appendix i - springer978-3-662-02584-0/1.pdf · mountain masses disturbing the apparent...

26
Appendix I Symbols used in this text and their dimensions (Not included in this list are conventional mathematical symbols and notations for chemie al elements) A area,L2 (A) concentration or activity of chemical component A a dimensionless number in mass-action law a acceleration, M L t- 2 Si chemical activity (B) concentration or activity of chemical component B b dimensionless number in mass-action law C Chezy's coefficient Cf resistance coefficient, L 1 /l t- 1 C s a dimensionless constant (C) concentration or activity of chemical component C, dimensionless (M M-I) C concentration of solute in pore water, M L -3 C compaction index, dimensionless c dimensionless number in mass-action law c coefficient of diffusion, L2 t- 1 c subscript, refening 10 a critical value D a linear dimension, diameter or thickness, L (0) concentration or activity of chemical component D d dimensionless number in mass-action law d a linear dimension, commonly referred 10 depth, L E energy or energy content, M L2 t- 2 F force. M L t- 2 F g gravity force, M L t- 2 inertial force, M Lt-2 1 Fr resistance force, M L t- 2 F v viscous force, M L t- 2 Fr Froude number, dimensionless f function of f subscript, refening 10 fluid 207

Upload: phungdien

Post on 23-Feb-2019

214 views

Category:

Documents


0 download

TRANSCRIPT

Appendix I

Symbols used in this text and their dimensions (Not included in this list are conventional mathematical symbols and notations for chemie al elements)

A area,L2 (A) concentration or activity of chemical component A a dimensionless number in mass-action law a acceleration, M L t-2 Si chemical activity (B) concentration or activity of chemical component B b dimensionless number in mass-action law C Chezy's coefficient

Cf resistance coefficient, L 1/l t-1

Cs a dimensionless constant (C) concentration or activity of chemical component C,

dimensionless (M M-I) C concentration of solute in pore water, M L -3 C compaction index, dimensionless c dimensionless number in mass-action law c coefficient of diffusion, L2 t-1 c subscript, refening 10 a critical value D a linear dimension, diameter or thickness, L (0) concentration or activity of chemical component D d dimensionless number in mass-action law d a linear dimension, commonly referred 10 depth, L E energy or energy content, M L2 t-2

F force. M L t-2

Fg gravity force, M L t-2

F· inertial force, M Lt-2 1

Fr resistance force, M L t-2

Fv viscous force, M L t-2 Fr Froude number, dimensionless f function of f subscript, refening 10 fluid

207

APPENDIX I

g H K Ksubscript k K.E. L M m m o P P g

Pr

Ps P.E. p

Q Q q q R r R Re Re· Ri

S s s s T t U u Us uf * u

V

208

gravitational acceleration, M L t-2 a linear dimension, commonly referred to height, L transmissibility, L t-1 sca1e factor in model theory

permeability, L2 kinetic energy, M L2 r 2 a linear dimension, L mass, M mole number of component i in solution, M subscript referring to mass in model theory subscript in model theory for original power, M L2 t-3

power of gravity force, M L2 r 3

power of resistance, M L2 r 3

power of grain settling, M L2 r 3

potential energy, M L2 t-2

pressure, M L -1 r 2 heat, ML2 r 2 volume flow rate, L3 t-1

linear flow rate, L t-1

ionic diffusion rate, M L-2 r 1 radius of capillary tube distance from wall of capillary tube gas constant, M L2 r 2 (Kelvinr1 Reynolds number, dimensionless boundary Reynolds number, dimensionless Richardson number, dimensionless entropy, M L2 r 2 (Kelvinr1 distance,L slope, dimensionless subscript, referring 10 solid temperature, Kelvin time, t velocity, L t-1

velocity, L r 1

settling velocity , L r 1

fluid velocity, L t-1

shear velocity, L t-1 volume, L3

w w X x y Z z

a. 5 Tl e P Pf Ps 0-

't

~

~subscript v

work, ML2 r 2 a linear dimension, commonly referred to width, L a linear dimension, L a linear dimension, L a linear dimension, L a dimensionless number of indefInite value a linear dimension, L

coemcient of expansion, dimensionless per mil deviation in isotope value from a standard viscosity, M L-l r 1 an angle, dimensionless density, M L-3 density of fluid, M L-3

density of solid, M L-3

stress, M L-l t-2

shearing stress, M L-l t-2 coemcient of frietion, dimensionless ehemieal potential, L2 t-2

kinematie viscosity

APPENDIX I

209

Appendix 11

Quantitative relations in the physical principles of sedimentology

Stoke's law (settling velocity):

u = ...L (Ps - Pf) g D2

18 1'\

Fluid resistance

Fr =Cf ~ A 2

Reynolds number (criterion of turbulence)

Re = ~ = dimensionless number inertial force 1'\ Vi'!COlLCi force

Chezy's equation (stream-flow velocity)

u=C(([S

Chezy-Kuenen equation (density-flow velocity)

u = C V 6pc·d·s

Shields criterion (shear velocity to initial grain movement)

u* = O.06V (PI - Pr) g·D

( 1.1)

(3.10 )

( 3.13 )

(4.1 )

(4.2 )

(4.6 )

211

APPENDlXil

Heim-Müller equation (rockfall acceleration)

a = g (sin e - IJ. cos e )

Bagnold's criterion (auto-suspension)

sin e = (L~ + YI.) 2 Ri lJf

Keulegan's law (velocity of saline head)

u =0.71~ ~p g d

Richardson number (criterion for mixing)

~g d . P = dimensionless number graVlty force

d r inertial force

Froude number (criterion for flow regime)

Densiometric Froude number (criterion for flow regime)

Bernoulli theorem

~ + g H + 11. = constant P 2

212

(5.5 )

(6.7 )

(6.10 )

( 7.17 )

(8.2 )

Darcy-Weisbach equation (resistance to fluid flow in pipe)

'tr =.f . .e.t 4 2

Darcy's equation (flow velocity through porous media)

Q1A = K ( llli)/(ä)

Poiseuille's law (velocity of viscous flow through a tube)

Darcy-Hubbert equation (flow velocity through porous media)

q= k H. (.1H) Tl .1L

Kinetics of ionic pnfusion

q=C(d~)

Mass action law

Gibbs criterion (chemical equilibrium)

APPENDIX 11

(8.12 )

(9.1 )

(9.5 )

(9.12 )

( 10.1 )

TdS' - p'dV' +Jll' dml' + Jl2'dmi + .... + Jln'dmn' (10.4 ) + T"dS" - p"dV" + Jll"dm l" + Jl2dm2" + .... + Jln"dmn" + T"dS'" - p"'dV'" + Jll"'dm 1'" + Jl2"'dm2"'+ ..• · + Jln"'dmn"'= 0

213

APPENDIXll

A solution of Eq. (10.4) is

T'=T"=T'" p' =p" = p'" J.l.1' = J.I.!" = J.l.1'" J.l.2' = J.l.2" = J.l.2'" J.l.n' = J.l.n" = J.l.n'"

First Law of Thermodynamies

dE=dW-dQ

Second Law of Thermodynamies

dS=cQ T (10.14)

Lewis definition of chemical activity

J.I. = J.I.o + RT In I lim (ale) =1

c~o

Airy model of isostasy

(10.5 )

( 10.l0 )

(10.20 )

Pcrust· H = (Pmantle - Pcrust ) . 0' ( 13.1 )

( Pcrust - Pseawater ) . d = (Pmantle- Pcrust) . 0' ( 13.2 )

0sea level ernst . Pcrust ( 13.3 )

= 0sediment· Psediment + 0ernst . Pcrust + O'mantle . Pmantle

Pratt model of isostasy

Pw x dw + PI· 01 = Pw . dw + PI ( 1 - a. . aT) 01 + Pa . 0' ( 13.4 )

214

References

Adams H (1936) Activity and related thermodynamic quantities; their definition and variation with temperature and pressure. ehern Review 19:1-26

Adams JE, Rhodes ML (1960) Dolomitization by seepage refluxion. AAPG Bull 44:1913-1920

Airy OB (1855) On the computations of the effect of the attraction of mountain masses disturbing the apparent astronomical latitude of stations in geodetic surveys. Royal Soc Landon, Phil Trans 145:101-104

Allen JRL (1970) Physical processes of sedimentation. Allen and Unwin, Landon, 46 pp

Bagnold RA (1962) Auto-suspension of transported sediments. Proc Royal Soc series A 265:315-319

Bailey EB (1936) Sedimentation in relation to tectonics. Oeol Soc Am Bull 47:1713-1726

Barrell J (1914) Tbe strength of the earth's crust. J Geol, 22:28-48, 145-165, 209-236, 289-314, 441-468, 537-555, 655-683, 729-741

Beneo F(1955) Les resultats des etudes pour la recherche petroliiere en Sicilie. Proc 4th World Petrol Congr, Sec 1:121-122

Berger WH, Winterer EL (1974) Plate stratigraphy and the fluctuating carbonate line. In: Jenkins H, Hsü KJ (eds) Pelagic sediments. Int Assoc Sedimentology, Spec Publ 1:11-48

Bemard H et.al.(1970) Recent sediments of southem Texas. Ouidebook 11, Bureau of Economic Oeology of Texas, 83 pp

Bertrand M (1897) Structure des Alpes francaises et recurrence de certaines facies sedimentaires. 6th Int Oeol Congress, Zurich, compt rend pp 163-177

Blatt H (1982) Sedimentary petrology. Freeman, San Francisco, 564 pp Bouma A (1962) Sedimentology of some flysch deposits. Elsevier,

Amsterdam, 168 pp Broecker W, Peng TH (1982) Tracers in the sea. Eldigio Press, New York,

690 pp Buss E, Heim A (1881) Der Bergsturz von Elm. Wurster & Cie, Zurich, 163 pp Clarke J (1988) Gravel waves deposits. Diss: Dalhousie University Clifton HE (ed) Sedimentologic consequences of convulsive geologie events

Geol Soc Am Spec Pub (in press) Dana RD (1873) On some results of the earth's contraction from cooling. Am

J Sei Ser 3, 5:423-443, 6:6-14, 104-115, 162-172 Darcy H (1856) Les fontaines publiques de la ville de Dijon. Victor Dalmont,

Paris, pp 590-594 Deffeyeli KS, Lucia FI,Wey1.PK (1965) Dolomitization of recent and Plio­

Pleistocene Sediments ba marine evaporate waters on Bonaire, Netherlands AntilIes. SEPM Spec Publ 13:71-88

215

REFERENCES

Dutton CE (1889) On some greater problems of physical geology. Phil Soc Washington, BuH 11:51-64

Eugster H, Hardy L (1978) Saline Lakes. In: Lerman A (1978) Lakes -chemistry, geology, physics. Springer, Berlin, Heidelberg, New York pp 237-294

Flores G (1955) Discussion of a paper by F. Beneo: Les resultats des etudes pour la recherche petroliiere en Sicilie. Proc 4th World Petr Congr, Sec 1:121-122

Gibbs JW (1875-1878) On the equilibrium of heterogeneous substances. Reprint (1961) The scientific papers of J. Willard Gibbs, 1:55-349, 419-425.Dover Publications, N.Y.

Ginsburg R (1956) Environmental relationships of grain size and constituent particles in some South Florida carbonate sediments. BuH Am Assoc Petr Geol 40:2384-2427

Ginsburg R (1973)(ed) Evolving concepts of sedimentology. Pettijohn Festschrift. Johns Hopkins Univ Studies in Geology, no 21, 191 pp

Hacking I (ed)(1981) Scientific revolutions. Oxford University Press, New York, 180 pp

Hall J (1859) Paleontology. Geological Survey of New York, Pt. 1:66-96 Hampton HA (1972) The röle of subaqueous debris flows in generating

turbidity currents. J Sed Petr 42:775-793 Heezen B, Hollister CD (1971) The face of the deep. Oxford University Press,

N.Y., 659 pp Heim A (1882) Der Bergsturz von EIrn. Deutsche Geol Ges Zeitschrift

34:74-115 Heim A (1932) Bergsturz und Menschenleben. Fretz und Wasmuth, Zurich,

218 pp Hjulström F (1939) Transportation of detritus by moving water. Trask PD

(ed) Recent marine sedUnents. Am Assoc Petr Geol. Tulsa. pp 5-41 Hsü KJ (1958) Isostasy and a theory for the origin of geosynclines Am J Sci

256:305-327 Hsü KJ (1963) Solubility of dolomite and composition of Florida ground

waters. J Hydroll:288-310 Hsü KJ (1964) Cross-laminations in graded bed sequences. J Sed Petr

34:379-388 Hsü KJ (1965) Isostasy. crustal thinning. mantle density changes, and

disappearance of ancient land masses . Am J Sci 263:97-109 Hsü KJ (1966) Origin of dolomite in sedimentary sequences: a critical

analysis. Mineralium Deposita 2:133-138 Hsü KJ (1967) Chemistry of dolomite formation. In: Chilingar GV Bissell

HJ, Fairbridge RW.(eds) Carbonate Rocks. Developments in sedimentology 9B:169-191, Elsevier, Amsterdam

Hsü KJ (1975) Catastrophic debris streams (sturzstroms) generated by rockfalls. Geol Soc Am Bull 86:128-140

Hsü KJ (1976) Paleoceanography of the Mesozoic Alpine Tethys. Geol Soc Amer Spec Pap 170:27-36

Hsü KJ (1977) Ventura basin. AAPG Bull 61:137-168, 169-191 Hsü KJ (1978) Albert Heim: Observations on landslides and relevance to

modem interpretations. In: Voight B (ed) Rockslides and avalanches. Elsevier, Amsterdam, 833 pp

216

REFERENCES

Hsü KI (1979) Ventura basin. AAPG BuH 64:1034-1051 Hsü KI (1980)Texture and mineralogy of the Recent sands of the Gulf Coast. I

Sed Petr 30: 380-403 Hsü KJ (1982) Geosynclines in plate-tectonic settings. In Hsü KJ (ed)

Mountain building processes. Academic Press, London, pp 3-12 Hsü KJ (1983) When the Mediterranean was a desert. Princeton University

Press, Princeton NI, 197 pp Hsü KJ (1984) A nonsteady state model for dolomite, evaporite and ore

genesis. In: Wauschkuhn A, Kluth C, Zimmermann RA.(eds) Syngenesis and epigenesis in the formation of mineral deposits. Springer, Berlin, Heidelberg, New York, pp 275-286

Hsü KI (1986)The great dying. Harcourt, Brace Iovanovich, San Diego, 292 pp

Hsü KJ (1988) Melange and melange tectonics of Taiwan. Proc Geol Soc China 31:87-92

Hsü KJ, Kelts K (1985) Swiss lakes as a geological laboratory. Naturwissenschaft 72:315-321

Hsü KJ, McKenzie IA (1985) A "Strangelove" ocean in the earliest Tertiary. In: Sundquist E, Broecker, WS (eds) The carbon cycle and atmospheric carbon dioxide: natural variations Archean to Present. Am Geophysical Union, Geophysical Monograph 32:487-492

Hsü KJ, Schlanger S (1968) Thermal history of the Upper Mantle and its relation to crustal history in the Pacific Basin. 23rd Int Geol Congr, Prague, Proc 1:91-105

Hsü KI, Schneider IF (1973) Progress report on dolomitization hydrology of Abu Dhabi sabkhas, Arabian Gulf. In Purser BH (ed) The Persian Gulf. Springer, Berlin, Heidelberg, New York, pp 409-422

Hsü KI, Siegenthaler C(1969) Preliminary experiments on hydrodynamic movements induced by evaporation and their bearing on the dolomite problem. Sedimentology 12:11-25

Kastner M, Baker PA (1982) Sedimentary rocks. McGraw HilI Encyclopedia of Science and Technology pp 406-408

Kelts K (1978) Geological and sedimentary evolution of Lakes Zürich and Zug, Switzerland. Diss ETH 6146, Zürich, 250 pp

Kersey D, Hsü KJ (1976) Experimental investigation of the energy relations of density-current flows. Sedimentology 23:761-789

Keulegan GH (1946) First and second progress reports on project 48. Natl Bureau of Standards Rep pp 1-17

Keulegan GH (1957/8) 12th and 13th Progress reports on modellaws for density currents. Natl Bureau of Standards Rep 5168:1-28, 5831:1-18

Hubbert MK (1937) Theory of scale models as applied to studies of geologie structures. Geol Soc Am BuH 48:1459-1520

Hubbert MK (1938) The place of geophysics in a department of geology. AlME Tech Publ, No 945

Hubbert MK (1940) Theory of ground-water motion. I Geol 48:785-944 Hubbert MK (1949) Report on the Committee on Geologie Education of the

Geological Society of America. Interim Proc Geol Soc Am Hubbert MK (1962) Presidential address of 1962. Geol Soc Am Bull,

74:365-378

217

REFERENCES

Kuenen Ph (1952) Estimated size of the Grand Banks turbidity eurrent. Am J Sei 250:874-884

Kuenen Ph, Migliorini CI (1950) Turbidity eurrents as a cause of graded bedding. J Geol 58:91-127

Kuhn TS (1962) The structure of seientifie revolutions. Chieago University Press, 172 pp

Lacombe H, Tehernia P (1971) Caracteres hydrologiques et eireulation des eaux en Mediterranee. In: Stanley DJ (ed) The Mediterranean Sea. Dowden, Hutchinson & Ross, Stroudsbourg,Pa pp 25-36

Lakatos I (1970) Falsification and the methodology of research programs. In: Lakatos I, Musgrave A (eds) Critieism and the growth of knowledge. Cambridge Univ Press, Cambridge

Lambert A, Hsü KJ (1979) Varve-like sediments of the Walensee, Switzerland. In Sehlüehter Ch (ed) Moraines and varves. Balkema, Rotterdam, pp 287-294

Lambert A, Giovanoli F (1988) Limnology and oeeanography 33:458-468 Langhaar H L (1951) Dimensional analysis and theory of models. Wiley, New

York, 166 pp Leeder MR (1982) Sedimentology. Allen and Unwin, Lendon 75 pp Leopold L, Wolman G, Miller J(1964) Pluvial processes in geomorphology.

W. H. Freeman, San Franeiseo, 522 pp LePiehon X, Sibuet J-C (1981) Passive margins. J Geophys Res

86:3708-3720 Lüthi S (1978) Zur Meehank der Turbiditlltsslröme. Diss ETH 6258, Zürich,

160 pp Maekie W (1896) The sands and sandstones of eastem Moray. Trans

Edinburgh Geol Soe 7: 148-172 Malinvemo A, Ryan WBF (1985) Large avalanehe scars on the continental

margin. In: CHfton HE (ed) Sedimentologic eonsequenees of eonvulsive geologie events. Geol Soe Am Spec Publ (in press)

Mandelbrot BB (1982) The fraetal geometry of nature. Freeman. San Franeisco, 460 pp

MeKenzie JA (1982) Carbon-13 cycle in Lake Greifen: a model for restrictive oeean basins. In: Schlanger SO, Cita MB (eds) Nature and origin of Cretaceous carbon-rich facies. Aeademic Press, New York, pp 197-207

McKenzie JA (1985) Carbon isotopes and productivity in the lacustrine and marine environment. In W. Stumm (ed) Chemical processes in lakes. Wiley,New York, pp 99-117

MeKenzie JA, Hsü KJ, Schneider JF (1980) Movement of subsurface water under the sabkha, Abu Dhabi, UAE. SEPM Spec Publ 28:11-30

MeKenzieDP (1978) Some remarks on the development of sedimentary basins. Earth and Planetary Sei Lett 40:23-32

Menard W (1964) Marine geology of the Paeifie. McGraw Hill, N.Y., 271 pp Middleton GV (1964) Experiments on density and turbidity currents, l.

Motion of the head. Can J Earth Sei 3:523-546 Middleton GV, Southard J (1978) Meehanics of sediment movement.

Binghamton, New.York.: Eastem Section, SEPM Short Course 3, 243 pp Miller MC. MeCave N. Komar P (1977) Threshold of sediment motion under

unidireetional currents. Sedimentology 24:507-527

218

REFERENCES

Milner HB (1962) Sedimentary petrography. Allen & Unwin, London, 715 pp Munk W (1955) The circulation of the oceans. Readings from Scientific

American: Oceanography. Freeman San Francisco, pp 64-69 Nikuradse J (1933) Strömungs gesetze in rauhen Rohren. Verein Deutsch Ing,

Forschungsheft 361:1-22 Pettijohn F (1957) Sedimentary rocks (2nd ed). Harper, N.Y. 718 pp Pickering K et.al.(1986) Deep water facies, processes and models. Earth Sei

Rev 23: 75-174 Piper D et al.(1985) Sediment slides and turbidity currents on the Laurentian

Fan: sidescar sonar investigations near the epicenter of the 1929 Grand Banks earthquake. Geology 13:538-541

Popper K (1981) Conjectures and refutations. Reprint. Routledge, London, 431 pp

Prandtl L, Oswatisch K, Wieghardt K (1969) Strömungslehre. Vieweg, Braunschweig 535 pp

Pratt JH (1859) On the influence of the ocean on the plumb-line in India. Philosophical Trans 149:779-796

Pray L, Murray R (eds)(1965) Dolomitization and limestone diagenesis. SEPM Special Publ 13, 180 pp

Rouse H, Ince S (1954) History of hydraulies. La houille blanche, Grenoble, 218 pp

Russell RD (1937) Mineral composition of Mississippi River sands. Bull Geol Soc Am 48:1306-1348

Schlüchter Ch(ed) (1979) Moraines and varves. Balkema, Rotterdam, 441 pp Sclater J, Francheteau J (1970) The implications of terrestrial flow

observations on current tectonic and geochemical models of the crust and Upper Mantle of the Earth. Geophys J R Astr Soc 20:509-542

Shackleton N, Kennett J (1975) Late Cenozoic oxygen and carbon isotopic changes at DSDP Site 284. Initial Reports of the Deep Sea Drilling Project 29:801-808, Washington, D.C.: U.S.Gov't Printing Office

Shepard F (1967) Submarine geology. 2nd ed, Harper NY, 558 pp Shields A (1936) Anwendung der Aehnlichkeitsmechanik und der

Turbulenzforschung auf die Geschiebebewegung. Mitteilungen d. Preuss. Versuchsanstalt f. Wasserbau u. Schiffbau, Berlin 26:1-26. The report was translated into English and issued as Report no 167 of the Keck Laboratory of Hydraulics, Califomia Institute of Technology, Pasadena, Califomia

Shreve R (1968) The Blackhawk landslide. Geol Soc Am, Spec Pap 108:1-47 Simons DB, Richardson EV, Nordin CF (1965) Sedimentary structures

generated by flow in alluvial channels. SEPM Spec Publ 12:34-53 Smith GE (1980) Material-transfer involved in depositing the stratiform

copper deposits of North Texas. In: Wolf KR (ed) Handbook of strata­bound and stratiform ore deposits 6:407-447

Stommel H (1958) The circulation of the abyss. In: Readings from the Scientific American, Oceanography. Freeman, San Francisco, pp 139-144

Sundborg A (1956) The river Klarälven; A study of fluvial processes. Geograf Ann 38:125-316

Sverdrup HU. Johnson MW, Fleming RH (1942). The oceans. Prentice Hall, New York, 1087 pp

219

REFERENCES

Urey H, Lowenstam H, Epstein S, McKinney CR (1951) Measurement of paleotemperatures and temperatures of the Upper Cretaceous of England, Denmark, and the southeastem United States. Geol Soc Am Bull 62/4:399-416

Walker R (1973) Mopping up the turbidite mess. In: Ginsburg R Evolving concepts in sedimentology. Pettijohn Festschrift.pp 1-37

Zenger D, Dunham J, and Ethington R (eds) (1980) Concepts and models of dolomitization. SEPM Spec Publ 28, 320 pp

Zhao XF, Hsü Kl, Kelts K (1984) Varves and other laminated sediments of Zübo. Stuttgart, Schweizerbart, Contributions to Sedimentology 13: 161-176

220

Index

abrasion, 12, 19,24 Abu Dhabi, 169, 173, 175 abyssal plain, 92 acceleration, 26, 29, 'lJJ7 accretional bedding, 111, 112 ACD,163 activity, 151,207 Adams, L. H., 164 Adams, J. E., 177 Africa, 193 air-water interface, 107 Airy, 191 - 199

model of isostasy, 192, 193,214 Alabarna, 15 Alaska, 180 algae, 160 Alla1in Glacier, 76 Allen, J. R. L.,7, 47, 118 alluvial, ehannels, 114

processes, 56 Alpine, Flysch, 198

Molasse, 198 Penninie, 198

Alps,76,88,198,204 Amazon, 96 arnrnonite, 163 arnorphous siliea, 147, 148, 164 amphiboles, 15, 17,18 Anderson, E. M., 196 andesite, 11 angle of repose, 5, 68, 82 anhydrite, 22 annual deposits, 41, 46 anoxie conditions, 169 Antaretie, 124, 126

Bottom Water Mass, 124, 132 IeeCap,131 Polar Front, 126

Antarctica, 193 antidunes, 113

cross-bedding, 114 type of fluid flow, 114

Appalachian Mountains, 116 apparent, coeffieient of frietion, 82

solubilities, 148 Aptyehus, 163 aquielude, 204 aquifers, 169 - 175 aragonite, 160, 162, 163, 172 aragonite-cornpensation depth, 163 Archimedes Prineiple, 192 area, 26, 32 arkoses, 11 asthenosphere, 195

colurnn, 195 Atlantie, 123, 132, 185, 193 Australia, 193 auto-suspension, 101 avalanehe, 67, 70, 72

deposit, 79

Bach, J. S., 202 bacteria, 190 Bagnold's criterion , 94, 212 Bagnold, 71, 95, 98, 100,112 Baharna Islands, 22, 160 Bailey, E. B., 119 Baker, P. A., 177 Baltie Sea, 41 Barbados, 118 Barrell, Joseph, 195, 199 Basin and Range, 195 basin subsidence, 191, 194 beaches, 65 bedforrn, 107, 112, 117 Beneo, F., 90 Berger. Wolfgang. 163, 165

221

INDEX

Bernard, Hugh, 107, Hl9, 110, 119 Bernina Pass, 46 Bernoulli Theorem, 7, 127, 128, 132,212 Beryllium-10, 180 Big Horn Basin, 174 biochemical precipitation, 41 biogenic, carbonate, 160

sillca, 164 sediments, 126

biomass, 185 production, 22 productivity, 185

Black Sea, 132 Blatt, Harvey, 205 body force, 71, 105 Bonaires Island, 172, 173 borehole fluid pressure, 142 Bosporus, 132 bottom, circulation, 132

currents, 117, 121, 123, 126, 127, 131,133, 135, 180 sediment, 63 water, 163 -current circulation, 132

boulders, 67 Bouma, Arnold, 116, 119

sequence, 116, 122, 131 boundary Reynolds number, 62, 208 brackish,132 braided streams, 56

deposits, 111 Brazil,96 Brazos, channel, 11 0

point bar, 110 River, 107, 109, 114

breccia, 67 Broecker, Wallace, 180, 187, 190 Bulgaria, 127 Buss, E., 89

calcarenites, 22 calcite, 160

precipitation, 157 -compensation depth, 163

calcium carbonate, 22 California, 59, 123, 135 Cambrian, 147

222

capacity,59 carbon-isotope, anomaly, 187

gradient, 187 Carbon-14, 180 carbonate, sediments, 22

-ion activity, 157, 159, 160 -ion concentration, 157, 160, 162

Caribbeans, 172, 177 catastrophic debris flow, 70, 76 CCD,163 cementation, 143, 147, 148 Cenozoic, 18, 132, 185 Chalk, 22 changes in state, 196 chemicaL activities, 151,207

equillbria, 152 diagenesis, 178 diffusion, 147 energy, 157 equillbriurn, 149, 152 kinetics, 162 potential, 209 potentials, 153, 157 precipitation, 22 sediments, 22

chert, 11, 148, 164 nodules, 147

chertification, 149 Chezy, Antoine, 54

coefficient, 52, 56,207 equation, 7,52,56,79,95,130,202,

Chezy-Kuenen equation, 211 Chicago, 181, 184 chloride, 22 circulation of surface currents, 126 Clarke 101m, 89 elast, 67

-supported, 76, 85 clay, 22, 27, 132 Clifton, H.E., 89 climate, 41 climatic indicator, 46 c10sed systems, 164 coefficient, of diffusion, 207

of expansion, 209 offiiction,55,68,209

cohesionless grains, 71 collapse of a denser fluid, 97

Cologne, 59 Colombia, 15 cometary impact, 185 compaction, 143, 146

index, 146,207 competence , 59 compression, 198 concentration, gradient, 147, 148

of chemical components, 151 conglomerates, 11

with mud matrix, 135 conservation of energy, 127, 128, 154 continental, collision, 198

margin, 123 rise, 121 slope, 52, 92, 121

contourite, 131, 133 convolute bedding, 116 coriolis, 126 Coulomb,33 Cracow,85 Creativity, 202 Cretaceous, 114, 132, 185, 187, 198

Flysch,19 Tethys Ocean, 19 -Tertiary boundary, 187, 190

cristobalite, 164 criterion of auto-suspension, 102 critical, Froude number, 110, 113

Reynolds number, 113 shear velocity, 63 stress ,61

cross, bedding, 114, 111 -bedded sand, 108, 117 -bedded sandstone, 114 -larninated, 87, 116, 122 -larninated sands, 131 -larninated sediments, 123 -larninated silt, 109 .. 117, 123, 135

cross-sectional area of the particle, 61 crust, 195 crustal, structure, 193

thickness, 195, 196 thinning, 194, 196, 198

cryptocrystalline dolomite, 167 Culbin at sea, 11 current, circulation of the oceans, 126

power, 93, 96

INDEX

velocity,52

Daly, R. A., 49 Dana, D.B ... 196 Dana, 1.D., 191 Daqing Oll Field, 204 Darcy's equation ,7,170,213 Darcy's experiment, 135 Darcy, Henry, 149 Darcy-Hubbert equation, 141, 172, 213 Darcy-Weisbach, coefficient, 130

equation, 130, 132,213 Darwin, 8 De Geer, 41, 42 debris,22

cones, 91 flow, 70, 84, 92 waves,84

Debye-Huckle formula, 152, 169 deduction, 203 deep marine breccias, 76 deep-sea,drilling, 147, 184

fans,l22 photography, 123 sand deposition, 123

Deffeyes, KeIl, 172, 177 degree of supersaturation, 163 Delsie Bridge, 11 densiometric Froude number, 118, 212 density, 25, 32, 209

change, 198 current,97

depth,56 of an open channel, 52

desert, 114 detrital grains, 20 diagenesis, 143, 148, 162, 164, 167, 169, 177,182 diameter, 25 diameter of the grain, 60 diatoms,22 diatom oozes, 148 diffusion, 148, 164

coefficient, 148 dilution effect, 12 dimensional analysis, 29 dimensionless number, 20, 31, 60,207 discharge, 139

223

INDEX

discontinuous patch of cross-Iaminated sediment, 123 dispersion, 54, 71 dispersive stress, 71 displacement, 196, 198 dissociation const. of carbonie acids, 159 dissolution, 19, 147, 148, 152, 157, 163 distal turbidites, 122 distance, 32, 208 distortion factor, 104 distribution of the pore size, 142 dolomite, 22, 167, 169, 170, 171, 173

genesis, 169 solubility, 169

dolornitization. 167, 170, 173, 174, 177 dolornitization front, 170 driving power of a turbidity current, 94 Dune migration, 114 dunes, 112 Dunham, John, 177 dust, 67 Dutton. C.E., 191, 199 dynamic similarity, 110 dynamically similar model, 105 dynamics of the avalanche, 81 Dzulynski, Stan, 85

Early Tertiary, 19, 114 Earth, 67 earth-science revolution. 19 earthquake, 52 Eddington's, 201 effective, density, 52

weight, 60 weight of the suspension. 93

Einstein, 201 Elm, 70, 91

landslide, 68 rockfall, 81

Emery Adams John. 172 Emiliani,Cesare,l84 energy, 29

content, 207 fluxes, 152 gradient, 98, 129 line, 72, 81, 129

Engadine V alley, 46 entropy, 157,208

224

Eocene, 15, 126, 131, 147, 148 deposits of Japan, 86

epidote, 15, 17,18 Epstein, Sam. 190 equations of motion. 27 equatorial currents, 126 equilibria of forces, 152 equilibrium, activity product, 161

constant, 151, 167 partition. 182

equivalent coefficient of friction, 72 ETH Zurich, 19 Ethington. Raymond, 177 Eugster, Hans. 178 Eugster, Hermann. 15 Europe, 15, 19 euxinic, 132 evaporative pumping, 174, 175, 177, 178 evaporites, 22, 177 excessive distance of debris transport, 72 Extension. 196

facies model, 114 Fahrböschung (runout slope), 72, 81 falling bodies, 26 falsehood, 202 feldspar content, 12 feldspathic sandstones, 11 Feyerabend, Paul, 205 Feynman, Richard, 1 First Law ofThermodynamics, 153, 214 flat, bed, 110, 112, 116

bottom, 110 Fleming, R. H., 165 flood, discharge, 42

water, 50, 121 Flores, G., 88, 90 Florida, 12, 170

Aquifer, 169, 170, 171, 173 Strait, 22 Stream, 121

flow regimes, 114, 116, 117 flowing. debris, 153

suspension, 93 fluid, flow, 35,63

force, 72 medium, 25 resistance, 26, 211

fluid, stress, 61, 139 velocity, 208 -gravity flow, 67, 84, 92

fluidized, 70 flurne,54,63,97,122 flux of energy, 152 fluxoturbidite, 85 Flysch, 114, 116 Foraminiferas, 15,22, 123, 189 force, 26, 29, 207 fore1and-basin, 198 formation pressure, 142 Fornes,ll France, 84, 124 Franeheteau, Jean, 196, 200 Freneh Alps, 116 frietion, 72, 129, 130, 153

factor, 56, 130 10ss of turbidity-current flow, 98

frietional sliding, 81 Froudenurnber,103,106,107,110,117,

130,207,212 frozen lake, 46

Gallileo, 25 gamet, 15, 17, 18 gas constant, 208 geognosy,201 Geometrie similarity, 104 geometry, 29 geosynclinal, eye1es, 198

sequenees, 194 geosyncline, 114, 193, 191, 198 giant sand waves, 107 Gibbs criterion , 7, 213 Gibbs, Willard, 152, 164 Ginsburg, Robert, 24 Giovanoli, F., 47 glacier,46 G1arus,49 Gondwana, 193 Goranson, 193 graded, beds, 84, 88, 114, 116

bedding, 85,91, 114, 117 sandstone, 135 -bed sequences, 123

gradient of earbon isotopes, 187 gram, collision, 54, 84

diameter, 63 dispersions, 71 flow, 54, 72 settling, 26

INDEX

size, 25, 63, 143 GrandBanks, 50, 77, 79, 92

sediment-gravity flow, 82, 92 submarineslide, 77

grave1, avalanehe, 84 waves, 77, 83

gravitational acce1eration, 25, 208 gravity,26, 101

force, 207 Great Bahama Bank, 22 green algae, 22 Griggs, David, 5 Gross, Grant, 132 groundwater, 169, 173, 177, 179, 181

flows,98 hydro10gy,l77 motion, 149 table, 141

Gu1dberg, C. M., 151 Gulf, Co ast, 18,20, 108, 135

ofCalifornia, 169 ofLyon, 84 of Mexico, 50, 102

gypsum,22,172,204

Hacking, Ian, 205 Hagen, 140 Hagen-Poiseuille's 1aw, 140 halite, 22 Halokinetie eircu1ations, 131 Hampton, H.A., 91, 100 Hanshaw, Bruce, 170 Hardy, Lawrence, 178 He Qixiang, 110, 187 heat, 154,208 heavy mineral suite, 15, 17 Heeren, Bruce, 133 Heim, A., 68, 70, 89 Heim-Müller equation, 212 hemipe1agie, 121, 198

mud, 135 sediment, 117

Henry's 1aw, 159 Hitler, 205

225

INDEX

Hjulström,64 curve, 7,64 diagram, 66

Hollister, C.D,.133 Holocene,46,I08 homogenized mud. 87 Horgen, 82, 86 horizontal compression, 196

with a horizontal extensional axis, 196 horizontal, extension, 196

lamination, 87, 112, 114, 116 horizontally laminated, fme silt, 117

sands,108 Houston, 17, 107 Hsü and Kelts, 90 Hsü, Kenneth J., 26, 47, 66,177,200 Huascaran, 76, 84, 91 Hubbert, King, 9,19,118,140,149,174 Humboldt Current, 126 Hutton, 201 hydraulic, gradient, 129, 138, 141, 171 ff

head, 127, 130, 172 pressure, 139 radius, 55

hydrodynamic, circulation, 141, 148, 164,171,177,184 flow, 170 potential, 141 transfer, 147

Hydrodynamics, 29, 171, 178 hydrogen ion concentration, 157 hydrogen-ion activity, 159 hydrologieal, 204 hydrostatic, 141, 171, 184

pressure, 141 hydrothermal dolomites, 171

lceAge,77 ideal solution, 151 imbricate structures, 83 immature, 11 Ince,65 incomplete Bouma sequence, 117 India, 193 Indian Ocean, 126 inertia, 33, 101 inertial force, 33, 36, 101,207

226

interplay of tectonics and sedimentation, 191

ionic, activity product, 157 diffusion rate, 208 diffusion, 148, 149 strength, 152 -activity product, 168

Iran, 77 isochrone, 17 isostasy, 191,192,195 isostatic, subsidence, 194, 196

adjustment, 196 compensation, 195, 196

isotope, 197, 181 equilibrium, 180 fractionation, 180, 181, 182 sedimentology, 180 tracers , 179

isotopes fractionate, 180, 190 isotopic composition, 181, 182 ltaly, 171

Japan, 180,205 Jenkyns,Hugh,165 Johnson, M. W., 165 JOIDES,96,184 Jura Mountains, 15 Jurassie, 76, 182, 204

Kastner, Miriam, 169,177 Kelts, 47,66 Kelts, Kerry, 47, 49, 66,86,97, 100, 162 Kelvin, Lord, 5, 9 Kennett, Jim, 184, 190 Kepler, 201 Kersey, David. 100 Keulegan's law, 100, 212 Keulegan, G. H., 97,100 kinematic, similarity, 105

viscosity, 37,209 kinematics of subsidence, 193 kinetic energy, 32, 59, 67, 72, 101, 128, 129,153,208 Kinetics of ionic diffusion, 213 Komar, Paul, 66 Krauskopf, Komad, 7 Krumbein, 143 Krynine, Paul, 17

Kuenen and Migliorini, 49, 100 Kuenen, Pb., 41, 66, 79, 92, 95, 100, 116,

118 Kuhn, T. S., 205 kyanite, 18

Lacombe, H., 132 lacustrine chalk, 41 lag deposit, 108 Lakatos, Imre, 205 Lake of, Brienz, 42

Geneva, 42 Lucem, 84,91 Lugano, 42, 46 Konstanz, 42 Thun,42 Walenstadt, 22, 41, 42, 49 Zug, 82 Zurich turbidite, 97 Zurich,22,162

Lambert, Andre, 41, 47 lamina, 41 laminar, 101

flow, 37 motion, 38, 75

laminations, 41 Land slides, 68 Langhaar, H. L., 47, 118 Laotze, 3 Laudon, Larry, 205 Law, of Conservation of Matter, 9

of Universal Gravitation, 9 ofThermodynarnics,9 Newtonian, 29

lead and zinc deposits, 177 Leeder, M. R., 47 Leopold, Luna, 65 LePichon, Xavier, 200

model,194 Lerman, Abraham, 178 Lewis defmition of chemical activity,

214 Libya,204 limestone, 22, 147, 162 linear, dimension, 32

flow rate, 208 Linth. 22, 41, 50

glacier, 42

river,49 liquefied, 70 liquid flow, 67 lithic, 11 lithification, 143, 147 lithosphere, 195 Logie Bridge, 11 longshore, current, 20

transport, 12 Los Angeles, 135 Louisiana, 12, 65, 203 Lowenstam, Heinz, 190 Lucia, Jerry, 172, 177 Lüthi, Stephan, 95, 100, 118 Lyell, Charles, 49 lysocline, 163

M-discontinuity, 192 Mackie, William, 11, 24 magnesite, 160 magnesium, calcite, 160

INDEX

-to-calcite concentration ratio, 169 -to-calcium activity of a solution, 168

Ma1invemo, Alberto, 89 Manchuria, 205 manganese nodules, 132 mantle, 195

cooling, 196 density, 196 heterogeneity, 195 -density change, 198

marine, current, 20 shelves, 114 transport, 12

marl,22 Mars, 67, 75 Marshes,65 mass, 26, 29, 185,208

actionlaw,7, 151, 156, 157,207,213 extinction, 185 spectrometer, 182, 185

material transfer, 170, 178 in diagenesis, 149

material transport, 147, 148, 164 Matt, 91 maturity index, 11 Maxwell, Arthur, 184

Laws of Electromagnetism, 9

227

INDEX

Mayer, Larry, 79 McCave, Nick, 66 McKenzie, D. P., 200

model,194 McKenzie, Judith, 174, 177, 187,190 McKinney, 190 meaqdering,stte~,56

-river deposit, 114 mechalücs,ofmeanderÜlg,56

of turbidity-current flow, 98 median, diameter, 19

graUl size, 143 Mediterranean, 124, 131, 132

circulation, 132 Intermediate Water Mass, 124 undercurrent, 123

Menard, H.W., 100, 118 Mesozoic, 131 metastable equilibrium, 162 methanogenesis, 190 Michelangelo, 202 Michelson-Morley, 201 microfossils, 15 Mid-Atlantic Ridge, 87, 147 Middle Miocene, 170 Middleton, Gerald, 47, 63, 100 Migliorini, 41, 98 Miller, John, 65 Miller, M. C., 66 Milner, H. B., 15 mÜleral zonation, 17 mÜleralogica1 composition, 22 mÜleralogy, 12 Miocene, 135, 148 Mississippi, Delta, 12

river sediments, 12 River, 20, 50, 102

model,103 Moho, 192, 193, 195 Mohorovic, 192 Mojave Desert, 114 Molasse, 19, 114, 171

deposits, 85 momentum, 67, 75 monazite, 17 Monk, 143 monomÜ1eralic deposits, 22 Moody diagram. 56, 95, 130

228

Moon, 67, 75 mountaÜl buildÜlg, 198 mud. 109

avalanches,85 pebbles,86 flows, 70, 77 slide deposits, 87

Munk, Walter, 132 Murray, Ray, 177 Müller-Eugene, Bemet, 68

narmoplankton, 22,187 Nanz, Robert, 107 natural, waters, 151

-history approach, 7, 19, 88, 198,203 Navier-Stokes equations ofmotion, 27 Newfoundland. 77 Newton's, First Law of Motion, 9, 22, 26,

75,202, 203 Second Law of Motion, 26, 127 Laws of Mechalücs, 152

Niggli, Paul, 181 Nikuradse, 56, 66

curves, 130 Nordin, C.F,.118 normal hydrostatic pressure, 142 North, Africa, 15, 204

America, 171, 177,195 Atlantic Deep Water Mass, 126 Atlantic Ocean, 96, 126 Pacific, 126

Northeast ChÜla, 204 Norwegian Sea, 126

ocean, crust, 192 currents, 121 drilling, 126 oozes,l84 trench, 198

Oligocene, 118, 126, 148 olistoliths, 88 olistostrome, 88 ooids,162 ooUte, 160, 162 ooze,22, 147, 163, 169, 184 opal C-T, 164 open charmei, 128

flow,56,81,105,106

ophiolite melanges, 19 Ordovician, 116 Origin of, Species, 8

chert, 147, 164 dolomite, 167 evaporites, 178 sedimentary basins, 193

Oswatisch, 47 Overton. William, 201 oxidation-reduction potentials, 169 oxygen-minimum zone, 163 oxygenation of deep-sea env., 132

Pacific, 91, 193 Pakiser, L. C., 194 paleocurrent meter, 63 Paleogene, 171 paleotemperature, 184 Paleozoic Era, 126,204 Paris, 56 passive continental margins, 198 PDB,182 Pearl Harbor, 205 pebbles,67 Pee Dee belemnite, 182 Pekelmeer hypothesis, 172, 173 pelagic, 121

sediments, 126 Peng, T. H., 190 permeability,135,141, 146, 171,208

reduction, 143, 147 Permian, 193, 198 Persian Gulf, 177 Peru, 91, 203 Peruvian Andes, 76 Peterson, Mel, 163 Pettijohn,Franc~, 11,24, 18 phi, classes, 5

units,20 phosphate deposits, 22, 126 photosynthesis of oceanic planktons, 162 Photosynthesis, 160 physical science approach, 9,19,100 physically impossible process, 88 phytoplankton, 187 Pickering, K., 133 pipe flow. 56 Piper, David, 77, 79,83,89

plankton, 187 blooms,l26 productivity, 187

plate-tectonic theory, 180 Ple~tocene, 108,135,184 Pliocene, 85, 122, 135

turbidite sands ofVentura, 96 Plodiv, 127 plume, 50, 102, 121 point-bar, of the Rio Grande, 110

facies model, 108, 110, 119 sequence, 108, 111, 114, 117

Poiseuille's law, 140, 142, 213 polar ice caps, 131 Pol~h Carpathians, 85 polycyclic, 11, 17 ponded facies, 96 Popper, Karl, 201,204,205 pore, size of a rock, 142

water,148 porosity, 147 porous medium, 135, 139 porphyry copper ore, 177

INDEX

potential energy, 67,72, 128, 153,208 power, 29, 59, 93, 208

of grain settling, 208 of gravity force, 208 of resistance, 208

Prandtl, 47, 132 Pratt,I.H., 191, 192, 195, 196

model of isostasy, 214 Prealps of Switzerland, 171 precipitation, 152, 157

of calcium carbonate, 160 pressure, 26, 29,153,177,208

force, 27, 128, 129 primary dolomite, 167 principal stresses, 196 Prout, William, 179 Puerto Rico Trench, 132 pull-apart basins, 198 Purser, B. H., 178 pyroxenes, 17, 18

quartz, 164 sands tones, 15 sands,20

Quaternary,85,184

229

INDEX

radiolaria, 22, 147 radiolarian oozes, 126 rate,of groundwater flow, 141

ofmaterial transport, 148 reaction rate, 163, 168 Recent, 22,147, 148, 162, 167, 169

dolomite, 172, 173, 174, 177 Gulf Coast, 65

recrystallization, 147 reflux, 171, 173 replacement, 147, 148, 157 resedimented deposits, 135 reservoir beds, 143 resistance, coeff., 34, 55, 94, 130, 207

force, 207 resisting stress, 60 Reverend Buss, 68 Reynolds, Osbome, 35, 36,101

number,5,27,35,38, 101, 110,208, 211 criterion for turbulence, 7

Rhine,58 Rhineland, 59 Rhodes, Mary Louise, 172, 177 Rhone, 49 Richards, T. W., 179, 180 Richardson, E.V,.118

number, 94, 95, 101, 102,208,212 Richmond, 109 rift, 198 rifting phase, 198 Rigi, Mount, 84 Rigi/W eggis mudflow, 91 rigid-body motion, 30 Rio Santa, 84,91 rippled, deep-sea bottom, 123

bedform, 123 ripples, 107, 110, 112 River Findhom, 11 river, flood, 49

river-banks, 114 river-bome turbidity currents, 47

rock,-avalanche, 67 rockfall debris, 91 rockfall,68,72,153 rocksalt, 175

Romanche Fracture Zone, 76

230

Rouse,65 Russell, R. Dana, 12, 24 rutile, 17 Ryan, W. B. F., 89

sabkha, 173, 174 dolomite, 175 hydrology, 175

Saidmarreh landslip, 77, 82 saline, groundwater, 151

head, 97 San Antonio Canyon, 59 San Gabriel Mountains, 59 sand,67

avalanches , 85 waves, 107, 110, 112, 113, 114

scale factor, for acceleration, 105 for velocity, 104 in model theory, 208

scale for lengths, 104 Schlanger, 200 Schneider, Jean F., 174, 177, 178 Sclater, John,196, 200 seafloor, bathymetry, 196

spreading, 198 seawater, 151 Second Law of Thermodynamics, 155, 214 sediment, transport, 59

-fluid mixture, 70 -gravity flow, 67, 72, 79, 92, 135 -water interface, 63,110, 112,114, 117

sedimentary loading, 194, 198 seepage, 172 settling, particle, 25

velocity, 26, 27, 38, 40,94,121,208 Shackleton, 184, 185 Shackleton, Nick, 184, 190 Shakespeare, 202 Shapere, Dudley, 205 shear stress, 31, 61, 72, 209

velocity, 60, 61, 208 zones, 88

Shepard, Francis, 79, 89 Shields,6O

criterion, 60, 211 diagram, 7,62, 64

Shreve, Ron. 89 Siberia, 205 Sibuet, Jean-Claude, 200 Siegenthaler, Chris, 174, 177 sieve analysis, 19 siliea, 148, 164 silieielasties, 22 silts, 123 Silvaplana Lake, 46 Simons, DB,.118 Simplon Tunnel, 203 sinking velocity, 35 slope, 56

of the ehannel floor, 52 slurnp,87

deposits,87 folding,86 folds,84

Smith, G. E., 178 SMOW, 182 Soddy , Frederiek, 179 solid-air mixture, 67 solid-watet mixture, 67 solubility, 168

in quartz, 164 of a metastahle phase, 162 of a stahle phase, 162 of aragonite, 161 of biogenie siliea, 164 of calcite, 157, 161, 168 of dolomite, 168

Songliao Basin, 205 sorting, 19,22, 143, 147 souree beds for petroleum, 132 South, Ameriea, 126, 193

)\tlantie, 96, 147, 184 Pole, 126, 131

Southard, lohn, 47,63 southeastern United States, 20 southern, Nps, 88

)\ppalachian Mountains, 15 Califomia, 18

Soviet Union, 205 specifie energy, 98 speed, of a sediment-gravity flow, 81

of the turbidity-current flow, 52 Spieker, Ed, 193 StMoritz Lake, 46

INDEX

St. Peter Sandstone, 147 stahle, isotopes, 180

minerals, 17 stagnation pressure, 128 standard mean ocean water, or SMOW,

181 staurolite, 18 Stokes' Law, 6, 7, 25, 26, 40, 202, 211 Stommel, Henry, 132 stone avalanehe , 85 strain, 198 Strait of Gibraltar, 123, 124 Strangelove, 187 stream, flow, 63, 107

of gravel, 79 power, 110 velocity, 56

stress, 29, 31, 32,61,209 measurements, 63

strontianite, 160 Stumm,W.,19O Stumpf, 41 sturzstrom , 70 subaqueous, mudflow, 84, 91

slide,82 subduction zones, 88 subglaciallake, 46 submarine,canyons,122,123

mudflow,84 rockfall, 84 sliding, 50, 52, 79 stone avalanche, 85

subsidence, 191, 193, 195, 196, 198 kinematies, 198 under sedimentary load, 191

suerosie dolomite, 147 sulphate, 22

reduetion, 169 Sundquist, Erie, 190 supersaline, brine, 173

lagoon, 172 supersaturation, 148 Surface currents, 126, 127 surge,72 suspension current, 91, 97 suspensions, 42 Sverdrup, H. U., 165 Swiss, Nps, 114

231

INDEX

Swiss, lakes, 41 Midland,47

Switzerland, 15

Tangshanca~ttophe,203

Tao-te Chin, 3 Taylor, James, 18 Tchemia, P., 132 tectonic, evolution, 198

melange, 88 umnperabU~26, 153, 177, 198,208 tendency 10 mix, 102 termination of avalanche, 83 terrigenous dettitus, 22 Tertiary, 12,84, 114,204

glaciation, 132 Tethys Ocean, 198 Texas, 109, 178

beach sands, 12 texbU~ 12 The Mediterranean was a Desert, 4 theory of models, 103 thermal isostasy, 192, 195, 196 thermoclin~ 163 thermohaline circulation, 131 three-phase equilibrium, 169 threshold shear SlreSS, 63 Tibet, 114 tidal, channels, 114

flat, 173 tim~ 29, 208 tortuosity factor, 142 ttansducers, 63 ttansform faults, 76 ttansmissibility, 138, 141 ttansverse ridges, 79, 83 Trask, 66 Triassie, 198, 204 ttidymite, 164 turbidites, 41, 79,117,121,123 turbidity-current, 49, 52, 79, 92, 114,

123,135 deposition, 41, 116, 121 ttansport, 122

turbidity underflows, 50 turbulent, flow, 37, 38, 62,101

supercritical flows, 114 subcritical flows, 114

232

Tuttle, 194 Tuve,194 Tycho Brahe, 201

Udden, 20 unconformities, 126 underflow, 50 undenwater,current,50

floods,49 uniformitarianism, 89 United States, 147 upper mantle, 198 upwelling, 126 Urey, Harold, 181, 182, 185, 190 Utah, 67

Vaiont, 203 Van Gogh, 202 varves, 41,50

chronology,41 clay,42

velocity, 26,29,59,208 gradient, 31

Vema Trench, 96 Ventura, 123, 135, 143, 147, 149

Basin, 85, 121, 122, 131, 135 Field,142 fluid pressure, 142 turbidites, 167

Verrucano, 198 vertical, extensional axes, 196

hydraulic gradient, 174 viscosity, 25, 29, 139, 209 viscous

fluid, 84 force,27,32,36,207 resistance, 101, 139

vital effect, 160, 182, 185 Voight, Barry, 89 volum~32

flow rate, 208

Waage,Peter, 151 Walker, Roger, 100 Wasatch Mountains, 67 water-sediment interface, 107 Wauschkuhn, A., 178 wave,erosion, 65

wave resistance, 107 weathering, 12 Weddell Sea, 124 Wegener, Alfred, 193 Weggis, 84 West, Australia, 177

Florida, 12 Western Boundary Undercurrent, 124 wetted perimeter, 55 Weyl, Peter, 172, 177 Wieghardt, 47 wind stress, 126 Winterer, E. L., 165 Wolf, K. H., 178 Wollard, George, 193 Wo1man, Gordon, 65 work, 29, 154, 157,208 Wyoming, 174

Yangay,76 Yellow River, 58

Zenger, Don, 177 Zentner, Kaspar, 70 Zhao Xiafei, 47,110 zircon, 15, 17, 18 zooplankton, 126, 187 Zurich,185

INDEX

233