application of array signal processing techniques to...

37
National Chung-Cheng University Application of Array Signal Processing Techniques to the Design of Rake Receivers Tsung-Hsien Liu National Chung Cheng University Department of Communication Engineering 160, San-Hsing, Ming-Hsiung, Chia-Yi, Taiwan 1

Upload: vuongdiep

Post on 04-Jun-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Application of Array Signal Processing Techniques to …web.it.nctu.edu.tw/~ieeeitcomsoc/slide/BlindChannelEstimation.pdf · National Chung-Cheng University Application of Array Signal

National Chung-Cheng University

Application of Array Signal ProcessingTechniques to the Design of Rake Receivers

Tsung-Hsien Liu

National Chung Cheng University

Department of Communication Engineering

160, San-Hsing, Ming-Hsiung, Chia-Yi, Taiwan

1

Page 2: Application of Array Signal Processing Techniques to …web.it.nctu.edu.tw/~ieeeitcomsoc/slide/BlindChannelEstimation.pdf · National Chung-Cheng University Application of Array Signal

National Chung-Cheng University

OUTLINE

1. Array Signal Processing Concept

2. Blind Channel Estimation Using Array Signal ProcessingTechniques

3. Principal Component Combiner with Differential Decoding forDPSK Signals

2

Page 3: Application of Array Signal Processing Techniques to …web.it.nctu.edu.tw/~ieeeitcomsoc/slide/BlindChannelEstimation.pdf · National Chung-Cheng University Application of Array Signal

National Chung-Cheng University

Array Signal Processing

Concepts

3

Page 4: Application of Array Signal Processing Techniques to …web.it.nctu.edu.tw/~ieeeitcomsoc/slide/BlindChannelEstimation.pdf · National Chung-Cheng University Application of Array Signal

National Chung-Cheng University

Direction of Arrival Estimation Problem

Direction of Arrival

s(t)

d

4

Page 5: Application of Array Signal Processing Techniques to …web.it.nctu.edu.tw/~ieeeitcomsoc/slide/BlindChannelEstimation.pdf · National Chung-Cheng University Application of Array Signal

National Chung-Cheng University

The Mathematical Model for the DOA Estimation Problem

The signal received at the m-th antenna is

rm(t) =K∑

k=1

sk(t) e−j2πm dλ sin(θk) + nm(t), m = 0, 1, · · · ,M − 1.

where θk is the direction of arrival of user k. It can be written invector form

r0(t)

r1(t)...

rM−1(t)

︸ ︷︷ ︸r(t)

=K∑

k=1

1

e−j2π dλ sin(θk)

...

e−j2π(M−1) dλ sin(θk)

︸ ︷︷ ︸a(θk)

sk(t) +

n0(t)

n1(t)...

nM−1(t)

︸ ︷︷ ︸n(t)

5

Page 6: Application of Array Signal Processing Techniques to …web.it.nctu.edu.tw/~ieeeitcomsoc/slide/BlindChannelEstimation.pdf · National Chung-Cheng University Application of Array Signal

National Chung-Cheng University

Direction of Arrival Estimation Methods fromArray Signal Processing

Conventional Method φ = arg maxaH(φ)Ra(φ)

Constrained Method φ = arg mina(φ)HR−1a(φ)

Subspace Method φ = arg minaH(φ)VnVHn a(φ)

where

a(φ) is the steering vector

R is the sample covariance matrix

Vn contains the vectors in the noise subspace of Rn

6

Page 7: Application of Array Signal Processing Techniques to …web.it.nctu.edu.tw/~ieeeitcomsoc/slide/BlindChannelEstimation.pdf · National Chung-Cheng University Application of Array Signal

National Chung-Cheng University

Blind Channel Estimation

Using Array Signal

Processing Techniques

7

Page 8: Application of Array Signal Processing Techniques to …web.it.nctu.edu.tw/~ieeeitcomsoc/slide/BlindChannelEstimation.pdf · National Chung-Cheng University Application of Array Signal

National Chung-Cheng University

Multipath Fading for the Code Division Multiple Access System

path 0

path 1

path 2

path L-1

t 1

t 2

t L -1

8

Page 9: Application of Array Signal Processing Techniques to …web.it.nctu.edu.tw/~ieeeitcomsoc/slide/BlindChannelEstimation.pdf · National Chung-Cheng University Application of Array Signal

National Chung-Cheng University

Discrete-Time Channel Model for the Desired User

The effective signature vector h4= [h(0) h(1) · · · h(Lc + q − 1)]T

h =

c(0) . . . 0q

c(1) · · · c(0)...

. . .

c(Lc − 1)...

0q . . . c(Lc − 1)

︸ ︷︷ ︸C

g(0)

g(1)...

g(q)

︸ ︷︷ ︸g

where

0q is a zero vector of dimension q × 1

g(i), i = 0, 1, · · · , q − 1 be the baseband equivalent impulse response

c(0), c(1), · · · , c(Lc − 1) be the spreading code of the desired user

9

Page 10: Application of Array Signal Processing Techniques to …web.it.nctu.edu.tw/~ieeeitcomsoc/slide/BlindChannelEstimation.pdf · National Chung-Cheng University Application of Array Signal

National Chung-Cheng University

Asynchronous CDMA Channel Model at the Receiver

Assume perfect synchronization and chip-rate sampling.

r(n)4=

r(nLc)

r(nLc + 1)...

r(nLc + Lc + q − 1)

= h b(n) + w(n) + i(n) + v(n)

where

w(n) is the intersymbol interference

i(n) is the multiuser interference

v(n) is the additive noise

10

Page 11: Application of Array Signal Processing Techniques to …web.it.nctu.edu.tw/~ieeeitcomsoc/slide/BlindChannelEstimation.pdf · National Chung-Cheng University Application of Array Signal

National Chung-Cheng University

Asynchronous CDMA Channel Model at the Receiver

• The intersymbol interference

w(n)4=

h(Lc)...

h(Lc + q − 1)

0Lc

b(n− 1) +

0Lc

h(0)...

h(q − 1)

b(n + 1)

• The multiuser interference i(n) is comprised of componentscontributed by all other multiusers in the same system. Each ofthe multiusers is modelled in the same manner as the desireduser but with a different delay and a different multipathchannel.

• The additive noise v(n) is assumed to be white Gaussian withcovariance matrix σ2I.

11

Page 12: Application of Array Signal Processing Techniques to …web.it.nctu.edu.tw/~ieeeitcomsoc/slide/BlindChannelEstimation.pdf · National Chung-Cheng University Application of Array Signal

National Chung-Cheng University

The Conventional Method for Blind Channel Estimation

In case that a single user exist and that the delay spread is small,the received signal is reduced to

rconv(n) = h b(n) + v(n)

The solution is

hconv = arg maxf

E{|fH rconv(n)|2} subject to ||f || = 1

= arg maxf

fHRf subject to ||f || = 1

= arg maxf

fHRffHf

12

Page 13: Application of Array Signal Processing Techniques to …web.it.nctu.edu.tw/~ieeeitcomsoc/slide/BlindChannelEstimation.pdf · National Chung-Cheng University Application of Array Signal

National Chung-Cheng University

The Conventional Method for Blind Channel Estimation

The conventional method for blind channel estimation is

gconv,1 = arg maxg

gHCHRCggHCHCg

which indicates that gconv,1 is the normalized generalizedeigenvector of (CHRC,CHC) that is associated with the largesteigenvalue, or

gconv,2 = arg maxg

gHCHRCggHg

which indicates that gconv,2 is the normalized eigenvector ofCHRC that is associated with the largest eigenvalue.

13

Page 14: Application of Array Signal Processing Techniques to …web.it.nctu.edu.tw/~ieeeitcomsoc/slide/BlindChannelEstimation.pdf · National Chung-Cheng University Application of Array Signal

National Chung-Cheng University

The Constrained Method for Blind Channel Estimation

The constrained method for blind channel estimation is

gcapon,1 = arg ming

gHCHR−1CggHCHCg

which indicates that gcapon,1 is the normalized generalizedeigenvector of (CHR−1C,CHC) that is associated with thesmallest eigenvalue. A different selection of the constrained methodfor g is

gcapon,2 = arg ming

gHCHR−1CggHg

which indicates that gcapon,2 is the normalized eigenvector ofCHR−1C that is associated with the smallest eigenvalue.

14

Page 15: Application of Array Signal Processing Techniques to …web.it.nctu.edu.tw/~ieeeitcomsoc/slide/BlindChannelEstimation.pdf · National Chung-Cheng University Application of Array Signal

National Chung-Cheng University

The Subspace Method for Blind Channel Estimation

The subspace method for blind channel estimation is

gsub,1 = arg ming

gHCHEnEHn Cg

gHCHCg

which indicates that gsub,1 is the normalized generalizedeigenvector of (CHEnEH

n C,CHC) that is associated with thesmallest eigenvalue. Similarly, we can select g as

gsub,2 = arg ming

gHCHEnEHn Cg

gHg

which indicates that gsub,2 is the normalized eigenvector ofCHEnEH

n C that is associated with the smallest eigenvalue.

15

Page 16: Application of Array Signal Processing Techniques to …web.it.nctu.edu.tw/~ieeeitcomsoc/slide/BlindChannelEstimation.pdf · National Chung-Cheng University Application of Array Signal

National Chung-Cheng University

Simulation Environment

• Pulse shaping function: root-raised cosine function with rollofffactor 0.5

• Gold code of length 31

• Four-ray multipath channel with relative path gains 0, -3, -6,and -9 dB

• Differential BPSK signals

• Sample covariance is estimated by R =∑100

n=1 r(n)rH(n)/100

• Number of Monte Carlo runs: 1000

• Minimum mean-squared error detector f = EsD−1s EH

s C gwhere

R =[Es En

] Ds

Dn

[Es En

]H

16

Page 17: Application of Array Signal Processing Techniques to …web.it.nctu.edu.tw/~ieeeitcomsoc/slide/BlindChannelEstimation.pdf · National Chung-Cheng University Application of Array Signal

National Chung-Cheng University

Comparisons of Blind Channel Estimation Methods Under the4-ray Channel for Different Signal-to-Noise Ratios

2 4 6 8 10 12 14 16 18 2010

−3

10−2

10−1

100

Bit

Err

or R

ate

Signal to Noise Ratio (dB)

10 users, 4−ray channel, DBPSK

Conventional MethodConstrained MethodSubspace MethodTorlak−Xu Method (SF=2)Torlak−Xu Method (SF=3)True Channel Information

17

Page 18: Application of Array Signal Processing Techniques to …web.it.nctu.edu.tw/~ieeeitcomsoc/slide/BlindChannelEstimation.pdf · National Chung-Cheng University Application of Array Signal

National Chung-Cheng University

Comparisons of Blind Channel Estimation Methods Under the4-ray Channel for Different Number of Interferers

2 4 6 8 10 12 1410

−4

10−3

10−2

10−1

Bit

Err

or R

ate

Number of Users

SNR is 10, 4−ray channel, DBPSK

Conventional MethodConstrained MethodSubspace MethodTorlak−Xu Method (SF=2)Torlak−Xu Method (SF=3)True Channel Information

18

Page 19: Application of Array Signal Processing Techniques to …web.it.nctu.edu.tw/~ieeeitcomsoc/slide/BlindChannelEstimation.pdf · National Chung-Cheng University Application of Array Signal

National Chung-Cheng University

Comparisons of Blind Channel Estimation Methods Under the4-ray Channel for a Strong Interferer at Different Interference

to the Desired User Power Ratio

2 4 6 8 10 12 14 16 18 2010

−2

10−1

100

Bit

Err

or R

ate

Interferer to the Desired User Power Ratio (dB)

SNR is 10 dB, 10 users, 4−ray channel, DBPSK

Conventional MethodConstrained MethodSubspace MethodTorlak−Xu Method (SF=2)Torlak−Xu Method (SF=3)True Channel Information

19

Page 20: Application of Array Signal Processing Techniques to …web.it.nctu.edu.tw/~ieeeitcomsoc/slide/BlindChannelEstimation.pdf · National Chung-Cheng University Application of Array Signal

National Chung-Cheng University

Comparisons of Blind Channel Estimation Methods UnderDifferent Number of Multipath Components

2 4 6 8 10 12 14 16 18 2010

−2

10−1

100

Bit

Err

or R

ate

Number of multipath components of the desired user

SNR is 10 dB, 10 users, 4−ray channel, DBPSK

Conventional MethodConstrained MethodSubspace MethodTorlak−Xu Method (SF=2)Torlak−Xu Method (SF=3)True Channel Information

20

Page 21: Application of Array Signal Processing Techniques to …web.it.nctu.edu.tw/~ieeeitcomsoc/slide/BlindChannelEstimation.pdf · National Chung-Cheng University Application of Array Signal

National Chung-Cheng University

MSE Comparisons of Blind Channel Estimation Methods UnderDifferent Intercell Interference to the Desired Signal Ratio

−20 −15 −10 −5 0 5 10 15 2010

−3

10−2

10−1

100

101

Mea

n S

quar

ed E

rror

Intercell Interferer to the Desired User Power Ratio (dB)

SNR is 10 dB, 5 users, 4−ray channel, DBPSK

Conventional MethodConstrained MethodSubspace MethodTorlak−Xu Method (SF=2)Torlak−Xu Method (SF=3)

21

Page 22: Application of Array Signal Processing Techniques to …web.it.nctu.edu.tw/~ieeeitcomsoc/slide/BlindChannelEstimation.pdf · National Chung-Cheng University Application of Array Signal

National Chung-Cheng University

Comparisons of the 3 Blind Channel Estimation Methods

Conventional Constrained Subspace

Method Method Method

Performance Poor Good Good

Near-Far

ResistanceNo Yes Yes

Robust to

Intercell

Interference

No Yes No

Complexity 0 O((Lc + q)2) O((Lc + q)3)

Adaptation

ComplexityLow Medium High

22

Page 23: Application of Array Signal Processing Techniques to …web.it.nctu.edu.tw/~ieeeitcomsoc/slide/BlindChannelEstimation.pdf · National Chung-Cheng University Application of Array Signal

National Chung-Cheng University

Principal Component

Combiner with Differential

Decoding for DPSK Signals

23

Page 24: Application of Array Signal Processing Techniques to …web.it.nctu.edu.tw/~ieeeitcomsoc/slide/BlindChannelEstimation.pdf · National Chung-Cheng University Application of Array Signal

National Chung-Cheng University

Problem of Interest

The signal received at the i-th diversity channel is

ri(k) =√Esci ejφ(k) + vi(k), i = 1, 2, · · · , L

whereci is the channel gain

φ(k) = φ(k − 1) +4φ(k) carries the M -ary DPSK information

vi(k) is the zero-mean white Gaussian noise with variance N0

The above model can be written in vector form

r(k) =√Esc ejφ(k) + v(k)

24

Page 25: Application of Array Signal Processing Techniques to …web.it.nctu.edu.tw/~ieeeitcomsoc/slide/BlindChannelEstimation.pdf · National Chung-Cheng University Application of Array Signal

National Chung-Cheng University

The Differential Decoding with Equal Gain Combiner

Equal Gain Combiner

Differential Detector

r 1 (k)

Z -1 ( )*

r 2 (k)

Z -1 ( )*

r L (k)

Z -1 ( )*

Decision

25

Page 26: Application of Array Signal Processing Techniques to …web.it.nctu.edu.tw/~ieeeitcomsoc/slide/BlindChannelEstimation.pdf · National Chung-Cheng University Application of Array Signal

National Chung-Cheng University

Principal Component Combiner with Differential Decoding

r 2 (k)

r 1 (k)

w 1 *

r L (k)

w L *

w 2 *

Principal Component Combiner

Z -1

y(k) z(k) Decision

( )*

Differential Detector

26

Page 27: Application of Array Signal Processing Techniques to …web.it.nctu.edu.tw/~ieeeitcomsoc/slide/BlindChannelEstimation.pdf · National Chung-Cheng University Application of Array Signal

National Chung-Cheng University

Principal Component Combiner with Differential Decoding

The PCC-DD determine the combining weight as

wP = arg maxw

E{‖ wHr(k) ‖2}‖ w ‖2

= arg maxw

wHRrw‖ w ‖2

where the covariance matrix is

Rr = EsccH + N0I

Theoretically,

wP = ejθ c/ ‖ c ‖

27

Page 28: Application of Array Signal Processing Techniques to …web.it.nctu.edu.tw/~ieeeitcomsoc/slide/BlindChannelEstimation.pdf · National Chung-Cheng University Application of Array Signal

National Chung-Cheng University

BEP of Binary DPSK Signals over Rayleigh Fading Channels

Recall that the BEP of the binary DPSK signal over AWGNchannel is

P2(γs) =12

e−γs

where the instantaneous SNR per symbol

γs4= Es ‖ c ‖2 /N0

Recall that the instantaneous SNR is Chi-Squared distributed withdensity function

p(γs) =1

(L− 1)! γLc

γL−1s e−γs/γc

where the average SNR per channel is defined by

γc4=Es

N0E{|ci|2}

28

Page 29: Application of Array Signal Processing Techniques to …web.it.nctu.edu.tw/~ieeeitcomsoc/slide/BlindChannelEstimation.pdf · National Chung-Cheng University Application of Array Signal

National Chung-Cheng University

BEP of Binary DPSK Signals over Rayleigh Fading Channels

The exact BEP of binary DPSK signals for the PCC-DD is

P2 =∫ ∞

0

P2(γs)p(γs) dγs

=12

1(1 + γc)L

∫ ∞

0

γL−1s e−γs/(γc/(1+γc))

(L− 1)!(γc/(1 + γc))Ldγs

=12

1(1 + γc)L

Note that the last equality follows from the fact that the integral inthe second line is equal to unity, because integral of the probabilitydensity function of a chi-square distributed random variable isunity.

29

Page 30: Application of Array Signal Processing Techniques to …web.it.nctu.edu.tw/~ieeeitcomsoc/slide/BlindChannelEstimation.pdf · National Chung-Cheng University Application of Array Signal

National Chung-Cheng University

BEP of M -ary DPSK Signals over Rayleigh Fading Channels

The approximate BEP of M -ary DPSK signals for the PCC-DD is

PM ≈ 2log2 M

(1− µ

2

)L L−1∑

k=0

L− 1 + k

k

(1 + µ

2

)k

where

µ =

√12 sin2 π

M γc

1 + 12 sin2 π

M γc

30

Page 31: Application of Array Signal Processing Techniques to …web.it.nctu.edu.tw/~ieeeitcomsoc/slide/BlindChannelEstimation.pdf · National Chung-Cheng University Application of Array Signal

National Chung-Cheng University

Adaptive Calculation of the Principal Component Combining Weight

Use the rank-1 subspace tracker, e.g., Karhunen’s method

% Initialization: u(0) = [1, 0, · · · , 0]T

% λ(0) = 1, β = 0.99

% As time increases, k = 1, 2, 3, · · · Complexity

ξ = rH(k)u(k − 1) L

α = ξ/β/λ(k − 1) 2

u(k) = u(k − 1) + α r(k) L

u(k) = u(k)/ ‖ u(k) ‖ 2L

λ(k) = βλ(k − 1) + |ξ|2 2

% Go to k = k + 1

31

Page 32: Application of Array Signal Processing Techniques to …web.it.nctu.edu.tw/~ieeeitcomsoc/slide/BlindChannelEstimation.pdf · National Chung-Cheng University Application of Array Signal

National Chung-Cheng University

BEP Comparisons of 2-DPSK Signals for PCC-DD and DD-EGCover Rayleigh Fading Channels

5 10 15 20 25 3010

−6

10−5

10−4

10−3

10−2

10−1

Bit

Err

or P

roba

bilit

y

Average Signal−to−Noise Ratio per Bit (dB)

PCC−DDDD−EGC

L=2

L=4

L=8

32

Page 33: Application of Array Signal Processing Techniques to …web.it.nctu.edu.tw/~ieeeitcomsoc/slide/BlindChannelEstimation.pdf · National Chung-Cheng University Application of Array Signal

National Chung-Cheng University

BEP Comparisons of 4-DPSK Signals for PCC-DD and DD-EGCover Rayleigh Fading Channels

5 10 15 20 25 3010

−6

10−5

10−4

10−3

10−2

10−1

Bit

Err

or P

roba

bilit

y

Average Signal−to−Noise Ratio per Bit (dB)

PCC−DDDD−EGC

L=2

L=4

L=8

33

Page 34: Application of Array Signal Processing Techniques to …web.it.nctu.edu.tw/~ieeeitcomsoc/slide/BlindChannelEstimation.pdf · National Chung-Cheng University Application of Array Signal

National Chung-Cheng University

BEP Comparisons of 2-, 4-, and 8-DPSK Signals for PCC-DDover Rayleigh Fading Channels

5 10 15 20 25 3010

−6

10−5

10−4

10−3

10−2

10−1

Bit

Err

or P

roba

bilit

y

Average Signal−to−Noise Ratio per Bit (dB)

Binary DPSKQuadrature DPSKOctal DPSK

L=2

L=4

L=8

34

Page 35: Application of Array Signal Processing Techniques to …web.it.nctu.edu.tw/~ieeeitcomsoc/slide/BlindChannelEstimation.pdf · National Chung-Cheng University Application of Array Signal

National Chung-Cheng University

Conclusions

• The exact BEP of binary DPSK signals for PCC-DD isavailable.

• The approximate BEPs of M -ary DPSK (M ≥ 4) signals forPCC-DD are derived.

• For binary DPSK signals, the PCC-DD outperforms theDD-EGC by 0.9, 1.5, and 2.3 dB when the number of diversitychannels is 2, 4, and 8, respectively.

• For M -ary DPSK (M ≥ 4) signals, the PCC-DD outperformsthe DD-EGC when the average SNR per bit is low, butperforms approximately the same as the DD-EGC when theaverage SNR is high.

• The proposed PCC-DD needs 6L complex-valuedmultiplications in each iteration to update its principlecombining weight vector.

35

Page 36: Application of Array Signal Processing Techniques to …web.it.nctu.edu.tw/~ieeeitcomsoc/slide/BlindChannelEstimation.pdf · National Chung-Cheng University Application of Array Signal

REFERENCES REFERENCES

References

[1] D. Brennan, “Linear diversity combining techniques,” Proceedings of the IEEE,

vol. 91, no. 2, pp. 331-356, February 2003.

[2] P. Comon and G. H. Golub, “Tracking a few extreme singular values and vectors

in signal processing,” Proceedings of the IEEE, vol. 75, no. 8, pp. 1327-1343,

August 1990.

[3] D. Johnson and D. Dudgeon, Array Signal Processing: Concepts and

Techniques. Prentice Hall, 1993.

[4] S. Haykin, Adaptive Filter Theory. 2nd, Ed., Prentice Hall, 1991.

[5] M. Hayes, Statistical Digital Signal Processing and Modeling. Wiley, 1996.

[6] J. Karhunen, “Adaptive algorithm for estimating eigenvectors of

correlation-type matrices,” IEEE Int’l Conf. Acoustics, Speech, and Signal

Processing, vol. 9, pp. 592-595, March 1984.

[7] T.-H. Liu, “Linearly constrained minimum variance filters for blind multiuser

detection,” to appear in the IEEE Trans. Commun.

[8] T.-H. Liu, Y.-C. Li, and C.-C. Chang, “Applications of array signal processing

techniques to code division multiple access systems for blind channel

estimation,” to be presented at the IEEE PIMRC, Beijing, China, Sep. 2003.

[9] J. Proakis, Digital Communications. 4th Ed., McGraw Hill, 2001.

36

Page 37: Application of Array Signal Processing Techniques to …web.it.nctu.edu.tw/~ieeeitcomsoc/slide/BlindChannelEstimation.pdf · National Chung-Cheng University Application of Array Signal

REFERENCES REFERENCES

[10] D. Reynolds, X. Wang, and H. V. Poor, “Blind adaptive space-time multiuser

detection with multiple transmitter and receiver antennas,” IEEE Trans. Signal

Proc., vol. 50, no. 6, pp. 1261-1277, Jun. 2002.

[11] M. Simon and M. Alouini, Digital Communication over Fading Channels- A

Unified Approach to Performance Analysis. Wiley, 2000.

[12] M. Torlak and G. Xu, “Blind multiuser channel estimation in asynchronous

CDMA systems,” IEEE Trans. Signal Proc., vol. 45, no. 1, pp. 137-147, Jan.

1997.

[13] M. K. Tsatsanis and Z. Xu, “Performance analysis of minimum variance CDMA

receivers,” IEEE Trans. Signal Proc., vol. 46, no. 11, pp. 3014-3022, Nov. 1998.

[14] S. Verdu, Multiuser Detection. Cambridge, 1998.

[15] X. Wang and H. V. Poor, “Blind equalization and multiuser detection in

dispersive CDMA channels,” IEEE Trans. Commun., vol. 46, pp. 91-103, Nov.

1998.

[16] X. Wang and H. V. Poor, “Blind joint equalization and multiuser detection for

DS-CDMA in unknown correlated noise,” IEEE Trans. Signal Proc., vol. 46,

pp. 886-895, July 1999.

37