kk) Does KM utilize the highest standard for pipeline repair identified in 2.1 question jj)?

ll) Will pipeline failures requiring repairs be inspected and investigated to identify the root cause?

mm) Will root cause findings identified from pipeline failures requiring repair be inspected, investigated and reported, such that any and all possible pipeline areas, systems or components with reasonably similar expectation of performance, operating characteristics or conditions will be proactively repaired, replaced or taken out of operating service until corrections can be made in order to prevent additional similar failure occurrences, regardless of operational impact?

nn) Will KM and the KM TMEP identify, assess and manage newly identified

Page 102: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 .............................................. Appendix G ‐ 10 

 hazards to related to spill prevention and mitigation consistent with industry best practices?

oo) Will KM and KM TMEP implement system upgrades and technological improvements consistent with industry best practices, federal regulation and regional bylaws and with the expectation to achieve compliance with current standards, regulations and bylaws irrelevant of previous accepted or approved practices?

pp) Will Km and the KM TMEP openly share information to all stakeholder groups, upon request, with regard to performance indicator tracking and changes in measurable risk?

qq) With what frequency will KM and the KM TMEP evaluate or re-evaluate changes in measurable risk?

rr) What commitment will KM and the KM TMEP make toward the reduction, control and/or elimination of changes in measurable risk?

ss) What priority will KM and the KM TMEP make with regard to the reduction, control and/or elimination of changes in measurable risk?

tt) What processes will be utilized by KM and the KM TMEP to evaluate changes in measurable risk?

uu) What processes will be utilized by KM and the KM TMEP to evaluate changes in risk that is difficult to measure?

vv) Will Km and the KM TMEP discount or account for and manage changes in measurable risk that are difficult to measure?

 

 

   

Page 103: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 .............................................. Appendix G ‐ 11 

 2.2 Measures to Prevent and Mitigate Oil Spills - Facilities Reference: Filing A55987, Trans Mountain Expansion Project Application, Vol. 7, s.2.2, P 7-4, 7-

5, 7-6, Measures to Prevent and Mitigate Oil Spills - Facilities Preamble: This section states the commitment of Kinder Morgan to the prevention

mitigation of Oil Spill occurrence, and sets the parameters and scope of the efforts to which Kinder Morgan will prepare and respond to facility risk potentials.

Request: a) To what standards of Safety are TMEP facilities constructed?

b) What additional safety measures will be utilized specifically for the unique theatre of the TMEP?

c) Do the specific design decisions that contribute to spill prevention and mitigation account for:

a. The unique geographical area of use?

b. The risk potential of severe weather event occurrence?

c. The risk of severe geological event occurrence?

d. The risk of sudden earth based natural disaster potential

e. Proximity of community to fence line?

f. Proximity of adjacent hazards or risk potentials within the facility?

d) What degree of resistivity will the facility have and maintain to the above stated potentials of question 2.1 c)?

a) How will KM and the KM TMEP ensure the levels engineering design and material performance specified during construction are maintain throughout the life span of the component or facility?

b) Will KM and the KM TMEP ensure full recovery of any environmental impact create by or from direct and indirect construction or operation of the existing and expansion Terminal and Pump Stations?

c) If KM and the KM TMEP will not ensure full recovery of any environmental impact create by or from direct and indirect construction or operation of the existing and expansion Terminal and Pump Stations, to what extent will KM and the KM TMEP commit to recovery?

d) To what extent will KM and the KM TMEP minimize environmental impacts created by or from direct and indirect construction or operation of the existing and expansion Terminal and Pump Stations?

e) What HCAs will KM and the KM TMEP ensure no environmental impacts created by or from direct and indirect construction or operation of the

Page 104: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 .............................................. Appendix G ‐ 12 

 existing and expansion Terminal and Pump Stations?

f) What HCAs does KM and the KM TMEP expect or plan to impact environmentally by or from direct and indirect construction or operation of the existing and expansion Terminal and Pump Stations?

g) What other environmental impacts does KM and the KM TMEP expect or plan will occur by or from direct and indirect construction or operation of the existing and expansion Terminal and Pump Stations?

h) Will emergency shutdown (ESD) systems be monitored and operated such that no delay occurs from release recognition to activation of the ESD system?

i) Will ESD systems be provided with redundant and emergency power, accurate position indicators, status alarms, prove-out operational status, and remoter manual over-ride controls?

j) In the event of an ESD system failure will sufficient operations personnel be immediately available such that, initial site emergency management actions, notifications, isolation provisions, activation of both internal and external resources can be made simultaneously with the discontinuing of transfer operations, and the field access, assessment, intervention and mitigation operations in a safe, effective and efficient manner for all emergency event potentials?

k) How will KM and the KM TMEP eliminate the potential for pressure relief system discharges in proximity to areas of elevated hazard or ignition potentials?

l) Will KM and the KM TMEP provide containment provisions that immediately contain the release of all products discharged by pressure relief systems?

m) How will KM and the KM TMEP ensure the safety of operating personnel and external response agency personnel required to work in proximity to potential pressure relief systems?

n) Will KM and the KM TMEP ensure that the protection from over pressurization is provided in a manner that will not cause a release either controlled or uncontrolled that creates a loss product from containment provisions and/or creates an environmental impact?

o) Will KM and the KM TMEP ensure that all containment provisions remain closed in and intact as a standard operating premise?

p) Will KM and the KM TMEP ensure multiple isolation phases prior to event or release exposure to adjacent risks or assets?

q) Will KM and the KM TMEP provide HC detector and UV/IR sensor controlled MOVs for facility containment systems?

r) Will KM and the KM TMEP provide MOVs for facility containment systems

Page 105: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 .............................................. Appendix G ‐ 13 

 that can be remotely controlled and are monitored and/or operated without delay from a remote location?

s) Will KM and the KM TMEP provide MOVs for facility containment systems that are field accessible from safe locations for proximity operation?

t) Will KM and the KM TMEP provide engineering documents describing MOV and containment valve quality, selection, appropriate installation and operation parameters, replacement frequency, inspection and service frequency?

u) What test and exercise frequency will KM and the KM TMEP utilize to ensure safe, effective and efficient for facility containment system operations by equipment and personnel during emergency event occurrence?

v) What type of storage tank levee/dike containment systems will be utilized for the KM and KM TMEP facilities?

w) Will KM and the KM TMEP utilize impervious tank levee walls?

x) Will KM and the KM TMEP impervious tank levee walls account for best practices with regard to engineered ability to sustain their integrity during and after an seismic event occurrence?

y) Will KM and the KM TMEP utilize impervious concrete reinforced tank levees for all legacy and new construction?

z) Will the containment provisions from each KM and the KM TMEP storage tank be provided with outfall and accumulation areas away from adjacent assets and risks?

aa) Will the containment provisions from each KM and the KM TMEP storage tank be provided with designed and controlled outfall routes and accumulation areas away from adjacent assets and risks?

bb) Will the containment provisions from each KM and the KM TMEP storage tank be provided with designed and controlled outfall routes and accumulation areas away from adjacent fence line exposures?

cc) Will the containment levees for each KM and the KM TMEP storage tank provide safe access distances for the positioning of portable fire suppression equipment for all tank fire and levee release/fire event potentials, in all wind direction and strength conditions?

dd) Will the containment levees for each KM and the KM TMEP storage tank provide safe access routes for the positioning of portable fire suppression equipment for all tank fire and levee release/fire event potentials, in all wind direction and strength conditions?

ee) Will the containment levees for each KM and the KM TMEP storage tank be provided safe access routes from the facility Fenceline to the levee perimeter access road for the positioning of portable fire suppression

Page 106: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 .............................................. Appendix G ‐ 14 

 equipment for all tank fire and levee release/fire event potentials, in all wind direction and strength conditions?

ff) Will the containment levees for each KM and the KM TMEP storage tank provide safe operating distances for the deployment, positioning and operation of portable fire suppression equipment for all tank fire and levee release/fire event potentials, in all wind direction and strength conditions, such that the required application rate of firefighting agents can be achieved?

gg) With consideration for industry standards of firefighting agent drop-out, including the drop-out loss potential of high wind operations with firefighting foam, will the containment levees for each KM and the KM TMEP storage tank provide safe operating distances for the deployment, positioning and operation of portable fire suppression equipment for all tank fire and levee release/fire event potentials, in all wind direction and strength conditions, such that the required application rate of firefighting agents can be achieved to combat advanced pre-burn time tank fires?

hh) Will KM and the KM TMEP provide storage tank spacing consistent with 1 diameter?

ii) What fire suppression equipment will be provided by KM and the KM TMEP for facilities?

jj) What risks will the fire protection equipment provided by KM and the KM TMEP address?

kk) How will KM and the KM TMEP operate the provided fire suppression equipment?

ll) Has KM and the KM TMEP developed a comprehensive Emergency Management Program which includes personnel trained, provided and maintained compliant with the current version of NFPA 600 – Standard on Industrial Fire Brigades – Chapter 5?

mm) Has KM and the KM TMEP developed a comprehensive Emergency Management Program which includes personnel trained, provided and maintained compliant with the current version of NFPA 600 – Standard on Industrial Fire Brigades – Chapter 6?

nn) Has KM and the KM TMEP developed a comprehensive Emergency Management Program which includes personnel trained, provided and maintained compliant with the current version of NFPA 600 – Standard on Industrial Fire Brigades – Chapter 7?

oo) Has KM and the KM TMEP developed a comprehensive Emergency Management Program which includes personnel trained, provided and maintained compliant with the current version of NFPA 600 – Standard on Industrial Fire Brigades – Chapter 8?

pp) Has KM and the KM TMEP developed a comprehensive Emergency Management Program which includes equipment provided and maintained

Page 107: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 .............................................. Appendix G ‐ 15 

 compliant with the current version of NFPA 1911 – Standard for Service Tests of Fire Pump Systems on Fire Apparatus?

qq) Has KM and the KM TMEP developed a comprehensive Emergency Management Program which includes equipment provided and maintained compliant with the current version of NFPA 1971 – Standard on Protective Ensemble for Structural Fire Fighting?

rr) Has KM and the KM TMEP developed a comprehensive Emergency Management Program which includes equipment provided and maintained compliant with the current version of NFPA 1976 – Standard on Protective Ensemble for Proximity Fire Fighting?

ss) Has KM and the KM TMEP developed a comprehensive Emergency Management Program which includes equipment provided and maintained compliant with the current version of NFPA 1981 – Standard on Open Circuit Self-Contained Breathing Apparatus for Fire and Emergency Services?

tt) Has KM and the KM TMEP developed a comprehensive Emergency Management Program which includes equipment provided and maintained compliant with the current version of NFPA 1982 – Standard on Personal Alert Safety Systems (PASS)?

uu) Has KM and the KM TMEP developed a comprehensive Emergency Management Program which includes training provided and maintained compliant with the current version of NFPA 1403 – Standard on Live Fire Training Evolutions?

vv) Has KM and the KM TMEP developed a comprehensive Emergency Management Program which includes compliance with the current version of NFPA 1500 – Standard on Fire Department Occupational Safety and Health Program?

ww) Has KM and the KM TMEP developed a comprehensive Emergency Management Program which includes personnel provided and maintained compliant with the current version of NFPA 1002 – Standard on Protective Ensemble for Proximity Fire Fighting?

xx) Is the fire suppression equipment provided by KM and the KM TMEP described within an engineering specification/seal and compliant with current versions of the following:

a. NFPA 10 Standard for Portable Fire Extinguishers

b. NFPA 11 Standard for Low-, Medium-, and High-Expansion Foam

c. NFPA 15 Standard for Water Spray Fixed Systems for Fire Protection

d. NFPA 16

Page 108: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 .............................................. Appendix G ‐ 16 

 Standard for the Installation of Foam-Water Sprinkler and Foam-Water Spray Systems

e. NFPA 20 Standard for the Installation of Stationary Pumps for Fire Protection

f. NFPA 24 Standard for the Installation of Private Fire Service Mains and Their Appurtenances

yy) Will all of the fire suppression systems provided by KM and the KM TMEP be 3rd party commissioned to ensure appropriate working condition?

zz) Does KM and the KM TMEP have a maintenance, inspection and annual full systems testing program for fire suppression equipment provided?

aaa) Does KM and the KM TMEP have a maintenance, inspection and annual full systems testing program for fire suppression equipment that is compliant with NFPA 25 – Standard for the Inspection, Testing, and Maintenance of Water-Based Fire Protection Systems?

 

 

2.2.1 Measures to Prevent and Mitigate Oil Spills – Westridge Terminal Reference: Filing A55987, Trans Mountain Expansion Project Application, Vol. 7, s.2.2.1, P 7-6,

7-7 Measures to Prevent and Mitigate Oil Spills - Facilities

Preamble: This section states the commitment of Kinder Morgan to the prevention mitigation of Oil Spill occurrence, and sets the parameters and scope of the efforts to which Kinder Morgan will prepare and respond to the Westridge Terminal facility risk potentials, specifically.

Request: a) Will KM and KM TMEP personnel have the skills, knowledge, training and ability to deploy, move, adjust and augment spill containment booms immediately at spill occurrence, and simultaneously with:

a. initial site emergency management actions, notifications, isolation provisions, activation of both internal and external resources?

b. the discontinuing of transfer operations, and the field access, assessment, intervention and mitigation operations in a safe, effective and efficient manner for all emergency event potentials?

b) Does KM and KM TMEP have pre-establish emergency procedures for the management of marine based spills compliant with:

a. CEPA 1999?

Page 109: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 .............................................. Appendix G ‐ 17 

 b. CSA Z731-03?

c) Does KM and the KM TMEP comprehensive Emergency Management Program have specific procedures identifying how marine based spills and spill-fires will be responded to, mitigated immediately and recovered from?

Page 110: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 .............................................. Appendix G ‐ 18 

 4 Emergency Preparedness and Response

4.1 General Reference: Filing A55987, Trans Mountain Expansion Project Application, Vol. 7, s.4.1, P 7-21,

7-22, Emergency Preparedness and Response

Preamble: This section identifies the preparedness measures and response overview of Kinder Morgan Canada. This section outlines Emergency Management Program (the Program) and its compliances and founding principles.

Request: a) Is the Program compliant with:

a. CAN/CSA Z731-03?

b. BCERMS 2000?

c. BC Guidelines for Industrial Emergency Response Plans?

d. AER – Guide 71?

e. The Incident Command System (ICS)?

f. The National Interagency Incident Management System (NIIMS)?

 

 

   

Page 111: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 .............................................. Appendix G ‐ 19 

 4.2.2 EHS Management System Reference: Filing A55987, Trans Mountain Expansion Project Application, Vol. 7, s.4.2.2, P 7-24,

7-22, EHS Management System

Preamble: This section identifies the preparedness measures, processes and commitments present in the Kinder Morgan Environmental, Health and Safety (EHS) Management System.

Request: a) Is the KM and the TMEP EHS Management System compliant with the most current versions of:

a. CSA Z1000-06 Occupational Health and Safety Management?

b. ISO 14001 International Organization for Standardization – Environmental Management?

c. OHSAS 18001 Occupational Health and Safety Management Systems - Requirements?

   

Page 112: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 .............................................. Appendix G ‐ 20 

 4.4 Emergency Response Manuals and Reference Material Reference: Filing A55987, Trans Mountain Expansion Project Application, Vol. 7, s.4.4, P 7-32,

Emergency Response Manuals and Reference Materials

Preamble: This section outlines the detailed and prescriptive procedures activities and check lists pre-established by Kinder Morgan to ensure consistent response to emergency response event across TMPL and Terminals.

Request: a) Will KM and the KM TMEP provide an immediate emergency response capability to provide for the protection of adjacent exposure risks within 1 tank diameter, including resource equipment and personnel to establish adjacent storage tank cooling operations, in response to storage tank full surface fire?

b) Will KM and the KM TMEP provide immediate emergency response capability sufficient to protect adjacent exposure risks within 1 tank diameter, and simultaneously initiate fire mitigation operations, in response to storage tank full surface fire?

c) How will KM and the KM TMEP mitigate vapor discharge from spill events occurring due to storage tank overfill and product release to the tank levee?

d) How will KM and the KM TMEP provide environmental recovery from vapor discharge exposures generated from spill events occurring due to storage tank overfill and product release to the tank levee?

e) How will KM and the KM TMEP mitigate fire events occurring due to storage tank overfill and product release to the tank levee?

f) How will KM and the KM TMEP provide environmental recovery from airborne outfall discharges occurring from levee fire events?

g) How will KM and the KM TMEP mitigate and recover from fire events occurring in process areas?

h) How will KM and the KM TMEP mitigate and recover from fire events occurring in pump rooms?

i) How will KM and the KM TMEP mitigate and recover from a rim seal fire event?

j) How will KM and the KM TMEP mitigate and recover from a rim seal fire event with an inoperable fixed or semi fixed rim seal pourer system?

k) How will KM and the KM TMEP mitigate and recover from an un-obstructed full surface tank fire event?

l) How will KM and the KM TMEP mitigate and recover from an obstructed full surface tank fire event?

m) How will KM and the KM TMEP mitigate and recover from a 3 dimensional

Page 113: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 .............................................. Appendix G ‐ 21 

 pressure fire?

n) How will KM and the KM TMEP mitigate and recover from a travel product fire within the outfall containment system?

o) How will KM and the KM TMEP mitigate and recover from full surface tank fire in crude tank with long pre-burn time to initial cooling

p) How will KM and the KM TMEP manage emergency event that require community notification to effect early warning and evacuation?

q) How will KM and the KM TMEP manage a bomb threat emergency event?

r) How will KM and the KM TMEP manage environmental emergency events?

s) How will KM and the KM TMEP manage a hazardous materials emergency event?

t) How will KM and the KM TMEP manage a motor vehicle accident emergency event?

u) How will KM and the KM TMEP manage a radioactive materials emergency event?

v) How will KM and the KM TMEP manage an armed intruder emergency event?

w) How will KM and the KM TMEP manage a distraught person emergency event?

x) How will KM and the KM TMEP manage a site fatality emergency event?

y) How will KM and the KM TMEP manage a missing employee emergency event?

z) How will KM and the KM TMEP manage an injury or medical emergency event?

aa) How will KM and the KM TMEP manage a natural gas failure emergency event?

bb) How will KM and the KM TMEP manage a power supply failure emergency event?

cc) How will KM and the KM TMEP manage an electric power line emergency event?

dd) How will KM and the KM TMEP manage a BLEVE potential emergency event?

ee) How will KM and the KM TMEP manage a loss of supply water emergency

Page 114: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 .............................................. Appendix G ‐ 22 

 event?

ff) How will KM and the KM TMEP manage an earthquake or seismic emergency event?

gg) How will KM and the KM TMEP manage a facility earth destabilization emergency event?

hh) How will KM and the KM TMEP manage an impinging wildland fire emergency event?

   

Page 115: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 .............................................. Appendix G ‐ 23 

 4.5.1 Spill Response Resources - Internal Response Equipment Reference: Filing A55987, Trans Mountain Expansion Project Application, Vol. 7, s.4.5.1, P 7-33,

7-34, Internal Response Equipment

Preamble: This section identifies, inventories and locates the internal spill response resources held by Kinder Morgan within British Columbia and Alberta.

Request: a) With respect to the KM and the TMEP internal response equipment within the OSCAR Trailer located in Burnaby, is the grade of Class B foam concentrate compatible with all of the Class B flammable or combustible liquids present on the facility site, to which is to be used?

b) With respect to the KM and the TMEP internal response equipment within the OSCAR Trailer located in Burnaby, is the g Class B foam concentrate stock 3rd party laboratory tested annually?

c) With respect to the KM and the TMEP internal response equipment within the OSCAR Trailer located in Burnaby, is the Class B foam concentrate compatible with the foam proportioning devices present in the facilities for which it is intended?

d) With respect to the KM and the TMEP internal response equipment within the OSCAR Trailer located in Burnaby, is the Class B foam concentrate compatible with the foam solution discharge devices present in the facilities for which it is intended?

e) With respect to the KM and the TMEP internal response equipment within the OSCAR Trailer located in Burnaby, is sufficient Class B foam concentrate present to extinguish a full surface tank fire in the largest diameter storage tank present within the facility assuming the largest potential application rate and duration as required by NFPA 11?

f) With respect to the KM and the TMEP internal response equipment within the OSCAR Trailer located in Burnaby, is sufficient Class B foam concentrate present to extinguish a full surface tank fire in the largest diameter storage tank present within the facility assuming the largest potential application rate identified and duration as recommended by API 2021?

g) Are the KM and the KM TMEP personnel tasked with the operation of the Class B Foam stock capable of proportioning foam solution and proactively managing foam stock supply logistics simultaneously with water supply, foam canon discharge and facility product transfer operations, such that an effective foam attack can be provided against a full surface fire in the facilities largest storage tank to achieve timely extinguishment?

h) With respect to the KM and the TMEP internal response equipment located in Burnaby, is the firefighting foam cannon present capable of achieving the required minimum foam solution application rate in volume, to extinguish a full surface fire in the largest diameter storage tank, assuming the largest potential required minimum application rate by NFPA 11?

i) With respect to the KM and the TMEP internal response equipment located

Page 116: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 .............................................. Appendix G ‐ 24 

 in Burnaby, is the firefighting foam cannon present capable of achieving the required minimum foam solution application rate in volume, to extinguish a full surface fire in the largest diameter storage tank, assuming the largest potential application rate recommended by API 2021?

j) With respect to the KM and the TMEP internal response equipment located in Burnaby, is the firefighting foam cannon present capable of achieving the required minimum foam solution application rates as per NFPA 11 and API 2012 to achieve extinguishment from deployment positions available on the exterior of the tank levee for all wind directions, approach directions and stream drop-out potentials?

k) Are the KM and the KM TMEP personnel tasked with the operation of the foam cannon capable of applying a foam solution discharge of sufficient volume and quality to the fire surface to achieve timely extinguishment, simultaneously with water supply, foam concentrate proportioning and facility product transfer operations, such that an effective foam attack can be provided against a full surface fire in the facilities largest storage tank?

l) What is time magnitude expectation for the KM and KM TMEP internal staff deployment of the containment booms, skimmers and sorbents?

m) Against what maximum magnitude of spill will KM and KM TMEP internal staff be expected to deploy of the containment booms, skimmers and sorbents?

   

Page 117: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 .............................................. Appendix G ‐ 25 

 4.5.2 Spill Response Resources - External Response Equipment Reference: Filing A55987, Trans Mountain Expansion Project Application, Vol. 7, s.4.5.2, P 7-34,

7-35, External Response Equipment

Preamble: This section identifies the external spill response resource agencies provided to Kinder Morgan within British Columbia.

Request: a) What is time elapse expectation of WCMRC to complete rapid spill containment on the Burnaby foreshore?

b) For the time elapse expectation stated in 4.5.2 question a), what is the corresponding maximum containment volume, and the expected effectiveness percentage of the containment?

c) What is time elapse expectation of WCSS to complete rapid spill containment on the Burnaby foreshore?

d) For the time elapse expectation stated in 4.5.2 question c), what is the corresponding maximum containment volume, and the expected effectiveness percentage of the containment?

   

Page 118: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 .............................................. Appendix G ‐ 26 

 E Facility Integrity Hazards Listings Reference: Filing A55987, Trans Mountain Expansion Project Application, Vol. 7, s.Appendix.E-

4, Facility Integrity Hazards – Piping

Preamble: This section provides a listing of the identified hazards to facility integrity with respect to hydrocarbon piping. The facility integrity hazards list for piping identifies the event or hazard, the related preventative measure(s) and the related consequence reduction measures.

Request: a) To identify the scope of facility piping protection, prevention and reduction of the consequences of vandalism, has KM TMEP conducted a quantitative and qualitative risk assessment with respect to site security?

b) To protect, prevent and reduce the consequence of vandalism to the facility piping, has KM TMEP conducted a Security Case Study for the TMEP?

c) What ways will the KM TMEP ensure the secure nature of its assets and facilities with respect to preventing access for the purposes of willful vandalism?

d) What exclusion measures will be utilized to ensure that the access for the purpose of vandalism to the KM operating sites is prevented?

e) Will persons responsible for facility security also be responsible for site operations?

f) If site security personnel are also responsible for operations, will all potential operating tasks be achievable immediately and without delay simultaneously with the management of an unauthorized entry security event?

g) How will KM prevent, detect and immediately respond to ensure facility piping safeguarding from unauthorized entry for the purposes of civil protest?

h) What level of uninterrupted human security presence will be utilized at KM facilities and during the KM TMEP?

i) What level and capability of human based security will be provided at the KM facilities?

j) How will KM prevent, detect and immediately respond to ensure facility piping safeguarding from unauthorized entry for the purposes of civil disobedience?

k) How will KM prevent, detect and immediately respond to ensure facility piping safeguarding from unauthorized entry for the purposes of mischief?

l) How will KM prevent, detect and immediately respond to ensure facility piping safeguarding from unauthorized entry for the purposes of willful

Page 119: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 .............................................. Appendix G ‐ 27 

 damage?

m) How will KM prevent, detect and immediately respond to ensure facility piping safeguarding from armed intruders?

n) How will KM prevent, detect and immediately respond to ensure facility piping safeguarding from unauthorized entry for the purposes of creating an act of terror?

o) How will KM ensure the facility and perimeter exclusion measures will be maintain in intact to prevent and restrict access for the purpose of vandalism to the KM operating sites?

p) How will KM track, grant and deny access to KM operating site areas within the facility fence lines?

q) What early warning and detection systems will be utilized at KM operating sites to ensure unauthorized access to facility piping is prevented?

r) What on site human investigation and detection measures will be utilized at KM operating sites to ensure and routinely confirm unauthorized access to facility piping is prevented and or detected?

s) At what frequency will on site human investigation and detection measures will be utilized at KM operating sites to ensure and routinely confirm unauthorized access to facility piping is prevented and or detected?

t) How will KM ensure that unauthorized persons with intent to perform vandalism are unable to operate the control valves for facility piping?

u) How does the KM TMEP include a comprehensive site Security Plan?

v) How will KM support regional area law enforcement agencies during the TMEP?

w) How will KM support regional area law enforcement agencies during the operation of TMEP facilities?

x) Will KM TMEP facilities have the ability to over ride the manual field operation of piping valves and piping system, in the event of active vandalism from a safe and remote location?

y) How will KM ensure the safety and integrity of facility personnel and the piping control systems in central operating location within the facility, when a security breach has occurred?

z) During a potential breach of security, will KM facility piping control systems be able to be operated and/or overridden from location outside the facility fence line?

aa) What level of immediate technical response from KM will be available to regional law enforcement agencies responding to events of unauthorized

Page 120: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 .............................................. Appendix G ‐ 28 

 entry?

bb) What security event procedures exist within the KM TMEP and related Security Plans to dictate the control and/or isolation of product movements during an unauthorized facility entry event?

cc) What security event procedures exist within the KM TMEP and related Security Plans to restrict the initiation of product movements during an unauthorized facility entry event?

dd) What pre-established Security Plans exist for the response and management of conditions or events that present an increased potential for security threats?

ee) To what extent has KM and the KM TMEP undertaken general security consultation and potential event planning with regional law enforcement agencies?

ff) To what extent has KM and the KM TMEP undertaken major security event planning with regional law enforcement agencies?

gg) Has KM and the KM TMEP identified the specific law enforcement resource commitments, responsibilities and expectations required respond to and mitigate security event potentials for the existing and planned facilities and operations?

 

 

 

   

Page 121: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 .............................................. Appendix G ‐ 29 

 E Facility Integrity Hazards Listings Reference: Filing A55987, Trans Mountain Expansion Project Application, Vol. 7, s.Appendix.E-

4, Facility Integrity Hazards – Piping

Preamble: This section provides a listing of the identified hazards to facility integrity with respect to hydrocarbon piping. The facility integrity hazards list for piping identifies the event or hazard, the related preventative measure(s) and the related consequence reduction measures.

Request: a) To identify the scope of facility piping protection, prevention and reduction of the consequences of vandalism, has KM TMEP conducted a quantitative and qualitative risk assessment with respect to site security?

b) To protect, prevent and reduce the consequence of vandalism to the facility piping, has KM TMEP conducted a Security Case Study for the TMEP?

c) What ways will the KM TMEP ensure the secure nature of its assets and facilities with respect to preventing access for the purposes of willful vandalism?

d) What exclusion measures will be utilized to ensure that the access for the purpose of vandalism to the KM operating sites is prevented?

e) Will persons responsible for facility security also be responsible for site operations?

f) If site security personnel are also responsible for operations, will all potential operating tasks be achievable immediately and without delay simultaneously with the management of an unauthorized entry security event?

g) How will KM prevent, detect and immediately respond to ensure facility piping safeguarding from unauthorized entry for the purposes of civil protest?

h) What level of uninterrupted human security presence will be utilized at KM facilities and during the KM TMEP?

i) What level and capability of human based security will be provided at the KM facilities?

j) How will KM prevent, detect and immediately respond to ensure facility piping safeguarding from unauthorized entry for the purposes of civil disobedience?

k) How will KM prevent, detect and immediately respond to ensure facility piping safeguarding from unauthorized entry for the purposes of mischief?

l) How will KM prevent, detect and immediately respond to ensure facility piping safeguarding from unauthorized entry for the purposes of willful

Page 122: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 .............................................. Appendix G ‐ 30 

 damage?

m) How will KM prevent, detect and immediately respond to ensure facility piping safeguarding from armed intruders?

n) How will KM prevent, detect and immediately respond to ensure facility piping safeguarding from unauthorized entry for the purposes of creating an act of terror?

o) How will KM ensure the facility and perimeter exclusion measures will be maintain in intact to prevent and restrict access for the purpose of vandalism to the KM operating sites?

p) How will KM track, grant and deny access to KM operating site areas within the facility fence lines?

q) What early warning and detection systems will be utilized at KM operating sites to ensure unauthorized access to facility piping is prevented?

r) What on site human investigation and detection measures will be utilized at KM operating sites to ensure and routinely confirm unauthorized access to facility piping is prevented and or detected?

s) At what frequency will on site human investigation and detection measures will be utilized at KM operating sites to ensure and routinely confirm unauthorized access to facility piping is prevented and or detected?

t) How will KM ensure that unauthorized persons with intent to perform vandalism are unable to operate the control valves for facility piping?

u) How does the KM TMEP include a comprehensive site Security Plan?

v) How will KM support regional area law enforcement agencies during the TMEP?

w) How will KM support regional area law enforcement agencies during the operation of TMEP facilities?

x) Will KM TMEP facilities have the ability to over ride the manual field operation of piping valves and piping system, in the event of active vandalism from a safe and remote location?

y) How will KM ensure the safety and integrity of facility personnel and the piping control systems in central operating location within the facility, when a security breach has occurred?

z) During a potential breach of security, will KM facility piping control systems be able to be operated and/or overridden from location outside the facility fence line?

aa) What level of immediate technical response from KM will be available to regional law enforcement agencies responding to events of unauthorized

Page 123: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 .............................................. Appendix G ‐ 31 

 entry?

bb) What security event procedures exist within the KM TMEP and related Security Plans to dictate the control and/or isolation of product movements during an unauthorized facility entry event?

cc) What security event procedures exist within the KM TMEP and related Security Plans to restrict the initiation of product movements during an unauthorized facility entry event?

dd) What pre-established Security Plans exist for the response and management of conditions or events that present an increased potential for security threats?

ee) To what extent has KM and the KM TMEP undertaken general security consultation and potential event planning with regional law enforcement agencies?

ff) To what extent has KM and the KM TMEP undertaken major security event planning with regional law enforcement agencies?

gg) Has KM and the KM TMEP identified the specific law enforcement resource commitments, responsibilities and expectations required respond to and mitigate security event potentials for the existing and planned facilities and operations?

 

Page 124: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 ................................................ Appendix H ‐ 1 

 

 

Appendix H Trans Mountain Tank Farm Fire Protection Meeting 2017.05.30  

      Fire Department 

      Administration Division 

 

 

 

INTER‐OFFICE MEMORANDUM 

 

TO: BURNABY FIRE DEPARTMENT RECORDS

DATE: 2014 June 18

FROM: CHRIS BOWCOCK

DEPUTY FIRE CHIEF

SUBJECT: MEETING MINUTES - 2014.05.30

KINDER MORGAN TRANS MOUNTAIN TANK FARM CURRENT FACILITY FIRE PROTECTION

 

 

Date:    May 30, 2014     0800 ‐ 0930 

Location:  Office of the Fire Chief     Burnaby Fire Department     Fire Station #1 – Administration     4867 Sperling Avenue     Burnaby, BC 

Page 125: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 ................................................ Appendix H ‐ 2 

 

 

 

Attendees:  Doug McDonaldFire Chief – Burnaby Fire Department 

    Chris Bowcock  Deputy Fire Chief – Burnaby Fire Department 

    Rob Hadden    Director, Western Region – Kinder Morgan Canada 

    Troy Edwards    Fire Protection Specialist – Kinder Morgan Contractor     Kelly Malinoski  ER & Security Advisor – Kinder Morgan Canada 

 

   

 

1. Meeting commenced with Doug McDonald thanking Kinder Morgan representatives for coming and stated that as agreed upon at the acceptance of the meeting invitation, the scope of the discussion was to focus on the status of current Trans Mountain Tank Farm (TMTF) Fire Protection only in an effort to respect the regulatory application-review process being under taken by the National Energy Board with respect to the Kinder Morgan Trans Mountain Expansion Project.

 

2. Doug McDonald re-stated the original premise proposed by Kinder Morgan of the meeting as an informal discussion.

 

No agenda was presented and no discussion or agreement was made as to the taking of formal meeting minutes or by whom formal meeting minutes would be taken.

 

3. It was agreed upon that that the Burnaby Fire Department needs to understand the current status of the TMTF fire protection capability and emergency preparedness. It was agreed upon that the Kinder Morgan needs to understand what the Burnaby Fire Department requires of the TMTF fire protection capability and emergency preparedness.

 

4. Rob Hadden stated that he agrees that the fire/safety risks of a sulfur based gas release, toxic smoke discharge and tank fire boilover are valid event potentials.

 

5. Doug McDonald described the current level of service provided by the Burnaby Fire Department with specific respect to hydrocarbon facility emergency response. Doug

Page 126: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 ................................................ Appendix H ‐ 3 

 

 

McDonald identified that the level of service currently provided by the Burnaby Fire Department has not changed in premise in greater than 30 years. The Burnaby Fire Department’s expectation has always been consistent with the hydrocarbon facilities located in Burnaby, in that the hydrocarbon company would provide a Fire Brigade and we would support when our resources are available, with the secondary operations of water supply and exposure protection under the direction and expertise of their staff. Specifically, the Burnaby Fire Department’s priority is to ensure and actively protect public safety, and as personnel and equipment are available, to secondarily provide non-technical hydrocarbon firefighting operations if possible to support the hydrocarbon facility’s role as the primary emergency responder within the facility fenceline.

 

6. Chris Bowcock stated that the Burnaby Fire Department will respond to TMTF emergency events as the primary responder to conduct operations to rescue endangered facility staff and for facility structural firefighting operations within the buildings of the TMTF facility. The Burnaby Fire Department may if available provide secondary water supply operations such as relay pumping or secondary discharge of cooling water streams from safe operating positions to support the TMTF facility as it conducts primary fire attack operations.

 

7. Troy Edwards asked Chris Bowcock directly how the Burnaby Fire Department would operate at a hypothetical highway gasoline transport truck fire.

8. Chris Bowcock responded by stating that the Burnaby Fire Department would respond to protect the public from the event hazard, to isolate evacuate and restrict access to the hazard area and to provide exterior water streams to contain the fire event in order to prevent fire extension. Chris Bowcock stated that in this hypothetical event the shipper is responsible for the primary technical emergency response to events created by transport of their dangerous goods.

 

9. Chris Bowcock stated that this level of service provided by the Burnaby Fire Department in the hypothetical highway gasoline transport truck fire is consistent with a hypothetical event occurring from the release of chlorine gas from a rail tanker. The Burnaby Fire Department would respond to protect the public from the event hazard, to isolate, evacuate and restrict access to the hazard area. Chris Bowcock stated that in this hypothetical event the shipper, in this case the chlorine gas manufacturer is responsible for the primary technical emergency response to the event, through its industry response team, for the capping or release control of the rail car. In this case the Burnaby Fire Department would support the industrial responder with secondary Hazardous Material Team operations.

10. Chris Bowcock stated that the Burnaby Fire Department takes the role as the primary response agency for structural firefighting in the City of Burnaby. Chris Bowcock stated

Page 127: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 ................................................ Appendix H ‐ 4 

 

 

that the industrial hydrocarbon company in the City of Burnaby is responsible to provide the primary technical hydrocarbon industrial fire operations.

 

11. Doug McDonald stated that the Burnaby Fire Department has received hazardous materials awareness level training from specific chemical industrial response teams. Doug McDonald stated that the training Kinder Morgan provided the Burnaby Fire Department with regards to Tank Fire theory and site tours was characterized and agreed upon as awareness level training at the agreement to participate.

 

12. Troy Edwards stated that if the Burnaby Fire Department entered into a Mutual Aid agreement with the TMTF, the fire protection resources of the Trans Mountain Tank Farm could be made available to the Burnaby Fire Department for incident such as the hypothetical highway gasoline transport truck fire described earlier.

 

13. Doug McDonald stated that the Burnaby Fire Department is currently entered into a mutual aid agreement with the other regional fire departments. Doug McDonald stated that Burnaby Fire Department has often responded on a mutual basis with smaller departments, but often these smaller departments are incapable of reciprocating the service.

 

14. Doug McDonald also stated that he would speak with senior City Managers about the Fire Department entering into a memorandum of understanding regarding roles & responsibilities at Kinder Morgan sites for current operations only.

 

15. Troy Edwards provided a summary of the improvements made to the TMTF fire protection capability over the last 9 years, and stated clearly that these improvements are independent of the expansion and are intended to be replaced if there is an expansion.

 

16. Troy Edwards identified the current TMTF fire protection resources as including: Foam Trailer 500 usgal Fluoroprotein Electric Fire Pump 1000 usgpm Diesel Fire Pump 1000 usgpm Fire Water Reservoir with sufficient water volume to provide a 65 minute full

surface fire attack on largest tank  

17. Troy Edwards identified the coming TMTF fire protection resource end of August 2014 as including: Water Pump 4000 usgpm

Page 128: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 ................................................ Appendix H ‐ 5 

 

 

Foam System with an around the pump foam proportioning to supply Fire Water Main with Foam Solution for facility distribution

Foam Concentrate Tank 10,000 usgal AFFF Mobile Trailered Foam Monitor capable discharging Foam Solution at 6000

usgpm  

18. Troy Edwards stated that the TMTF fire protection system has been re-designed, upgraded and includes UV/IR detection.

 

19. Chris Bowcock asked if the TMTF possesses the equipment and trained personnel resources to extinguish a full surface tank fire at the largest tank on the TMTF facility.

 

20. Troy Edwards stated that the TMTF has no personnel trained operate the mobile fire protection equipment to execute the extinguishment of a TMTF full surface tank fire. Troy Edwards stated that the TMTF has equipment on-site to ensure a timely response to a full surface tank fire.

 

21. Chris Bowcock asked if the TMTF possesses the equipment and trained personnel resources to extinguish a rim seal fire.

 

22. Troy Edwards stated yes, but with a significant delay on night shift.  

23. Chris Bowcock asked if the TMTF possesses the equipment and trained personnel resources to extinguish or suppress a dike spill/fire.

 

24. Troy Edwards stated that the TMTF would be unable to extinguish or suppress a dike spill/fire during night shift.

 

25. Chris Bowcock inquired about the status of the Lower Burrard Mutual Aid Group.  

26. Kelly Malinoski stated that the mutual aid agreement is not intact. Kelly Malinoski stated that Kinder Morgan has attempted several times to reform the mutual group but currently without success.

 

27. Troy Edwards stated that Kamloops Fire Department and Kinder Morgan have an intact mutual aid agreement.

Page 129: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 ................................................ Appendix H ‐ 6 

 

 

 

28. Chris Bowcock asked how Kinder Morgan would characterize their current relationship with the Strathcona County Fire Department.

 

29. Troy Edwards stated that they have a very good mutual working relationship with the Strathcona County Fire Department.

 

30. Troy Edwards offered additional training to the Burnaby Fire Department that could be provided on a flexible format.

 

31. Chris Bowcock stated that training in the Burnaby Fire Department is schedule one (1) year in advance, and that the scheduling of this training could not take place immediately and much management and schedule modification would be required to allocate the time necessary.

 

32. Chris Bowcock asked if the TMTF had an Emergency Response Plan.  

33. Kelly Malinoski stated that that there is not an Emergency Response Plan specific for the TMTF, but a general Emergency Response Plan applicable for all Kinder Morgan facilities along and including the current pipeline.

 

34. Chris Bowcock stated that in the Kinder Morgan Emergency Response Plan the section on the TMTF was not provided to the Burnaby Fire Department when requested September 2013, based on a security premise.

 

35. Chris Bowcock asked if the TMTF had specific tank and spill fire protocols for the TMTF.

 

36. Kelly Malinoski stated that an Emergency Response Plan for the TMTF was being developed.

 

37. Tory Edwards stated that tank farm fire protocols will be developed in the future, and Kinder Morgan would appreciate any input as to format the Burnaby Fire Department could provide.

 

Page 130: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 ................................................ Appendix H ‐ 7 

 

 

38. Kelly Malinoski identified and presented the opportunity for the Burnaby Fire Department to attend the coming Kinder Morgan Westridge facility Boom Deployment exercise on June 24, 2014 from 0900 to 1200. Kelly Malinoski stated that the invitation has also been extended to Transport Canada, Port of Metro Vancouver and the Burnaby RCMP.

 

 

 

 

 

 

Chris Bowcock Deputy Fire Chief 

 

:cb 

Page 131: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 ................................................. Appendix I ‐ 1 

 

 

Appendix I Fire & Safety Risks Associated with TMEP Burnaby City Council Memo  

 

 

COUNCIL REPORT

 

TO: CITY MANAGER DATE: 2014 July 02 FROM: FIRE CHIEF SUBJECT: FIRE AND SAFETY RISKS ASSOCIATED WITH THE PROPOSED KINDER MORGAN

BURNABY MOUNTAIN TERMINAL EXPANSION PURPOSE: To inform Council of the fire and safety risks associated with the densification of the Burnaby

Mountain Terminal.  

RECOMMENDATIONS: 

1. THAT Council receive this report for information purposes.

2. THAT a copy of this report be sent to all Burnaby MP’s and MLA’s.  

REPORT 

 

EXECUTIVE SUMMARY 

Item ..........................................................  

Meeting 2014 Jul 07

Page 132: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 ................................................. Appendix I ‐ 2 

 

 

 

On 16 December 2013, Kinder Morgan submitted an application to the National Energy Board (NEB) for the  expansion  of  the  Trans Mountain  Pipeline  system, which  includes  the  expansion  of  the Burnaby Mountain  Terminal.    The  expansion  involves  the  densification  of  storage  tanks  within  the  existing footprint of the site from 13 tanks to 26 tanks – a tripling of the subject terminal’s storage capacity from 1.7 million barrels to 5.6 million barrels.  Based on the information provided by Kinder Morgan in their application  to  the NEB,  fire  staff have conducted a high  level assessment of  the proposed expansion.  The  findings  of  the  assessment,  from  a  fire  safety  and  risk  perspective,  raises  concerns  over  Kinder Morgan’s selection of the Burnaby Mountain Terminal for the densification of storage tank use. 

 

Based on the findings of the assessment, fire staff advise that the Burnaby Mountain Terminal is not the appropriate  location  for  the  expansion  of  the  Burnaby  Mountain  Terminal  and  densification  of petroleum storage, given the subject terminal topography, limited site area, limited site access, its close proximity  to  the  Lochdale,  Sperling‐Duthie, Meadowood,  Forest Grove  neighbourhoods  (the  nearest residential property being 20 m away), as well as in proximity to Simon Fraser University and UniverCity.  These  factors pose significant constraints  from an emergency/fire  response perspective,  including but not limited to safety of firefighters and effectiveness to combat fire; containment and extinguishment of fire/spill/release; evacuation of employees within the Burnaby Mountain Terminal facility; evacuation of adjacent neighbourhoods, as well as broader areas impacted by release of sulfur based gases and toxic smoke plumes; and, protection of adjacent properties, including conservation lands.   

 

Fire staff are also particularly concerned by Kinder Morgan’s lack of due consideration for industry best practices in petroleum storage terminal development and fire protection systems, as their proposal only seeks to comply with minimum federal and provincial code requirements.   Moreover, Kinder Morgan’s application to the NEB raises concerns as  it  identifies the Burnaby Fire Department and other Burnaby first  responders as  the  lead agencies  to manage a  fire event at  the Burnaby Mountain Terminal.   Fire staff advises  that  the Department does not have  the  capacity or  technical  capability  to  respond  to a major  fire  event,  such  as  a multiple  tank  fire,  a  storage  tank  boil  over,  or  the  release  of  toxic  gas products, where simultaneous interior and exterior fenceline operations were required to protect public safety.    The  limited  capability  for  Kinder Morgan  to  provide  an  emergency  response  to  such major events  could  have  significant  impacts  to  unprotected  lives  and  properties,  as well  as  to  surrounding environmentally  sensitive areas and conservation  lands, both within  the  immediate area and broader City. 

 

Page 133: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 ................................................. Appendix I ‐ 3 

 

 

Comparatively,  the  Edmonton  Terminal  in  its physical  site  selection  (flat  topography, multiple  access points,  secondary  containment  facilities,  and  equipment),  industrial  land  use  context  and  its  better internally  developed  emergency  response  environment  (i.e. mutual  aid  amongst  adjacent  petroleum industries) highlights some of the key characteristics of a more conducive location for the development (expansion) of a petroleum storage terminal.  The comparison between the Edmonton Terminal and the Burnaby Mountain  Terminal  also  highlights  some  of  the  key  deficiencies  of  the  Burnaby Mountain Terminal site for petroleum storage. 

 

1.0 INTRODUCTION  

Kinder Morgan, as part of their application to the National Energy Board (NEB) for the expansion of the Trans Mountain Pipeline system, proposes to expand the Burnaby Mountain Terminal.   The expansion involves the densification of storage tanks within the existing site, from 13 tanks to 26 tanks – a tripling of the subject terminal’s storage capacity to 5.6 million barrels.   This expansion raises concerns from a fire  risk and  safety perspective, given  the area context of  the proposed expansion.   The Burnaby Fire Department has undertaken  a high  level  assessment on  the  fire  and  safety  risks  associated with  the proposed Burnaby Mountain Terminal expansion, based on the  information that  is currently known of the  application  to  date.    The  assessment  is  on‐going,  and  will  continue  to  be  refined  as  detailed information (i.e. engineering design, site configuration, tank specifications) becomes known.   Based on this high level and ongoing assessment of the application, the Burnaby Fire Department advises that the Burnaby Mountain Terminal  is not a suitable  location for the densification of petroleum storage, given the significant  fire and safety risks associated with  the expansion on the surrounding area.   Nor, does the City have the capacity or capability to respond to major spill/fire events at the terminal site, without significant risks and/or impacts to property and life. 

 

The purpose of this report is to provide a summary of the high level assessment conducted by City staff of Kinder Morgan’s application to expand the Burnaby Mountain Terminal, and to highlight some of the key concerns and potential risks of the proposed expansion.   An overview  is provided of the proposed expansion as  it relates to  the Burnaby Mountain Terminal, the  fire and safety risks associated with  its expansion, and the significant risk of overwhelming City emergency resources in the event of emergency response scenarios identified by Kinder Morgan in their application to the NEB.  This report also reviews the  Kinder Morgan  Edmonton  Terminal  as  it  compares  to  the proposed Burnaby Mountain  Terminal expansion. 

 

2.0 OVERVIEW

Page 134: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 ................................................. Appendix I ‐ 4 

 

 

 

2.1  Locational Context of the Burnaby Mountain Terminal  

The Burnaby Mountain Terminal is a 189 acre site located on the south slope of Burnaby Mountain and is bounded by Burnaby Mountain Parkway, Gaglardi Way, Shellmont Street and Arden Avenue (unopened road right-of-way) (see attached Sketch #1). To the north and east, across the Burnaby Mountain Parkway/Gaglardi Way, is the Burnaby Mountain Conservation Area, above which is Simon Fraser University and UniverCity, a major university and new neighbourhood community with a student population of 16,000+, and a projected residential population of 10,000+ at full build out. To the west are the Lochdale and Sperling-Duthie residential neighbourhoods, as well as Squint Lake Park and the Burnaby Mountain Golf Course. To the south are the Meadowood and Forest Grove residential neighbourhoods, as well as the Shellmont Terminal (Shell Canada), beyond which is the Lake City Community Plan Area.  

The prevailing  land uses that surround the Burnaby Mountain Terminal are residential neighbourhood communities,  park/open  space  and  conservation  lands.    It  is  noted  that  the  nearest  residential properties are only 20 m away, when measured from property line‐to‐property line1. It is also noted that the Burnaby Mountain  Terminal  is  adjacent  to  significant  portions  of Burnaby  Parkway  and Gaglardi Way, the only two vehicular access points to and from Simon Fraser University and UniverCity. 

 

From  an  environmental  context,  the  Burnaby Mountain  Terminal  is  situated  on  the  south  slope  of Burnaby Mountain,  for which  the  geotechnical  stability of  the  area may be of  concern.    The  subject terminal is also located at the head of two local water sheds (Eagle Creek and Silver Creek) which drain into  larger bodies of waters and  fish bearing water courses downstream  including, but not  limited  to Burnaby Lake and the Brunette River  (drains  into the Fraser River).   Surrounding the subject terminal, are  conservation  lands,  parkland  and  open  space,  which  provide  habitat,  travel  corridors  and  food source for numerous local wild life, in addition to their recreational value.    

 

From  a  broader  City‐wide  and  regional  context,  the  Burnaby Mountain  Terminal  is  located within  a dense  urban  area  with  highly  developed  communities;  commercial  businesses  and  industries; institutions; and, complex networks and connections, which facilitate the movement of people, goods, services, and utilities throughout the City and the broader Metro Vancouver region.   

 

                                                            1 It is noted that in Kinder Morgan’s application to the NEB, the nearest residential properties were identified as being 50 m away. The methodology used to measure this distance is unclear.

Page 135: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 ................................................. Appendix I ‐ 5 

 

 

2.2 Existing Burnaby Mountain Terminal

The subject terminal, which slopes in a southwesterly direction, is occupied by 13 storage tanks and related operations buildings which serve the site. Internal service roads also traverse through the site to service the tanks and related facilities. At the southwest corner of the site (7185 Shellmont Street), are related offices for Kinder Morgan. In general, each tank on the site comprises of a concrete pad/foundation, a tank vessel, and roof (floating or fixed). Surrounding each tank is a secondary containment berm for potential overflow/spillage of petroleum product. The size and storage capacity of each tank within the subject terminal varies, the storage volume ranging from 80,000 bbl – 155,000 bbl per tank. The spacing between each tank also varies, the closest distance between two tanks being approximately 50 m apart. As noted, the subject terminal site is at the head of two local watersheds: Eagle Creek and Silver Creek. These water courses, which flow through the site, are partially open and partially diverted below ground via culverts. At the southwest corner of the terminal site is a detention pond that is fed by Eagle Creek. Landscape buffers are provided along the perimeter of the site, as well as along portions of open water courses within the site. It is within the limited site of the existing Burnaby Mountain Terminal that a significant increase in the number of storage tanks within the subject terminal is proposed.  

2.3 Existing Fire-Protection System for the Burnaby Mountain Terminal  

The existing fire‐protection system for the Burnaby Mountain Terminal  is a water‐based system, which draws  from  a  southwest  detention  pond.    It  is  noted  that  the  water  contained  within  the  subject detention pond is currently fed by Eagle Creek.  Fire staff advise that the existing fire‐protection system within the subject terminal site has the capacity to respond to a single tank fire, based on the  largest‐sized tank, which is the minimum acceptable level of fire response capacity for the site.2   

It is noted that Kinder Morgan advises that they are currently in the process of upgrading the fire-protection system for the existing Burnaby Mountain Terminal, including conversion to a foam-based fire protection system. The upgraded system is anticipated by Kinder Morgan to be in service by late-August 2014. Fire staff note that the Burnaby Mountain Terminal currently does not have sufficient on-site Kinder Morgan personnel and training to deploy/operate the fire-protection system, in event of an emergency.                                                             2 The existing fire-protection system at the Burnaby Mountain Terminal has the ability to pump water at a rate of 2,000 gallon per minute, in which portions may be converted to foam.

Page 136: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 ................................................. Appendix I ‐ 6 

 

 

2.4 Proposed Burnaby Mountain Terminal Expansion

 

The  2013 December  16  Kinder Morgan  application  to  the NEB  proposes  to  increase  the  number  of storage tanks within the existing Burnaby Mountain Terminal (see attached Sketch #2).  Key aspects of the proposed expansion for the subject terminal include: 

an increase in the number of tanks within the existing site footprint from 13 to 26 (14 new tanks of which one is a replacement tank);

a tripling of the overall storage capacity within the site from 1.7 million bbl to 5.6 million bbl; and

a product focus shift from the storage and shipment of light and synthetic crudes to the storage and shipment of heavy crude petroleum products containing diluted bitumen within the site.

In order to accommodate the proposed total volume of petroleum storage capacity (5.6 million bbl), Kinder Morgan proposes to construct larger tanks. Each new tank would have a storage volume capacity between 250,000 bbl – 335,000 bbl. The engineering design specifications (dimensions, materiality, construction method, etc.) for the new tanks are currently undisclosed by Kinder Morgan, and there is no clarity regarding the proposed separation distance between tanks.  

Given the space limitations of the Burnaby Mountain Terminal, Kinder Morgan is proposing to provide shared containment berms3 for the new tanks. Kinder Morgan is also proposing to divert and potentially culvert existing open water courses (Eagle Creek and Silver Creek), as well as remove vegetation and habitat within the proposed tank expansion area. 2.5  Proposed Fire‐Protection System for the Burnaby Mountain Terminal 

The key concept, as understood from Kinder Morgan’s application from the NEB,  is that the expanded Burnaby Mountain Terminal would have  foam capable water based  fire protection system.   However, there is a lack of clarity regarding the source of water4 or proposed on‐site water reservoir required to implement  the  systems;  the  degree  to  which  the  proposed  fire  protection  systems  are  reliant  on securing a City water connection to supplement or replace the water currently being drawn from Eagle 

                                                            3 Shared containment berms, as proposed by Kinder Morgan in their application to the NEB, would have the capacity to contain 100 percent of the working volume of the largest tank, plus ten percent of the working volume of the other tanks which share the common containment area.

4 As foam is comprised of 97% water, a reliable water source is required for both the proposed water- and foam-fire protection operations.

Page 137: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 ................................................. Appendix I ‐ 7 

 

 

Creek; and  the capacity of  the proposed  systems  to  respond  to a major  fire event within  the  subject terminal (i.e. multiple tank fires).  

 

City  staff will  continue  to  seek  further  clarity on  the details of  the proposal  through  the NEB  Public Hearing process. 

 

With regard to emergency response, based on Kinder Morgan’s application to the NEB, the above noted fire‐protection system relies on City fire and first responders to operate the systems and respond to a fire event.  No assessment was provided within the application regarding the City’s capacity or ability to respond  to a  fire event within  the  subject  terminal  site.   Nor, has Kinder Morgan  secured agreement from the City to undertake the role as the primary responder to fire events within the site. 

 

The proposed storage tank expansion within the Burnaby Mountain Terminal raises concerns regarding the  integrity of the subject terminal  facility  from a  fire and safety perspective.   This report provides a high  level assessment of  fire and  safety  risks associated with  the proposed expansion of  the Burnaby Mountain Terminal, based on  the  information known  to‐date.   Not  included are other aspects of  the proposed expansion, both in normal operations and emergency response related to issues such as public health,  air quality,  stormwater management,  seismic  risks  and  environment.   A  report  to Council on these matters will be submitted at a later date.  

   

3.0 HIGH LEVEL PRELIMINARY ASSESSMENT OF FIRE AND SAFETY RISKS  

3.1 Site Selection  

From  a  fire  and  safety  perspective,  key  considerations  in  the  development  and  densification  of petroleum storage terminals include: 

Site Area –  large site area to accommodate tanks and related  infrastructure, as well as accommodate multiple layers of containment areas/berm and fence line; 

Siting  Regulations  –  appropriate  siting  regulation  to meet  the  highest  industry  standard  and  best practices  for  the  storage  tank  use,    densification  of  development,  conditions  of  use,  setback  from adjacent  uses,  and  other  technical  aspects  of  development  to  protect  public  interests  and  ensure compatibility of uses within a broader area; 

Page 138: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 ................................................. Appendix I ‐ 8 

 

 

Topography – flat topography facilitates firefighters’ management of fire behaviour; 

Access  –  in  this  regard,  access  relates  to  reliable  water  service,  roads  (fire  service  vehicles  and equipment), staging areas for equipment and manual emergency response (i.e. firefighting); and 

Proximity  to  human  populations  –  maximum  distance  from  residential  communities,  including residential properties, schools, parks, commercial services, and other  institutional and civic amenities.  Close proximity of such terminal facilities to the above noted land uses places significant populations at greater risk in a fire, spill or release event5.   

Where public safety is top of mind, these key considerations are critical in any potential site selection for a petroleum storage tank facility.  Moreover, these key considerations are critical to the extinguishment or containment of a fire event. 

 

Based on  the above noted considerations  in  selecting a potential  terminal  site  (or densification of an existing  site),  the Burnaby Mountain Terminal  site would not be considered an appropriate  site.   The subject terminal site is constrained with respect to site area; is situated on a mountain slope; has limited access;  and,  is  in  close  proximity  to  the    Lochdale,  Sperling‐Duthie,  Meadowood,  Forest  Grove neighbourhoods  (the nearest  residential property being 20 m away), as well as  in proximity  to Simon Fraser University  and UniverCity.    These  factors  pose  significant  constraints  from  an  emergency/fire response perspective, including but not limited to the following: 

safety of firefighters and effectiveness to combat fire;

containment and extinguishment of fire/spill/release;

evacuation of employees within the Burnaby Mountain Terminal facility;

evacuation of adjacent neighbourhoods, as well as broader areas impacted by release of sulfur based gases and toxic smoke plumes; and

protection of adjacent properties, including conservation lands.

As such,  from a  fire safety and  risk perspective,  the Burnaby Mountain Terminal  is not considered an appropriate site for the densification of petroleum storage. 

 

3.2 Densification of Storage Tank Use of the Burnaby Mountain Terminal  

                                                            5 The scope of this report is limited to public safety from a fire risk perspective. However, other considerations in site selection include proximity of such storage tank facilities to environmentally sensitive areas and conservation lands, public health, visual aesthetics and other matters.

Page 139: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 ................................................. Appendix I ‐ 9 

 

 

The  densification  of  storage  tank  use within  a  terminal  is  a  key  consideration  in  assessing  fire  risks.  Specifically, the distance between storage tanks  is a key design and engineering  feature, which allows firefighters to effectively isolate an active tank fire and prevent a multiple tank fire event.  

 

In general, the distance between storage tanks, as well as construction details, are regulated through a number of  federal and provincial regulations,  including but not  limited to  the National Fire Protection Association (NFPA) Standard 30, and the BC Fire Code.  These regulations provide a minimum standard in terminal developments.  Where public safety and mitigation of fire risks are the primary objective, the application of the highest industry standards and best practices (using international base‐line) should be applied  to  terminal developments.   Proposed  terminal developments  should also be  reviewed  from a fire prevention view in order to ensure that fire and safety issues have been fully addressed to the best standards available.     

 

With regard  to the Burnaby Mountain Terminal, while details on the engineering design and technical aspects  of  the  terminal’s  expansion  are  currently  unknown,  Kinder Morgan  has  indicated  that  the expansion will  comply with  federal  and  provincial  regulations.    No  commitment  has  been made  to comply with  local government bylaws,  regulations and approvals processes, or  industry best practices and standards.   

 

Fire  staff  are  not  satisfied  that  compliance with  federal  and  provincial  regulations  are  sufficient  to mitigate fire risks within the Burnaby Mountain Terminal.  Moreover, given the densification of storage tanks within a heavily constrained terminal site, fire staff are not assured that potential tank fires can be extinguished and/or contained.     In view of the above, the densification of storage tank use within the Burnaby Mountain Terminal site is not considered appropriate or advised. 

 

3.3 Proximity of Hazards to Fence Line The proximity of hazards such as a storage tank to the fence line is a key factor in effectiveness of containing or extinguishing a fire. The closer a hazard is to the fence line, the higher the risk that it can spread to and impact adjacent properties. Kinder Morgan’s application to the NEB proposes to potentially locate a number of storage tanks in proximity to the fence line, posing risks to adjacent and nearby residential neighbourhoods (as well as key access points to and from Simon Fraser University and UniverCity) and environmentally sensitive conservation lands. This raises concerns from a fire and safety perspective, where by impacts to unprotected life and property may be significant.

Page 140: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 ............................................... Appendix I ‐ 10 

 

 

As such, from a fire safety and risk perspective, the  location of new storage tanks within the northern and  eastern  portions  of  the  Burnaby Mountain  Terminal  site,  in  proximity  to  the  fence  line,  is  not considered appropriate or advised. 

 

3.4 Response Capability and Capacity Based on a review of Kinder Morgan’s submission to the NEB, and based on the information that is known regarding the proposed expansion and fire protection system for the Burnaby Mountain Terminal to date, Burnaby first responders (fire fighters, RCMP, etc.) do not have the capacity or technical training to mitigate a major fire event, such as a multiple tank fire, storage tank boil over, or a release of toxic gas products simultaneously with operations to protect community lives and property outside the facility fenceline and elsewhere in the City. The inability of Burnaby first responders to control such major events by providing interior facility operations simultaneously with exterior fenceline emergency operations required to prevent incident escalation would leave significant gaps in the protection of unprotected lives and properties, as well as to surrounding environmentally sensitive areas and conservation lands, both within the immediate area and broader City. The concerns and risks identified in the assessment have been included in Burnaby’s information requests to Kinder Morgan as part of the NEB Public Hearing process. The responses received to date from Kinder Morgan have been evasive and do not adequately address Fire staff (and more broadly City staff) concerns that potential risks and impacts of a fire event at the Burnaby Mountain Terminal can be appropriately responded to by the company. 4.0 COMPARISON OF THE PROPOSED BURNABY MOUNTAIN TERMINAL

EXPANSION TO THE EDMONTON TERMINAL 4.1 Overview of the Edmonton Terminal Fire staff have reviewed the existing Edmonton Terminal as a comparison to the Burnaby Mountain Terminal, given that both terminal facilities store the bulk of the product proposed to be shipped through the Trans Mountain pipeline system, being the commencement (Edmonton Terminal) and primary terminus (Burnaby Mountain Terminal) of the overall system. The Edmonton Terminal is located within an area of Strathcona County, Alberta that is designated a heavy industrial park. The subject terminal use is compatible with the surrounding industrial uses of the area, including other petroleum terminal facilities - Suncor and Imperial Oil refineries and Enbridge, Keyera, and Gibson terminals. It is noted that the Edmonton Terminal, and broader industrial park, is remote from residential neighbourhoods/communities, as well as environmentally sensitive areas. Kinder Morgan has indicated that the nearest residential properties are 1,000 m away from the Edmonton Terminal, as compared to 20 m in Burnaby.

Page 141: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 ............................................... Appendix I ‐ 11 

 

 

The  Edmonton  Terminal  is  situated on  a  flat  topography  and  comprises of  three  areas:   North  Forty Terminal, West Tank Area and East Tank Area.   There are a total of 35 tanks within the East and West Tank Areas, plus 19 tanks within the North Forty Terminal.  A remote impoundment area, located within the north portion of  the site,  is shared by  the  tank areas.     With regard  to  the design of  the  terminal facility, the Edmonton Terminal  is supported by accessible perimeter roads and  internal service roads.  The  terminal  is also  lined with an  impermeable material and surrounded by containment berms.   The Edmonton  Terminal  fire  protection  system  includes  water  and  foam  fire‐protection  systems  which provide full site coverage via a system of pumps, hoses, trucks, hydrants, sprinklers and cannons.  During a  fire  event,  the  site  also has  access  to  additional man power,  foam  concentrate  and  foam  cannons through the Strathcona District Mutual Aid Program (industry program). 

 

4.2  Review of Edmonton Terminal Site as a Petroleum Storage Facility 

 

In view of the above, the Edmonton Terminal site is a more conducive site to the development of petroleum storage terminals, in comparison to the Burnaby Mountain Terminal, as it meets key site selection criteria:

location within a heavy industrial area, remote from residential neighbourhoods/communities (human population) and environmentally sensitive lands;

location on flat topography and supported by accessible roads and superior internal fire protection resources; and

significant development of the petroleum sector in the area with established mutual aid agreements.

It  should be noted  that  in previous applications  to  the NEB  for expansion of  the Edmonton Terminal (which were approved by  the NEB  in 2008 and 2011), part of  the  rational  for  the expansion approval included these factors: 

“Compatibility of the Project with current heavy industrial land use activities and zoning of the proposed site and neighbouring area”6.

“The extensive experience of a majority of the Project’s neighbours with petroleum-related and other heavy industrial developments”7.

“This area is zoned for Heavy Industrial Use as per the Strathcona County Municipal Development Plan and is surrounded by other industrial facilities including the PetroCanada

                                                            6 Trans Mountain Pipeline Inc., “Application: Edmonton Terminal Expansion Project” (13 August 2007), at 6. 7 Trans Mountain Pipeline Inc., “Application: Edmonton Terminal Expansion Project” (13 August 2007), at 6.

Page 142: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 ............................................... Appendix I ‐ 12 

 

 

and Imperial Oil refineries and the North 40 Terminal, Enbridge, Keyera and Gibson terminals”8.

Further, in their 2011 application to vary the approved tank expansion at the Edmonton Terminal, Trans Mountain explained how  the  site would be graded  so  that all  leaked or  spilled oil would drain  into a remote impoundment site: 

“The bermed area around the tanks, with an impermeable membrane, will be graded so that all drainage is directed to a remote impoundment area which provides containment in the unlikely event of a spill or leak”9.

“The remote impoundment is being located on the north end of Edmonton Terminal where the elevation of the land is lower, thereby providing better drainage to the remote impoundment, and the culvert will provide additional environmental protection in the event of a spill”10.

The above noted considerations  in the development of the Edmonton Terminal are not evident  in the proposed  expansion  of  the  Burnaby Mountain  Terminal.   More  significantly,  from  a  fire  and  safety perspective,  the design and proposed densification of  the Burnaby Mountain Terminal on a mountain slope  surrounded  by  residential  neighbourhoods  and  environmentally  sensitive  lands  has made  no consideration for public safety and mitigation/elimination of fire risks. 

 

5.0 CONCLUSION  

Burnaby Fire Department have undertaken a high level assessment of the fire and safety risks associated with  the  expansion  of  the  Burnaby Mountain  Terminal.    Based  on  the  information  provided  by  the applicant  (Kinder  Morgan)  to  date,  Fire  staff  advise  that  expansion  of  the  subject  terminal  is  not appropriate  or  advised,  given  the  significant  risks  to  Burnaby  residents  and  the  surrounding environment.   

 

Kinder Morgan, as part of their application to the NEB, has not provided due consideration to fire and safety risks of an expanded Burnaby Mountain Terminal to the surrounding residential neighbourhoods, adjacent  park  and  conservation  lands,  and  City  as  a  whole.    Nor,  has  Kinder  Morgan  given  due consideration  to  their  responsibility  to  provide  technical  hydrocarbon  firefighting  through  internal 

                                                            8 Trans Mountain Pipeline Inc., “Application: Edmonton Terminal Expansion Project” (13 August 2007), at 13. 9 Trans Mountain, information package provided to NEB Aug 15, 2011 https://docs.neb-one.gc.ca/ll-

eng/llisapi.dll/fetch/2000/90464/90552/454627/474966/710749/A2C5F4_-_Information_Package.pdf?nodeid=710750&vernum=-2

10 Trans Mountain Pipeline ULC, Application requesting variance of Order XO-T246-04-2008 (21 December 2011) at 3.

Page 143: Appendix B Deployment Position Analysisworld.350.org/vancouver/files/2017/02/2_BbyFireDept... · 2017. 2. 2. · (boilover, floating roof failure, fixed roof failure, tank shell structural

Subject:  Trans Mountain Tank Farm Tactical Risk Analysis 

2015 May 01 ............................................... Appendix I ‐ 13 

 

 

resources and industry partners, such that the Burnaby Fire Department is able to effectively respond to any potential major fire event and protect the adjacent community.      

 

All  of  these  factors  pose  significant  risks  to  lives  and  property  arising  from  the  densification  of petroleum products on a sub‐standard,  ill‐configured and under sized property  located  in proximity to urban residential and other populations.  The City continues to raise these and other concerns with this project through the NEB process. 

 

This report is provided for Council’s information. 

 

It is recommended that a copy of this report be sent to all Burnaby MP’s and MLA’s. 

 

Doug McDonald FIRE CHIEF 

 

ZT/ 

Attachments 

 

cc:  Deputy City Manager 

  Director Engineering 

  Director Planning and Building 

Director Finance 

Director Parks, Recreation and Cultural Services 

OIC RCMP 

Chief Librarian  

Chief Building Inspector 

City Clerk