application of dynamic matrix control to interactive ...€¦ · 2.2 case study: the hydrocracker...

95
APPLICATION OF DYNAMIC MATRIX CONTROL TO INTERACTIVE MULTILOOPS: A Case Study of a Fischer-Tropsch Hydrocracking Reactor A Dissertation Presented to The Engineering Institute of Technology by OBIEZU IFENNA AMAOBI In Partial Fulfillment of the Requirements for the Degree Master of Engineering in INDUSTRIAL AUTOMATION Date JANUARY 2018 COPYRIGHT © 2018 BY OBIEZU IFENNA AMAOBI i

Upload: others

Post on 25-Jun-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

APPLICATION OF DYNAMIC MATRIX CONTROL TO INTERACTIVE MULTILOOPS: A Case Study of a Fischer-Tropsch Hydrocracking Reactor

A Dissertation Presented to

The Engineering Institute of Technology

by

OBIEZU IFENNA AMAOBI

In Partial Fulfillment of the Requirements for the Degree

Master of Engineering in INDUSTRIAL AUTOMATION

Date JANUARY 2018

COPYRIGHT © 2018 BY OBIEZU IFENNA AMAOBI

i

Master of Engineering (Industrial Automation)

ACKNOWLEDGEMENTS First and foremost, I would like to thank God Almighty, the Creator of Heavens and Earth, for without Him,

none of this would be possible.

I would like to express my profound gratitude to my supervisor Ian Alers for giving me the opportunity to work

under his professional supervision. Your motivation and guidance were very admirable and inspiring. I will

sincerely be grateful for the effort and time you took in providing valuable advice and comments on the entire

thesis.

Finally, I must express my very profound appreciation to my loving wife Frances Obiezu for providing me with

unfailing support and continuous encouragement throughout my years of study. This achievement would not

have been possible without her emotional support. Thank you.

ii

Master of Engineering (Industrial Automation)

TABLE OF CONTENTS ACKNOWLEDGEMENTS ................................................................................................................................ ii

LIST OF TABLES.............................................................................................................................................. v

LIST OF FIGURES ........................................................................................................................................... vi

ABSTRACT ..................................................................................................................................................... vii

ACRONYMS .................................................................................................................................................. viii

CHAPTER 1 ........................................................................................................................................................... 1

INTRODUCTION .................................................................................................................................................. 1

1.1 Background ................................................................................................................................................... 1

1.2 Research Aims and Objectives ..................................................................................................................... 2

1.3 Thesis Organization ...................................................................................................................................... 2

CHAPTER 2 ........................................................................................................................................................... 4

ISSUES DESCRIPTION ........................................................................................................................................ 4

2.1 The Multiloop Control Problem ................................................................................................................... 4

2.2 Case Study: The Hydrocracker Reactor ....................................................................................................... 4

2.2.1 Process Description ............................................................................................................................... 4

2.2.2 Current Control Strategy ........................................................................................................................ 6

2.2.3 Limitations of the Current Control Strategy .......................................................................................... 7

2.2.4 Proposed Solution .................................................................................................................................. 8

2.3 What is Model Predictive Control (MPC) .................................................................................................... 9

2.3.1 History and Evolution of MPC ............................................................................................................ 10

2.3.2 Advantages and Disadvantages of MPC [18] [19] .............................................................................. 12

2.3.3 Characteristics of MPC ........................................................................................................................ 12

2.3.4 Formulation of MPC Algorithm .......................................................................................................... 12

CHAPTER 3 ......................................................................................................................................................... 17

METHODOLOGY ............................................................................................................................................... 17

3.0 Modelling of Plant Dynamic System Using Historical Data ...................................................................... 17

3.1 Step 1: Selection of variables ................................................................................................................. 17

3.2 Step 2: Plant Test .................................................................................................................................... 21

3.3 Step 3: Model Estimation ....................................................................................................................... 22

3.4 Step 4: Design of MPC Controller .......................................................................................................... 36

3.5 Step 5: Commissioning of MPC Controller ............................................................................................ 36

CHAPTER 4 ......................................................................................................................................................... 37

MPC CONTROLLER DESIGN AND SIMULATIONS ..................................................................................... 37

4.1 Specifying MPC Controller Parameters ..................................................................................................... 37

4.1.1 Sample Time ........................................................................................................................................ 37

iii

Master of Engineering (Industrial Automation)

4.1.2 Prediction Horizon ............................................................................................................................... 37

4.1.3 Control Horizon ................................................................................................................................... 37

4.1.4 Constraints ........................................................................................................................................... 38

4.1.5 Tuning Weights ................................................................................................................................... 38

4.2 Controller Design Using MPC Designer .................................................................................................... 39

4.2.1 Import Plant and Define MPC Structure.............................................................................................. 39

4.2.2 Case 1: Open-Loop Simulation – Verifying Interactions between MVs and CVs .............................. 41

4.2.3 Case 2: Closed-Loop Simulations ....................................................................................................... 44

CHAPTER 5 ......................................................................................................................................................... 52

CONCLUSIONS AND RECOMMENDATIONS ............................................................................................... 52

5.1 Conclusions ................................................................................................................................................ 52

5.2 Recommendations for Future Work ........................................................................................................... 52

REFERENCES ..................................................................................................................................................... 53

APPENDIX A....................................................................................................................................................... 55

APPENDIX B ....................................................................................................................................................... 60

iv

Master of Engineering (Industrial Automation)

LIST OF TABLES Table 3.1: Raw process data from PI historian showing interactions between MV1 and CVs 18 Table 3.2: Raw process data from PI historian showing interactions between MV2 and CVs 19 Table 3.3: Raw process data from PI historian showing interactions between MV3 and CVs 20 Table 3.4: Comparison between State-space mode and transfer function model fit to estimate data 26

v

Master of Engineering (Industrial Automation)

LIST OF FIGURES Figure 1.1: Control Loop Interaction 1 Figure 2.1: Simplified PFD of Refinery section in the EGTL facility (From Fischer-Tropsch Refining) 5 Figure 2.2: Simplified PFD of Hydrocracker Reactor Showing Bed Temperature Control 7 Figure 2.3: Operation Hierarchy of MPC (From Georgia Institute of Technology) 9 Figure 2.4: Basic MPC Structure (From Georgia Institute of Technology) 10 Figure 2.5: Simplified evolutionary tree of the most significant industrial MPC algorithms 10 Figure 3.1: Plant historical data showing interactions between MV1 and CV1 and CV2 21 Figure 3.2: Plant historical data showing interactions between MV2 and CV1 and CV2 21 Figure 3.3: Time domain input-output data for MV1 and CV1 23 Figure 3.4: Time domain input-output data for MV1 and CV2 23 Figure 3.5: Time domain input-output data for MV2 and CV1 24 Figure 3.6: Time domain input-output data for MV2 and CV2 24 Figure 3.7: System Identification Toolbox showing imported data and estimated models 25 Figure 3.8: Step response plot for MV1CV1. (Settling time to steady state = 340s) 27 Figure 3.9: Step response plot for MV1CV2. (Settling time to steady state = 146s) 28 Figure 3.10: Step response plot for MV2CV1. (Settling time to steady state = 197s) 29 Figure 3.11: Step response plot for MV1CV1. (Settling time to steady state = 390s) 30 Figure 3.12a: Overall plant step response model 32 Figure 3.12b: Combined plant step response model 33 Figure 3.13: Model validation plot showing Best Fits for MV1CV1 (Best Fits = 84.48%) 34 Figure 3.14: Model validation plot showing Best Fits for MV1CV2 (Best Fits = 79.2%) 34 Figure 3.15: Model validation plot showing Best Fits fir MV2CV1 (Best Fits = 89.08%) 35 Figure 3.16: Model validation plot showing Best Fits fir MV2CV2 (Best Fits = 71.2%) 35 Figure 4.1: Basic concept of MPC – Prediction and Control horizons 38 Figure 4.2: MPC designer – defining MPC structure from imported plant model 39 Figure 4.3: MPC designer – Input and Output Channel Specifications 40 Figure 4.4: MPC designer – Default simulation scenario using default MPC controller 40 Figure 4.5: MPC designer – Interactions Between MV1 and CV1 and CV2 (MV2 is constant) 41 Figure 4.6: MPC designer – Input and Output Response between MV1 and CV1 and CV2 (MV2 is constant) 42 Figure 4.7: MPC designer – Interactions Between MV2 and CV1 and CV2 (MV1 is constant) 42 Figure 4.8: MPC designer – Input and Output Response between MV2 and CV1 and CV2 (MV1 is constant) 43 Figure 4.9: MPC designer – Combined step changes on MV1 and MV2 43 Figure 4.10: MPC designer – Input and Output Response Plots for Combined step changes on MV1 and MV2 44 Figure 4.11: MPC designer – Tuning parameters configuration 44 Figure 4.12: MPC designer – Simulation Settings for Case Study 1 45 Figure 4.13: MPC designer – Input and Output Response Plots for Case Study 1 45 Figure 4.14: MPC designer – Simulation Settings for Case Study 2 46 Figure 4.15: MPC designer – Input and Output Response Plots for Case Study 2 47 Figure 4.16: MPC designer – Simulation Settings for Case Study 3 48 Figure 4.17: MPC designer – Input and Output Response Plots for Case Study 3 48 Figure 4.18: MPC designer – Input Constraint Specification for Case Study 4 49 Figure 4.19: MPC designer – Input and Output Response Plots for Case Study 4 50 Figure 4.20: MPC designer – Tuning Weights Specification for Case Study 5 51 Figure 4.21: MPC designer – Input and Output Response Plots for Case Study 5 51

vi

Master of Engineering (Industrial Automation)

ABSTRACT Most practical control processes are multivariable processes and are characterized by process interactions. A

situation where a change in one manipulated variable can affect several controlled variables. The conventional

industrial approach for dealing with such multivariable control problems is to use a multi-loop control system

consisting of set of conventional PI or PID controllers where each manipulated variable depends on only a

single controlled variable. The three-bed hydrocracker reactor in the Escravos Gas-to-Liquid (EGTL) plant,

located in Nigeria is controlled using three sets of temperature control loops each dedicated to controlling the

temperature of each bed. This current control strategy does not control the hydrocracker effectively due to the

limitations of the PID loops in controlling processes with significant interactions.

The research details the design and simulation of a model predictive controller (MPC) to deal with such control

problems associated with interactive multiloops using a case study of a hydrocracker reactor that converts wax

via Fischer-Tropsch (FT) synthesis to valuable products. Several case studies were simulated to highlight MPC

controller’s improved capability in handling process interactions and constraints compared to conventional

single loop PID control. The tool used for the MPC controller design is MATLAB MPC designer app.

This work also further details how to develop the dynamic model of any process given the plant historical data

from which input-output data correlations can be deduced. This is particularly important for two reasons. First,

it is always not convenient to perform step response tests on live plants to gather input-output data due to

operational reasons. Secondly, for most complex processes, it is difficult to obtain the dynamic model of most

processes from first principles or by modelling from mathematical formula. Hence the data-driven modelling

approach presented in this research work can be used to reconstruct the dynamic of any plant provided the

historical data of that plant is available. The tool used for the model estimation is MATLAB system

identification app.

vii

Master of Engineering (Industrial Automation)

ACRONYMS PID - Proportional Integral Derivative PI - Proportional Integral NMP - Non-Minimum Phase PC - Pressure Controller FC - Flow Controller TC - Temperature Controller LC - Level Controller CV - Controlled Variable MV - Manipulated Variable DMC - Dynamic Matrix Control FT - Fischer-Tropsch MPC - Model Predictive Control EGTL - Escravos Gas-to-Liquid LPG - Liquefied Petroleum Gas PI - Process Information MIMO - Multi-Input, Multi-Output RGA - Relative Gain Array QDMC - Quadratic Dynamic Matrix Control PFD - Process Flow Diagram HP - High Pressure LHSV - Liquid Hourly Space Velocity DCS - Distributed Control System LAT - Level Average Temperature BAT - Bed Average Temperature ABT - Average Bed Temperature WABT - Weighted Average Bed Temperature LQG - Linear Quadratic Gaussian IDCOM - Identification and Command FIR - Finite Impulse Response MPHC - Model Predictive Heuristic Control HEICON - Hierarchical Constraint Control SMCA - Setpoint Multivariable Control Architecture SMOC - Shell Multivariable Optimizing Controller RMPCT - Robust Multivariable Predictive Control Technology QUADPROG - Quadratic Programming SISO - Single Input, Single Output N4SID - Numerical algorithms for Subspace State Space System IDentification FPE - Final Prediction Error MSE - Mean Square Error MO - Measured Output OV - Output Variable QP - Quadratic Programming

viii

CHAPTER 1 INTRODUCTION

1.1 Background

For over forty (40) years, 80% of installed automated control devices in the chemical and process industries

have been implemented used single loop Proportional Integral Derivative (PID) control [1]. This is due to their

simple control structure and seemingly easy tuning method (example, Ziegler-Nichol’s 1st and 2nd tuning rule,

and so on). Despite these advantages, single-loop PID control has limitations in areas like; non-linearity of

model, non-minimum phase processes exhibiting inverse response behaviour, problems associated control-loop

interaction, problem associated with time delay, and finally constraints problems [2]. These limitations will be

discussed briefly below.

Limitations of single-Loop PID Control

Model Non-linearity: Since control gains are usually obtained by linearizing a non-linear system around a

particular equilibrium point, then it means that, the control gain which gives a good performance in a particular

equilibrium point may not perform very well in another equilibrium point. Single loop PID control will not

thrive here, but a non-linear controller that switches controller parameters in different operating regions (Gain

Scheduling) can be used.

Non-Minimum Phase (NMP) Systems: Some NMP systems exhibit inverse responses, that is, they initially act

in a direction opposite to their final response when reacting to a control input. Single-loop PID control cannot

be used for NMP systems.

Control Loop Interaction: This mostly occurs in ill-conditioned processes, that is, where control variables

(CVs) are more than the manipulated variables (MVs). This results in poor control performances. See figure 1.1

below.

Figure 1.1: Control Loop Interaction [2]

Time Delay Problems: The problem of time delay cannot be over emphasized. It is because of taking

measurements far away from the MVs. When the issue of time delay is not properly catered for, it causes

oscillations, and can cause the closed-loop system to be unstable. PIDs do not perform well when the process

1

Master of Engineering (Industrial Automation)

uncontrollability factor 𝑃𝑃𝑃𝑃 > 1, and PIDs do not work at all when 𝑃𝑃𝑃𝑃 > 10. 𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑑𝑑𝜏𝜏

where 𝑇𝑇𝑑𝑑is the time

delay, and 𝜏𝜏 is the time constant [1].

Constraints Problems: Many chemical or petrochemical processes contain several constraints. These

constraints can affect the MVs and/or CVs. A very popular example is a valve cannot be opened more than

100% (this is input constraint). Example of an output constraint can be perhaps the level of a tank specified to

be within ± 10m of its steady state value. Note that, in the case of Single loop PID controllers, valve saturation

or even valve stiction is caused by integral wind-up, which is as a result of constraints.

Since the 1960s, advanced process control has been taken to mean any control algorithm or strategy that shifts

from the classical or conventional, Proportional Integral Derivative (PID), control. A major reason for the

advent of advanced process control was the advancements made possible in the computer technology. This

meant that all previous algorithms could now be realized by the new digital computational technologies.

Nowadays, advanced process control is synonymous with the implementation of computer based technologies

[1] [31].

1.2 Research Aims and Objectives

The primary aim of the work described in this thesis details the application of an advanced process control

strategy - dynamic matrix control (DMC) to interactive multiloops using a case study of a hydrocracker reactor

that converts wax via Fischer-Tropsch (FT) synthesis to valuable products. This is to show how DMC improved

capability in handling process interactions compared to conventional single loop PID control. This work also

further details how to develop the dynamic model of any process given the input-output measurement data or

historical data from which input-output data correlations can be deduced. This is particularly important because

it is difficult to obtain the dynamic model of most processes from first principles or by modelling from

mathematical formula. Finally, this work will demonstrate how robust model predictive control (MPC) is with

respect to constraint handling, setpoint tracking and disturbance rejection when compared to conventional

single loop PID controller. The reference facility from where historical data for this thesis will be collected is

hydrocracker reactor in the Escravos Gas-to-Liquid (EGTL) plant which is in Delta State, Nigeria. The

objective of the Escravos GTL plant is the conversion of natural gas feedstock into high-quality,

environmentally superior, liquid GTL Fuel (diesel), chemical-grade Naphtha and Liquefied Petroleum Gas

(LPG). The hydrocracker reactor is mainly responsible for this conversion, hence, optimization of the

hydrocracker reactor control using advanced process control strategies such as Dynamic Matrix Control could

lead to higher product yield and more efficient energy usage.

1.3 Thesis Organization

The remainder of this thesis is organized as follows:

2

Master of Engineering (Industrial Automation)

In chapter 2, all the background related to this research work is introduced. First, the multiloop control problem

is detailed as it affects hydrocracking process. Then, current technologies used for dealing with strong process

interactions are discussed. Dynamic Matrix Control is proposed as a method to be used in this research solve

process interaction problem. This chapter also discusses the hydrocracker process and the current control

strategy as applied to the hydrocracker unit in Escravos Gas-to-Liquid (EGTL) plant located in Nigeria. Finally,

a brief review of Model Predictive Control with some mathematical derivations is included.

Chapter 3 provides detailed information how the hydrocracker process model was modelled from historical data

of the plant stored in Process Information (PI) historian. It detailed the process involved in the selection of

manipulated variables and controlled variables, and how MATLAB system identification toolbox was used in

estimating and validating the dynamic model of the plant from measured input-output data.

Chapter 4 opens with a brief review of the MPC controller design process with a brief discussion on how to

select each of the MPC controller parameters. A great deal of this chapter is devoted to designing of the MPC

controller and testing of the controller against the dynamic model of the plant using various simulated scenarios

to highlight some of the striking features of MPC controller like constraint handling, tuning weights, prediction

and control horizons.

Chapter 5 provides concluding remarks based on results of simulations in chapter 4. This chapter ended with

outlining recommendations for future research work.

3

Master of Engineering (Industrial Automation)

CHAPTER 2 ISSUES DESCRIPTION

2.1 The Multiloop Control Problem

Most practical control processes are multivariable processes and are characterized by process interactions. that

is, a situation where several process variables are to be controlled and several variables can be manipulated. In

this case, a change in one manipulated variable say u1 can affect several controlled variables (y1, y2… yn). This

is commonly referred to Multi-input, multi-output (MIMO) control system or multivariable processes. The

conventional industrial approach for dealing with such multivariable control problems is to use a multi-loop

control system consisting of set of conventional PI or PID controllers where each manipulated variable depends

on only a single controlled variable [3] [4]. To design such control systems, the selection of variable pairing is

of primary importance. There are several methods adopted to ensure that variables are paired relative to the

degree of interactions that exist between the manipulated variables (inputs) and controlled variables (outputs).

The most prominent and widely used approach for characterizing process interactions is the Relative Gain Array (RGA) method proposed by Bristol (1966). The chief advantages of the RGA approach are that it is easy

to use and only requires a crude process model, namely, the process gains which can be determined from steady

state information [3] [4]. It was suspected that due to its lack of dynamic information the RGA failed to provide

an accurate configuration. However, for processes with significant interactions, even the best multiloop control

system may not provide satisfactory control.

Model-based multivariable control strategies such as model predictive control can provide significant

improvements over conventional multiloop control. [7]. This research work focuses on how to deal with

problems associated with multiloop interactions in processes by the application of advanced process control

strategies like dynamic matrix control (DMC) using a case study of a hydrocracker reactor that converts wax via

Fischer-Tropsch (FT) synthesis to valuable products.

Dynamic Matrix Control (DMC), devised by Shell Oil (Cutler and Ramaker, 1980), was the first Model

Predictive Control (MPC) algorithm [5] [25]. Over the years, MPC have become generally accepted within the

chemical and process industries for dealing with difficult multivariable control problems that include inequality

constraints. Per an MPC survey by Qin and Badgwell (2003), there were over 4,500 applications worldwide by

the end of 1999, primarily in oil refineries and petrochemical plants [6]. Some specific applications of MPC to

hydrocracker units are: Quadratic Dynamic Matrix Control (QDMC) implemented on four multibed

hydrocracker reactors at the Shell Canada Limited Scotford Refinery [8], and a Model Predictive Controller

design in Izmit Refinery hydrocracker unit [9].

2.2 Case Study: The Hydrocracker Reactor

2.2.1 Process Description A simplified process flow diagram (PFD) is given in Figure 2.1. The hydrocracker receives two feed streams

from the Fischer-Tropsch gas loop, namely wax and cold condensate. The wax and the cold condensate are

4

Master of Engineering (Industrial Automation)

combined to serve as feed to the hydrocracker [10]. This feed is converted into more valuable products in the in

the hydrocracker under high hydrogen pressure and catalytic condition. Commonly used hydrocracking

catalysts consists of sulphide base metals on an acidic support. Since the Fischer-Tropsch Synthetic crude is

sulphur-free, a sulphiding agent is co-fed to keep the catalyst in a sulphide state [10].

The reactor inlet pressure should be maintained at 70bar to maximize the hydrogen partial pressure. The

exothermic cracking and saturation reactions result in a large heat release, which increases the temperature of

the reactants. This increased temperature further increases the rate of reaction. To control this temperature rise,

and likewise, the rate of reaction, the catalyst is separated into three beds in the reactor. In between each bed is

the quench section. In the quench section, hot process fluids from the preceding bed are combined with

relatively cold hydrogen-rich recycle gas to quench the reacting fluids before the mixture passes into the next

bed, and thereby control the amount of temperature rise and the rate of reaction. Reactor internals between the

catalyst beds are designed to ensure thorough mixing of the reactants with the quench gas and good distribution

of the vapour and liquid flowing down to the next bed. Good distribution of the reactants across the catalyst bed

prevents hot spots and maximizes catalyst performance and life [11].

The effluent stream from the hydrocracker reactor enters the hot High Pressure (HP) separator where the

hydrocracker effluent vapor is separated from the hydrocracker effluent liquid phase. The hydrogen-rich gas

from the hot HP separator is compressed and recycled back through the high-pressure loop. The liquid phase

from the hot HP separator is routed through the main fractionator and stabilizer column where the products

(LPG, Naphtha and distillate) are recovered. The lower fractions are recycled back to the hydrocracker reactor.

The product from hydrocracking is distilled to produce LPG (3 – 7%), naphtha (20 – 30%), and distillate (65 –

75%), with the unconverted waxy product being recycled to the hydrocracker feed [5]. Typical operating

conditions are a “liquid hourly space velocity” (LHSV = Reactant Liquid Flow Rate/Reactor Volume) of 1.2

per hr., at 350 ℃, and 70bar, with the temperature being adjusted to keep the per pass conversion at around

65%. [10]

Figure 2.1: Simplified PFD of Refinery section in the EGTL facility (From Fischer-Tropsch Refining) [10]

5

Master of Engineering (Industrial Automation)

2.2.2 Current Control Strategy Regulatory control in the EGTL plant is performed by a Yokogawa Distributed Control System (DCS). The

most important parameter to monitor in the hydrocracker reactor is the per pass conversion which is an

indication of the total amount of feed that is converted into valuable products, hence a measure of profitability

for the hydrocracker. [9] To achieve this, parameters such as feed flow, temperature, hydrogen partial pressure

and recycling are monitored and controlled. The inlet temperature and the temperatures at the top and bottom of

each bed is closely monitored and controlled to achieve required per pass conversion.

The inlet temperature of the reactor is controlled by varying the fuel gas flow to the preheat furnace.

Temperatures in the reactor are measured by thermocouples placed at the top and bottom of each catalyst bed.

The temperature readings at the top of each catalyst bed is used to control the flow of hydrogen quench above

that bed. Either the average of the temperature readings or the largest reading is sent to the temperature

controller [12].

The hydrocracker was designed for "flat" temperature profiles in the reactor [12]. A "flat" temperature profile is

one in which the average temperature of each catalyst bed is equal. This type of profile can be achieved by

injecting an adequate amount of quench gas between the catalyst beds, such that the outlet of each bed is

quenched back to the desired inlet temperature for the bed below. Operating with a "flat" temperature profile

maximizes catalyst life and product yields by minimizing coking and peak catalyst temperature.

In addition to providing temperature control, the temperatures measured at the top and bottom of each bed can

be used to monitor reaction progress and to indicate the location and extent of possible channelling of reactants.

Temperatures measured at different heights but at the same circumferential position (i.e., temperature difference

across a bed e.g. T2Bottom – T2Top) indicate the extent of reaction in the bed. Temperatures measured at the same

height but at different circumferential positions in the bed can indicate the location and extent of possible

maldistribution of reactants (e.g. T2Top – T5Top). For example, a hydrogen- or liquid-poor region may experience

a higher temperature rise because slower moving liquid has more time to react and will liberate more heat (local

hot spot). Hydrocracking operation may become unstable and a dangerous "runaway" condition may be

approached if the temperature change across any bed in a reactor is higher than 40°C [12]. Hence, the following

it is important to monitor the following the temperature indications for a hydrocracker reactor:

Level Average Temperature (LAT): LAT is the average temperature at a given elevation. LAT(x) = SUM [Ti(x)]/n. Where “x” is the level, “i” is the radial position and n is the temperature measuring instruments.

Bed Average Temperature (BAT): BAT is the average of the LAT of the bed. BAT(x) =

[LAT_in(x)+LAT_out(x)]/2. Where “x” is the bed. Bed ∆TU: Reactor Bed ∆T is the difference between LAT of each bed. Bed ∆𝐓𝐓 = LAT_out(x)-

LAT_in(x). Where “x” is the bed. 6

Master of Engineering (Industrial Automation)

Weighted Average Bed Temperature (WABT): WABT is the average of temperature of catalyst present

in the reactor, which is a measure of reaction severity. It is generally referred to as the sign of catalyst activation. WABT is calculated by the bed temperatures of reactors; each temperature contributes to WABT per catalyst weight distribution. WABT=0.25*BAT(1) + 0.35*BAT(2) + 0.40*BAT(3) where Bed 1 contains 25% weight of catalyst, Bed 2 contains 35% weight of catalyst and Bed 3 contains 40% weight of catalyst. Hence, the WABT is controlled by manipulation of individual bed average temperatures [4] [12].

Figure 2.2: Simplified PFD of Hydrocracker Reactor Showing Bed Temperature Control [12]

2.2.3 Limitations of the Current Control Strategy The primary control objective of the hydrocracker reactor is the regulation of the reaction severity, as measured

by the WABT, which is required to keep the per pass conversion within acceptable limits. WABT is controlled

by manipulation of individual bed average temperatures (BAT). Temperature controls in the hydrocracker

reactor in EGTL plant is done by different temperature control loops, dedicated to controlling the inlet

temperature of each bed by using quench hydrogen gas to cool down the incoming stream from the bed above.

Only the inlet of the first bed does not have quench hydrogen gas. The inlet temperature of the reactor is

controlled by varying the fuel gas flow to the preheat furnace using a temperature-flow cascade loop

arrangement.

There are several problems inherent with this current control setup. Firstly, a hydrocracker is a classic example

of a multiple-input, multiple-output (MIMO) control problem. That is, there are several manipulated variables

and several controlled variables. Examples of manipulated variables are fresh feed flow to the reactor, fuel gas

flow to the preheat furnace, setpoints for the two bed inlet temperatures and the reactor inlet temperature.

7

Master of Engineering (Industrial Automation)

Examples of controlled variables are the three bed average temperatures, the reactor inlet temperature, the

reactor WABT, the three beds ∆T and the inlet quench valve position [11] [7]. A characteristic feature of

MIMO control problems is the presence of process interactions, that is, each manipulated variable can affect

several control variables. The traditional Proportional-Integral-Derivative (PID) feedback control loop is poor at

handling process interactions [7].

Secondly, there are several process constraints associated with the hydrocracker reaction. For instance, there is

allowable minimum and maximum quench valve opening required during normal operation. For example, it is

imperative that the valves on the quench gas used to cool the reactor catalyst beds not be more than 60 percent

open. These valve position constraints provide capacitance which allows the bed inlet temperature controllers to

handle large process disturbances which could cause a reactor temperature excursion. There is a maximum

allowable temperature change across any bed in the reactor during normal operation to prevent the

hydrocracking operation from becoming unstable or leading to temperature excursion [11]. There is a minimum

pressure permitted on the preheat furnace fuel gas header. Again, traditional PID feedback control loop is poor

at handling several process constraints.

2.2.4 Proposed Solution To improve on the hydrocracker reactor control, this paper proposes the implementation of an advanced process

control strategy, specifically a model predictive control (MPC) algorithm like dynamic matrix control (DMC).

Model predictive control (MPC) refers to a class of control algorithms that have a dynamic model of the process

programmed into the control architecture [13]. The DMC controller uses the dynamic process model to predict

the future response of the process based upon past controller moves and the current state of the process. At each

sample time, the next controller move is computed from a comparison of this predicted future behaviour with

the desired set point trajectory [7] [13]. The controller is a true multivariable controller. It considers all the

interactions between the independent manipulated variables and the dependent controlled variables across the

time horizon to steady state at the set points or dependent variable constraints [14].

The proposed DMC implementation will not replace the classical PID controllers, instead, it would be

implemented in a hierarchy above the traditional PID loops (refer to figure 3). In this manner, the DMC

controller drives set points for individual PID control loops based on selected control objectives [13]. For

instance, the control objective could be to maximize production of the most valuable products, in this case, the

DMC controller is switched to flat temperature profile mode. At other times, the control objective could be to

minimize energy usage. In such case, the DMC controller is switched to energy minimization mode. In both

cases, the DMC controller automatically generates the required set points for the underlying PID controllers to

achieve the control objectives [15].

8

Master of Engineering (Industrial Automation)

Figure 2.3: Operation Hierarchy of MPC (From Georgia Institute of Technology)

PID = Proportional Integral Derivative; FC = Flow Controller; PC = Pressure Controller; TC = Temperature Controller and

LC = Level Controller.

2.3 What is Model Predictive Control (MPC)

MPC is a form of model based controller in which the current control action is obtained by solving a finite

horizon cost function on-line, with the aid of a linear or non-linear dynamic predictive model [13], without

violating any constraints. It is located on the middle layer of the hierarchical control system architecture (See

figure 2.3 above). Model predictive control (MPC) belongs to a class of computer control algorithms, more

specifically optimal control methods which are using mathematical model of the process to predict the future

response of process on a sequence of control variable manipulations [17] [24] [27]. Once the predictions are

made, the control algorithm with usage of optimization techniques computes appropriate control actions to

provide desired output behavior of the process in optimal fashion. Colloquially we can describe this method as a

“look ahead” strategy, when the controller is able to foresee a future behavior of the process with usage of given

knowledge about that particular process and consequently evaluate the optimal control strategy to achieve the

best possible outcome, which are satisfying long term goals and criteria. This strategy stands in contrast with

classical control theory techniques e.g. PID controllers, which are able to achieve only short-term goals set in

9

Master of Engineering (Industrial Automation)

actual time, resulting in costlier and often unsatisfactory long-term performance [17]. The figure 2.4 below

shows the basic structure of a model predictive controller.

Figure 2.4: Basic MPC Structure (From Georgia Institute of Technology)

2.3.1 History and Evolution of MPC This section will be devoted to brief history and evolution of Model Predictive Control, from early academia

based concepts of optimal control theory, giving the birth to very first industrial based control applications

using MPC technology. More comprehensive historical survey of industrial MPC can be found in article Qin

and Badgwell (2003) [6], from where the inspiration for this whole section was taken. Moreover, the simplified

evolution of industrial MPC algorithms is captured of Figure 2.5, forming a structural backbone for this section.

[16].

Figure 2.5: Simplified evolutionary tree of the most significant industrial MPC algorithms

10

Master of Engineering (Industrial Automation)

Early Optimal Control Theory:

LQG (Linear Quadratic Gaussian) was developed by Kalman et al., in 1964. MPC is said to have stemmed from

this control scheme. It was used to solve an unconstrained infinite horizon Riccati equation. LQG’s infinite

prediction horizon gives it a powerful stability property, but its low impact in the process industry is due to lack

of constraint handling capability, poor performance due to process nonlinearities, model uncertainty

(robustness), and so on [26].

First Generation MPC:

IDCOM (Identification and Command) or MPHC (Model Predictive Heuristic Control) was developed by

Richalet et al., in 1976. The main features are; linear FIR model Input/output representation, ability to handle

constraint, optimal non-linear inputs computed using a heuristic iterative algorithm, hence, the name MPHC.

This type of MPC falls under the first generation of MPC.

DMC (Dynamic Matrix Control) was developed by Shell Oil Engineers Cutler and Ramaker in 1979 [17] [5].

The main features are; linear FSR model Input-output representation, unconstrained quadratic performance

objective solved over a finite prediction horizon, optimal inputs computed as the solution to a least squares

problem. This MPC falls under the first generation of MPC.

Second Generation MPC:

QDMC (Quadratic Dynamic Matrix Control) was developed by Shell Oil Engineers Cutler et al., in 1983. The

main features are; Explicit Hard constraints handling (improved DMC), linear FSR model for the plant, optimal

inputs computed as the solution to a quadratic program. This MPC falls under the second generation of MPC.

Third Generation MPC:

IDCOM-M, HIECON (Hierarchical Constraint Control), SMCA (Setpoint Multivariable Control Architecture)

and SMOC (Shell Multivariable Optimizing Controller). These were developed in the late 1980-1990s. They

were developed due to the problem of infeasibility in solving the quadratic program in QDMC. Note, SMCA is

a later version of IDCOM-M. These types of MPC fall under the third generation of MPC.

The main features for IDCOM-M/SMCA and HIECON are; linear FIR model for the plant, two

separate quadratic objective functions for inputs and outputs, handles hard and soft constraints with

hard constraints prioritize, screen out ill-conditioned, and single move is computed for each input.

The main features for SMOC are; State space representation, consists of a Kalman filter, Input and

output constraints are handled in a quadratic program, and so on.

Fourth Generation MPC:

DMC-plus and RMPCT were developed after the year 2000. These types of MPC fall under the four generation

of MPC. Their main features are; Improved identification technology, consideration of model uncertainty

(robust control design), consists of windows-based graphical user interfaces, and so on.

11

Master of Engineering (Industrial Automation)

2.3.2 Advantages and Disadvantages of MPC [18] [19] Advantages:

MPC can handle multivariable, MIMO as well as SISO processes.

It can handle non-minimal phase and unstable processes.

It takes account of actuator limitations (constraints) in its cost function.

It allows operation closer to constraints, hence increased Profit.

It handles structural changes and can be used alongside PIDs.

It is easy to tune.

Disadvantages:

There is difficulty in obtaining the predictive model.

Computational burden arising from choice of input horizon length makes it preferable for slow

processes.

2.3.3 Characteristics of MPC It uses a dynamic model to predict future responses and thus provide control action.

Its discrete time framework makes it compatible with digital computers.

It only implements the first move in the optimal control scheme and discards the rest (Receding

Horizon).

It handles time-domain performance specification in its cost function.

It also handles time-domain constraints while solving the control problem.

2.3.4 Formulation of MPC Algorithm Since the cost function is quadratic, the optimization problem is solved using MATLAB QUADPROG function.

The MATLAB QUADPROG function returns incremental inputs for a particular cost function format. Thus, the

actual quadratic cost function must be changed into a format that the QUADPROG function can understand.

The process of obtaining the parameters for the QUADPROG cost function is mostly based on works by [20]

and also [21].

Consider a model

𝑥𝑥𝑡𝑡+1 = 𝐴𝐴𝑥𝑥𝑡𝑡 + 𝐵𝐵𝑃𝑃𝑡𝑡 … … … … … … … … … … … … … … … … … … … … … … … … … . . (2.1)

𝑦𝑦𝑡𝑡 = 𝐶𝐶𝑥𝑥𝑡𝑡 + 𝐷𝐷𝑃𝑃𝑡𝑡 … … … … … … … … … … … … … … … … … … … … … … … … … … … (2.2)

MPC usually requires estimates of the state and/or output over the entire prediction horizon from time t + 1

until time t + N, and can only make these predictions based on information up to and including the current time

t.

𝑥𝑥�𝑡𝑡+𝑖𝑖+1|𝑡𝑡 = 𝐴𝐴𝑥𝑥�𝑡𝑡+𝑖𝑖|𝑡𝑡 + 𝐵𝐵𝑃𝑃𝑡𝑡+𝑖𝑖|𝑡𝑡 … … … … … … … … … … … … … … … … … … … … … . (2.3)

12

Master of Engineering (Industrial Automation)

𝑦𝑦�𝑡𝑡+𝑖𝑖|𝑡𝑡 = 𝐶𝐶𝑥𝑥�𝑡𝑡+𝑖𝑖|𝑡𝑡 + 𝐷𝐷𝑃𝑃𝑡𝑡+𝑖𝑖|𝑡𝑡 … … … … … … … … … … … … … … … … … … … … … … . . (2.4)

𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1, … … ,𝑁𝑁

Equation (2.3) can be expanded in terms of the initial state 𝑥𝑥�𝑡𝑡+1|𝑡𝑡 and future control actions 𝑃𝑃𝑡𝑡+𝑖𝑖|𝑡𝑡 as follows.

𝑥𝑥�𝑡𝑡+2|𝑡𝑡 = 𝐴𝐴𝑥𝑥�𝑡𝑡+1|𝑡𝑡 + 𝐵𝐵𝑃𝑃𝑡𝑡+1|𝑡𝑡

𝑥𝑥�𝑡𝑡+3|𝑡𝑡 = 𝐴𝐴𝑥𝑥�𝑡𝑡+2|𝑡𝑡 + 𝐵𝐵𝑃𝑃𝑡𝑡+2|𝑡𝑡

= 𝐴𝐴�𝐴𝐴𝑥𝑥�𝑡𝑡+1|𝑡𝑡 + 𝐵𝐵𝑃𝑃𝑡𝑡+1|𝑡𝑡� + 𝐵𝐵𝑃𝑃𝑡𝑡+2|𝑡𝑡 (Substituting for 𝑥𝑥�𝑡𝑡+2|𝑡𝑡)

= 𝐴𝐴2𝑥𝑥�𝑡𝑡+1|𝑡𝑡 + 𝐴𝐴𝐵𝐵𝑃𝑃𝑡𝑡+1|𝑡𝑡 + 𝐵𝐵𝑃𝑃𝑡𝑡+2|𝑡𝑡

.

.

.

𝑥𝑥�𝑡𝑡+𝑗𝑗|𝑡𝑡 = 𝐴𝐴𝑗𝑗−1𝑥𝑥�𝑡𝑡+1|𝑡𝑡 + ∑ 𝐴𝐴𝑗𝑗−𝑘𝑘−1𝐵𝐵𝑃𝑃𝑡𝑡+𝑘𝑘|𝑡𝑡.𝑗𝑗−1𝑘𝑘=1

Now in terms of predicting the output, Equation (2.4) can be expanded in terms of the above expression

for 𝑥𝑥�𝑡𝑡+𝑗𝑗|𝑡𝑡, which results in a series of equations that provide optimal output predictions. The key point to note is

that each output prediction is a function of the initial state 𝑥𝑥�𝑡𝑡+1|𝑡𝑡 and future inputs 𝑃𝑃�𝑡𝑡+𝑖𝑖|𝑡𝑡 only.

𝑦𝑦�𝑡𝑡+1|𝑡𝑡 = 𝐶𝐶𝑥𝑥�𝑡𝑡+1|𝑡𝑡 + 𝐷𝐷𝑃𝑃𝑡𝑡+1|𝑡𝑡

𝑦𝑦�𝑡𝑡+2|𝑡𝑡 = 𝐶𝐶𝑥𝑥�𝑡𝑡+2|𝑡𝑡 + 𝐷𝐷𝑃𝑃𝑡𝑡+2|𝑡𝑡

= 𝐶𝐶�𝐴𝐴𝑥𝑥�𝑡𝑡+1|𝑡𝑡 + 𝐵𝐵𝑃𝑃𝑡𝑡+1|𝑡𝑡� + 𝐷𝐷𝑃𝑃𝑡𝑡+2|𝑡𝑡 (Substituting for 𝑥𝑥�𝑡𝑡+2|𝑡𝑡)

= 𝐶𝐶𝐴𝐴𝑥𝑥�𝑡𝑡+1|𝑡𝑡 + 𝐶𝐶𝐵𝐵𝑃𝑃𝑡𝑡+1|𝑡𝑡 + 𝐷𝐷𝑃𝑃𝑡𝑡+2|𝑡𝑡

.

.

.

𝑦𝑦�𝑡𝑡+𝑗𝑗|𝑡𝑡 = 𝐶𝐶𝐴𝐴𝑗𝑗−1𝑥𝑥�𝑡𝑡+1|𝑡𝑡 + 𝐶𝐶�∑ 𝐴𝐴𝑗𝑗−𝑘𝑘−1𝐵𝐵𝑃𝑃𝑡𝑡+𝑘𝑘|𝑡𝑡𝑗𝑗−1𝑘𝑘=1 �+ 𝐷𝐷𝑃𝑃𝑡𝑡+𝑗𝑗|𝑡𝑡

This series of output prediction equations can be stated in an equivalent but more convenient manner using

matrix vector notation. Let

𝑌𝑌𝑡𝑡 ≜ �

𝑦𝑦�𝑡𝑡+1|𝑡𝑡..

𝑦𝑦�𝑡𝑡+𝑁𝑁|𝑡𝑡

�, 𝑈𝑈𝑡𝑡 ≜ �

𝑃𝑃𝑡𝑡+1|𝑡𝑡..

𝑃𝑃𝑡𝑡+𝑁𝑁|𝑡𝑡

�,

and

Λ =

⎣⎢⎢⎢⎢⎡

𝐶𝐶𝐶𝐶𝐴𝐴𝐶𝐶𝐴𝐴2

.

.𝐶𝐶𝐴𝐴𝑁𝑁−1⎦

⎥⎥⎥⎥⎤

, Φ =

⎣⎢⎢⎢⎢⎡ 𝐷𝐷

𝐶𝐶𝐵𝐵 𝐷𝐷𝐶𝐶𝐴𝐴𝐵𝐵 𝐶𝐶𝐵𝐵 𝐷𝐷

. .

.𝐶𝐶𝐴𝐴𝑁𝑁−2𝐵𝐵 . . 𝐶𝐶𝐵𝐵 𝐷𝐷⎦

⎥⎥⎥⎥⎤

.

Then,

𝑌𝑌𝑡𝑡 = Λ𝑥𝑥�𝑡𝑡+1|𝑡𝑡 + Φ𝑈𝑈𝑡𝑡 … … … … … … … … … … … … … … … … … … … … … … … … … . (2.5)

13

Master of Engineering (Industrial Automation)

MPC is really no different from many other forms of feedback control in that the overarching goal is to reject

disturbances whilst tracking a reference signal and at the same time ensuring that input energy (used for

actuation) is sensible.

All control objectives can be represented mathematically using a cost function with a restricted domain, i.e. the

cost function obeys certain constraints (limits), or without a restricted domain, i.e. like the one below.

The cost function should contain a part whose dual effect is handling reference tracking and disturbance

rejection, that is, by penalizing any deviations of the output from the reference signal. The cost function should

also contain a part that handles minimization of actuator input energy, that is, by penalizing the actuator input

moves, since even within limits some actuation energy can be undesirable. See cost function below.

Note that constraints have not been explicitly included in the cost function below, because QUADPROG

handles them in a different format.

𝐽𝐽�𝑥𝑥�𝑡𝑡+1|𝑡𝑡,𝑈𝑈𝑡𝑡� ≜ 12∑ �𝑦𝑦�𝑡𝑡+𝑘𝑘|𝑡𝑡 − 𝑓𝑓𝑡𝑡+𝑘𝑘�𝑄𝑄

2 + �𝑃𝑃𝑡𝑡+𝑘𝑘|𝑡𝑡 − 𝑃𝑃𝑡𝑡+𝑘𝑘−1|𝑡𝑡�𝑃𝑃2𝑁𝑁

𝑘𝑘=1 … … … … … … … (2.6)

Now, the aim is to represent this cost function in a format that QUADPROG will understand, which is

𝐽𝐽�𝑥𝑥�𝑡𝑡+1|𝑡𝑡,𝑈𝑈𝑡𝑡� = 12𝑈𝑈𝑡𝑡𝑇𝑇𝐻𝐻𝑈𝑈𝑡𝑡 + 𝑈𝑈𝑡𝑡𝑇𝑇𝑓𝑓 + 𝐶𝐶3 … … … … … … … … … … … … … … … … … … . . (2.7)

Where 12𝑈𝑈𝑡𝑡𝑇𝑇𝐻𝐻𝑈𝑈𝑡𝑡 and 𝑈𝑈𝑡𝑡𝑇𝑇𝑓𝑓 are the quadratic and linear parts of equation (2.7) respectively. C3 can be safely

ignored.

Now, taking the first part of equation (2.6), and using vectors Yt, alongside Rt given below

𝑅𝑅𝑡𝑡 ≜ �

𝑓𝑓𝑡𝑡+1..

𝑓𝑓𝑡𝑡+𝑁𝑁

12∑ �𝑦𝑦�𝑡𝑡+𝑘𝑘|𝑡𝑡 − 𝑓𝑓𝑡𝑡+𝑘𝑘�𝑄𝑄

2𝑁𝑁𝑘𝑘=1 = 1

2‖𝑌𝑌𝑡𝑡 − 𝑅𝑅𝑡𝑡‖𝑄𝑄2 (Substituting for 𝑌𝑌𝑡𝑡 = Λ𝑥𝑥�𝑡𝑡+1|𝑡𝑡 + Φ𝑈𝑈𝑡𝑡)

12

[(𝑌𝑌𝑡𝑡 − 𝑅𝑅𝑡𝑡)𝑇𝑇𝑄𝑄�(𝑌𝑌𝑡𝑡 − 𝑅𝑅𝑡𝑡)𝑇𝑇] = 12��Λ𝑥𝑥�𝑡𝑡+1|𝑡𝑡 + Φ𝑈𝑈𝑡𝑡 − 𝑅𝑅𝑡𝑡�

𝑇𝑇𝑄𝑄��Λ𝑥𝑥�𝑡𝑡+1|𝑡𝑡 + Φ𝑈𝑈𝑡𝑡 − 𝑅𝑅𝑡𝑡�𝑇𝑇�

12𝑈𝑈𝑡𝑡𝑇𝑇Φ𝑇𝑇𝑄𝑄�Φ𝑈𝑈𝑡𝑡 + 𝑈𝑈𝑡𝑡𝑇𝑇�Φ𝑇𝑇𝑄𝑄�Λ𝑥𝑥�𝑡𝑡+1|𝑡𝑡 − Φ𝑇𝑇𝑄𝑄�𝑅𝑅𝑡𝑡�+ 𝐶𝐶1 … … … … … … … … … … … … . . (2.8)

Note that C1 is a constant term that is not dependent on Yt or Rt.

𝑄𝑄� ≜

⎣⎢⎢⎢⎡𝑄𝑄 𝑄𝑄

..

𝑄𝑄⎦⎥⎥⎥⎤

Now, considering the second part of the cost function above 12∑ �𝑃𝑃𝑡𝑡+𝑘𝑘|𝑡𝑡 − 𝑃𝑃𝑡𝑡+𝑘𝑘−1|𝑡𝑡�𝑃𝑃

2𝑁𝑁𝑘𝑘=1 = 1

2𝑈𝑈𝑡𝑡𝑇𝑇𝑃𝑃�𝑈𝑈𝑡𝑡 − 𝑃𝑃𝑡𝑡+1|𝑡𝑡

𝑇𝑇𝑃𝑃𝑃𝑃𝑡𝑡 + 𝐶𝐶2 … … … … … … … … … (2.9)

Note that C2 is a constant term that is not dependent on Ut.

Where 𝑃𝑃� ≜

⎣⎢⎢⎢⎢⎡2𝑃𝑃 −𝑃𝑃−𝑝𝑝 2𝑃𝑃 −𝑃𝑃

. . .. . .

−𝑃𝑃 2𝑃𝑃 −𝑃𝑃−𝑃𝑃 𝑃𝑃 ⎦

⎥⎥⎥⎥⎤

14

Master of Engineering (Industrial Automation)

Next, for 12∑ �𝑦𝑦�𝑡𝑡+𝑘𝑘|𝑡𝑡 − 𝑓𝑓𝑡𝑡+𝑘𝑘�𝑄𝑄

2𝑁𝑁𝑘𝑘=1 and 1

2∑ �𝑃𝑃𝑡𝑡+𝑘𝑘|𝑡𝑡 − 𝑃𝑃𝑡𝑡+𝑘𝑘−1|𝑡𝑡�𝑃𝑃

2𝑁𝑁𝑘𝑘=1 in equation (2.6), substitute equation (2.8)

and (2.9) respectively to get,

𝐽𝐽�𝑥𝑥�𝑡𝑡+1|𝑡𝑡,𝑈𝑈𝑡𝑡� ≜ 12𝑈𝑈𝑡𝑡𝑇𝑇Φ𝑇𝑇𝑄𝑄�Φ𝑈𝑈𝑡𝑡 + 1

2𝑈𝑈𝑡𝑡𝑇𝑇𝑃𝑃�𝑈𝑈𝑡𝑡 + 𝑈𝑈𝑡𝑡𝑇𝑇�Φ𝑇𝑇𝑄𝑄�Λ𝑥𝑥�𝑡𝑡+1|𝑡𝑡 − Φ𝑇𝑇𝑄𝑄�𝑅𝑅𝑡𝑡� − 𝑃𝑃𝑡𝑡+1|𝑡𝑡

𝑇𝑇𝑃𝑃𝑃𝑃𝑡𝑡 + 𝐶𝐶3

The above equation now becomes equation (2.10), where C3 is a summation of C1 and C2, and can be safely

ignored.

Comparing equation (2.7) and equation (2.10),

𝐻𝐻 = Φ𝑇𝑇𝑄𝑄�Φ + 𝑃𝑃� … … … … … … … … … … … … … … … … … … … … … … … … … … . . . (2.11)

𝑓𝑓 = Γ �𝑥𝑥�𝑡𝑡+1|𝑡𝑡𝑅𝑅𝑡𝑡

� −

⎣⎢⎢⎢⎡𝑃𝑃𝑃𝑃𝑡𝑡

0..0 ⎦⎥⎥⎥⎤

… … … … … … … … … … … … … … … … … … … … … . . … … . . (2.12)

Γ = �Φ𝑇𝑇𝑄𝑄�Λ𝑥𝑥�𝑡𝑡+1|𝑡𝑡 − Φ𝑇𝑇𝑄𝑄�𝑅𝑅𝑡𝑡�… … … … … … … … … … … … … … … … … … … … … . . (2.13)

It is easy to see that H can be computed off-line since it is made of matrices that do not change frequently. Since

H is symmetric by construction, only half of it needs to be stored. Looking at f, it can be seen that only some

part of it can be computed off-line since 𝑥𝑥�𝑡𝑡+1|𝑡𝑡 ,𝑃𝑃𝑡𝑡 , and 𝑅𝑅𝑡𝑡 change often due to MPC computation.

Next, we look at constraint handling technique using QUADPROG.

Input Constraints

The input constraints can be modelled using the linear inequality given below.

𝑏𝑏𝑙𝑙 ≤ 𝑈𝑈𝑡𝑡 ≤ 𝑏𝑏𝑢𝑢

Which means that 𝑈𝑈𝑡𝑡 ≤ 𝑏𝑏𝑢𝑢 and 𝑈𝑈𝑡𝑡 ≥ 𝑏𝑏𝑙𝑙. If 𝑈𝑈𝑡𝑡 ≥ 𝑏𝑏𝑙𝑙 is re-written as −𝑈𝑈𝑡𝑡 ≤ 𝑏𝑏𝑙𝑙, then

� 𝐼𝐼−𝐼𝐼�𝑈𝑈𝑡𝑡 ≤ �𝑏𝑏𝑢𝑢𝑏𝑏𝑙𝑙� ≡ 𝐿𝐿𝑈𝑈𝑡𝑡 ≤ 𝑏𝑏… … … … … … … … … … … … … … … … … … … … … … (2.14)

Output Constraints

The output constraints can be modelled in terms of 𝑈𝑈𝑡𝑡 using the linear inequality given below.

𝑀𝑀𝑌𝑌𝑡𝑡 ≤ 𝐶𝐶

Following equation (3.26), 𝑌𝑌𝑡𝑡 can be substituted as Λ𝑥𝑥�𝑡𝑡+1|𝑡𝑡 + Φ𝑈𝑈𝑡𝑡 to get

𝑀𝑀Λ𝑥𝑥�𝑡𝑡+1|𝑡𝑡 + 𝑀𝑀Φ𝑈𝑈𝑡𝑡 ≤ 𝐶𝐶

∴ 𝑀𝑀Φ𝑈𝑈𝑡𝑡 ≤ 𝐶𝐶 − 𝑀𝑀Λ𝑥𝑥�𝑡𝑡+1|𝑡𝑡 … … … … … … … … … … … … … … … … … … … … … . . … . (2.15)

Combine equation (3.35) and equation (3.36) to get

� 𝐿𝐿𝑀𝑀Φ�𝑈𝑈𝑡𝑡 ≤ �𝑏𝑏

𝐶𝐶 − 𝑀𝑀Λ𝑥𝑥�𝑡𝑡+1|𝑡𝑡� ≡ 𝐿𝐿𝑖𝑖𝑖𝑖𝑈𝑈𝑡𝑡 ≤ 𝑏𝑏𝑖𝑖𝑖𝑖 … … … … … … … … … … … … … … … (2.16)

Thus, with constraints decided and computed, the optimal trajectory, denoted 𝑈𝑈𝑡𝑡∗, is obtained from the

QUADPROG solution of the quadratic programming problem:

𝑈𝑈𝑡𝑡∗ ≜ 𝐽𝐽�𝑥𝑥�𝑡𝑡+1|𝑡𝑡,𝑈𝑈𝑡𝑡�𝑠𝑠. 𝑡𝑡 𝐿𝐿𝑖𝑖𝑖𝑖𝑈𝑈𝑡𝑡 ≤ 𝑏𝑏𝑖𝑖𝑖𝑖

… … … … … … … … … … … … … … … … … … … … … … … … … . . (2.17)

MPC incorporating Integral Control

15

Master of Engineering (Industrial Automation)

A common objective shared by both case studies, discussed earlier, is zero offset tracking. In practice, the best

way to achieve this is to introduce integral action to the closed-loop system. Note that introducing integral

action to the closed-loop system will not be possible without reconsidering the model of the plant.

Considering the model with output noise and state noise below,

𝑥𝑥𝑡𝑡+1 = 𝐴𝐴𝑥𝑥𝑡𝑡 + 𝐵𝐵𝑃𝑃𝑡𝑡 + 𝑤𝑤𝑡𝑡 … … … … … … … … … … … … … … … … … … … … … … . . (2.18)

𝑦𝑦𝑡𝑡 = 𝐶𝐶𝑥𝑥𝑡𝑡 + 𝐷𝐷𝑃𝑃𝑡𝑡 + 𝑑𝑑𝑡𝑡 … … … … … … … … … … … … … … … … … … … … … … … … . . (2.19)

Now to design the observer for the controller, state noise is not considered, while the estimated model

disturbance �̂�𝑑𝑡𝑡+1|𝑡𝑡 is to be considered constant, with value equal to the difference between the actual outputs

and the observer outputs.

∴ �̂�𝑑𝑡𝑡+1|𝑡𝑡 = 𝑦𝑦𝑡𝑡+1 − 𝑦𝑦�𝑡𝑡+1|𝑡𝑡 ≡ 𝑑𝑑𝑡𝑡 … … … … … … … … … … … … … … … … … … … . . (2.20)

The model for the observer is designed considering 𝑑𝑑𝑡𝑡, therefore, the matrices that make up the observer are

augmented, thus inducing integral modes. Note that the optimal control move is also considered for zero offset

tracking, and thus included in the augmented matrices.

The augmented states thus are

�̅�𝑥𝑡𝑡 = �𝑥𝑥𝑡𝑡𝑑𝑑𝑡𝑡𝑃𝑃𝑡𝑡−1

� �̅�𝐴 = �𝐴𝐴 0 𝐵𝐵0 𝐼𝐼 00 0 𝐼𝐼

� 𝐵𝐵� = �𝐵𝐵0𝐼𝐼�

𝑦𝑦�𝑡𝑡 = �𝑦𝑦𝑡𝑡𝑃𝑃𝑡𝑡� 𝐶𝐶̅ = �𝐶𝐶 𝐼𝐼 𝐷𝐷

0 0 𝐼𝐼 � 𝐷𝐷� = �𝐷𝐷𝐼𝐼 �

Thus, the model for the observer is given below as

�̅�𝑥𝑡𝑡+1 = �̅�𝐴�̅�𝑥𝑡𝑡 + 𝐵𝐵�𝑃𝑃�𝑡𝑡 … … … … … … … … … … … … … … … … … … … … … … … … . . (2.21)

𝑦𝑦�𝑡𝑡 = 𝐶𝐶̅�̅�𝑥𝑡𝑡 + 𝐷𝐷�𝑃𝑃�𝑡𝑡 … … … … … … … … … … … … … … … … … … … … … … … … … . . (2.22)

[20] and [21] have also considered similar approaches in the course of their research. By modelling the plant

disturbances as integrated white noise, integral states are added into the controller which guarantees zero offset

tracking, provided the closed-loop system is asymptotically stable.

16

Master of Engineering (Industrial Automation)

CHAPTER 3 METHODOLOGY

3.0 Modelling of Plant Dynamic System Using Historical Data

Implementation of MPC will follow a well-defined path starting from selection of variables through to

controller design and commissioning. Since model predictive control uses the internal model of the plant to be

controlled, the MPC controller depends on how good the model is, hence, a great deal of effort is invested into

developing a model that accurately captures the plant dynamics. There are two major ways of obtaining the

dynamic model of a process. Plant model can be built from first principles if the mathematical formula that

represents the plant is known. This is known as first principle modelling. There are several commercially

available software applications that can be used in developing the process models. However, due to the

complexity of most processes, it is often difficult to build such mathematical models. Alternatively, we can

develop plant dynamic model by using input and output data collected from the plant step response test and use

any available system identification software application to obtain a linear model describing the behaviour of the

plant. This is referred to as data-driven modelling.

For this research, the process model of the hydrocracker reactor was developed using historical data of the

process. Data was collected from the Process Information (PI) historian. The historical data ranging for a period

of about nine (9) months was carefully analysed and used for system identification. The following sections will

outline the methodology for the model identification and controller design.

3.1 Step 1: Selection of variables The first step in MPC design is to select the controlled variables and the manipulated variables. These choices

determine the structure of the MPC control system and should be based on process knowledge and control

objectives. For the hydrocracker reactor, three (3) manipulated variables and four (4) controlled variables were

selected. The three manipulated variables were the DCS setpoints for the three bed inlet temperatures. The four

controlled variables were the reactor WABT and the three bed ABTs.

3x Manipulated Variables (MVs):

- Bed 1 Inlet Temperature Setpoint (MV1)

- Bed 2 Inlet Temperature Setpoint (MV2)

- Bed 3 Inlet Temperature Setpoint (MV3)

4x Controlled Variables (CVs):

- Reactor WABT (CV1)

- Bed 1 ABT (CV2)

- Bed 2 ABT (CV3)

- Bed 3 ABT (CV4)

To simplify data Analysis and limit the transfer function matrix for this process to a 2x2 matrix, only MV1,

MV2, CV1 and CV2 were considered for analysis.

17

Master of Engineering (Industrial Automation)

Table 3.1: Raw process data from PI historian showing interactions between MV1 and CVs

18

Master of Engineering (Industrial Automation)

Table 3.2: Raw process data from PI historian showing interactions between MV2 and CVs

19

Master of Engineering (Industrial Automation)

Table 3.3: Raw process data from PI historian showing interactions between MV3 and CVs

20

Master of Engineering (Industrial Automation)

3.2 Step 2: Plant Test Typically, step response tests are performed on live plant to gather plant input and output data. However, for

this thesis, since the researcher used plant historical data, the raw plant data collected in step 1 above was

carefully analysed to identify points where a step change was made on the manipulated variables and what

effects it had on all the controlled variables. This will help us establish the degree of interactions that exist

between the MV and the CVs.

To test for the interaction between MV1 and CV1 and CV2, the researcher analysed the raw data for a region

where MV2 is constant to isolate the effect of MV2 on the controlled variables. In the same vein, to test for

interaction between MV2 and CV1 and CV2, the researcher analysed the raw data for a region where MV2 is

constant. A trend of the interactions between the manipulated variables and the controlled variables are shown

in the figures below:

Figure 3.1: Plant historical data showing interactions between MV1 and CV1 and CV2

Figure 3.2: Plant historical data showing interactions between MV2 and CV1 and CV2

From figure 3.1 we observed strong interactions between MV1 and CV1 and CV2. When we have a step change

in the bed 1 inlet temperature setpoint (MV1), we can see the reactor WABT (CV1) and the bed 1 ABT (CV2)

closely tracking MV1. However, we can see the limitations of using sets of conventional PID loops to control a

highly interactive process like this. Hence, there is significant offset between the MVs and CVs. In the next

21

Master of Engineering (Industrial Automation)

step, we will analyse the data to extract useful input-output relationship between the manipulated variables and

the controlled variables using the MATLAB system identification toolbox.

3.3 Step 3: Model Estimation There are commercial software packages available that can be used for system identification. For this work, we

used MATLAB System Identification Toolbox for the dynamic model estimation. With the System

Identification Toolbox, it is easy to create mathematical models of dynamic systems from measured input-

output data especially useful for systems that cannot be easily modelled from first principles. This allows the

use time-domain and frequency-domain input-output data to identify continuous-time and discrete-time transfer

functions, process models, and state-space models [22] [28]. Below are the steps taken to estimate the model:

Import time-domain data

Analyze and process data

Determine suitable model structure and order, and estimate model parameters

Validate model accuracy

Import time-domain Data: The first step was to import the input-output data from experiment into MATLAB

workspace as column vectors. MV1, CV11 and CV21 were imported as 1593x1 column vectors. Where CV11

is the change in CV1 resulting from step change in MV1 and CV21 is the change in CV2 resulting from step

change in MV1. Similarly, MV2, CV12 and CV22 were imported as 2049x1 column vectors. Where CV12 is

the change in CV1 resulting from step change in MV2 and CV22 is the change in CV2 resulting from step

change in MV2. These input-output vectors are now imported into the System Identification app as time-

domain data for further processing. When importing data for identifying models, the input-output channel

names and the sampling time (sampling rate = 1 sample per 30s) were specified. The researcher created four

data objects from various input-output combinations to depict the interactions between the manipulated

variables and the controlled variables.

22

Master of Engineering (Industrial Automation)

Figure 3.3: Time domain input-output data for MV1 and CV1.

Figure 3.4: Time domain input-output data for MV1 and CV2.

23

Master of Engineering (Industrial Automation)

Figure 3.5: Time domain input-output data for MV2 and CV1.

Figure 3.6: Time domain input-output data for MV2 and CV2.

24

Master of Engineering (Industrial Automation)

Analyze and Process Data: Measured data often has offsets, slow drifts, outliers, missing values, and other

anomalies. The toolbox removes such anomalies by performing operations such as detrending, filtering,

resampling, and reconstruction of missing data. The toolbox can analyze the suitability of data for identification

and provide diagnostics on the persistence of excitation, existence of feedback loops, and presence of

nonlinearities.

Figure 3.7: System Identification Toolbox showing imported data and estimated models.

MV1CV1: State-space model representing interactions between MV1 and CV1

MV1CV2: State-space model representing interactions between MV1 and CV2

MV2CV1: State-space model representing interactions between MV2 and CV1

MV2CV1: State-space model representing interactions between MV2 and CV2

Estimate Model Parameters: Parametric models, such as transfer functions or state-space models, use a small

number of parameters to capture system dynamics. System Identification Toolbox estimates model parameters

and their uncertainties from time-response and frequency-response data. You can analyze these models using

time-response and frequency-response plots, such as step, impulse, Bode plots, and pole-zero maps. [22]

25

Master of Engineering (Industrial Automation)

For this work, the researcher estimated the internal plant model using state-space model due it’s robustness and

better fit to estimation data compared to the single pole transfer function model. For instance, for MV1CV1, the

state space model has a fit to estimation data of 99.42% compared to transfer function model’s fit to estimation

data of 74.75%. the table below summarizes the comparison between state-space model and transfer function

model in terms of fit to estimation data.

Table 3.4: Comparison between State-space mode and transfer function model fit to estimate data

State-Space Model Transfer Function Model

MV1CV1 99.42% 74.75%

MV1CV2 99.41% 75.12%

MV2CV1 97.73% 54.71%

MV2CV2 99.67% 65.29%

Continuous time identified state space model for MV1CV1:

dxdt

= A x(t) + B u(t) + k e(t)

y(t) = C x(t) + D u(t) + e(t)

ssMV1CV1 =

A = �−0.006453 −0.021490.009955 −0.04279�

B = � 0.000487−0.001513�

C = [9.293 −0.07935]

D = [0]

K = �0.07329−1.005 �

Status:

Estimated using N4SID on time domain data "MV1CV11".

Fit to estimation data: 99.42% (prediction focus)

FPE: 2.871e-05, MSE: 2.843e-05

26

Master of Engineering (Industrial Automation)

Figure 3.8: Step response plot for MV1CV1. (Settling time to steady state = 340s)

Continuous time identified state space model for MV1CV2:

dxdt

= A x(t) + B u(t) + k e(t)

y(t) = C x(t) + D u(t) + e(t)

ssMV1CV2 =

A = �−0.004084 −0.031370.02183 −0.04543�

B = �0.0001111−0.002964�

C = [8.973 −0.1189]

D = [0]

K = �0.0647−1.082�

Status:

Estimated using N4SID on time domain data "MV1CV31".

Fit to estimation data: 99.41% (prediction focus)

FPE: 2.998e-05, MSE: 2.968e-05 27

Master of Engineering (Industrial Automation)

Figure 3.9: Step response plot for MV1CV2. (Settling time to steady state = 146s)

Continuous time identified state space model for MV2CV1:

dxdt

= A x(t) + B u(t) + k e(t)

y(t) = C x(t) + D u(t) + e(t)

ssMV2CV1 =

A = �−0.02172 −0.037280.02884 −0.2332 �

B = �0.0002648−0.0224 �

C = [6.868 −0.02036]

D = [0]

K = � 0.1327−0.1209�

Status:

Estimated using N4SID on time domain data "MV1CV21".

Fit to estimation data: 97.73% (prediction focus)

FPE: 0.0003934, MSE: 0.0003895

28

Master of Engineering (Industrial Automation)

Figure 3.10: Step response plot for MV2CV1. (Settling time to steady state = 197s)

Continuous time identified state space model for MV2CV2:

dxdt

= A x(t) + B u(t) + k e(t)

y(t) = C x(t) + D u(t) + e(t)

ssMV2CV2 =

A = �−0.003512 −0.019640.01637 −0.02136�

B = �0.0001918−0.001292�

C = [13.69 −0.1244]

D = [0]

K = �0.02972−1.244 �

Status:

Estimated using N4SID on time domain data "MV1CV41".

29

Master of Engineering (Industrial Automation)

Fit to estimation data: 99.67% (prediction focus)

FPE: 1.055e-05, MSE: 1.045e-05

Figure 3.11: Step response plot for MV1CV1. (Settling time to steady state = 390s)

Overall Plant Response Model:

The overall plant response model is a combination of all the individual interactions between the manipulated

variables and the controlled variables – that is, a combination of MV1CV1, MV1CV2, MV2CV1 and

MV2CV2.

Overall Continuous time state space model:

ssMVCV_P_C = �ssMV1CV1 ssMV1CV2ssMV2CV1 ssMV2CV2�

ssMVCV_P_C =

30

Master of Engineering (Industrial Automation)

A =

x1 x2 x3 x4 x5 x6 x7 x8

x1 -0.006453 -0.02149 0 0 0 0 0 0

x2 0.009955 -0.04279 0 0 0 0 0 0

x3 0 0 -0.02172 -0.03728 0 0 0 0

x4 0 0 0.02884 -0.2332 0 0 0 0

x5 0 0 0 0 -0.004084 -0.03137 0 0

x6 0 0 0 0 0.02183 -0.04543 0 0

x7 0 0 0 0 0 0 -0.003512 -0.01964

x8 0 0 0 0 0 0 0.01637 -0.02136

B =

u1 u1

x1 0.000487 0

x2 -0.001513 0

x3 0 0.0002648

x4 0 -0.0224

x5 0.0001111 0

x6 -0.002964 0

x7 0 0.0001918

x8 0 -0.001292

C =

x1 x2 x3 x4 x5 x6 x7 x8

y1 9.293 -0.07935 6.868 -0.02036 0 0 0 0

y1 0 0 0 0 8.973 -0.1189 13.69 -0.1244

D =

u1 u1

y1 0 0

y1 0 0

31

Master of Engineering (Industrial Automation)

Figure 3.12a: Overall plant step response model.

32

Master of Engineering (Industrial Automation)

Figure 3.12b: Combined plant step response model.

Validate Model Accuracy: System Identification Toolbox helps validate the accuracy of identified

models using independent sets of measured data from a real system. For a given set of input data, the toolbox

computes the output of the identified model and lets you compare that output with the measured output from a

real system. You can also view the prediction error and produce time-response and frequency-response plots

with confidence bounds to visualize the effect of parameter uncertainties on model responses. [22]

33

Master of Engineering (Industrial Automation)

Figure 3.13: Model validation plot showing Best Fits for MV1CV1 (Best Fits = 84.48%)

Figure 3.14: Model validation plot showing Best Fits for MV1CV2 (Best Fits = 79.2%)

34

Master of Engineering (Industrial Automation)

Figure 3.15: Model validation plot showing Best Fits fir MV2CV1 (Best Fits = 89.08%)

Figure 3.16: Model validation plot showing Best Fits fir MV2CV2 (Best Fits = 71.2%)

35

Master of Engineering (Industrial Automation)

3.4 Step 4: Design of MPC Controller The controller design was done using MPC Designer in MATLAB Model Predictive Control Toolbox. The

MPC design is based on the control and optimization objectives, process constraints, and the dynamic model of

the process. The MPC design parameters will be selected, including the sampling periods, weighting factors,

and control and prediction horizons. Next, the closed-loop system is simulated using the identified process

model and a wide variety of process conditions to evaluate control system performance. The MPC design

parameters are adjusted, if necessary, to obtain satisfactory control system performance and robustness over the

specified range of operating conditions [21] [30]. The next chapter will delve deep into controller design using

MPC designer. MPC controller will be tested using various simulated scenarios.

3.5 Step 5: Commissioning of MPC Controller The commissioning of the MPC controller can be done in two stages. In the first stage, the just completed MPC

controller is implemented on a simulator. A simulator is basically an imitation of the actual process/plant, which

is usually the prediction model used in the MPC controller. It is expected that since there is no model mismatch

between the simulator and the MPC controller, satisfactory performance will be obtained once the tuning

parameters are chosen well. During this stage, several scenarios are tested for set-point tracking and disturbance

rejection capabilities, during which infeasibility issues are handled by prioritizing and/or softening constraints

on the MVs and CVs.

In the second stage, after the controller has been satisfactorily evaluated on the simulator, then the controller is

implemented on the actual process. At this stage, there is little or no confidence in the controller capability;

therefore, the nominal values of the CVs are used to initialize the MPC controller. This action should not cause

any abrupt changes to the behaviour of the plant/process. Gradually, as confidence in the MPC controller

increases, the setpoints are changed so that the controller can make corrective actions to regulate the process to

its setpoints. When the confidence in the MPC controller is satisfactorily high enough, the final thorough

assessment of the controller is carried out by implementing setpoints of significantly greater magnitudes to

induce more rapid and abrupt control moves for analysis. For the scope of this thesis, we focused only on

testing the MPC controller using various simulated scenarios.

36

Master of Engineering (Industrial Automation)

CHAPTER 4 MPC CONTROLLER DESIGN AND SIMULATIONS

4.1 Specifying MPC Controller Parameters

Once the internal plant model is identified, the next step will be to use the identified plant model to complete

the design of model predictive controller. For this thesis, we shall design the controller by using the MPC

designer app in MATLAB. Generally, to design the MPC controller, there are several key parameters that we

need to carefully select and specify. If we do not select these parameters properly, it could lead to poor

performance of our MPC controller. The parameters are listed below:

Specify tuning parameter – Sample time, prediction horizon and control horizon

Specify constraints - Hard and Soft constraints on manipulated variables and output variables

Specify weights on manipulated variables and output variables

specify Models for measurement noise and for unmeasured input and output disturbances

4.1.1 Sample Time It is a general recommendation to use choose a sample time of between 0.1 and 0.25 of principle system

dynamic responses [23]. In this manner, the sample time is fast enough to respond to disturbances but not faster

than necessary to keep the optimization simpler. Qualitatively, as sample time decreases, rejection of unknown

disturbance usually improves. On the other hand, as sample time becomes small, the computational effort

increases dramatically. Thus, the optimal choice is a balance of performance and computational effort [23].

4.1.2 Prediction Horizon The prediction horizon, P, is the number of future control intervals the MPC controller must evaluate by

prediction when optimizing its MVs at control interval k [23]. Simply put, it refers to how far ahead the model

predicts the future. It is a recommended practice to always predict beyond the key dynamics of a process, that is

P > settling time.

4.1.3 Control Horizon The control horizon, M, is the number of control moves to be optimized at control interval k. it is generally

recommended that the control horizon falls between 1 and the prediction horizon P (M << P) [23]. During each

sampling instant, a sequence of M control moves is calculated but only the first move is implemented and all

others are discarded, then a new sequence is calculated at the next sampling instant, after new measurements

become available; again, only the first input move is implemented. This procedure is repeated at each sampling

instant. This key feature of MPC is referred to as receding horizon approach. [7].

37

Master of Engineering (Industrial Automation)

Figure 4.1: Basic concept of MPC – Prediction and Control horizons [7]

4.1.4 Constraints With MPC, we can specify certain constraints on the plant manipulated variable (MV) or the plant output

variable (OV) or MV increment. Constraints are usually classified as either hard or soft. Examples of hard

constraints are known physical limits on the plant MVs. For instance, the hydrocracker reactor temperature

setpoints must not exceed skin temperature of the reactor vessel. Hard constraints must be satisfied by the

quadratic programming (QP) solution. As a rule of thumb, whenever there is both hard MV bounds and hard

MV increment bounds on the same MV, one of them must be softened to prevent them from conflicting.

General recommendation is to soften all OV constraints. [23] [33].

4.1.5 Tuning Weights In addition to robust constraint handling of MPC, we can specify certain weights on the plant manipulated

variable (MV) or the plant output variable (OV) or MV increment. The weight refers to the relative importance

given to each of the parameters at each control interval when the model predictive controller solves the

optimization problem (QP). If more weight is assigned to the MV, the MPC will solve the optimization problem

and make MV adjustments that minimize the cost function while satisfying the constraints. In this mode, the

MPC would be tracking the MV. If maintaining the OV is assigned more weight, the MPC would solve the

optimization problem in such a way to track the OV while satisfying the constraints. We can also assign tuning

weight in a way to track the MV increment rate [29] [32].

38

Master of Engineering (Industrial Automation)

4.2 Controller Design Using MPC Designer

We will follow the guidelines in section 4.1 above to design MPC controller for the hydrocracker process using

the internal plant model identified chapter 3. We shall implement the design using the MPC designer app in

MATLAB.

4.2.1 Import Plant and Define MPC Structure We launch the MPC designer app by using the command “mpcDesigner” on MATLAB workspace. Once the

MPC designer app is opened, we import the HYDROCRACKER model and define the MPC structure. Since

HYDROCRACKER is a stable, continuous-time LTI system, MPC Designer sets the controller sample time to

0.1 Tr, where Tr is the average rise time of HYDROCRACKER.

By default, all plant inputs are defined as manipulated variables and all plant outputs as measured outputs. From

the MPC structure, we have 2 manipulated variables and 2 measured outputs. In the Assign plant i/o channels

section, assign the input and output channel indices such that [23]:

The first input, Bed 1 Inlet Temperature Setpoint (MV1), is a manipulated variable.

The second input, Bed 2 Inlet Temperature Setpoint (MV2), is a manipulated variable.

The first output, Reactor WABT (CV1), is a measured output.

The second output, Bed 1 ABT (CV2), is a measured output.

Figure 4.2: MPC designer – defining MPC structure from imported plant model.

39

Master of Engineering (Industrial Automation)

Once we finish defining the MPC structure and import the plant model, the app runs a default simulation

scenario and updates the Input Response and Output Response plots.

Figure 4.3: MPC designer – Input and Output Channel Specifications.

Figure 4.4: MPC designer – default simulation scenario using default MPC controller created using imported plant model.

The default scenario is configured to simulate a step change of 1 degrees each in both Bed 1 Inlet Temperature

and Bed 2 Inlet Temperature at time of 10 seconds. There are no output disturbances (added at MO channels)

40

Master of Engineering (Industrial Automation)

and there are no load disturbances (added at MV channels). See figure 4.4 for input-output response plots. The

simulation duration is 3000 seconds.

4.2.2 Case 1: Open-Loop Simulation – Verifying Interactions between MVs and CVs This section verifies the interactions between the manipulated variables and controlled variables via a series of

open-loop simulation tests. In figure 4.5, a step change of 5 degrees was applied to Bed 1 Inlet Temperature at a

time of 300 seconds while keeping Bed 2 Inlet Temperature constant. From figure 4.6, it is obvious that there

are very strong interactions between Bed 1 Inlet temperature, Reactor WABT and Bed 1 ABT.

In the same way, figure 4.7 shows a step change of -4 degrees on the Bed 2 Inlet Temperature at a time of 100

seconds while keeping Bed 1 Inlet Temperature constant. Again, from figure 4.8, it is obvious that there are

very strong interactions between Bed 2 Inlet temperature, Reactor WABT and Bed 1 ABT.

Figure 4.5: MPC designer – Interactions Between MV1 and CV1 and CV2 (MV2 is constant).

41

Master of Engineering (Industrial Automation)

Figure 4.6: MPC designer – Input and Output Response between MV1 and CV1 and CV2 (MV2 is constant).

Figure 4.7: MPC designer – Interactions Between MV2 and CV1 and CV2 (MV1 is constant).

42

Master of Engineering (Industrial Automation)

Figure 4.8: MPC designer – Input and Output Response between MV2 and CV1 and CV2 (MV1 is constant).

Figure 4.9 simulate combined step changes on both MV1 and MV2 at different times. A step change of 5

degrees in Bed 1 Inlet Temperature at a time of 50 seconds and a step change of -2 degrees (temperature

decrease) in Bed 2 Inlet Temperature at a time of 50 seconds. As in the case of the default scenario, there are no

output disturbances (added at MO channels) and there are no load disturbances (added at MV channels). The

simulation duration is 3000 seconds.

Figure 4.9: MPC designer – Combined step changes on MV1 and MV2.

43

Master of Engineering (Industrial Automation)

Figure 4.10: MPC designer – Input and Output Response Plots for Combined step changes on MV1 and MV2

From figure 4.10 above, it is obvious that there are strong interactions between the two manipulated variables

(Bed 1 Inlet Temperature and Bed 2 Inlet Temperature) and the two controlled variables (Reactor WABT and

Bed 1 ABT). When Bed 1 inlet temperature changed by 5 degrees at 50 seconds, both the reactor WABT and

Bed 1 ABT changed accordingly from a nominal value of 360 degrees to 365 degrees. Similarly, when Bed 2

inlet temperature was decreased by 2 degrees at 650 seconds, again, both the reactor WABT and Bed 1 ABT

changed accordingly from a nominal value of 365 degrees to 363 degrees.

4.2.3 Case 2: Closed-Loop Simulations Case Study 1: Step Change in Bed 1 Inlet Temperature Only: for this case study, a step change of 5 degrees

is applied to Bed 1 Inlet temperature at time 200 seconds while Bed 2 Inlet temperature is kept constant. This is

to simulate how the MPC controller responds to the step changes in manipulated variables. In the tuning tab of

MPC designer app, Sample time for the MPC controller is set to 1 second, the prediction horizon is 15 and the

control horizon is 3. The simulation duration is 500 seconds.

\

Figure 4.11: MPC designer – Tuning parameters configuration.

44

Master of Engineering (Industrial Automation)

Figure 4.12: MPC designer – Simulation Settings for Case Study 1

Figure 4.13: MPC designer – Input and Output Response Plots for Case Study 1.

45

Master of Engineering (Industrial Automation)

The input and output response plots in figure 4.13 shows how the MPC controller quickly rejects the

disturbance on CV2 resulting from the step change of 5 degrees in MV1. Hence, the MPC controller returns

CV2 (Bed 1 ABT) to its nominal value of 360 degrees in about 50 seconds. However, MPC controller adjust the

CV1 (Reactor WABT) to its new setpoint of 365 degrees because of step change of 5 degrees in MV1.

Case Study 2: Step Change in Bed 2 Inlet Temperature Only: for this case study, a step change of -3 degrees

(temperature decrease) is applied to Bed 2 Inlet temperature at time 50 seconds while Bed 1 Inlet temperature is

kept constant. This is to simulate how the MPC controller responds to the step changes in manipulated

variables. The Sample time for the MPC controller is set to 1 second, the prediction horizon is 15 and the

control horizon is 3. The simulation duration is 500 seconds.

Figure 4.14: MPC designer – Simulation Settings for Case Study 2

46

Master of Engineering (Industrial Automation)

Figure 4.15: MPC designer – Input and Output Response Plots for Case Study 2.

The input and output response plots in figure 4.15 shows how the MPC controller quickly rejects the

disturbance on CV1 resulting from the step change of -3 degrees in MV2. Hence, the MPC controller returns

CV1 (Reactor WABT) to its nominal value of 360 degrees in about 50 seconds. However, MPC controller

adjust the CV2 (Bed 1 ABT) to its new setpoint of 357 degrees because of step change of -3 degrees in MV2.

Case Study 3: Combined Step Changes in MV1 and MV2: This case study combines step changes in MV1

and MV2 using the same specifications as in case study 1 and 2 above. A step change of 5 degrees in Bed 1

Inlet Temperature at a time of 200 seconds and a step change of -3 degrees (temperature decrease) in Bed 2

Inlet Temperature at a time of 50 seconds. As in the case of the default scenario, there are no output

disturbances (added at MO channels) and there are no load disturbances (added at MV channels). The Sample

time for the MPC controller is set to 1 second, the prediction horizon is 15 and the control horizon is 3. The

simulation duration is 500 seconds.

As expected from the input and output response plots (figure 4.17), the MPC controller responds quickly to

setpoint changes while effectively handling loop interactions that exist between manipulated variables and

controlled variables.

47

Master of Engineering (Industrial Automation)

Figure 4.16: MPC designer – Simulation Settings for Case Study 3

Figure 4.17: MPC designer – Input and Output Response Plots for Case Study 3.

48

Master of Engineering (Industrial Automation)

Case Study 4: Specifying Input Constraints on MV1 and MV2: This case study uses the same specifications

as in case study 3 but includes input constraints on MV1 and MV2 respectively for both the range (upper and

lower bounds) and rate of change limits (minimum and maximum). When input constraints are specified, at

each control interval, the MPC solves the optimization problem in such a way that constraints on manipulated

variables are not violated. For this simulation, MV1 (Bed 1 Inlet temperature) is configured to change between

0 and 380 degrees and the rate of change limit is from -2 to +2. MV2 (Bed 2 Inlet temperature) is configured to

change between 0 and 440 degrees and the rate of change limit is from -2 to +2. No soft constraints are

configured for MV1 and MV2. Refer to figure. The simulation duration is 2000 seconds.

Figure 4.18: MPC designer – Input Constraint Specification for Case Study 4

49

Master of Engineering (Industrial Automation)

Figure 4.19: MPC designer – Input and Output Response Plots for Case Study 4

As can be seen from the input and output response plots (figure 4.19), once the Bed 2 Inlet temperature reaches

440 degrees, the MPC imposes the MV2 temperature constraint on the manipulated variable at 600 seconds.

The controller makes a compromise between the two competing control objectives: Reactor temperature control

and constraint satisfaction. Because no soft constraint is configured for MV1 and MV2, the MPC controller

trades off reactor temperature control for input constraint satisfaction. A softer input constraint enables the

controller to sacrifice the constraint requirement more to achieve improved temperature control.

Case Study 5: Specifying Controller Tuning Weights on Measured Outputs: As can be seen in case study 4,

because of the hard constraints on MV1 and MV2, the controller in a bit to satisfy the input constraint,

sacrificed the output variables (temperature control). When there are several measured outputs, it is possible to

specify higher weight on the most important output (primary control objectives), so that it is always satisfied at

the expense of small violations on the other measured outputs. For the hydrocracker reactor, the primary control

objective is maintaining the reactor WABT which is an indication of the overall hydrocracker reaction.

This case study uses the same specifications as in case study 4 but includes specifying manipulated variable

(MV) rate weight for both MV1 and MV2. In addition, output weight is assigned to the Reactor WABT (CV1)

which is the primary control objective. Refer to figure 4.20 for tuning weight specifications for the input

weights and output weights respectively. Input MV rate weights for both MV1 and MV2 is set to 0.2. increasing

the MV rate weights penalizes large MV changes in the controller optimization cost function. Output weight for

CV1 is set to 1 while CV2 is set to 0. The simulation duration is 1000 seconds.

50

Master of Engineering (Industrial Automation)

Figure 4.20: MPC designer – Tuning Weights Specification for Case Study 5

Figure 4.21: MPC designer – Input and Output Response Plots for Case Study 5

As can be seen from the input and output response plots (figure 4.21), because of the tuning weight on CV1, the

MPC controller tracks the Reactor WABT at the expense of small violations on Bed 1 ABT. Hence, the primary

control objective is always satisfied at each control interval when MPC solves the quadratic optimization

problem. Generally, increasing CV weights, makes the control tighter whereas increasing MV weights results in

smoother moves. [9].

51

Master of Engineering (Industrial Automation)

CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions This research has been able to simulate how to successfully solve the complex multiloop interaction problem

inherent in the hydrocracker reaction process in the Escravos Gas-to-Liquid (EGTL) plant which is in Delta

State, Nigeria using advanced process control strategy - dynamic matrix control (DMC) or model predictive

control (MPC). From the simulation results in section 4.2.3, MPC controller proved to be more robust in

handling defined process constraints (input or output constraints), tracking setpoints and optimizing control cost

function. Hence, MPC can overcome the limitations of the current single loop PID control applied to the

hydrocracker process.

This work also detailed how to develop the dynamic model of any process given the historical data of the plant

from which input-output data correlations can be deduced. This is particularly important for two reasons. First,

it is always not convenient to perform step response tests on live plants to gather input-output data due to

operational reasons. Secondly, for most complex processes, it is difficult to obtain the dynamic model of most

processes from first principles or by modelling from mathematical formula. Hence the data-driven modelling

approach presented in this research work can be used to reconstruct the dynamic of any plant provided the

historical data of that plant is available.

5.2 Recommendations for Future Work Taking into consideration the aims and objectives of this research and the time constraint, this work reduced the

order of interactions in the system to a 2x2 MIMO to avoid too much complexity. To capture all the key

dynamics and multi-loop interactions in the hydrocracker process, this work can be expanded to a at least 5x6

MIMO or even higher order MIMO. In addition, other constraints like the bed temperature delta (bed ∆T) and

hydrogen quench valve limits can be considered.

This work focused on linear time invariant systems, however, most practical MIMO processes are nonlinear,

future study on how to incorporate the MPC controller for nonlinear systems should be considered. Also,

advanced system identification methods for nonlinear systems like using neural networks can be considered for

future work to capture the non-linearities of the hydrocracker process.

52

Master of Engineering (Industrial Automation)

REFERENCES [1] Willis, M. J. and Tham, M. T., “Advanced Process Control”, (2009).

http://ncl.ac.uk/UofNew(AdvancedControl).htm

[2] Seborg, D. E., Edgar, T. F., and Mellichamp, D. A. Process Dynamics and Control, 2nd ed. New Jersey:

John Wiley & Sons Inc, 2003, pp. 411 – 435.

[3] Jean-Plerre Gagnepaln’ and Dale E. Seborg, Analysis of Process Interactions with Applications to Multiloop

Control System Design ‘Ind. Eng. Chem. Process, Des. Dev. 1982, 21, 5-1 1.

[4] Hsiao-Ping H., Masahiro O., lori H., Dynamic interaction and multiloop control system design, J. Proc.

Cont. 1994, Volume 4, Number I.

[5] Cutler, C. R., and B. L. Ramaker, Dynamic Matrix Control-A Computer Control Algorithm, Proc. Joint

Auto. Control Conf, Paper WP5-B, San Francisco (1980).

[6] Quin, S. J., and T. A. Badgwell, A Survey of Model Predictive Control Technology, Control Eng. Practice,

11, 733 (2003).

[7] D.E. Seborg, T.F. Edgar and F.J. Doyle, Process Dynamics and Control, Third Edition, John Wiley, 2011.

[8] S.J. Kelly, M.D. Rogers and D.W. Hoffman, Quadratic Dynamic Matrix Control of Hydrocracking

Reactors, American Control Conference, Atlanta, GA, USA (1988).

[9] G. Dila, Model predictive controller design of hydrocracker reactors, Turk J Elec Eng & Comp Sci, Vol.19,

No.5, 2011.

[10] Arno de Klerk, Fischer-Tropsch Refining Chapter 12, WILEY-VCH Verlag GmbH & Co. KGaA, Aug 29,

2011.

[11] Gregory, W. H., and Paul R. R. Controlling Hydrocracker Temperature Excursions, NPRA Q&A and

Technology Forum, Plant Automation & Decision Support, October 9-12, 2011.

[12] Chevron Nigeria Limited, EGTL Unit 50 Plant Operations Manual.

[13] Douglas J. Cooper, Practical Process Control Using LOOP-PRO Software, Control Station, Inc. 2005.

[14] S.J. Kelly, M.D. Rogers and D.W. Hoffman, Quadratic Dynamic Matrix Control of Hydrocracking

Reactors, American Control Conference, Atlanta, GA, USA (1988).

[15] S.J. Kelly, M.D. Rogers and D.W. Hoffman, Quadratic Dynamic Matrix Control of Hydrocracking

Reactors, American Control Conference, Atlanta, GA, USA (1988).

[16] J. Drgona, Model Predictive Control with Applications in Building, Bratislava (2015).

[17] García, C. E., Prett, D. M. and Morari, M., “Model Predictive Control: Theory and Practice – A survey,”

Automatica, vol. 25, no. 3, pp. 335 – 348, 1989.

[18] Roberts, P.D., “A Brief Overview of Model Predictive Control: Model Predictive Control: Techniques and

Applications - Day 1,” Colloquium organized by Professional Group B1 (Control systems theory and

design) and B2 (Applied control techniques) IEE, Savoy Place, London, April 1999.

[19] Rossiter, J.A., “Reducing the Computational Burden in Predictive Control: Model Predictive Control:

Techniques and Applications - Day 1,” Colloquium organized by Professional Group B1 (Control systems

theory and design) and B2 (Applied control techniques) IEE, Savoy Place, London, April 1999.

[20] Wills, A. G., Technical Report EE04025 – Notes on Linear Model Predictive Control, pp. 1 – 15, 2004.

53

Master of Engineering (Industrial Automation)

[21] Maciejowski, J. M., Predictive Control with Constraints, Essex: Pearson Education Limited, 2002, pp. 248

– 275.

[22] L. Ljung, System Identification Toolbox – MATLAB & SIMULINK, MathWorks, Inc. R2015a (2015).

[23] A. Bemporad, M. Morari, and N. L. Ricker, Model Predictive Control Toolbox – MATLAB, MathWorks,

Inc. R2015a (2015).

[24] Nikolaou, M., “Model Predictive Controllers: A Critical Synthesis of Theory and Industrial Needs,”

Automatica, vol. 43, no. 5, pp. 885 – 891, May 2007.

[25] Roberts, P.D., “A Brief Overview of Model Predictive Control: Model Predictive Control: Techniques and

Applications - Day 1,” Colloquium organized by Professional Group B1 (Control systems theory and

design) and B2 (Applied control techniques) IEE, Savoy Place, London, April 1999.

[26] Rossiter, J.A., “Reducing the Computational Burden in Predictive Control: Model Predictive Control:

Techniques and Applications - Day 1,” Colloquium organized by Professional Group B1 (Control systems

theory and design) and B2 (Applied control techniques) IEE, Savoy Place, London, April 1999.

[27] Marjanovic, O., Industrial Control Systems, University of Manchester, pp. 32 – 50, 2010.

[28] Ljung, L., System Identification: Theory for the User, New Jersey: Prentice-Hall, 1987

[29] Wills, A. G., Technical Report EE04025 – Notes on Linear Model Predictive Control, pp. 1 – 15, 2004.

[30] Muske, K. R., and Rawlings, J. B., “Model Predictive Control with Linear Models,” American Institute for

Chemical Engineers, vol. 39, no. 2, pp. 262 – 287, 1993.

[31] Wang, L., Advances in Industrial Control: Model Predictive Control System Design and Implementation

Using MATLAB, London: Springer-Verlag, 2009, pp. 1 – 42.

[32] Zhou, K., and Doyle, J. C., Essentials of Robust Control, New Jersey: Prentice Hall Inc., 1998, pp. 129 –

131.

[33] Zafiriou, E., “Robust Model Predictive Control of Processes with Hard Constraints,” Computers in

Chemical Engineering, vol. 14, no. 4, pp. 359 – 371, 1990.

54

Master of Engineering (Industrial Automation)

APPENDIX A MATLAB Simulations

Open-Loop Simulations

%% create MPC controller object with sample time MPC1 = mpc(HYDROCRACKER_C_2, 11); %% specify prediction horizon MPC1.PredictionHorizon = 10; %% specify control horizon MPC1.ControlHorizon = 2; %% specify nominal values for inputs and outputs MPC1.Model.Nominal.U = [340;355]; MPC1.Model.Nominal.Y = [360;360]; %% specify weights MPC1.Weights.MV = [0 0]; MPC1.Weights.MVRate = [0.1 0.1]; MPC1.Weights.OV = [1 1]; MPC1.Weights.ECR = 100000; %% specify simulation options options = mpcsimopt(); options.Model = HYDROCRACKER_S_1; options.MVSignal = MPC1_MVSignal_2; options.RefLookAhead = 'off'; options.MDLookAhead = 'off'; options.Constraints = 'on'; options.OpenLoop = 'on'; %% run simulation sim(MPC1, 91, MPC1_RefSignal_2, MPC1_MDSignal_2, options); %% create MPC controller object with sample time MPC1 = mpc(HYDROCRACKER_C_4, 11); %% specify prediction horizon MPC1.PredictionHorizon = 10; %% specify control horizon MPC1.ControlHorizon = 2; %% specify nominal values for inputs and outputs MPC1.Model.Nominal.U = [340;355]; MPC1.Model.Nominal.Y = [360;360]; %% specify weights MPC1.Weights.MV = [0 0]; MPC1.Weights.MVRate = [0.1 0.1]; MPC1.Weights.OV = [1 1]; MPC1.Weights.ECR = 100000; %% specify simulation options options = mpcsimopt(); options.Model = HYDROCRACKER_S_3; options.MVSignal = MPC1_MVSignal_4; options.RefLookAhead = 'off'; options.MDLookAhead = 'off'; options.Constraints = 'on'; options.OpenLoop = 'on'; %% run simulation sim(MPC1, 91, MPC1_RefSignal_4, MPC1_MDSignal_4, options);

55

Master of Engineering (Industrial Automation)

%% create MPC controller object with sample time MPC1 = mpc(HYDROCRACKER_C_5, 11); %% specify prediction horizon MPC1.PredictionHorizon = 10; %% specify control horizon MPC1.ControlHorizon = 2; %% specify nominal values for inputs and outputs MPC1.Model.Nominal.U = [340;355]; MPC1.Model.Nominal.Y = [360;360]; %% specify weights MPC1.Weights.MV = [0 0]; MPC1.Weights.MVRate = [0.1 0.1]; MPC1.Weights.OV = [1 1]; MPC1.Weights.ECR = 100000; %% specify simulation options options = mpcsimopt(); options.Model = HYDROCRACKER_S_4; options.MVSignal = MPC1_MVSignal_5; options.RefLookAhead = 'off'; options.MDLookAhead = 'off'; options.Constraints = 'on'; options.OpenLoop = 'on'; %% run simulation sim(MPC1, 273, MPC1_RefSignal_5, MPC1_MDSignal_5, options); Closed-Loop Simulations: Case Study 1 %% create MPC controller object with sample time MPC1 = mpc(HYDROCRACKER_C_6, 1); %% specify prediction horizon MPC1.PredictionHorizon = 15; %% specify control horizon MPC1.ControlHorizon = 3; %% specify nominal values for inputs and outputs MPC1.Model.Nominal.U = [340;355]; MPC1.Model.Nominal.Y = [360;360]; %% specify weights MPC1.Weights.MV = [0 0]; MPC1.Weights.MVRate = [0.1 0.1]; MPC1.Weights.OV = [1 1]; MPC1.Weights.ECR = 100000; %% specify simulation options options = mpcsimopt(); options.Model = HYDROCRACKER_S_5; options.MVSignal = MPC1_MVSignal_6; options.RefLookAhead = 'off'; options.MDLookAhead = 'off'; options.Constraints = 'on'; options.OpenLoop = 'off'; %% run simulation sim(MPC1, 501, MPC1_RefSignal_6, MPC1_MDSignal_6, options);

56

Master of Engineering (Industrial Automation)

Closed-Loop Simulations: Case Study 2 %% create MPC controller object with sample time MPC1 = mpc(HYDROCRACKER_C_7, 1); %% specify prediction horizon MPC1.PredictionHorizon = 15; %% specify control horizon MPC1.ControlHorizon = 3; %% specify nominal values for inputs and outputs MPC1.Model.Nominal.U = [340;355]; MPC1.Model.Nominal.Y = [360;360]; %% specify weights MPC1.Weights.MV = [0 0]; MPC1.Weights.MVRate = [0.1 0.1]; MPC1.Weights.OV = [1 1]; MPC1.Weights.ECR = 100000; %% specify simulation options options = mpcsimopt(); options.Model = HYDROCRACKER_S_6; options.MVSignal = MPC1_MVSignal_7; options.RefLookAhead = 'off'; options.MDLookAhead = 'off'; options.Constraints = 'on'; options.OpenLoop = 'off'; %% run simulation sim(MPC1, 501, MPC1_RefSignal_7, MPC1_MDSignal_7, options); Closed-Loop Simulations: Case Study 3 %% create MPC controller object with sample time MPC1 = mpc(HYDROCRACKER_C_8, 1); %% specify prediction horizon MPC1.PredictionHorizon = 15; %% specify control horizon MPC1.ControlHorizon = 3; %% specify nominal values for inputs and outputs MPC1.Model.Nominal.U = [340;355]; MPC1.Model.Nominal.Y = [360;360]; %% specify weights MPC1.Weights.MV = [0 0]; MPC1.Weights.MVRate = [0.1 0.1]; MPC1.Weights.OV = [1 1]; MPC1.Weights.ECR = 100000; %% specify simulation options options = mpcsimopt(); options.Model = HYDROCRACKER_S_7; options.MVSignal = MPC1_MVSignal_8; options.RefLookAhead = 'off'; options.MDLookAhead = 'off'; options.Constraints = 'on'; options.OpenLoop = 'off'; %% run simulation sim(MPC1, 501, MPC1_RefSignal_8, MPC1_MDSignal_8, options);

57

Master of Engineering (Industrial Automation)

Closed-Loop Simulations: Case Study 4 %% create MPC controller object with sample time MPC1 = mpc(HYDROCRACKER_C_9, 1); %% specify prediction horizon MPC1.PredictionHorizon = 15; %% specify control horizon MPC1.ControlHorizon = 3; %% specify nominal values for inputs and outputs MPC1.Model.Nominal.U = [340;355]; MPC1.Model.Nominal.Y = [360;360]; %% specify constraints for MV and MV Rate MPC1.MV(1).Min = 0; MPC1.MV(1).Max = 380; MPC1.MV(1).RateMin = -2; MPC1.MV(1).RateMax = 2; MPC1.MV(2).Min = 0; MPC1.MV(2).Max = 420; MPC1.MV(2).RateMin = -2; MPC1.MV(2).RateMax = 2; %% specify weights MPC1.Weights.MV = [0 0]; MPC1.Weights.MVRate = [0.1 0.1]; MPC1.Weights.OV = [1 1]; MPC1.Weights.ECR = 100000; %% specify simulation options options = mpcsimopt(); options.Model = HYDROCRACKER_S_8; options.MVSignal = MPC1_MVSignal_9; options.RefLookAhead = 'off'; options.MDLookAhead = 'off'; options.Constraints = 'on'; options.OpenLoop = 'off'; %% run simulation sim(MPC1, 2001, MPC1_RefSignal_9, MPC1_MDSignal_9, options); Closed-Loop Simulations: Case Study 5 %% create MPC controller object with sample time MPC1 = mpc(HYDROCRACKER_C_10, 1); %% specify prediction horizon MPC1.PredictionHorizon = 15; %% specify control horizon MPC1.ControlHorizon = 3; %% specify nominal values for inputs and outputs MPC1.Model.Nominal.U = [340;355]; MPC1.Model.Nominal.Y = [360;360]; %% specify constraints for MV and MV Rate MPC1.MV(1).Min = 0; MPC1.MV(1).Max = 380; MPC1.MV(1).RateMin = -2; MPC1.MV(1).RateMax = 2; MPC1.MV(2).Min = 0; MPC1.MV(2).Max = 420; MPC1.MV(2).RateMin = -2; MPC1.MV(2).RateMax = 2; %% specify weights MPC1.Weights.MV = [0 0];

58

Master of Engineering (Industrial Automation)

MPC1.Weights.MVRate = [0.2 0.2]; MPC1.Weights.OV = [1 0]; MPC1.Weights.ECR = 100000; %% specify simulation options options = mpcsimopt(); options.Model = HYDROCRACKER_S_9; options.MVSignal = MPC1_MVSignal_10; options.RefLookAhead = 'off'; options.MDLookAhead = 'off'; options.Constraints = 'on'; options.OpenLoop = 'off'; %% run simulation sim(MPC1, 1001, MPC1_RefSignal_10, MPC1_MDSignal_10, options);

59

Master of Engineering (Industrial Automation)

APPENDIX B Plant Historical Data Used for Model Estimation

Time MV1 CV1 CV2

Time MV2 CV1 CV2 01-Oct-17 21:12:30 329.00 332.89 330.49

09-Oct-17 01:11:30 348.00 349.05 344.36

01-Oct-17 21:13:00 329.00 332.89 330.50

09-Oct-17 01:12:00 348.00 349.06 344.40 01-Oct-17 21:13:30 329.00 332.88 330.50

09-Oct-17 01:12:30 348.00 349.08 344.46

01-Oct-17 21:14:00 329.00 332.88 330.48

09-Oct-17 01:13:00 348.00 349.09 344.49 01-Oct-17 21:14:30 329.00 332.88 330.51

09-Oct-17 01:13:30 348.00 349.09 344.49

01-Oct-17 21:15:00 329.00 332.88 330.52

09-Oct-17 01:14:00 348.00 349.09 344.50 01-Oct-17 21:15:30 329.00 332.88 330.52

09-Oct-17 01:14:30 348.00 349.10 344.50

01-Oct-17 21:16:00 329.00 332.88 330.52

09-Oct-17 01:15:00 348.00 349.10 344.52 01-Oct-17 21:16:30 329.00 332.88 330.55

09-Oct-17 01:15:30 348.00 349.10 344.56

01-Oct-17 21:17:00 329.00 332.89 330.56

09-Oct-17 01:16:00 348.00 349.12 344.56 01-Oct-17 21:17:30 329.00 332.89 330.59

09-Oct-17 01:16:30 348.00 349.12 344.53

01-Oct-17 21:18:00 329.00 332.88 330.57

09-Oct-17 01:17:00 348.00 349.14 344.56 01-Oct-17 21:18:30 329.00 332.88 330.57

09-Oct-17 01:17:30 348.00 349.15 344.57

01-Oct-17 21:19:00 329.00 332.87 330.54

09-Oct-17 01:18:00 348.00 349.16 344.59 01-Oct-17 21:19:30 329.00 332.88 330.57

09-Oct-17 01:18:30 348.00 349.17 344.61

01-Oct-17 21:20:00 329.00 332.88 330.58

09-Oct-17 01:19:00 348.00 349.19 344.59 01-Oct-17 21:20:30 329.00 332.87 330.57

09-Oct-17 01:19:30 348.00 349.20 344.60

01-Oct-17 21:21:00 329.00 332.88 330.57

09-Oct-17 01:20:00 348.00 349.22 344.60 01-Oct-17 21:21:30 329.00 332.88 330.57

09-Oct-17 01:20:30 348.00 349.24 344.60

01-Oct-17 21:22:00 329.00 332.87 330.57

09-Oct-17 01:21:00 348.00 349.26 344.68 01-Oct-17 21:22:30 329.00 332.88 330.60

09-Oct-17 01:21:30 348.00 349.26 344.66

01-Oct-17 21:23:00 329.00 332.88 330.59

09-Oct-17 01:22:00 348.00 349.27 344.66 01-Oct-17 21:23:30 329.00 332.88 330.60

09-Oct-17 01:22:30 348.00 349.28 344.62

01-Oct-17 21:24:00 329.00 332.88 330.60

09-Oct-17 01:23:00 348.00 349.30 344.66 01-Oct-17 21:24:30 329.00 332.88 330.58

09-Oct-17 01:23:30 348.00 349.31 344.64

01-Oct-17 21:25:00 329.00 332.88 330.59

09-Oct-17 01:24:00 348.00 349.32 344.64 01-Oct-17 21:25:30 329.00 332.88 330.59

09-Oct-17 01:24:30 348.00 349.32 344.64

01-Oct-17 21:26:00 329.00 332.89 330.61

09-Oct-17 01:25:00 348.00 349.35 344.65 01-Oct-17 21:26:30 329.00 332.88 330.59

09-Oct-17 01:25:30 348.00 349.36 344.65

01-Oct-17 21:27:00 329.00 332.88 330.59

09-Oct-17 01:26:00 348.00 349.37 344.66 01-Oct-17 21:27:30 329.00 332.89 330.60

09-Oct-17 01:26:30 348.00 349.38 344.63

01-Oct-17 21:28:00 329.00 332.88 330.57

09-Oct-17 01:27:00 348.00 349.38 344.59 01-Oct-17 21:28:30 329.00 332.87 330.56

09-Oct-17 01:27:30 348.00 349.38 344.57

01-Oct-17 21:29:00 329.00 332.87 330.56

09-Oct-17 01:28:00 348.00 349.39 344.57 01-Oct-17 21:29:30 329.00 332.88 330.56

09-Oct-17 01:28:30 348.00 349.40 344.58

01-Oct-17 21:30:00 329.00 332.86 330.52

09-Oct-17 01:29:00 348.00 349.40 344.56 01-Oct-17 21:30:30 329.00 332.87 330.52

09-Oct-17 01:29:30 348.00 349.40 344.54

01-Oct-17 21:31:00 329.00 332.87 330.52

09-Oct-17 01:30:00 348.00 349.40 344.52 01-Oct-17 21:31:30 329.00 332.87 330.53

09-Oct-17 01:30:30 348.00 349.41 344.52

01-Oct-17 21:32:00 329.00 332.87 330.54

09-Oct-17 01:31:00 348.00 349.41 344.54 01-Oct-17 21:32:30 329.00 332.87 330.53

09-Oct-17 01:31:30 348.00 349.42 344.52

01-Oct-17 21:33:00 329.00 332.88 330.54

09-Oct-17 01:32:00 348.00 349.42 344.52 01-Oct-17 21:33:30 329.00 332.87 330.53

09-Oct-17 01:32:30 348.00 349.42 344.50

01-Oct-17 21:34:00 329.00 332.88 330.54

09-Oct-17 01:33:00 348.00 349.44 344.56 01-Oct-17 21:34:30 329.00 332.88 330.56

09-Oct-17 01:33:30 348.00 349.45 344.57

01-Oct-17 21:35:00 329.00 332.88 330.53

09-Oct-17 01:34:00 348.00 349.45 344.60 01-Oct-17 21:35:30 329.00 332.88 330.55

09-Oct-17 01:34:30 348.00 349.45 344.57

01-Oct-17 21:36:00 329.00 332.90 330.60

09-Oct-17 01:35:00 348.00 349.45 344.56 01-Oct-17 21:36:30 329.00 332.89 330.57

09-Oct-17 01:35:30 348.00 349.45 344.53

01-Oct-17 21:37:00 329.00 332.89 330.60

09-Oct-17 01:36:00 348.00 349.45 344.52 01-Oct-17 21:37:30 329.00 332.90 330.59

09-Oct-17 01:36:30 348.00 349.45 344.51

01-Oct-17 21:38:00 329.00 332.90 330.59

09-Oct-17 01:37:00 348.00 349.46 344.55 01-Oct-17 21:38:30 329.00 332.91 330.64

09-Oct-17 01:37:30 348.00 349.46 344.54

60

Master of Engineering (Industrial Automation)

01-Oct-17 21:39:00 329.00 332.90 330.63

09-Oct-17 01:38:00 348.00 349.45 344.53 01-Oct-17 21:39:30 329.00 332.91 330.64

09-Oct-17 01:38:30 348.00 349.45 344.50

01-Oct-17 21:40:00 329.00 332.90 330.62

09-Oct-17 01:39:00 348.50 349.44 344.48 01-Oct-17 21:40:30 329.00 332.90 330.63

09-Oct-17 01:39:30 348.50 349.43 344.44

01-Oct-17 21:41:00 329.00 332.90 330.61

09-Oct-17 01:40:00 348.50 349.43 344.44 01-Oct-17 21:41:30 329.00 332.89 330.59

09-Oct-17 01:40:30 348.50 349.43 344.46

01-Oct-17 21:42:00 329.00 332.89 330.57

09-Oct-17 01:41:00 348.50 349.45 344.52 01-Oct-17 21:42:30 329.00 332.88 330.55

09-Oct-17 01:41:30 348.50 349.45 344.52

01-Oct-17 21:43:00 329.00 332.88 330.55

09-Oct-17 01:42:00 348.50 349.43 344.47 01-Oct-17 21:43:30 329.00 332.87 330.56

09-Oct-17 01:42:30 348.50 349.43 344.46

01-Oct-17 21:44:00 329.00 332.87 330.54

09-Oct-17 01:43:00 348.50 349.43 344.48 01-Oct-17 21:44:30 329.00 332.87 330.55

09-Oct-17 01:43:30 348.50 349.44 344.54

01-Oct-17 21:45:00 329.00 332.86 330.51

09-Oct-17 01:44:00 348.50 349.44 344.57 01-Oct-17 21:45:30 329.00 332.87 330.51

09-Oct-17 01:44:30 348.50 349.43 344.57

01-Oct-17 21:46:00 329.00 332.86 330.49

09-Oct-17 01:45:00 348.50 349.43 344.56 01-Oct-17 21:46:30 329.00 332.86 330.52

09-Oct-17 01:45:30 348.50 349.42 344.56

01-Oct-17 21:47:00 329.00 332.87 330.54

09-Oct-17 01:46:00 348.50 349.42 344.57 01-Oct-17 21:47:30 329.00 332.87 330.55

09-Oct-17 01:46:30 348.50 349.43 344.62

01-Oct-17 21:48:00 329.00 332.87 330.54

09-Oct-17 01:47:00 348.50 349.42 344.63 01-Oct-17 21:48:30 329.00 332.87 330.56

09-Oct-17 01:47:30 348.50 349.42 344.66

01-Oct-17 21:49:00 329.00 332.87 330.52

09-Oct-17 01:48:00 348.50 349.42 344.65 01-Oct-17 21:49:30 329.00 332.87 330.51

09-Oct-17 01:48:30 348.50 349.41 344.65

01-Oct-17 21:50:00 329.00 332.87 330.51

09-Oct-17 01:49:00 348.50 349.41 344.65 01-Oct-17 21:50:30 329.00 332.87 330.52

09-Oct-17 01:49:30 348.50 349.40 344.71

01-Oct-17 21:51:00 329.00 332.88 330.57

09-Oct-17 01:50:00 348.50 349.41 344.76 01-Oct-17 21:51:30 329.00 332.88 330.55

09-Oct-17 01:50:30 348.50 349.40 344.78

01-Oct-17 21:52:00 329.00 332.89 330.57

09-Oct-17 01:51:00 348.50 349.40 344.78 01-Oct-17 21:52:30 329.00 332.89 330.55

09-Oct-17 01:51:30 348.50 349.40 344.78

01-Oct-17 21:53:00 329.00 332.89 330.56

09-Oct-17 01:52:00 348.50 349.40 344.77 01-Oct-17 21:53:30 329.00 332.90 330.55

09-Oct-17 01:52:30 348.50 349.41 344.77

01-Oct-17 21:54:00 329.00 332.89 330.55

09-Oct-17 01:53:00 348.50 349.41 344.81 01-Oct-17 21:54:30 329.00 332.90 330.53

09-Oct-17 01:53:30 348.50 349.42 344.85

01-Oct-17 21:55:00 329.00 332.89 330.53

09-Oct-17 01:54:00 348.50 349.43 344.85 01-Oct-17 21:55:30 329.00 332.90 330.55

09-Oct-17 01:54:30 348.50 349.43 344.82

01-Oct-17 21:56:00 329.00 332.90 330.52

09-Oct-17 01:55:00 348.50 349.42 344.81 01-Oct-17 21:56:30 329.00 332.90 330.52

09-Oct-17 01:55:30 348.50 349.43 344.84

01-Oct-17 21:57:00 329.00 332.90 330.54

09-Oct-17 01:56:00 348.50 349.44 344.90 01-Oct-17 21:57:30 329.00 332.90 330.52

09-Oct-17 01:56:30 348.50 349.45 344.90

01-Oct-17 21:58:00 329.00 332.89 330.48

09-Oct-17 01:57:00 348.50 349.46 344.94 01-Oct-17 21:58:30 329.00 332.89 330.52

09-Oct-17 01:57:30 348.50 349.46 344.95

01-Oct-17 21:59:00 329.00 332.89 330.53

09-Oct-17 01:58:00 348.50 349.47 344.95 01-Oct-17 21:59:30 329.00 332.89 330.54

09-Oct-17 01:58:30 348.50 349.47 344.94

01-Oct-17 22:00:00 329.00 332.89 330.54

09-Oct-17 01:59:00 348.50 349.49 345.00 01-Oct-17 22:00:30 329.00 332.89 330.52

09-Oct-17 01:59:30 348.50 349.51 345.04

01-Oct-17 22:01:00 329.00 332.88 330.53

09-Oct-17 02:00:00 348.50 349.51 345.01 01-Oct-17 22:01:30 329.00 332.89 330.52

09-Oct-17 02:00:30 348.50 349.51 345.00

01-Oct-17 22:02:00 329.00 332.88 330.53

09-Oct-17 02:01:00 348.50 349.52 345.05 01-Oct-17 22:02:30 329.00 332.89 330.54

09-Oct-17 02:01:30 348.50 349.53 345.08

01-Oct-17 22:03:00 329.00 332.89 330.54

09-Oct-17 02:02:00 348.50 349.52 345.07 01-Oct-17 22:03:30 329.00 332.89 330.54

09-Oct-17 02:02:30 348.50 349.53 345.07

01-Oct-17 22:04:00 329.00 332.89 330.57

09-Oct-17 02:03:00 348.50 349.54 345.09 01-Oct-17 22:04:30 329.00 332.89 330.55

09-Oct-17 02:03:30 348.50 349.55 345.10

01-Oct-17 22:05:00 329.00 332.89 330.57

09-Oct-17 02:04:00 348.50 349.56 345.11 01-Oct-17 22:05:30 329.00 332.89 330.56

09-Oct-17 02:04:30 348.50 349.56 345.11

01-Oct-17 22:06:00 329.00 332.88 330.54

09-Oct-17 02:05:00 348.50 349.56 345.06 01-Oct-17 22:06:30 329.00 332.89 330.58

09-Oct-17 02:05:30 348.50 349.57 345.09

01-Oct-17 22:07:00 329.00 332.89 330.56

09-Oct-17 02:06:00 348.50 349.59 345.14

61

Master of Engineering (Industrial Automation)

01-Oct-17 22:07:30 329.00 332.89 330.53

09-Oct-17 02:06:30 348.50 349.60 345.17 01-Oct-17 22:08:00 329.00 332.89 330.54

09-Oct-17 02:07:00 348.50 349.61 345.18

01-Oct-17 22:08:30 329.00 332.90 330.56

09-Oct-17 02:07:30 348.50 349.62 345.18 01-Oct-17 22:09:00 329.00 332.90 330.55

09-Oct-17 02:08:00 348.50 349.63 345.20

01-Oct-17 22:09:30 329.42 332.89 330.56

09-Oct-17 02:08:30 348.50 349.64 345.22 01-Oct-17 22:10:00 329.50 332.90 330.57

09-Oct-17 02:09:00 348.50 349.65 345.23

01-Oct-17 22:10:30 329.50 332.90 330.61

09-Oct-17 02:09:30 348.50 349.65 345.20 01-Oct-17 22:11:00 329.50 332.91 330.60

09-Oct-17 02:10:00 348.50 349.66 345.20

01-Oct-17 22:11:30 329.50 332.91 330.61

09-Oct-17 02:10:30 348.50 349.69 345.23 01-Oct-17 22:12:00 329.50 332.91 330.59

09-Oct-17 02:11:00 348.50 349.70 345.25

01-Oct-17 22:12:30 329.50 332.91 330.63

09-Oct-17 02:11:30 348.50 349.71 345.26 01-Oct-17 22:13:00 329.50 332.92 330.64

09-Oct-17 02:12:00 348.50 349.72 345.25

01-Oct-17 22:13:30 329.50 332.93 330.66

09-Oct-17 02:12:30 348.50 349.73 345.23 01-Oct-17 22:14:00 329.50 332.92 330.65

09-Oct-17 02:13:00 348.50 349.74 345.24

01-Oct-17 22:14:30 329.50 332.94 330.71

09-Oct-17 02:13:30 348.50 349.75 345.24 01-Oct-17 22:15:00 329.50 332.94 330.73

09-Oct-17 02:14:00 348.50 349.76 345.25

01-Oct-17 22:15:30 329.50 332.94 330.73

09-Oct-17 02:14:30 348.50 349.77 345.25 01-Oct-17 22:16:00 329.50 332.95 330.78

09-Oct-17 02:15:00 348.50 349.79 345.26

01-Oct-17 22:16:30 329.50 332.95 330.78

09-Oct-17 02:15:30 348.50 349.79 345.24 01-Oct-17 22:17:00 329.50 332.95 330.77

09-Oct-17 02:16:00 348.50 349.81 345.26

01-Oct-17 22:17:30 329.50 332.95 330.78

09-Oct-17 02:16:30 348.50 349.82 345.25 01-Oct-17 22:18:00 329.50 332.95 330.79

09-Oct-17 02:17:00 348.50 349.83 345.26

01-Oct-17 22:18:30 329.50 332.96 330.82

09-Oct-17 02:17:30 348.50 349.85 345.27 01-Oct-17 22:19:00 329.50 332.95 330.78

09-Oct-17 02:18:00 348.50 349.85 345.24

01-Oct-17 22:19:30 329.50 332.96 330.79

09-Oct-17 02:18:30 348.50 349.86 345.25 01-Oct-17 22:20:00 329.50 332.94 330.77

09-Oct-17 02:19:00 348.50 349.87 345.25

01-Oct-17 22:20:30 329.50 332.96 330.82

09-Oct-17 02:19:30 348.50 349.88 345.25 01-Oct-17 22:21:00 329.50 332.97 330.85

09-Oct-17 02:20:00 348.50 349.89 345.27

01-Oct-17 22:21:30 329.50 332.97 330.87

09-Oct-17 02:20:30 348.66 349.90 345.26 01-Oct-17 22:22:00 329.50 332.97 330.84

09-Oct-17 02:21:00 349.00 349.91 345.26

01-Oct-17 22:22:30 329.50 332.97 330.85

09-Oct-17 02:21:30 349.00 349.92 345.25 01-Oct-17 22:23:00 329.50 332.98 330.86

09-Oct-17 02:22:00 349.00 349.93 345.24

01-Oct-17 22:23:30 329.50 332.98 330.88

09-Oct-17 02:22:30 349.00 349.94 345.22 01-Oct-17 22:24:00 329.50 332.98 330.86

09-Oct-17 02:23:00 349.00 349.94 345.21

01-Oct-17 22:24:30 329.50 332.98 330.88

09-Oct-17 02:23:30 349.00 349.96 345.21 01-Oct-17 22:25:00 329.50 332.99 330.88

09-Oct-17 02:24:00 349.00 349.97 345.23

01-Oct-17 22:25:30 329.50 332.99 330.90

09-Oct-17 02:24:30 349.00 349.98 345.25 01-Oct-17 22:26:00 329.50 333.00 330.91

09-Oct-17 02:25:00 349.00 350.00 345.25

01-Oct-17 22:26:30 329.50 333.00 330.91

09-Oct-17 02:25:30 349.00 350.01 345.27 01-Oct-17 22:27:00 329.50 333.01 330.94

09-Oct-17 02:26:00 349.00 350.01 345.27

01-Oct-17 22:27:30 329.50 333.01 330.94

09-Oct-17 02:26:30 349.00 350.01 345.27 01-Oct-17 22:28:00 329.50 333.02 330.95

09-Oct-17 02:27:00 349.00 350.02 345.23

01-Oct-17 22:28:30 329.50 333.03 331.00

09-Oct-17 02:27:30 349.00 350.02 345.20 01-Oct-17 22:29:00 329.50 333.03 330.99

09-Oct-17 02:28:00 349.00 350.02 345.18

01-Oct-17 22:29:30 329.50 333.04 330.99

09-Oct-17 02:28:30 349.00 350.02 345.17 01-Oct-17 22:30:00 329.50 333.05 331.01

09-Oct-17 02:29:00 349.00 350.03 345.19

01-Oct-17 22:30:30 329.50 333.06 331.04

09-Oct-17 02:29:30 349.00 350.03 345.16 01-Oct-17 22:31:00 329.50 333.06 331.02

09-Oct-17 02:30:00 349.00 350.03 345.14

01-Oct-17 22:31:30 329.50 333.06 330.99

09-Oct-17 02:30:30 349.00 350.03 345.12 01-Oct-17 22:32:00 329.50 333.05 330.96

09-Oct-17 02:31:00 349.00 350.03 345.10

01-Oct-17 22:32:30 329.50 333.06 330.97

09-Oct-17 02:31:30 349.00 350.04 345.10 01-Oct-17 22:33:00 329.50 333.07 330.99

09-Oct-17 02:32:00 349.00 350.05 345.10

01-Oct-17 22:33:30 329.50 333.07 330.98

09-Oct-17 02:32:30 349.00 350.04 345.10 01-Oct-17 22:34:00 329.50 333.08 330.99

09-Oct-17 02:33:00 349.00 350.05 345.10

01-Oct-17 22:34:30 329.50 333.09 331.03

09-Oct-17 02:33:30 349.00 350.06 345.12 01-Oct-17 22:35:00 329.50 333.10 331.05

09-Oct-17 02:34:00 349.00 350.06 345.13

01-Oct-17 22:35:30 329.50 333.11 331.07

09-Oct-17 02:34:30 349.00 350.07 345.12

62

Master of Engineering (Industrial Automation)

01-Oct-17 22:36:00 329.50 333.12 331.11

09-Oct-17 02:35:00 349.00 350.06 345.11 01-Oct-17 22:36:30 329.50 333.12 331.10

09-Oct-17 02:35:30 349.00 350.06 345.09

01-Oct-17 22:37:00 329.50 333.13 331.11

09-Oct-17 02:36:00 349.00 350.07 345.09 01-Oct-17 22:37:30 329.50 333.13 331.11

09-Oct-17 02:36:30 349.00 350.06 345.07

01-Oct-17 22:38:00 329.50 333.13 331.07

09-Oct-17 02:37:00 349.00 350.07 345.10 01-Oct-17 22:38:30 329.50 333.14 331.10

09-Oct-17 02:37:30 349.00 350.07 345.09

01-Oct-17 22:39:00 329.50 333.15 331.13

09-Oct-17 02:38:00 349.00 350.07 345.07 01-Oct-17 22:39:30 329.50 333.15 331.11

09-Oct-17 02:38:30 349.00 350.05 345.02

01-Oct-17 22:40:00 329.50 333.16 331.12

09-Oct-17 02:39:00 349.00 350.04 344.95 01-Oct-17 22:40:30 329.50 333.16 331.09

09-Oct-17 02:39:30 349.00 350.05 344.95

01-Oct-17 22:41:00 329.50 333.17 331.09

09-Oct-17 02:40:00 349.00 350.05 344.95 01-Oct-17 22:41:30 329.50 333.17 331.09

09-Oct-17 02:40:30 349.00 350.04 344.95

01-Oct-17 22:42:00 329.50 333.18 331.13

09-Oct-17 02:41:00 349.00 350.02 344.90 01-Oct-17 22:42:30 329.50 333.18 331.09

09-Oct-17 02:41:30 349.00 350.01 344.86

01-Oct-17 22:43:00 329.50 333.19 331.10

09-Oct-17 02:42:00 349.00 350.00 344.87 01-Oct-17 22:43:30 329.50 333.20 331.09

09-Oct-17 02:42:30 349.00 350.01 344.88

01-Oct-17 22:44:00 329.50 333.20 331.09

09-Oct-17 02:43:00 349.00 349.99 344.83 01-Oct-17 22:44:30 329.50 333.20 331.08

09-Oct-17 02:43:30 349.00 349.99 344.84

01-Oct-17 22:45:00 329.50 333.21 331.07

09-Oct-17 02:44:00 349.00 349.99 344.84 01-Oct-17 22:45:30 329.50 333.22 331.07

09-Oct-17 02:44:30 349.00 349.98 344.85

01-Oct-17 22:46:00 329.50 333.23 331.07

09-Oct-17 02:45:00 349.00 349.97 344.84 01-Oct-17 22:46:30 329.50 333.22 331.05

09-Oct-17 02:45:30 349.00 349.97 344.85

01-Oct-17 22:47:00 329.50 333.23 331.05

09-Oct-17 02:46:00 349.00 349.96 344.84 01-Oct-17 22:47:30 329.97 333.24 331.08

09-Oct-17 02:46:30 349.00 349.95 344.80

01-Oct-17 22:48:00 330.00 333.25 331.08

09-Oct-17 02:47:00 349.00 349.94 344.84 01-Oct-17 22:48:30 330.00 333.26 331.10

09-Oct-17 02:47:30 349.00 349.94 344.86

01-Oct-17 22:49:00 330.00 333.27 331.13

09-Oct-17 02:48:00 349.00 349.94 344.84 01-Oct-17 22:49:30 330.00 333.28 331.13

09-Oct-17 02:48:30 349.00 349.94 344.84

01-Oct-17 22:50:00 330.00 333.30 331.16

09-Oct-17 02:49:00 349.00 349.94 344.85 01-Oct-17 22:50:30 330.00 333.30 331.17

09-Oct-17 02:49:30 349.00 349.94 344.89

01-Oct-17 22:51:00 330.00 333.32 331.21

09-Oct-17 02:50:00 349.00 349.94 344.89 01-Oct-17 22:51:30 330.00 333.33 331.21

09-Oct-17 02:50:30 349.00 349.93 344.90

01-Oct-17 22:52:00 330.00 333.34 331.23

09-Oct-17 02:51:00 349.00 349.93 344.91 01-Oct-17 22:52:30 330.00 333.34 331.21

09-Oct-17 02:51:30 349.00 349.92 344.91

01-Oct-17 22:53:00 330.00 333.36 331.24

09-Oct-17 02:52:00 349.00 349.90 344.84 01-Oct-17 22:53:30 330.00 333.37 331.24

09-Oct-17 02:52:30 349.00 349.89 344.83

01-Oct-17 22:54:00 330.00 333.37 331.24

09-Oct-17 02:53:00 349.00 349.88 344.84 01-Oct-17 22:54:30 330.00 333.39 331.28

09-Oct-17 02:53:30 349.00 349.88 344.85

01-Oct-17 22:55:00 330.00 333.40 331.29

09-Oct-17 02:54:00 349.00 349.86 344.84 01-Oct-17 22:55:30 330.00 333.40 331.29

09-Oct-17 02:54:30 349.00 349.86 344.87

01-Oct-17 22:56:00 330.00 333.41 331.30

09-Oct-17 02:55:00 349.00 349.85 344.89 01-Oct-17 22:56:30 330.00 333.42 331.33

09-Oct-17 02:55:30 349.00 349.84 344.89

01-Oct-17 22:57:00 330.00 333.43 331.36

09-Oct-17 02:56:00 349.50 349.84 344.91 01-Oct-17 22:57:30 330.00 333.44 331.37

09-Oct-17 02:56:30 350.50 349.84 344.93

01-Oct-17 22:58:00 330.00 333.45 331.39

09-Oct-17 02:57:00 350.50 349.83 344.92 01-Oct-17 22:58:30 330.00 333.46 331.40

09-Oct-17 02:57:30 350.50 349.82 344.94

01-Oct-17 22:59:00 330.00 333.47 331.44

09-Oct-17 02:58:00 350.50 349.82 344.96 01-Oct-17 22:59:30 330.00 333.47 331.43

09-Oct-17 02:58:30 350.50 349.81 344.98

01-Oct-17 23:00:00 330.00 333.47 331.42

09-Oct-17 02:59:00 350.50 349.81 345.01 01-Oct-17 23:00:30 330.00 333.48 331.44

09-Oct-17 02:59:30 350.50 349.81 345.05

01-Oct-17 23:01:00 330.00 333.49 331.46

09-Oct-17 03:00:00 350.50 349.81 345.15 01-Oct-17 23:01:30 330.00 333.50 331.49

09-Oct-17 03:00:30 350.50 349.81 345.16

01-Oct-17 23:02:00 330.00 333.50 331.49

09-Oct-17 03:01:00 350.50 349.80 345.17 01-Oct-17 23:02:30 330.00 333.51 331.48

09-Oct-17 03:01:30 350.50 349.80 345.21

01-Oct-17 23:03:00 330.00 333.52 331.51

09-Oct-17 03:02:00 350.50 349.82 345.25 01-Oct-17 23:03:30 330.00 333.52 331.51

09-Oct-17 03:02:30 350.50 349.82 345.29

01-Oct-17 23:04:00 330.00 333.53 331.52

09-Oct-17 03:03:00 350.50 349.84 345.39

63

Master of Engineering (Industrial Automation)

01-Oct-17 23:04:30 330.00 333.54 331.56

09-Oct-17 03:03:30 350.50 349.84 345.42 01-Oct-17 23:05:00 330.00 333.55 331.58

09-Oct-17 03:04:00 350.50 349.85 345.46

01-Oct-17 23:05:30 330.00 333.56 331.57

09-Oct-17 03:04:30 350.50 349.85 345.51 01-Oct-17 23:06:00 330.00 333.55 331.55

09-Oct-17 03:05:00 350.50 349.86 345.57

01-Oct-17 23:06:30 330.00 333.56 331.55

09-Oct-17 03:05:30 350.50 349.86 345.56 01-Oct-17 23:07:00 330.00 333.57 331.54

09-Oct-17 03:06:00 350.50 349.86 345.63

01-Oct-17 23:07:30 330.00 333.59 331.58

09-Oct-17 03:06:30 350.50 349.85 345.63 01-Oct-17 23:08:00 330.00 333.59 331.57

09-Oct-17 03:07:00 350.50 349.85 345.63

01-Oct-17 23:08:30 330.00 333.59 331.55

09-Oct-17 03:07:30 350.50 349.85 345.69 01-Oct-17 23:09:00 330.00 333.60 331.55

09-Oct-17 03:08:00 350.50 349.85 345.68

01-Oct-17 23:09:30 330.00 333.62 331.59

09-Oct-17 03:08:30 350.50 349.84 345.65 01-Oct-17 23:10:00 330.00 333.63 331.61

09-Oct-17 03:09:00 350.50 349.83 345.62

01-Oct-17 23:10:30 330.00 333.64 331.64

09-Oct-17 03:09:30 350.50 349.83 345.65 01-Oct-17 23:11:00 330.00 333.64 331.61

09-Oct-17 03:10:00 350.50 349.85 345.68

01-Oct-17 23:11:30 330.00 333.65 331.62

09-Oct-17 03:10:30 350.50 349.85 345.72 01-Oct-17 23:12:00 330.00 333.66 331.64

09-Oct-17 03:11:00 350.50 349.86 345.75

01-Oct-17 23:12:30 329.80 333.67 331.66

09-Oct-17 03:11:30 350.50 349.86 345.75 01-Oct-17 23:13:00 329.80 333.69 331.68

09-Oct-17 03:12:00 350.50 349.87 345.78

01-Oct-17 23:13:30 329.80 333.69 331.70

09-Oct-17 03:12:30 350.50 349.90 345.87 01-Oct-17 23:14:00 329.80 333.69 331.67

09-Oct-17 03:13:00 350.50 349.93 345.97

01-Oct-17 23:14:30 329.80 333.71 331.70

09-Oct-17 03:13:30 350.50 349.94 346.01 01-Oct-17 23:15:00 329.80 333.71 331.70

09-Oct-17 03:14:00 350.50 349.95 346.06

01-Oct-17 23:15:30 329.80 333.72 331.70

09-Oct-17 03:14:30 350.50 349.96 346.06 01-Oct-17 23:16:00 329.80 333.72 331.68

09-Oct-17 03:15:00 350.50 350.00 346.14

01-Oct-17 23:16:30 329.80 333.73 331.68

09-Oct-17 03:15:30 350.50 350.02 346.19 01-Oct-17 23:17:00 329.80 333.72 331.65

09-Oct-17 03:16:00 350.50 350.06 346.27

01-Oct-17 23:17:30 329.80 333.73 331.67

09-Oct-17 03:16:30 350.50 350.09 346.35 01-Oct-17 23:18:00 329.80 333.72 331.61

09-Oct-17 03:17:00 350.50 350.11 346.39

01-Oct-17 23:18:30 329.80 333.73 331.61

09-Oct-17 03:17:30 350.50 350.13 346.41 01-Oct-17 23:19:00 329.80 333.73 331.61

09-Oct-17 03:18:00 350.50 350.13 346.38

01-Oct-17 23:19:30 329.80 333.73 331.61

09-Oct-17 03:18:30 350.50 350.16 346.44 01-Oct-17 23:20:00 329.80 333.75 331.62

09-Oct-17 03:19:00 350.50 350.20 346.49

01-Oct-17 23:20:30 329.80 333.75 331.61

09-Oct-17 03:19:30 350.50 350.20 346.48 01-Oct-17 23:21:00 329.68 333.75 331.61

09-Oct-17 03:20:00 350.50 350.22 346.47

01-Oct-17 23:21:30 329.70 333.76 331.60

09-Oct-17 03:20:30 350.50 350.23 346.49 01-Oct-17 23:22:00 329.70 333.76 331.59

09-Oct-17 03:21:00 350.50 350.26 346.54

01-Oct-17 23:22:30 329.70 333.77 331.59

09-Oct-17 03:21:30 350.50 350.28 346.57 01-Oct-17 23:23:00 329.70 333.77 331.59

09-Oct-17 03:22:00 350.50 350.30 346.59

01-Oct-17 23:23:30 329.70 333.78 331.58

09-Oct-17 03:22:30 350.50 350.33 346.61 01-Oct-17 23:24:00 329.70 333.79 331.58

09-Oct-17 03:23:00 350.50 350.34 346.63

01-Oct-17 23:24:30 329.70 333.78 331.54

09-Oct-17 03:23:30 350.50 350.37 346.65 01-Oct-17 23:25:00 329.70 333.79 331.54

09-Oct-17 03:24:00 350.50 350.39 346.65

01-Oct-17 23:25:30 329.80 333.80 331.54

09-Oct-17 03:24:30 350.50 350.41 346.64 01-Oct-17 23:26:00 329.80 333.80 331.53

09-Oct-17 03:25:00 350.50 350.43 346.63

01-Oct-17 23:26:30 329.80 333.81 331.52

09-Oct-17 03:25:30 350.50 350.47 346.68 01-Oct-17 23:27:00 329.80 333.81 331.50

09-Oct-17 03:26:00 350.50 350.51 346.69

01-Oct-17 23:27:30 330.00 333.82 331.50

09-Oct-17 03:26:30 350.50 350.54 346.69 01-Oct-17 23:28:00 330.00 333.84 331.52

09-Oct-17 03:27:00 350.50 350.58 346.75

01-Oct-17 23:28:30 330.00 333.85 331.51

09-Oct-17 03:27:30 350.50 350.61 346.79 01-Oct-17 23:29:00 330.00 333.85 331.50

09-Oct-17 03:28:00 350.50 350.64 346.76

01-Oct-17 23:29:30 330.00 333.85 331.48

09-Oct-17 03:28:30 350.50 350.68 346.77 01-Oct-17 23:30:00 330.00 333.86 331.46

09-Oct-17 03:29:00 350.50 350.72 346.79

01-Oct-17 23:30:30 330.00 333.87 331.47

09-Oct-17 03:29:30 350.50 350.75 346.81 01-Oct-17 23:31:00 330.00 333.88 331.48

09-Oct-17 03:30:00 350.50 350.79 346.82

01-Oct-17 23:31:30 330.00 333.88 331.45

09-Oct-17 03:30:30 350.50 350.82 346.83 01-Oct-17 23:32:00 330.00 333.88 331.43

09-Oct-17 03:31:00 350.50 350.86 346.85

01-Oct-17 23:32:30 330.00 333.89 331.44

09-Oct-17 03:31:30 350.50 350.89 346.86

64

Master of Engineering (Industrial Automation)

01-Oct-17 23:33:00 330.00 333.90 331.42

09-Oct-17 03:32:00 350.50 350.92 346.84 01-Oct-17 23:33:30 330.00 333.91 331.48

09-Oct-17 03:32:30 350.50 350.95 346.85

01-Oct-17 23:34:00 330.00 333.91 331.48

09-Oct-17 03:33:00 350.50 350.98 346.84 01-Oct-17 23:34:30 330.00 333.92 331.48

09-Oct-17 03:33:30 350.50 351.00 346.84

01-Oct-17 23:35:00 330.00 333.92 331.46

09-Oct-17 03:34:00 350.50 351.03 346.88 01-Oct-17 23:35:30 330.00 333.92 331.45

09-Oct-17 03:34:30 350.50 351.06 346.88

01-Oct-17 23:36:00 330.00 333.93 331.47

09-Oct-17 03:35:00 350.50 351.10 346.90 01-Oct-17 23:36:30 330.00 333.95 331.51

09-Oct-17 03:35:30 350.50 351.12 346.88

01-Oct-17 23:37:00 330.00 333.95 331.50

09-Oct-17 03:36:00 350.50 351.14 346.87 01-Oct-17 23:37:30 330.00 333.95 331.49

09-Oct-17 03:36:30 350.50 351.17 346.89

01-Oct-17 23:38:00 330.00 333.94 331.47

09-Oct-17 03:37:00 350.50 351.20 346.92 01-Oct-17 23:38:30 330.00 333.95 331.46

09-Oct-17 03:37:30 350.50 351.23 346.93

01-Oct-17 23:39:00 330.00 333.96 331.48

09-Oct-17 03:38:00 351.00 351.26 346.93 01-Oct-17 23:39:30 330.00 333.96 331.51

09-Oct-17 03:38:30 351.00 351.29 346.96

01-Oct-17 23:40:00 330.00 333.96 331.51

09-Oct-17 03:39:00 351.00 351.32 346.95 01-Oct-17 23:40:30 330.00 333.96 331.51

09-Oct-17 03:39:30 351.00 351.34 346.95

01-Oct-17 23:41:00 330.00 333.97 331.50

09-Oct-17 03:40:00 351.00 351.37 346.94 01-Oct-17 23:41:30 330.00 333.96 331.49

09-Oct-17 03:40:30 351.00 351.39 346.94

01-Oct-17 23:42:00 330.00 333.97 331.48

09-Oct-17 03:41:00 351.00 351.42 346.92 01-Oct-17 23:42:30 330.00 333.97 331.49

09-Oct-17 03:41:30 351.00 351.45 346.92

01-Oct-17 23:43:00 330.00 333.97 331.48

09-Oct-17 03:42:00 351.00 351.47 346.90 01-Oct-17 23:43:30 330.00 333.97 331.45

09-Oct-17 03:42:30 351.00 351.50 346.94

01-Oct-17 23:44:00 330.00 333.97 331.49

09-Oct-17 03:43:00 351.00 351.52 346.92 01-Oct-17 23:44:30 330.00 333.97 331.44

09-Oct-17 03:43:30 351.00 351.54 346.91

01-Oct-17 23:45:00 330.00 333.97 331.45

09-Oct-17 03:44:00 351.00 351.56 346.89 01-Oct-17 23:45:30 330.00 333.98 331.48

09-Oct-17 03:44:30 351.00 351.58 346.89

01-Oct-17 23:46:00 330.00 333.98 331.48

09-Oct-17 03:45:00 351.00 351.60 346.87 01-Oct-17 23:46:30 330.00 333.98 331.48

09-Oct-17 03:45:30 351.00 351.63 346.90

01-Oct-17 23:47:00 330.00 333.98 331.49

09-Oct-17 03:46:00 351.00 351.66 346.91 01-Oct-17 23:47:30 330.00 333.98 331.51

09-Oct-17 03:46:30 351.00 351.67 346.92

01-Oct-17 23:48:00 330.00 333.99 331.55

09-Oct-17 03:47:00 351.00 351.70 346.93 01-Oct-17 23:48:30 330.00 333.99 331.54

09-Oct-17 03:47:30 351.00 351.72 346.94

01-Oct-17 23:49:00 330.00 333.99 331.54

09-Oct-17 03:48:00 351.00 351.74 346.97 01-Oct-17 23:49:30 330.00 333.99 331.54

09-Oct-17 03:48:30 351.00 351.77 347.01

01-Oct-17 23:50:00 330.00 333.99 331.54

09-Oct-17 03:49:00 351.00 351.79 347.05 01-Oct-17 23:50:30 330.00 333.99 331.55

09-Oct-17 03:49:30 351.00 351.82 347.09

01-Oct-17 23:51:00 330.00 333.99 331.57

09-Oct-17 03:50:00 351.00 351.84 347.12 01-Oct-17 23:51:30 330.00 334.00 331.59

09-Oct-17 03:50:30 351.00 351.87 347.15

01-Oct-17 23:52:00 330.00 334.00 331.61

09-Oct-17 03:51:00 351.00 351.90 347.24 01-Oct-17 23:52:30 330.00 334.00 331.60

09-Oct-17 03:51:30 351.00 351.92 347.26

01-Oct-17 23:53:00 330.00 334.00 331.61

09-Oct-17 03:52:00 351.00 351.94 347.28 01-Oct-17 23:53:30 330.00 334.01 331.65

09-Oct-17 03:52:30 351.00 351.95 347.30

01-Oct-17 23:54:00 330.00 334.01 331.67

09-Oct-17 03:53:00 351.00 351.97 347.32 01-Oct-17 23:54:30 330.00 334.01 331.69

09-Oct-17 03:53:30 351.00 351.99 347.34

01-Oct-17 23:55:00 330.00 334.01 331.69

09-Oct-17 03:54:00 351.00 352.01 347.36 01-Oct-17 23:55:30 330.00 334.01 331.69

09-Oct-17 03:54:30 351.00 352.02 347.37

01-Oct-17 23:56:00 330.00 334.02 331.72

09-Oct-17 03:55:00 351.00 352.03 347.37 01-Oct-17 23:56:30 330.00 334.02 331.74

09-Oct-17 03:55:30 351.00 352.05 347.39

01-Oct-17 23:57:00 330.00 334.01 331.72

09-Oct-17 03:56:00 351.00 352.07 347.43 01-Oct-17 23:57:30 330.00 334.00 331.67

09-Oct-17 03:56:30 351.00 352.09 347.47

01-Oct-17 23:58:00 330.00 333.99 331.67

09-Oct-17 03:57:00 351.00 352.11 347.49 01-Oct-17 23:58:30 330.00 333.99 331.67

09-Oct-17 03:57:30 351.00 352.13 347.53

01-Oct-17 23:59:00 330.00 333.99 331.68

09-Oct-17 03:58:00 351.00 352.15 347.58 01-Oct-17 23:59:30 330.00 334.00 331.70

09-Oct-17 03:58:30 351.00 352.16 347.56

02-Oct-17 00:00:00 330.00 333.99 331.68

09-Oct-17 03:59:00 351.00 352.18 347.56 02-Oct-17 00:00:30 330.00 333.98 331.67

09-Oct-17 03:59:30 351.00 352.19 347.59

02-Oct-17 00:01:00 330.00 333.99 331.68

09-Oct-17 04:00:00 351.00 352.22 347.64

65

Master of Engineering (Industrial Automation)

02-Oct-17 00:01:30 330.00 333.98 331.68

09-Oct-17 04:00:30 351.00 352.24 347.67 02-Oct-17 00:02:00 330.00 333.98 331.69

09-Oct-17 04:01:00 351.00 352.26 347.72

02-Oct-17 00:02:30 330.00 333.99 331.70

09-Oct-17 04:01:30 351.00 352.29 347.77 02-Oct-17 00:03:00 330.00 333.98 331.70

09-Oct-17 04:02:00 351.00 352.32 347.81

02-Oct-17 00:03:30 330.00 333.98 331.67

09-Oct-17 04:02:30 351.00 352.33 347.82 02-Oct-17 00:04:00 330.00 333.98 331.69

09-Oct-17 04:03:00 351.00 352.35 347.83

02-Oct-17 00:04:30 330.00 333.99 331.70

09-Oct-17 04:03:30 351.00 352.36 347.88 02-Oct-17 00:05:00 330.00 333.99 331.69

09-Oct-17 04:04:00 351.00 352.40 347.92

02-Oct-17 00:05:30 330.00 333.99 331.68

09-Oct-17 04:04:30 351.00 352.43 347.98 02-Oct-17 00:06:00 330.00 334.00 331.71

09-Oct-17 04:05:00 351.00 352.45 347.98

02-Oct-17 00:06:30 330.00 334.00 331.72

09-Oct-17 04:05:30 351.00 352.45 347.93 02-Oct-17 00:07:00 330.00 334.00 331.70

09-Oct-17 04:06:00 351.00 352.45 347.89

02-Oct-17 00:07:30 330.00 334.00 331.69

09-Oct-17 04:06:30 351.00 352.47 347.88 02-Oct-17 00:08:00 330.00 334.01 331.73

09-Oct-17 04:07:00 351.00 352.48 347.88

02-Oct-17 00:08:30 330.00 334.01 331.71

09-Oct-17 04:07:30 351.00 352.50 347.88 02-Oct-17 00:09:00 330.00 334.01 331.71

09-Oct-17 04:08:00 351.00 352.51 347.84

02-Oct-17 00:09:30 330.00 334.02 331.73

09-Oct-17 04:08:30 351.00 352.51 347.76 02-Oct-17 00:10:00 330.00 334.03 331.74

09-Oct-17 04:09:00 351.00 352.51 347.70

02-Oct-17 00:10:30 330.00 334.04 331.74

09-Oct-17 04:09:30 351.00 352.51 347.64 02-Oct-17 00:11:00 330.00 334.04 331.72

09-Oct-17 04:10:00 351.00 352.53 347.62

02-Oct-17 00:11:30 330.00 334.04 331.74

09-Oct-17 04:10:30 351.00 352.54 347.61 02-Oct-17 00:12:00 330.00 334.04 331.73

09-Oct-17 04:11:00 351.00 352.55 347.61

02-Oct-17 00:12:30 330.00 334.03 331.69

09-Oct-17 04:11:30 351.00 352.57 347.52 02-Oct-17 00:13:00 330.00 334.04 331.67

09-Oct-17 04:12:00 351.00 352.60 347.59

02-Oct-17 00:13:30 330.00 334.03 331.67

09-Oct-17 04:12:30 351.00 352.62 347.63 02-Oct-17 00:14:00 330.00 334.03 331.66

09-Oct-17 04:13:00 351.00 352.64 347.62

02-Oct-17 00:14:30 330.00 334.04 331.67

09-Oct-17 04:13:30 351.00 352.65 347.65 02-Oct-17 00:15:00 330.00 334.04 331.67

09-Oct-17 04:14:00 351.00 352.68 347.66

02-Oct-17 00:15:30 330.00 334.04 331.66

09-Oct-17 04:14:30 351.00 352.71 347.72 02-Oct-17 00:16:00 330.00 334.04 331.66

09-Oct-17 04:15:00 351.00 352.74 347.75

02-Oct-17 00:16:30 330.00 334.04 331.65

09-Oct-17 04:15:30 351.00 352.75 347.75 02-Oct-17 00:17:00 330.00 334.04 331.65

09-Oct-17 04:16:00 351.00 352.77 347.75

02-Oct-17 00:17:30 330.00 334.05 331.65

09-Oct-17 04:16:30 351.00 352.80 347.80 02-Oct-17 00:18:00 330.00 334.05 331.67

09-Oct-17 04:17:00 351.00 352.82 347.81

02-Oct-17 00:18:30 330.00 334.05 331.66

09-Oct-17 04:17:30 351.00 352.84 347.81 02-Oct-17 00:19:00 330.00 334.06 331.68

09-Oct-17 04:18:00 351.00 352.84 347.76

02-Oct-17 00:19:30 330.00 334.06 331.65

09-Oct-17 04:18:30 351.00 352.85 347.74 02-Oct-17 00:20:00 330.00 334.06 331.66

09-Oct-17 04:19:00 351.00 352.87 347.75

02-Oct-17 00:20:30 330.00 334.06 331.65

09-Oct-17 04:19:30 351.00 352.89 347.77 02-Oct-17 00:21:00 330.00 334.06 331.64

09-Oct-17 04:20:00 351.00 352.90 347.80

02-Oct-17 00:21:30 330.00 334.07 331.64

09-Oct-17 04:20:30 351.00 352.89 347.78 02-Oct-17 00:22:00 330.00 334.07 331.65

09-Oct-17 04:21:00 351.00 352.87 347.76

02-Oct-17 00:22:30 330.00 334.07 331.62

09-Oct-17 04:21:30 351.00 352.87 347.77 02-Oct-17 00:23:00 330.00 334.08 331.64

09-Oct-17 04:22:00 351.00 352.87 347.77

02-Oct-17 00:23:30 330.00 334.08 331.64

09-Oct-17 04:22:30 351.00 352.87 347.75 02-Oct-17 00:24:00 330.00 334.09 331.63

09-Oct-17 04:23:00 351.00 352.87 347.74

02-Oct-17 00:24:30 330.00 334.08 331.62

09-Oct-17 04:23:30 351.00 352.87 347.73 02-Oct-17 00:25:00 330.00 334.09 331.62

09-Oct-17 04:24:00 351.00 352.88 347.74

02-Oct-17 00:25:30 330.00 334.10 331.64

09-Oct-17 04:24:30 351.00 352.89 347.75 02-Oct-17 00:26:00 330.00 334.10 331.61

09-Oct-17 04:25:00 351.00 352.91 347.77

02-Oct-17 00:26:30 330.00 334.10 331.63

09-Oct-17 04:25:30 351.00 352.93 347.77 02-Oct-17 00:27:00 330.24 334.11 331.63

09-Oct-17 04:26:00 351.00 352.95 347.86

02-Oct-17 00:27:30 330.30 334.11 331.60

09-Oct-17 04:26:30 351.00 352.96 347.86 02-Oct-17 00:28:00 330.30 334.11 331.59

09-Oct-17 04:27:00 351.00 352.97 347.86

02-Oct-17 00:28:30 330.30 334.12 331.63

09-Oct-17 04:27:30 351.00 352.99 347.94 02-Oct-17 00:29:00 330.30 334.13 331.63

09-Oct-17 04:28:00 351.00 353.00 347.95

02-Oct-17 00:29:30 330.30 334.13 331.65

09-Oct-17 04:28:30 351.00 353.01 347.97

66

Master of Engineering (Industrial Automation)

02-Oct-17 00:30:00 330.30 334.13 331.63

09-Oct-17 04:29:00 351.00 353.02 348.03 02-Oct-17 00:30:30 330.30 334.12 331.60

09-Oct-17 04:29:30 351.00 353.04 348.12

02-Oct-17 00:31:00 330.30 334.13 331.61

09-Oct-17 04:30:00 351.00 353.04 348.16 02-Oct-17 00:31:30 330.30 334.13 331.63

09-Oct-17 04:30:30 351.00 353.04 348.18

02-Oct-17 00:32:00 330.30 334.13 331.66

09-Oct-17 04:31:00 351.00 353.03 348.22 02-Oct-17 00:32:30 330.30 334.13 331.64

09-Oct-17 04:31:30 351.00 353.03 348.28

02-Oct-17 00:33:00 330.30 334.13 331.66

09-Oct-17 04:32:00 351.00 353.03 348.33 02-Oct-17 00:33:30 330.30 334.15 331.69

09-Oct-17 04:32:30 351.00 353.03 348.37

02-Oct-17 00:34:00 330.30 334.15 331.71

09-Oct-17 04:33:00 351.00 353.03 348.40 02-Oct-17 00:34:30 330.30 334.15 331.72

09-Oct-17 04:33:30 351.00 353.02 348.44

02-Oct-17 00:35:00 330.30 334.16 331.74

09-Oct-17 04:34:00 351.00 353.03 348.50 02-Oct-17 00:35:30 330.30 334.16 331.73

09-Oct-17 04:34:30 351.00 353.04 348.54

02-Oct-17 00:36:00 330.30 334.16 331.74

09-Oct-17 04:35:00 351.00 353.04 348.58 02-Oct-17 00:36:30 330.30 334.16 331.74

09-Oct-17 04:35:30 351.00 353.04 348.59

02-Oct-17 00:37:00 330.30 334.17 331.77

09-Oct-17 04:36:00 351.00 353.05 348.63 02-Oct-17 00:37:30 330.30 334.17 331.76

09-Oct-17 04:36:30 351.00 353.06 348.67

02-Oct-17 00:38:00 330.30 334.17 331.77

09-Oct-17 04:37:00 351.00 353.07 348.70 02-Oct-17 00:38:30 330.30 334.17 331.75

09-Oct-17 04:37:30 351.00 353.09 348.70

02-Oct-17 00:39:00 330.30 334.17 331.75

09-Oct-17 04:38:00 351.00 353.09 348.71 02-Oct-17 00:39:30 330.30 334.18 331.78

09-Oct-17 04:38:30 351.00 353.11 348.74

02-Oct-17 00:40:00 330.30 334.18 331.82

09-Oct-17 04:39:00 351.00 353.13 348.76 02-Oct-17 00:40:30 330.30 334.18 331.80

09-Oct-17 04:39:30 351.00 353.14 348.77

02-Oct-17 00:41:00 330.30 334.18 331.79

09-Oct-17 04:40:00 351.00 353.15 348.79 02-Oct-17 00:41:30 330.30 334.18 331.81

09-Oct-17 04:40:30 351.00 353.16 348.79

02-Oct-17 00:42:00 330.30 334.17 331.80

09-Oct-17 04:41:00 351.00 353.18 348.79 02-Oct-17 00:42:30 330.30 334.18 331.81

09-Oct-17 04:41:30 351.00 353.20 348.85

02-Oct-17 00:43:00 330.30 334.18 331.81

09-Oct-17 04:42:00 351.00 353.23 348.87 02-Oct-17 00:43:30 330.30 334.18 331.84

09-Oct-17 04:42:30 351.00 353.25 348.90

02-Oct-17 00:44:00 330.30 334.18 331.82

09-Oct-17 04:43:00 351.00 353.26 348.86 02-Oct-17 00:44:30 330.30 334.19 331.85

09-Oct-17 04:43:30 351.00 353.28 348.90

02-Oct-17 00:45:00 330.30 334.19 331.87

09-Oct-17 04:44:00 351.00 353.30 348.92 02-Oct-17 00:45:30 330.30 334.19 331.88

09-Oct-17 04:44:30 351.00 353.31 348.90

02-Oct-17 00:46:00 330.30 334.19 331.88

09-Oct-17 04:45:00 351.00 353.33 348.89 02-Oct-17 00:46:30 330.30 334.20 331.88

09-Oct-17 04:45:30 351.00 353.35 348.93

02-Oct-17 00:47:00 330.30 334.20 331.90

09-Oct-17 04:46:00 351.00 353.37 348.90 02-Oct-17 00:47:30 330.30 334.20 331.90

09-Oct-17 04:46:30 351.00 353.38 348.86

02-Oct-17 00:48:00 330.30 334.21 331.94

09-Oct-17 04:47:00 351.00 353.39 348.84 02-Oct-17 00:48:30 330.30 334.22 331.97

09-Oct-17 04:47:30 351.00 353.42 348.88

02-Oct-17 00:49:00 330.30 334.22 331.96

09-Oct-17 04:48:00 351.00 353.45 348.90 02-Oct-17 00:49:30 330.30 334.21 331.93

09-Oct-17 04:48:30 351.00 353.46 348.84

02-Oct-17 00:50:00 330.30 334.22 331.93

09-Oct-17 04:49:00 351.00 353.46 348.77 02-Oct-17 00:50:30 330.30 334.22 331.93

09-Oct-17 04:49:30 351.00 353.48 348.78

02-Oct-17 00:51:00 330.30 334.23 331.94

09-Oct-17 04:50:00 351.00 353.48 348.73 02-Oct-17 00:51:30 330.30 334.23 331.95

09-Oct-17 04:50:30 351.00 353.48 348.70

02-Oct-17 00:52:00 330.30 334.24 331.94

09-Oct-17 04:51:00 351.00 353.49 348.68 02-Oct-17 00:52:30 330.30 334.24 331.93

09-Oct-17 04:51:30 351.00 353.50 348.68

02-Oct-17 00:53:00 330.30 334.23 331.89

09-Oct-17 04:52:00 351.00 353.51 348.63 02-Oct-17 00:53:30 330.30 334.24 331.93

09-Oct-17 04:52:30 351.00 353.50 348.59

02-Oct-17 00:54:00 330.30 334.25 331.96

09-Oct-17 04:53:00 351.00 353.51 348.62 02-Oct-17 00:54:30 330.30 334.25 331.95

09-Oct-17 04:53:30 351.00 353.51 348.60

02-Oct-17 00:55:00 330.30 334.26 331.96

09-Oct-17 04:54:00 351.00 353.51 348.60 02-Oct-17 00:55:30 330.30 334.26 331.96

09-Oct-17 04:54:30 351.00 353.51 348.59

02-Oct-17 00:56:00 330.30 334.27 331.97

09-Oct-17 04:55:00 351.00 353.52 348.64 02-Oct-17 00:56:30 330.30 334.26 331.96

09-Oct-17 04:55:30 351.00 353.53 348.62

02-Oct-17 00:57:00 330.30 334.27 331.98

09-Oct-17 04:56:00 351.00 353.51 348.60 02-Oct-17 00:57:30 330.30 334.28 331.99

09-Oct-17 04:56:30 351.00 353.50 348.56

02-Oct-17 00:58:00 330.30 334.28 331.98

09-Oct-17 04:57:00 351.00 353.48 348.51

67

Master of Engineering (Industrial Automation)

02-Oct-17 00:58:30 330.30 334.27 331.97

09-Oct-17 04:57:30 351.00 353.48 348.53 02-Oct-17 00:59:00 330.30 334.28 331.97

09-Oct-17 04:58:00 351.00 353.46 348.51

02-Oct-17 00:59:30 330.30 334.29 332.01

09-Oct-17 04:58:30 351.00 353.44 348.47 02-Oct-17 01:00:00 330.30 334.29 331.99

09-Oct-17 04:59:00 351.00 353.43 348.44

02-Oct-17 01:00:30 330.30 334.29 332.00

09-Oct-17 04:59:30 351.00 353.40 348.42 02-Oct-17 01:01:00 330.30 334.29 332.00

09-Oct-17 05:00:00 351.00 353.39 348.41

02-Oct-17 01:01:30 330.30 334.30 332.01

09-Oct-17 05:00:30 351.00 353.38 348.42 02-Oct-17 01:02:00 330.30 334.30 332.01

09-Oct-17 05:01:00 351.00 353.36 348.41

02-Oct-17 01:02:30 330.30 334.30 331.97

09-Oct-17 05:01:30 351.00 353.34 348.40 02-Oct-17 01:03:00 330.30 334.30 331.97

09-Oct-17 05:02:00 351.00 353.31 348.37

02-Oct-17 01:03:30 330.30 334.31 331.96

09-Oct-17 05:02:30 351.00 353.30 348.41 02-Oct-17 01:04:00 330.30 334.31 331.96

09-Oct-17 05:03:00 351.00 353.29 348.43

02-Oct-17 01:04:30 330.30 334.31 331.94

09-Oct-17 05:03:30 351.00 353.27 348.44 02-Oct-17 01:05:00 330.30 334.32 331.93

09-Oct-17 05:04:00 351.00 353.25 348.45

02-Oct-17 01:05:30 330.30 334.31 331.93

09-Oct-17 05:04:30 351.00 353.23 348.48 02-Oct-17 01:06:00 330.30 334.32 331.95

09-Oct-17 05:05:00 351.00 353.22 348.51

02-Oct-17 01:06:30 330.30 334.33 331.94

09-Oct-17 05:05:30 351.00 353.20 348.52 02-Oct-17 01:07:00 330.30 334.33 331.91

09-Oct-17 05:06:00 351.00 353.18 348.54

02-Oct-17 01:07:30 330.30 334.33 331.88

09-Oct-17 05:06:30 351.00 353.16 348.57 02-Oct-17 01:08:00 330.30 334.33 331.91

09-Oct-17 05:07:00 351.00 353.13 348.50

02-Oct-17 01:08:30 330.30 334.33 331.92

09-Oct-17 05:07:30 351.00 353.12 348.51 02-Oct-17 01:09:00 330.30 334.35 331.93

09-Oct-17 05:08:00 351.00 353.11 348.53

02-Oct-17 01:09:30 330.30 334.36 331.96

09-Oct-17 05:08:30 351.00 353.09 348.54 02-Oct-17 01:10:00 330.30 334.36 331.94

09-Oct-17 05:09:00 351.00 353.06 348.54

02-Oct-17 01:10:30 330.30 334.38 331.97

09-Oct-17 05:09:30 351.00 353.02 348.54 02-Oct-17 01:11:00 330.30 334.38 331.96

09-Oct-17 05:10:00 351.00 353.01 348.40

02-Oct-17 01:11:30 330.30 334.39 331.98

09-Oct-17 05:10:30 351.00 353.01 348.40 02-Oct-17 01:12:00 330.30 334.38 331.97

09-Oct-17 05:11:00 351.00 352.98 348.40

02-Oct-17 01:12:30 330.30 334.39 331.99

09-Oct-17 05:11:30 351.00 352.96 348.40 02-Oct-17 01:13:00 330.30 334.40 331.98

09-Oct-17 05:12:00 351.00 352.94 348.39

02-Oct-17 01:13:30 330.30 334.40 331.97

09-Oct-17 05:12:30 351.00 352.92 348.38 02-Oct-17 01:14:00 330.30 334.40 331.96

09-Oct-17 05:13:00 351.00 352.91 348.40

02-Oct-17 01:14:30 330.30 334.41 331.96

09-Oct-17 05:13:30 351.00 352.90 348.36 02-Oct-17 01:15:00 330.30 334.42 331.99

09-Oct-17 05:14:00 351.00 352.89 348.38

02-Oct-17 01:15:30 330.30 334.43 332.00

09-Oct-17 05:14:30 351.00 352.87 348.34 02-Oct-17 01:16:00 330.30 334.42 331.99

09-Oct-17 05:15:00 351.00 352.85 348.32

02-Oct-17 01:16:30 330.30 334.43 331.98

09-Oct-17 05:15:30 351.00 352.85 348.34 02-Oct-17 01:17:00 330.30 334.43 331.99

09-Oct-17 05:16:00 351.00 352.85 348.35

02-Oct-17 01:17:30 330.30 334.43 332.01

09-Oct-17 05:16:30 351.00 352.84 348.34 02-Oct-17 01:18:00 330.30 334.43 332.01

09-Oct-17 05:17:00 351.00 352.83 348.33

02-Oct-17 01:18:30 330.30 334.43 332.00

09-Oct-17 05:17:30 351.00 352.83 348.34 02-Oct-17 01:19:00 330.30 334.43 331.98

09-Oct-17 05:18:00 351.00 352.83 348.34

02-Oct-17 01:19:30 330.30 334.44 332.00

09-Oct-17 05:18:30 351.00 352.82 348.29 02-Oct-17 01:20:00 330.30 334.43 331.98

09-Oct-17 05:19:00 351.00 352.83 348.34

02-Oct-17 01:20:30 330.30 334.44 331.99

09-Oct-17 05:19:30 351.00 352.82 348.28 02-Oct-17 01:21:00 330.30 334.44 332.00

09-Oct-17 05:20:00 351.00 352.81 348.25

02-Oct-17 01:21:30 330.30 334.43 331.97

09-Oct-17 05:20:30 351.00 352.80 348.19 02-Oct-17 01:22:00 330.30 334.43 331.96

09-Oct-17 05:21:00 351.00 352.81 348.22

02-Oct-17 01:22:30 330.30 334.44 331.98

09-Oct-17 05:21:30 351.00 352.81 348.24 02-Oct-17 01:23:00 330.30 334.45 332.01

09-Oct-17 05:22:00 351.00 352.79 348.24

02-Oct-17 01:23:30 330.30 334.45 332.00

09-Oct-17 05:22:30 351.00 352.78 348.20 02-Oct-17 01:24:00 330.30 334.45 331.99

09-Oct-17 05:23:00 351.00 352.80 348.16

02-Oct-17 01:24:30 330.30 334.45 332.03

09-Oct-17 05:23:30 351.00 352.80 348.14 02-Oct-17 01:25:00 330.30 334.46 332.02

09-Oct-17 05:24:00 351.00 352.80 348.14

02-Oct-17 01:25:30 330.30 334.46 332.02

09-Oct-17 05:24:30 351.00 352.79 348.10 02-Oct-17 01:26:00 330.30 334.46 332.03

09-Oct-17 05:25:00 351.00 352.79 348.08

02-Oct-17 01:26:30 330.30 334.47 332.06

09-Oct-17 05:25:30 351.00 352.79 348.07

68

Master of Engineering (Industrial Automation)

02-Oct-17 01:27:00 330.30 334.48 332.06

09-Oct-17 05:26:00 351.00 352.78 348.06 02-Oct-17 01:27:30 330.30 334.48 332.07

09-Oct-17 05:26:30 351.00 352.79 348.05

02-Oct-17 01:28:00 330.30 334.49 332.07

09-Oct-17 05:27:00 351.00 352.79 348.05 02-Oct-17 01:28:30 330.30 334.49 332.09

09-Oct-17 05:27:30 351.00 352.79 348.05

02-Oct-17 01:29:00 330.30 334.49 332.08

09-Oct-17 05:28:00 351.00 352.80 348.09 02-Oct-17 01:29:30 330.30 334.50 332.10

09-Oct-17 05:28:30 351.00 352.81 348.07

02-Oct-17 01:30:00 330.30 334.50 332.09

09-Oct-17 05:29:00 351.00 352.80 348.04 02-Oct-17 01:30:30 330.30 334.49 332.08

09-Oct-17 05:29:30 351.00 352.82 348.06

02-Oct-17 01:31:00 330.30 334.50 332.08

09-Oct-17 05:30:00 351.00 352.84 348.10 02-Oct-17 01:31:30 330.30 334.49 332.05

09-Oct-17 05:30:30 351.00 352.85 348.13

02-Oct-17 01:32:00 330.30 334.49 332.04

09-Oct-17 05:31:00 351.00 352.86 348.15 02-Oct-17 01:32:30 330.30 334.50 332.06

09-Oct-17 05:31:30 351.00 352.87 348.19

02-Oct-17 01:33:00 330.30 334.50 332.04

09-Oct-17 05:32:00 351.00 352.88 348.19 02-Oct-17 01:33:30 330.30 334.50 332.07

09-Oct-17 05:32:30 351.00 352.90 348.26

02-Oct-17 01:34:00 330.30 334.50 332.06

09-Oct-17 05:33:00 351.00 352.92 348.28 02-Oct-17 01:34:30 330.30 334.50 332.06

09-Oct-17 05:33:30 351.00 352.92 348.29

02-Oct-17 01:35:00 330.30 334.50 332.07

09-Oct-17 05:34:00 351.00 352.92 348.27 02-Oct-17 01:35:30 330.30 334.50 332.08

09-Oct-17 05:34:30 351.00 352.92 348.26

02-Oct-17 01:36:00 330.30 334.50 332.07

09-Oct-17 05:35:00 351.00 352.92 348.27 02-Oct-17 01:36:30 330.30 334.49 332.05

09-Oct-17 05:35:30 351.00 352.91 348.22

02-Oct-17 01:37:00 330.30 334.49 332.02

09-Oct-17 05:36:00 351.00 352.90 348.21 02-Oct-17 01:37:30 330.30 334.50 332.04

09-Oct-17 05:36:30 351.00 352.88 348.17

02-Oct-17 01:38:00 330.30 334.50 332.07

09-Oct-17 05:37:00 351.00 352.89 348.19 02-Oct-17 01:38:30 330.30 334.50 332.07

09-Oct-17 05:37:30 351.00 352.88 348.16

02-Oct-17 01:39:00 330.30 334.49 332.05

09-Oct-17 05:38:00 351.00 352.88 348.16 02-Oct-17 01:39:30 330.30 334.50 332.07

09-Oct-17 05:38:30 351.00 352.88 348.22

02-Oct-17 01:40:00 330.30 334.49 332.04

09-Oct-17 05:39:00 351.00 352.87 348.20 02-Oct-17 01:40:30 330.30 334.50 332.06

09-Oct-17 05:39:30 351.00 352.85 348.21

02-Oct-17 01:41:00 330.30 334.50 332.04

09-Oct-17 05:40:00 351.00 352.88 348.25 02-Oct-17 01:41:30 330.30 334.50 332.04

09-Oct-17 05:40:30 351.00 352.89 348.23

02-Oct-17 01:42:00 330.30 334.51 332.06

09-Oct-17 05:41:00 351.00 352.91 348.28 02-Oct-17 01:42:30 330.30 334.50 332.02

09-Oct-17 05:41:30 351.00 352.93 348.31

02-Oct-17 01:43:00 330.30 334.50 332.01

09-Oct-17 05:42:00 351.00 352.93 348.30 02-Oct-17 01:43:30 330.30 334.51 332.02

09-Oct-17 05:42:30 351.00 352.94 348.35

02-Oct-17 01:44:00 330.30 334.51 332.01

09-Oct-17 05:43:00 351.00 352.95 348.33 02-Oct-17 01:44:30 330.30 334.50 331.99

09-Oct-17 05:43:30 351.00 352.97 348.40

02-Oct-17 01:45:00 330.30 334.51 332.00

09-Oct-17 05:44:00 351.00 352.99 348.47 02-Oct-17 01:45:30 330.30 334.51 332.00

09-Oct-17 05:44:30 351.00 353.00 348.51

02-Oct-17 01:46:00 330.30 334.51 331.99

09-Oct-17 05:45:00 351.00 353.00 348.49 02-Oct-17 01:46:30 330.30 334.51 331.99

09-Oct-17 05:45:30 351.00 353.01 348.51

02-Oct-17 01:47:00 330.30 334.51 331.98

09-Oct-17 05:46:00 351.00 353.02 348.53 02-Oct-17 01:47:30 330.30 334.51 331.97

09-Oct-17 05:46:30 351.00 353.02 348.50

02-Oct-17 01:48:00 330.30 334.51 331.99

09-Oct-17 05:47:00 351.00 353.02 348.48 02-Oct-17 01:48:30 330.30 334.52 332.01

09-Oct-17 05:47:30 351.00 353.01 348.43

02-Oct-17 01:49:00 330.30 334.52 332.00

09-Oct-17 05:48:00 351.00 353.01 348.39 02-Oct-17 01:49:30 330.30 334.52 331.98

09-Oct-17 05:48:30 351.00 353.01 348.41

02-Oct-17 01:50:00 330.30 334.52 332.00

09-Oct-17 05:49:00 351.00 353.01 348.41 02-Oct-17 01:50:30 330.30 334.52 332.00

09-Oct-17 05:49:30 351.00 353.00 348.41

02-Oct-17 01:51:00 330.30 334.52 331.99

09-Oct-17 05:50:00 351.00 353.00 348.41 02-Oct-17 01:51:30 330.30 334.52 331.96

09-Oct-17 05:50:30 351.00 352.99 348.32

02-Oct-17 01:52:00 330.30 334.51 331.97

09-Oct-17 05:51:00 351.00 352.99 348.27 02-Oct-17 01:52:30 330.30 334.52 331.97

09-Oct-17 05:51:30 351.00 352.99 348.29

02-Oct-17 01:53:00 330.30 334.52 331.97

09-Oct-17 05:52:00 351.00 353.00 348.30 02-Oct-17 01:53:30 330.30 334.51 331.95

09-Oct-17 05:52:30 351.00 353.01 348.26

02-Oct-17 01:54:00 330.30 334.52 331.95

09-Oct-17 05:53:00 351.00 353.01 348.26 02-Oct-17 01:54:30 330.30 334.51 331.94

09-Oct-17 05:53:30 351.00 353.02 348.26

02-Oct-17 01:55:00 330.30 334.51 331.94

09-Oct-17 05:54:00 351.00 353.04 348.27

69

Master of Engineering (Industrial Automation)

02-Oct-17 01:55:30 330.30 334.52 331.98

09-Oct-17 05:54:30 351.00 353.05 348.24 02-Oct-17 01:56:00 330.30 334.52 331.97

09-Oct-17 05:55:00 351.00 353.04 348.22

02-Oct-17 01:56:30 330.30 334.52 331.95

09-Oct-17 05:55:30 351.00 353.05 348.22 02-Oct-17 01:57:00 330.30 334.52 331.96

09-Oct-17 05:56:00 351.00 353.05 348.18

02-Oct-17 01:57:30 330.30 334.52 331.96

09-Oct-17 05:56:30 351.00 353.07 348.21 02-Oct-17 01:58:00 330.30 334.51 331.94

09-Oct-17 05:57:00 351.00 353.07 348.21

02-Oct-17 01:58:30 330.30 334.52 331.94

09-Oct-17 05:57:30 351.00 353.07 348.17 02-Oct-17 01:59:00 330.30 334.52 331.95

09-Oct-17 05:58:00 351.00 353.06 348.12

02-Oct-17 01:59:30 330.30 334.52 331.96

09-Oct-17 05:58:30 351.00 353.06 348.08 02-Oct-17 02:00:00 330.30 334.52 331.96

09-Oct-17 05:59:00 351.00 353.06 348.07

02-Oct-17 02:00:30 330.30 334.52 331.96

09-Oct-17 05:59:30 351.00 353.06 348.07 02-Oct-17 02:01:00 330.30 334.52 331.96

09-Oct-17 06:00:00 351.00 353.05 348.07

02-Oct-17 02:01:30 330.30 334.52 331.97

09-Oct-17 06:00:30 351.00 353.04 348.04 02-Oct-17 02:02:00 330.30 334.52 331.98

09-Oct-17 06:01:00 351.00 353.02 348.01

02-Oct-17 02:02:30 330.30 334.52 331.96

09-Oct-17 06:01:30 351.00 353.02 348.04 02-Oct-17 02:03:00 330.30 334.52 331.97

09-Oct-17 06:02:00 351.00 353.00 347.96

02-Oct-17 02:03:30 330.30 334.51 331.98

09-Oct-17 06:02:30 351.00 352.97 347.87 02-Oct-17 02:04:00 330.30 334.52 331.98

09-Oct-17 06:03:00 351.00 352.95 347.85

02-Oct-17 02:04:30 330.30 334.52 331.96

09-Oct-17 06:03:30 351.00 352.93 347.82 02-Oct-17 02:05:00 330.30 334.50 331.95

09-Oct-17 06:04:00 351.00 352.92 347.81

02-Oct-17 02:05:30 330.30 334.51 331.94

09-Oct-17 06:04:30 351.00 352.89 347.74 02-Oct-17 02:06:00 330.30 334.51 331.94

09-Oct-17 06:05:00 351.00 352.87 347.70

02-Oct-17 02:06:30 330.30 334.51 331.96

09-Oct-17 06:05:30 351.00 352.85 347.66 02-Oct-17 02:07:00 330.30 334.51 331.97

09-Oct-17 06:06:00 351.00 352.83 347.60

02-Oct-17 02:07:30 330.30 334.50 331.96

09-Oct-17 06:06:30 351.00 352.81 347.55 02-Oct-17 02:08:00 330.30 334.50 331.94

09-Oct-17 06:07:00 351.00 352.80 347.53

02-Oct-17 02:08:30 330.30 334.49 331.93

09-Oct-17 06:07:30 351.00 352.78 347.53 02-Oct-17 02:09:00 330.30 334.50 331.94

09-Oct-17 06:08:00 351.00 352.76 347.38

02-Oct-17 02:09:30 330.30 334.50 331.94

09-Oct-17 06:08:30 351.00 352.73 347.29 02-Oct-17 02:10:00 330.30 334.50 331.97

09-Oct-17 06:09:00 351.00 352.73 347.30

02-Oct-17 02:10:30 330.30 334.50 331.96

09-Oct-17 06:09:30 351.00 352.75 347.40 02-Oct-17 02:11:00 330.30 334.50 331.98

09-Oct-17 06:10:00 351.00 352.76 347.47

02-Oct-17 02:11:30 330.30 334.49 331.95

09-Oct-17 06:10:30 351.00 352.77 347.51 02-Oct-17 02:12:00 330.30 334.50 332.00

09-Oct-17 06:11:00 351.00 352.76 347.55

02-Oct-17 02:12:30 330.30 334.50 331.98

09-Oct-17 06:11:30 351.00 352.76 347.61 02-Oct-17 02:13:00 330.30 334.50 332.01

09-Oct-17 06:12:00 351.00 352.76 347.60

02-Oct-17 02:13:30 330.30 334.51 332.00

09-Oct-17 06:12:30 351.00 352.75 347.63 02-Oct-17 02:14:00 330.30 334.50 332.00

09-Oct-17 06:13:00 351.00 352.73 347.63

02-Oct-17 02:14:30 330.30 334.50 331.97

09-Oct-17 06:13:30 351.00 352.73 347.64 02-Oct-17 02:15:00 330.30 334.49 331.99

09-Oct-17 06:14:00 351.00 352.71 347.65

02-Oct-17 02:15:30 330.30 334.49 331.98

09-Oct-17 06:14:30 351.00 352.70 347.63 02-Oct-17 02:16:00 330.30 334.49 331.97

09-Oct-17 06:15:00 351.00 352.69 347.62

02-Oct-17 02:16:30 330.30 334.49 331.98

09-Oct-17 06:15:30 351.00 352.67 347.58 02-Oct-17 02:17:00 330.30 334.49 331.96

09-Oct-17 06:16:00 351.00 352.66 347.58

02-Oct-17 02:17:30 330.30 334.49 331.98

09-Oct-17 06:16:30 351.00 352.65 347.52 02-Oct-17 02:18:00 330.30 334.49 331.98

09-Oct-17 06:17:00 351.00 352.61 347.41

02-Oct-17 02:18:30 330.30 334.48 331.97

09-Oct-17 06:17:30 351.00 352.58 347.32 02-Oct-17 02:19:00 330.30 334.48 331.97

09-Oct-17 06:18:00 351.00 352.55 347.22

02-Oct-17 02:19:30 330.30 334.48 331.97

09-Oct-17 06:18:30 351.00 352.52 347.10 02-Oct-17 02:20:00 330.30 334.48 331.98

09-Oct-17 06:19:00 351.00 352.48 347.00

02-Oct-17 02:20:30 330.47 334.48 331.98

09-Oct-17 06:19:30 351.00 352.45 346.90 02-Oct-17 02:21:00 330.50 334.47 331.98

09-Oct-17 06:20:00 351.00 352.42 346.82

02-Oct-17 02:21:30 330.50 334.47 331.96

09-Oct-17 06:20:30 351.00 352.40 346.74 02-Oct-17 02:22:00 330.50 334.47 331.96

09-Oct-17 06:21:00 351.00 352.38 346.68

02-Oct-17 02:22:30 330.50 334.47 331.95

09-Oct-17 06:21:30 351.00 352.35 346.60 02-Oct-17 02:23:00 330.50 334.46 331.91

09-Oct-17 06:22:00 351.00 352.35 346.59

02-Oct-17 02:23:30 330.50 334.46 331.93

09-Oct-17 06:22:30 351.00 352.34 346.59

70

Master of Engineering (Industrial Automation)

02-Oct-17 02:24:00 330.50 334.46 331.93

09-Oct-17 06:23:00 351.00 352.34 346.62 02-Oct-17 02:24:30 330.50 334.46 331.94

09-Oct-17 06:23:30 351.00 352.34 346.60

02-Oct-17 02:25:00 330.50 334.46 331.95

09-Oct-17 06:24:00 351.00 352.33 346.56 02-Oct-17 02:25:30 330.50 334.46 331.95

09-Oct-17 06:24:30 351.00 352.31 346.50

02-Oct-17 02:26:00 330.50 334.46 331.97

09-Oct-17 06:25:00 351.00 352.31 346.49 02-Oct-17 02:26:30 330.50 334.47 331.98

09-Oct-17 06:25:30 351.00 352.32 346.51

02-Oct-17 02:27:00 330.50 334.47 331.97

09-Oct-17 06:26:00 352.00 352.32 346.53 02-Oct-17 02:27:30 330.50 334.47 332.01

09-Oct-17 06:26:30 352.00 352.32 346.52

02-Oct-17 02:28:00 330.50 334.48 332.04

09-Oct-17 06:27:00 352.00 352.34 346.50 02-Oct-17 02:28:30 330.50 334.48 332.05

09-Oct-17 06:27:30 352.00 352.36 346.51

02-Oct-17 02:29:00 330.50 334.48 332.06

09-Oct-17 06:28:00 352.00 352.38 346.52 02-Oct-17 02:29:30 330.50 334.47 332.03

09-Oct-17 06:28:30 352.00 352.39 346.54

02-Oct-17 02:30:00 330.50 334.47 332.01

09-Oct-17 06:29:00 352.00 352.39 346.54 02-Oct-17 02:30:30 330.50 334.47 331.99

09-Oct-17 06:29:30 352.00 352.36 346.51

02-Oct-17 02:31:00 330.50 334.47 332.00

09-Oct-17 06:30:00 352.00 352.33 346.43 02-Oct-17 02:31:30 330.50 334.48 332.03

09-Oct-17 06:30:30 352.00 352.31 346.38

02-Oct-17 02:32:00 330.50 334.47 332.03

09-Oct-17 06:31:00 352.00 352.30 346.39 02-Oct-17 02:32:30 330.50 334.48 332.03

09-Oct-17 06:31:30 352.00 352.28 346.39

02-Oct-17 02:33:00 330.50 334.48 332.02

09-Oct-17 06:32:00 352.00 352.26 346.40 02-Oct-17 02:33:30 330.50 334.48 332.04

09-Oct-17 06:32:30 352.00 352.24 346.36

02-Oct-17 02:34:00 330.50 334.48 332.04

09-Oct-17 06:33:00 352.00 352.21 346.33 02-Oct-17 02:34:30 330.50 334.49 332.06

09-Oct-17 06:33:30 352.00 352.19 346.29

02-Oct-17 02:35:00 330.50 334.49 332.07

09-Oct-17 06:34:00 352.00 352.17 346.26 02-Oct-17 02:35:30 330.50 334.49 332.07

09-Oct-17 06:34:30 352.00 352.18 346.32

02-Oct-17 02:36:00 330.50 334.49 332.08

09-Oct-17 06:35:00 352.00 352.18 346.31 02-Oct-17 02:36:30 330.50 334.48 332.06

09-Oct-17 06:35:30 352.00 352.17 346.30

02-Oct-17 02:37:00 330.50 334.49 332.10

09-Oct-17 06:36:00 352.00 352.17 346.31 02-Oct-17 02:37:30 330.50 334.49 332.08

09-Oct-17 06:36:30 352.00 352.18 346.30

02-Oct-17 02:38:00 330.50 334.49 332.06

09-Oct-17 06:37:00 352.00 352.18 346.30 02-Oct-17 02:38:30 330.50 334.48 332.02

09-Oct-17 06:37:30 352.00 352.19 346.25

02-Oct-17 02:39:00 330.50 334.48 332.03

09-Oct-17 06:38:00 352.00 352.19 346.22 02-Oct-17 02:39:30 330.50 334.48 332.07

09-Oct-17 06:38:30 352.00 352.22 346.26

02-Oct-17 02:40:00 330.50 334.49 332.07

09-Oct-17 06:39:00 352.00 352.23 346.30 02-Oct-17 02:40:30 330.50 334.49 332.05

09-Oct-17 06:39:30 352.00 352.25 346.34

02-Oct-17 02:41:00 330.50 334.49 332.07

09-Oct-17 06:40:00 352.00 352.27 346.39 02-Oct-17 02:41:30 330.50 334.50 332.13

09-Oct-17 06:40:30 352.00 352.28 346.42

02-Oct-17 02:42:00 330.50 334.50 332.12

09-Oct-17 06:41:00 352.00 352.28 346.42 02-Oct-17 02:42:30 330.50 334.50 332.13

09-Oct-17 06:41:30 352.00 352.26 346.44

02-Oct-17 02:43:00 330.50 334.50 332.09

09-Oct-17 06:42:00 352.00 352.26 346.49 02-Oct-17 02:43:30 330.50 334.50 332.07

09-Oct-17 06:42:30 352.00 352.26 346.56

02-Oct-17 02:44:00 330.50 334.50 332.11

09-Oct-17 06:43:00 352.00 352.26 346.60 02-Oct-17 02:44:30 330.50 334.51 332.12

09-Oct-17 06:43:30 352.00 352.25 346.62

02-Oct-17 02:45:00 330.50 334.51 332.12

09-Oct-17 06:44:00 352.00 352.22 346.63 02-Oct-17 02:45:30 330.50 334.51 332.11

09-Oct-17 06:44:30 352.00 352.22 346.74

02-Oct-17 02:46:00 330.50 334.51 332.11

09-Oct-17 06:45:00 352.00 352.23 346.83 02-Oct-17 02:46:30 330.50 334.51 332.11

09-Oct-17 06:45:30 352.00 352.24 346.95

02-Oct-17 02:47:00 330.50 334.51 332.11

09-Oct-17 06:46:00 352.00 352.23 347.00 02-Oct-17 02:47:30 330.50 334.51 332.14

09-Oct-17 06:46:30 352.00 352.23 347.04

02-Oct-17 02:48:00 330.50 334.52 332.16

09-Oct-17 06:47:00 352.00 352.22 347.09 02-Oct-17 02:48:30 330.50 334.53 332.17

09-Oct-17 06:47:30 352.00 352.21 347.09

02-Oct-17 02:49:00 330.50 334.53 332.18

09-Oct-17 06:48:00 352.00 352.19 347.08 02-Oct-17 02:49:30 330.50 334.53 332.17

09-Oct-17 06:48:30 352.00 352.19 347.10

02-Oct-17 02:50:00 330.50 334.52 332.12

09-Oct-17 06:49:00 352.00 352.20 347.21 02-Oct-17 02:50:30 330.50 334.52 332.14

09-Oct-17 06:49:30 352.00 352.22 347.29

02-Oct-17 02:51:00 330.50 334.52 332.14

09-Oct-17 06:50:00 352.00 352.23 347.33 02-Oct-17 02:51:30 330.50 334.52 332.14

09-Oct-17 06:50:30 352.00 352.22 347.32

02-Oct-17 02:52:00 330.50 334.52 332.13

09-Oct-17 06:51:00 352.00 352.23 347.37

71

Master of Engineering (Industrial Automation)

02-Oct-17 02:52:30 330.50 334.54 332.17

09-Oct-17 06:51:30 352.00 352.24 347.41 02-Oct-17 02:53:00 330.50 334.54 332.18

09-Oct-17 06:52:00 352.00 352.26 347.46

02-Oct-17 02:53:30 330.50 334.54 332.17

09-Oct-17 06:52:30 352.00 352.27 347.51 02-Oct-17 02:54:00 330.50 334.54 332.17

09-Oct-17 06:53:00 352.00 352.28 347.55

02-Oct-17 02:54:30 330.50 334.55 332.18

09-Oct-17 06:53:30 352.00 352.29 347.57 02-Oct-17 02:55:00 330.50 334.55 332.19

09-Oct-17 06:54:00 352.00 352.30 347.62

02-Oct-17 02:55:30 330.50 334.54 332.16

09-Oct-17 06:54:30 352.00 352.33 347.72 02-Oct-17 02:56:00 330.50 334.55 332.17

09-Oct-17 06:55:00 352.00 352.36 347.77

02-Oct-17 02:56:30 330.50 334.54 332.14

09-Oct-17 06:55:30 352.00 352.38 347.77 02-Oct-17 02:57:00 330.50 334.54 332.11

09-Oct-17 06:56:00 352.00 352.42 348.04

02-Oct-17 02:57:30 330.50 334.54 332.10

09-Oct-17 06:56:30 352.00 352.42 348.06 02-Oct-17 02:58:00 330.50 334.54 332.10

09-Oct-17 06:57:00 352.00 352.44 348.11

02-Oct-17 02:58:30 330.50 334.54 332.08

09-Oct-17 06:57:30 352.00 352.46 348.15 02-Oct-17 02:59:00 330.50 334.54 332.08

09-Oct-17 06:58:00 352.00 352.48 348.22

02-Oct-17 02:59:30 330.50 334.54 332.07

09-Oct-17 06:58:30 352.00 352.50 348.22 02-Oct-17 03:00:00 330.50 334.54 332.03

09-Oct-17 06:59:00 352.00 352.50 348.21

02-Oct-17 03:00:30 330.50 334.55 332.05

09-Oct-17 06:59:30 352.00 352.52 348.22 02-Oct-17 03:01:00 330.50 334.54 332.06

09-Oct-17 07:00:00 352.00 352.54 348.26

02-Oct-17 03:01:30 330.50 334.55 332.07

09-Oct-17 07:00:30 352.00 352.55 348.26 02-Oct-17 03:02:00 330.50 334.56 332.07

09-Oct-17 07:01:00 352.00 352.56 348.25

02-Oct-17 03:02:30 330.50 334.56 332.07

09-Oct-17 07:01:30 352.00 352.58 348.24 02-Oct-17 03:03:00 330.50 334.56 332.07

09-Oct-17 07:02:00 352.00 352.59 348.24

02-Oct-17 03:03:30 330.50 334.57 332.07

09-Oct-17 07:02:30 352.00 352.59 348.17 02-Oct-17 03:04:00 330.50 334.57 332.09

09-Oct-17 07:03:00 352.00 352.62 348.17

02-Oct-17 03:04:30 330.50 334.58 332.11

09-Oct-17 07:03:30 352.00 352.64 348.19 02-Oct-17 03:05:00 330.50 334.58 332.11

09-Oct-17 07:04:00 352.00 352.67 348.22

02-Oct-17 03:05:30 330.50 334.58 332.10

09-Oct-17 07:04:30 352.00 352.69 348.18 02-Oct-17 03:06:00 330.50 334.58 332.11

09-Oct-17 07:05:00 352.00 352.70 348.10

02-Oct-17 03:06:30 330.50 334.59 332.14

09-Oct-17 07:05:30 352.00 352.72 348.11 02-Oct-17 03:07:00 330.50 334.60 332.15

09-Oct-17 07:06:00 352.00 352.77 348.15

02-Oct-17 03:07:30 330.50 334.60 332.16

09-Oct-17 07:06:30 352.00 352.80 348.18 02-Oct-17 03:08:00 330.50 334.60 332.16

09-Oct-17 07:07:00 352.00 352.84 348.19

02-Oct-17 03:08:30 330.50 334.61 332.18

09-Oct-17 07:07:30 352.00 352.87 348.16 02-Oct-17 03:09:00 330.50 334.61 332.18

09-Oct-17 07:08:00 352.00 352.91 348.16

02-Oct-17 03:09:30 330.50 334.62 332.17

09-Oct-17 07:08:30 352.00 352.95 348.19 02-Oct-17 03:10:00 330.50 334.61 332.15

09-Oct-17 07:09:00 352.00 352.99 348.20

02-Oct-17 03:10:30 330.50 334.61 332.12

09-Oct-17 07:09:30 352.00 353.04 348.22 02-Oct-17 03:11:00 330.50 334.61 332.10

09-Oct-17 07:10:00 352.00 353.07 348.23

02-Oct-17 03:11:30 330.50 334.61 332.11

09-Oct-17 07:10:30 352.00 353.10 348.18 02-Oct-17 03:12:00 330.50 334.61 332.09

09-Oct-17 07:11:00 352.00 353.14 348.18

02-Oct-17 03:12:30 330.50 334.61 332.11

09-Oct-17 07:11:30 352.00 353.17 348.20 02-Oct-17 03:13:00 330.50 334.62 332.12

09-Oct-17 07:12:00 352.00 353.20 348.20

02-Oct-17 03:13:30 330.50 334.62 332.10

09-Oct-17 07:12:30 352.00 353.22 348.17 02-Oct-17 03:14:00 330.50 334.62 332.13

09-Oct-17 07:13:00 352.00 353.25 348.17

02-Oct-17 03:14:30 330.50 334.62 332.12

09-Oct-17 07:13:30 352.00 353.27 348.17 02-Oct-17 03:15:00 330.50 334.62 332.11

09-Oct-17 07:14:00 352.00 353.29 348.10

02-Oct-17 03:15:30 330.50 334.62 332.13

09-Oct-17 07:14:30 352.00 353.32 348.09 02-Oct-17 03:16:00 330.50 334.62 332.12

09-Oct-17 07:15:00 352.00 353.34 348.12

02-Oct-17 03:16:30 330.50 334.61 332.11

09-Oct-17 07:15:30 352.00 353.33 348.08 02-Oct-17 03:17:00 330.50 334.62 332.12

09-Oct-17 07:16:00 352.00 353.31 348.03

02-Oct-17 03:17:30 330.50 334.63 332.16

09-Oct-17 07:16:30 352.00 353.32 348.01 02-Oct-17 03:18:00 330.50 334.63 332.17

09-Oct-17 07:17:00 352.00 353.33 348.00

02-Oct-17 03:18:30 330.50 334.62 332.11

09-Oct-17 07:17:30 352.00 353.33 347.98 02-Oct-17 03:19:00 330.50 334.62 332.10

09-Oct-17 07:18:00 352.00 353.35 347.95

02-Oct-17 03:19:30 330.50 334.63 332.12

09-Oct-17 07:18:30 352.00 353.36 347.96 02-Oct-17 03:20:00 330.50 334.63 332.13

09-Oct-17 07:19:00 352.00 353.40 347.96

02-Oct-17 03:20:30 330.50 334.62 332.11

09-Oct-17 07:19:30 352.00 353.41 348.02

72

Master of Engineering (Industrial Automation)

02-Oct-17 03:21:00 330.50 334.63 332.14

09-Oct-17 07:20:00 352.00 353.43 348.01 02-Oct-17 03:21:30 330.50 334.63 332.14

09-Oct-17 07:20:30 352.00 353.44 347.99

02-Oct-17 03:22:00 330.50 334.62 332.11

09-Oct-17 07:21:00 352.00 353.50 348.01 02-Oct-17 03:22:30 330.50 334.63 332.12

09-Oct-17 07:21:30 352.00 353.48 347.99

02-Oct-17 03:23:00 330.50 334.63 332.11

09-Oct-17 07:22:00 352.00 353.48 347.98 02-Oct-17 03:23:30 330.50 334.63 332.13

09-Oct-17 07:22:30 352.00 353.49 347.96

02-Oct-17 03:24:00 330.50 334.63 332.11

09-Oct-17 07:23:00 352.00 353.48 347.96 02-Oct-17 03:24:30 330.50 334.64 332.15

09-Oct-17 07:23:30 352.00 353.49 347.94

02-Oct-17 03:25:00 330.50 334.64 332.16

09-Oct-17 07:24:00 352.00 353.49 347.94 02-Oct-17 03:25:30 330.50 334.64 332.15

09-Oct-17 07:24:30 352.00 353.48 347.92

02-Oct-17 03:26:00 330.50 334.64 332.16

09-Oct-17 07:25:00 352.00 353.48 347.96 02-Oct-17 03:26:30 330.50 334.64 332.14

09-Oct-17 07:25:30 352.00 353.47 347.96

02-Oct-17 03:27:00 330.50 334.64 332.17

09-Oct-17 07:26:00 352.00 353.45 347.95 02-Oct-17 03:27:30 330.50 334.64 332.18

09-Oct-17 07:26:30 352.00 353.43 347.96

02-Oct-17 03:28:00 330.50 334.64 332.20

09-Oct-17 07:27:00 352.00 353.42 347.96 02-Oct-17 03:28:30 330.50 334.64 332.18

09-Oct-17 07:27:30 352.00 353.39 347.93

02-Oct-17 03:29:00 330.50 334.64 332.20

09-Oct-17 07:28:00 352.00 353.37 347.94 02-Oct-17 03:29:30 330.50 334.64 332.17

09-Oct-17 07:28:30 352.00 353.36 347.98

02-Oct-17 03:30:00 330.50 334.63 332.14

09-Oct-17 07:29:00 352.00 353.34 347.98 02-Oct-17 03:30:30 330.50 334.63 332.15

09-Oct-17 07:29:30 352.00 353.32 347.94

02-Oct-17 03:31:00 330.50 334.64 332.18

09-Oct-17 07:30:00 352.00 353.31 347.95 02-Oct-17 03:31:30 330.50 334.64 332.20

09-Oct-17 07:30:30 352.00 353.30 347.95

02-Oct-17 03:32:00 330.50 334.64 332.21

09-Oct-17 07:31:00 352.00 353.21 347.95 02-Oct-17 03:32:30 330.50 334.64 332.20

09-Oct-17 07:31:30 352.00 353.29 347.95

02-Oct-17 03:33:00 330.50 334.64 332.21

09-Oct-17 07:32:00 352.00 353.28 347.95 02-Oct-17 03:33:30 330.50 334.64 332.22

09-Oct-17 07:32:30 352.00 353.28 347.96

02-Oct-17 03:34:00 330.50 334.63 332.16

09-Oct-17 07:33:00 352.00 353.27 347.96 02-Oct-17 03:34:30 330.50 334.63 332.19

09-Oct-17 07:33:30 352.00 353.25 347.94

02-Oct-17 03:35:00 330.50 334.64 332.21

09-Oct-17 07:34:00 352.00 353.24 347.92 02-Oct-17 03:35:30 330.50 334.64 332.21

09-Oct-17 07:34:30 352.00 353.24 347.92

02-Oct-17 03:36:00 330.50 334.63 332.19

09-Oct-17 07:35:00 352.00 353.24 347.93 02-Oct-17 03:36:30 330.50 334.63 332.19

09-Oct-17 07:35:30 352.00 353.24 347.91

02-Oct-17 03:37:00 330.50 334.65 332.21

09-Oct-17 07:36:00 352.00 353.22 347.88 02-Oct-17 03:37:30 330.50 334.65 332.20

09-Oct-17 07:36:30 352.00 353.21 347.84

02-Oct-17 03:38:00 330.50 334.64 332.19

09-Oct-17 07:37:00 352.00 353.21 347.85 02-Oct-17 03:38:30 330.50 334.65 332.20

09-Oct-17 07:37:30 352.00 353.21 347.85

02-Oct-17 03:39:00 330.50 334.65 332.19

09-Oct-17 07:38:00 352.00 353.21 347.85 02-Oct-17 03:39:30 330.50 334.65 332.17

09-Oct-17 07:38:30 352.00 353.20 347.84

02-Oct-17 03:40:00 330.50 334.65 332.18

09-Oct-17 07:39:00 352.00 353.19 347.81 02-Oct-17 03:40:30 330.50 334.65 332.17

09-Oct-17 07:39:30 352.00 353.19 347.84

02-Oct-17 03:41:00 330.50 334.66 332.20

09-Oct-17 07:40:00 352.00 353.19 347.85 02-Oct-17 03:41:30 330.50 334.66 332.19

09-Oct-17 07:40:30 352.00 353.19 347.85

02-Oct-17 03:42:00 330.50 334.66 332.19

09-Oct-17 07:41:00 352.00 353.18 347.82 02-Oct-17 03:42:30 330.50 334.65 332.17

09-Oct-17 07:41:30 352.00 353.18 347.79

02-Oct-17 03:43:00 330.50 334.65 332.15

09-Oct-17 07:42:00 352.00 353.18 347.79 02-Oct-17 03:43:30 330.50 334.66 332.17

09-Oct-17 07:42:30 352.00 353.18 347.81

02-Oct-17 03:44:00 330.50 334.66 332.16

09-Oct-17 07:43:00 352.00 353.19 347.80 02-Oct-17 03:44:30 330.50 334.66 332.15

09-Oct-17 07:43:30 352.00 353.19 347.79

02-Oct-17 03:45:00 330.50 334.66 332.19

09-Oct-17 07:44:00 352.00 353.20 347.80 02-Oct-17 03:45:30 330.50 334.67 332.18

09-Oct-17 07:44:30 352.00 353.21 347.81

02-Oct-17 03:46:00 330.50 334.67 332.19

09-Oct-17 07:45:00 352.00 353.20 347.80 02-Oct-17 03:46:30 330.50 334.67 332.19

09-Oct-17 07:45:30 352.00 353.20 347.78

02-Oct-17 03:47:00 330.50 334.68 332.20

09-Oct-17 07:46:00 352.00 353.20 347.76 02-Oct-17 03:47:30 330.50 334.67 332.19

09-Oct-17 07:46:30 352.00 353.21 347.77

02-Oct-17 03:48:00 330.50 334.67 332.18

09-Oct-17 07:47:00 352.00 353.21 347.80 02-Oct-17 03:48:30 330.50 334.67 332.17

09-Oct-17 07:47:30 352.00 353.20 347.74

02-Oct-17 03:49:00 330.50 334.67 332.19

09-Oct-17 07:48:00 352.00 353.21 347.73

73

Master of Engineering (Industrial Automation)

02-Oct-17 03:49:30 330.50 334.67 332.16

09-Oct-17 07:48:30 352.00 353.21 347.73 02-Oct-17 03:50:00 330.50 334.67 332.17

09-Oct-17 07:49:00 352.00 353.20 347.73

02-Oct-17 03:50:30 330.50 334.67 332.20

09-Oct-17 07:49:30 352.00 353.20 347.72 02-Oct-17 03:51:00 330.50 334.68 332.20

09-Oct-17 07:50:00 352.00 353.21 347.75

02-Oct-17 03:51:30 330.50 334.67 332.17

09-Oct-17 07:50:30 352.00 353.20 347.72 02-Oct-17 03:52:00 330.50 334.67 332.20

09-Oct-17 07:51:00 352.00 353.20 347.71

02-Oct-17 03:52:30 330.50 334.68 332.20

09-Oct-17 07:51:30 352.00 353.20 347.72 02-Oct-17 03:53:00 330.50 334.68 332.19

09-Oct-17 07:52:00 352.00 353.20 347.71

02-Oct-17 03:53:30 330.50 334.67 332.18

09-Oct-17 07:52:30 352.00 353.20 347.71 02-Oct-17 03:54:00 330.50 334.67 332.16

09-Oct-17 07:53:00 352.00 353.21 347.74

02-Oct-17 03:54:30 330.50 334.66 332.14

09-Oct-17 07:53:30 352.00 353.21 347.73 02-Oct-17 03:55:00 330.50 334.66 332.14

09-Oct-17 07:54:00 352.00 353.19 347.68

02-Oct-17 03:55:30 330.50 334.66 332.11

09-Oct-17 07:54:30 352.00 353.20 347.69 02-Oct-17 03:56:00 330.50 334.66 332.10

09-Oct-17 07:55:00 352.00 353.20 347.69

02-Oct-17 03:56:30 330.50 334.67 332.10

09-Oct-17 07:55:30 352.00 353.20 347.66 02-Oct-17 03:57:00 330.50 334.67 332.13

09-Oct-17 07:56:00 352.00 353.20 347.67

02-Oct-17 03:57:30 330.50 334.68 332.15

09-Oct-17 07:56:30 352.00 353.20 347.69 02-Oct-17 03:58:00 330.50 334.67 332.14

09-Oct-17 07:57:00 352.00 353.20 347.68

02-Oct-17 03:58:30 330.50 334.68 332.15

09-Oct-17 07:57:30 352.00 353.20 347.67 02-Oct-17 03:59:00 330.50 334.68 332.17

09-Oct-17 07:58:00 352.00 353.19 347.69

02-Oct-17 03:59:30 330.50 334.68 332.17

09-Oct-17 07:58:30 352.00 353.19 347.67 02-Oct-17 04:00:00 330.50 334.68 332.17

09-Oct-17 07:59:00 352.00 353.20 347.70

02-Oct-17 04:00:30 330.50 334.68 332.14

09-Oct-17 07:59:30 352.00 353.19 347.66 02-Oct-17 04:01:00 330.50 334.68 332.16

09-Oct-17 08:00:00 352.00 353.18 347.64

02-Oct-17 04:01:30 330.50 334.67 332.14

09-Oct-17 08:00:30 352.00 353.18 347.66 02-Oct-17 04:02:00 330.50 334.68 332.14

09-Oct-17 08:01:00 352.00 353.17 347.66

02-Oct-17 04:02:30 330.50 334.68 332.13

09-Oct-17 08:01:30 352.00 353.17 347.66 02-Oct-17 04:03:00 330.50 334.69 332.16

09-Oct-17 08:02:00 352.00 353.16 347.61

02-Oct-17 04:03:30 330.50 334.68 332.14

09-Oct-17 08:02:30 352.00 353.15 347.62 02-Oct-17 04:04:00 330.50 334.68 332.11

09-Oct-17 08:03:00 352.00 353.15 347.62

02-Oct-17 04:04:30 330.50 334.68 332.13

09-Oct-17 08:03:30 352.00 353.15 347.65 02-Oct-17 04:05:00 330.50 334.69 332.14

09-Oct-17 08:04:00 352.00 353.14 347.64

02-Oct-17 04:05:30 330.50 334.68 332.12

09-Oct-17 08:04:30 352.00 353.13 347.61 02-Oct-17 04:06:00 330.50 334.68 332.13

09-Oct-17 08:05:00 352.00 353.13 347.58

02-Oct-17 04:06:30 330.50 334.68 332.14

09-Oct-17 08:05:30 352.00 353.14 347.65 02-Oct-17 04:07:00 330.50 334.69 332.15

09-Oct-17 08:06:00 352.00 353.13 347.64

02-Oct-17 04:07:30 330.50 334.68 332.16

09-Oct-17 08:06:30 352.00 353.13 347.61 02-Oct-17 04:08:00 330.50 334.68 332.14

09-Oct-17 08:07:00 352.00 353.13 347.61

02-Oct-17 04:08:30 330.50 334.68 332.14

09-Oct-17 08:07:30 352.00 353.12 347.63 02-Oct-17 04:09:00 330.50 334.68 332.14

09-Oct-17 08:08:00 352.00 353.14 347.63

02-Oct-17 04:09:30 330.50 334.68 332.11

09-Oct-17 08:08:30 352.00 353.14 347.70 02-Oct-17 04:10:00 330.50 334.68 332.14

09-Oct-17 08:09:00 352.00 353.13 347.71

02-Oct-17 04:10:30 330.50 334.68 332.16

09-Oct-17 08:09:30 352.00 353.13 347.70 02-Oct-17 04:11:00 330.50 334.67 332.13

09-Oct-17 08:10:00 352.00 353.13 347.69

02-Oct-17 04:11:30 330.50 334.67 332.11

09-Oct-17 08:10:30 352.00 353.14 347.76 02-Oct-17 04:12:00 330.50 334.68 332.14

09-Oct-17 08:11:00 352.00 353.14 347.77

02-Oct-17 04:12:30 330.50 334.67 332.12

09-Oct-17 08:11:30 352.00 353.13 347.72 02-Oct-17 04:13:00 330.50 334.67 332.12

09-Oct-17 08:12:00 352.00 353.12 347.72

02-Oct-17 04:13:30 330.50 334.68 332.11

09-Oct-17 08:12:30 352.00 353.12 347.69 02-Oct-17 04:14:00 330.86 334.67 332.11

09-Oct-17 08:13:00 352.00 353.12 347.69

02-Oct-17 04:14:30 331.00 334.66 332.08

09-Oct-17 08:13:30 352.00 353.12 347.70 02-Oct-17 04:15:00 331.00 334.66 332.06

09-Oct-17 08:14:00 352.00 353.12 347.73

02-Oct-17 04:15:30 331.00 334.65 332.05

09-Oct-17 08:14:30 352.00 353.12 347.72 02-Oct-17 04:16:00 331.00 334.66 332.07

09-Oct-17 08:15:00 352.00 353.11 347.66

02-Oct-17 04:16:30 331.00 334.66 332.07

09-Oct-17 08:15:30 352.00 353.12 347.68 02-Oct-17 04:17:00 331.00 334.66 332.09

09-Oct-17 08:16:00 352.00 353.11 347.70

02-Oct-17 04:17:30 331.00 334.67 332.10

09-Oct-17 08:16:30 352.00 353.11 347.71

74

Master of Engineering (Industrial Automation)

02-Oct-17 04:18:00 331.00 334.67 332.15

09-Oct-17 08:17:00 352.00 353.11 347.68 02-Oct-17 04:18:30 331.00 334.67 332.14

09-Oct-17 08:17:30 352.00 353.10 347.64

02-Oct-17 04:19:00 331.00 334.68 332.20

09-Oct-17 08:18:00 352.00 353.10 347.65 02-Oct-17 04:19:30 331.00 334.69 332.19

09-Oct-17 08:18:30 352.00 353.11 347.67

02-Oct-17 04:20:00 331.00 334.69 332.20

09-Oct-17 08:19:00 352.00 353.11 347.64 02-Oct-17 04:20:30 331.00 334.68 332.19

09-Oct-17 08:19:30 352.00 353.11 347.65

02-Oct-17 04:21:00 331.00 334.68 332.23

09-Oct-17 08:20:00 352.00 353.11 347.64 02-Oct-17 04:21:30 331.00 334.69 332.28

09-Oct-17 08:20:30 352.00 353.11 347.66

02-Oct-17 04:22:00 331.00 334.70 332.30

09-Oct-17 08:21:00 352.00 353.13 347.69 02-Oct-17 04:22:30 331.00 334.70 332.32

09-Oct-17 08:21:30 352.00 353.14 347.72

02-Oct-17 04:23:00 331.00 334.70 332.32

09-Oct-17 08:22:00 352.00 353.14 347.74 02-Oct-17 04:23:30 331.00 334.70 332.32

09-Oct-17 08:22:30 352.00 353.14 347.71

02-Oct-17 04:24:00 331.00 334.70 332.33

09-Oct-17 08:23:00 352.00 353.13 347.69 02-Oct-17 04:24:30 331.00 334.70 332.35

09-Oct-17 08:23:30 352.00 353.14 347.71

02-Oct-17 04:25:00 331.00 334.70 332.35

09-Oct-17 08:24:00 352.00 353.15 347.73 02-Oct-17 04:25:30 331.00 334.70 332.33

09-Oct-17 08:24:30 352.00 353.14 347.71

02-Oct-17 04:26:00 331.00 334.70 332.34

09-Oct-17 08:25:00 352.00 353.14 347.69 02-Oct-17 04:26:30 331.00 334.71 332.37

09-Oct-17 08:25:30 352.00 353.13 347.65

02-Oct-17 04:27:00 331.00 334.70 332.38

09-Oct-17 08:26:00 352.00 353.12 347.62 02-Oct-17 04:27:30 331.00 334.70 332.36

09-Oct-17 08:26:30 352.00 353.12 347.63

02-Oct-17 04:28:00 331.00 334.70 332.38

09-Oct-17 08:27:00 352.00 353.12 347.63 02-Oct-17 04:28:30 331.00 334.70 332.36

09-Oct-17 08:27:30 352.00 353.12 347.60

02-Oct-17 04:29:00 331.00 334.71 332.40

09-Oct-17 08:28:00 352.00 353.11 347.56 02-Oct-17 04:29:30 331.00 334.71 332.41

09-Oct-17 08:28:30 352.00 353.10 347.54

02-Oct-17 04:30:00 331.00 334.71 332.40

09-Oct-17 08:29:00 352.00 353.09 347.53 02-Oct-17 04:30:30 331.00 334.71 332.40

09-Oct-17 08:29:30 352.00 353.09 347.48

02-Oct-17 04:31:00 331.00 334.70 332.39

09-Oct-17 08:30:00 352.00 353.09 347.47 02-Oct-17 04:31:30 331.00 334.71 332.41

09-Oct-17 08:30:30 352.00 353.08 347.45

02-Oct-17 04:32:00 331.00 334.72 332.44

09-Oct-17 08:31:00 352.00 353.07 347.42 02-Oct-17 04:32:30 331.00 334.72 332.45

09-Oct-17 08:31:30 352.00 353.06 347.38

02-Oct-17 04:33:00 331.00 334.73 332.46

09-Oct-17 08:32:00 352.00 353.07 347.43 02-Oct-17 04:33:30 331.00 334.74 332.48

09-Oct-17 08:32:30 352.00 353.07 347.42

02-Oct-17 04:34:00 331.00 334.75 332.53

09-Oct-17 08:33:00 352.00 353.07 347.43 02-Oct-17 04:34:30 331.00 334.75 332.52

09-Oct-17 08:33:30 352.00 353.08 347.46

02-Oct-17 04:35:00 331.00 334.76 332.54

09-Oct-17 08:34:00 352.00 353.07 347.43 02-Oct-17 04:35:30 331.00 334.76 332.57

09-Oct-17 08:34:30 352.00 353.07 347.42

02-Oct-17 04:36:00 331.00 334.77 332.55

09-Oct-17 08:35:00 352.00 353.07 347.43 02-Oct-17 04:36:30 331.00 334.78 332.60

09-Oct-17 08:35:30 352.00 353.08 347.45

02-Oct-17 04:37:00 331.00 334.78 332.58

09-Oct-17 08:36:00 352.00 353.07 347.45 02-Oct-17 04:37:30 331.00 334.79 332.59

09-Oct-17 08:36:30 352.00 353.07 347.46

02-Oct-17 04:38:00 331.00 334.79 332.58

09-Oct-17 08:37:00 352.00 353.06 347.44 02-Oct-17 04:38:30 331.00 334.80 332.58

09-Oct-17 08:37:30 352.00 353.06 347.43

02-Oct-17 04:39:00 331.00 334.80 332.61

09-Oct-17 08:38:00 352.00 353.06 347.45 02-Oct-17 04:39:30 331.00 334.80 332.59

09-Oct-17 08:38:30 352.00 353.06 347.47

02-Oct-17 04:40:00 331.00 334.80 332.56

09-Oct-17 08:39:00 352.00 353.05 347.46 02-Oct-17 04:40:30 331.00 334.81 332.58

09-Oct-17 08:39:30 352.00 353.04 347.44

02-Oct-17 04:41:00 331.00 334.81 332.58

09-Oct-17 08:40:00 352.00 353.04 347.45 02-Oct-17 04:41:30 331.00 334.81 332.58

09-Oct-17 08:40:30 352.00 353.04 347.46

02-Oct-17 04:42:00 331.00 334.81 332.57

09-Oct-17 08:41:00 352.00 353.03 347.46 02-Oct-17 04:42:30 331.00 334.81 332.56

09-Oct-17 08:41:30 352.00 353.02 347.46

02-Oct-17 04:43:00 331.00 334.82 332.57

09-Oct-17 08:42:00 352.00 353.01 347.46 02-Oct-17 04:43:30 331.00 334.83 332.60

09-Oct-17 08:42:30 352.00 353.00 347.44

02-Oct-17 04:44:00 331.00 334.83 332.60

09-Oct-17 08:43:00 352.00 352.99 347.44 02-Oct-17 04:44:30 331.00 334.83 332.59

09-Oct-17 08:43:30 352.00 352.98 347.44

02-Oct-17 04:45:00 331.00 334.84 332.62

09-Oct-17 08:44:00 352.00 352.98 347.41 02-Oct-17 04:45:30 331.00 334.84 332.62

09-Oct-17 08:44:30 352.00 352.98 347.40

02-Oct-17 04:46:00 331.00 334.85 332.62

09-Oct-17 08:45:00 352.00 352.97 347.39

75

Master of Engineering (Industrial Automation)

02-Oct-17 04:46:30 331.00 334.86 332.66

09-Oct-17 08:45:30 352.00 352.97 347.43 02-Oct-17 04:47:00 331.00 334.87 332.66

09-Oct-17 08:46:00 352.00 352.96 347.43

02-Oct-17 04:47:30 331.00 334.88 332.70

09-Oct-17 08:46:30 352.00 352.96 347.43 02-Oct-17 04:48:00 331.00 334.88 332.68

09-Oct-17 08:47:00 352.00 352.96 347.42

02-Oct-17 04:48:30 331.00 334.88 332.69

09-Oct-17 08:47:30 352.00 352.96 347.40 02-Oct-17 04:49:00 331.00 334.89 332.72

09-Oct-17 08:48:00 352.00 352.95 347.40

02-Oct-17 04:49:30 331.00 334.90 332.71

09-Oct-17 08:48:30 352.00 352.95 347.41 02-Oct-17 04:50:00 331.00 334.91 332.72

09-Oct-17 08:49:00 352.00 352.96 347.44

02-Oct-17 04:50:30 331.00 334.91 332.72

09-Oct-17 08:49:30 352.00 352.96 347.45 02-Oct-17 04:51:00 331.00 334.93 332.72

09-Oct-17 08:50:00 352.00 352.96 347.45

02-Oct-17 04:51:30 331.00 334.92 332.69

09-Oct-17 08:50:30 352.00 352.96 347.45 02-Oct-17 04:52:00 331.00 334.93 332.67

09-Oct-17 08:51:00 352.00 352.96 347.46

02-Oct-17 04:52:30 331.00 334.93 332.65

09-Oct-17 08:51:30 352.00 352.96 347.49 02-Oct-17 04:53:00 331.00 334.94 332.67

09-Oct-17 08:52:00 352.00 352.97 347.51

02-Oct-17 04:53:30 331.00 334.94 332.67

09-Oct-17 08:52:30 352.00 352.98 347.52 02-Oct-17 04:54:00 331.00 334.95 332.68

09-Oct-17 08:53:00 352.00 352.96 347.51

02-Oct-17 04:54:30 331.00 334.96 332.67

09-Oct-17 08:53:30 352.00 352.96 347.50 02-Oct-17 04:55:00 331.00 334.97 332.68

09-Oct-17 08:54:00 352.00 352.96 347.54

02-Oct-17 04:55:30 331.00 334.97 332.66

09-Oct-17 08:54:30 352.00 352.96 347.54 02-Oct-17 04:56:00 331.00 334.97 332.66

09-Oct-17 08:55:00 352.00 352.95 347.54

02-Oct-17 04:56:30 331.00 334.99 332.66

09-Oct-17 08:55:30 352.00 352.95 347.51 02-Oct-17 04:57:00 331.00 334.99 332.64

09-Oct-17 08:56:00 352.00 352.95 347.52

02-Oct-17 04:57:30 331.00 334.99 332.65

09-Oct-17 08:56:30 352.00 352.95 347.56 02-Oct-17 04:58:00 331.00 335.00 332.66

09-Oct-17 08:57:00 352.00 352.95 347.55

02-Oct-17 04:58:30 331.00 335.01 332.66

09-Oct-17 08:57:30 352.00 352.95 347.52 02-Oct-17 04:59:00 331.00 335.02 332.68

09-Oct-17 08:58:00 352.00 352.94 347.53

02-Oct-17 04:59:30 331.00 335.03 332.69

09-Oct-17 08:58:30 352.00 352.95 347.54 02-Oct-17 05:00:00 331.00 335.03 332.67

09-Oct-17 08:59:00 352.00 352.95 347.51

02-Oct-17 05:00:30 331.00 335.04 332.68

09-Oct-17 08:59:30 352.00 352.95 347.51 02-Oct-17 05:01:00 331.00 335.05 332.71

09-Oct-17 09:00:00 352.00 352.94 347.48

02-Oct-17 05:01:30 331.00 335.06 332.73

09-Oct-17 09:00:30 352.00 352.94 347.46 02-Oct-17 05:02:00 331.00 335.06 332.70

09-Oct-17 09:01:00 352.00 352.94 347.46

02-Oct-17 05:02:30 331.00 335.07 332.74

09-Oct-17 09:01:30 352.00 352.95 347.46 02-Oct-17 05:03:00 331.00 335.09 332.75

09-Oct-17 09:02:00 352.00 352.94 347.46

02-Oct-17 05:03:30 331.00 335.09 332.73

09-Oct-17 09:02:30 352.00 352.94 347.43 02-Oct-17 05:04:00 331.00 335.10 332.72

09-Oct-17 09:03:00 352.00 352.93 347.42

02-Oct-17 05:04:30 331.00 335.10 332.74

09-Oct-17 09:03:30 352.00 352.94 347.42 02-Oct-17 05:05:00 331.00 335.11 332.72

09-Oct-17 09:04:00 352.00 352.95 347.40

02-Oct-17 05:05:30 331.00 335.12 332.74

09-Oct-17 09:04:30 352.00 352.95 347.40 02-Oct-17 05:06:00 331.00 335.13 332.77

09-Oct-17 09:05:00 352.00 352.95 347.41

02-Oct-17 05:06:30 331.00 335.13 332.77

09-Oct-17 09:05:30 352.00 352.95 347.42 02-Oct-17 05:07:00 331.00 335.14 332.77

09-Oct-17 09:06:00 352.00 352.97 347.44

02-Oct-17 05:07:30 331.00 335.15 332.77

09-Oct-17 09:06:30 352.00 352.97 347.46 02-Oct-17 05:08:00 331.00 335.15 332.75

09-Oct-17 09:07:00 352.00 352.97 347.46

02-Oct-17 05:08:30 331.00 335.16 332.77

09-Oct-17 09:07:30 352.00 352.97 347.46 02-Oct-17 05:09:00 331.00 335.16 332.76

09-Oct-17 09:08:00 352.00 352.97 347.46

02-Oct-17 05:09:30 331.00 335.16 332.74

09-Oct-17 09:08:30 352.00 352.98 347.46 02-Oct-17 05:10:00 331.00 335.16 332.69

09-Oct-17 09:09:00 352.00 352.98 347.48

02-Oct-17 05:10:30 331.00 335.16 332.70

09-Oct-17 09:09:30 352.00 352.98 347.49 02-Oct-17 05:11:00 331.00 335.16 332.67

09-Oct-17 09:10:00 352.00 352.98 347.51

02-Oct-17 05:11:30 331.00 335.17 332.70

09-Oct-17 09:10:30 352.00 352.98 347.48 02-Oct-17 05:12:00 331.00 335.17 332.70

09-Oct-17 09:11:00 352.00 352.98 347.48

02-Oct-17 05:12:30 331.00 335.17 332.66

09-Oct-17 09:11:30 352.00 352.97 347.48 02-Oct-17 05:13:00 331.00 335.17 332.68

09-Oct-17 09:12:00 352.00 352.86 347.46

02-Oct-17 05:13:30 331.00 335.18 332.70

09-Oct-17 09:12:30 352.00 352.96 347.46 02-Oct-17 05:14:00 331.00 335.18 332.66

09-Oct-17 09:13:00 352.00 352.97 347.46

02-Oct-17 05:14:30 331.00 335.17 332.64

09-Oct-17 09:13:30 352.00 352.95 347.42

76

Master of Engineering (Industrial Automation)

02-Oct-17 05:15:00 331.00 335.18 332.68

09-Oct-17 09:14:00 352.00 352.93 347.39 02-Oct-17 05:15:30 331.00 335.20 332.70

09-Oct-17 09:14:30 352.00 352.95 347.37

02-Oct-17 05:16:00 331.00 335.20 332.71

09-Oct-17 09:15:00 352.00 352.94 347.39 02-Oct-17 05:16:30 331.00 335.21 332.72

09-Oct-17 09:15:30 352.00 352.94 347.36

02-Oct-17 05:17:00 331.00 335.21 332.74

09-Oct-17 09:16:00 352.00 352.94 347.37 02-Oct-17 05:17:30 331.00 335.22 332.75

09-Oct-17 09:16:30 352.00 352.95 347.40

02-Oct-17 05:18:00 331.00 335.23 332.78

09-Oct-17 09:17:00 352.00 352.95 347.40 02-Oct-17 05:18:30 331.00 335.23 332.76

09-Oct-17 09:17:30 352.00 352.95 347.42

02-Oct-17 05:19:00 331.00 335.22 332.73

09-Oct-17 09:18:00 352.00 352.96 347.44 02-Oct-17 05:19:30 331.00 335.23 332.75

09-Oct-17 09:18:30 352.00 352.96 347.45

02-Oct-17 05:20:00 331.00 335.24 332.74

09-Oct-17 09:19:00 352.00 352.96 347.47 02-Oct-17 05:20:30 331.00 335.24 332.75

09-Oct-17 09:19:30 352.00 352.97 347.48

02-Oct-17 05:21:00 331.00 335.24 332.76

09-Oct-17 09:20:00 352.00 352.97 347.49 02-Oct-17 05:21:30 331.00 335.24 332.75

09-Oct-17 09:20:30 352.00 352.97 347.48

02-Oct-17 05:22:00 331.00 335.24 332.73

09-Oct-17 09:21:00 352.00 352.97 347.49 02-Oct-17 05:22:30 331.00 335.24 332.72

09-Oct-17 09:21:30 352.00 352.96 347.49

02-Oct-17 05:23:00 331.00 335.25 332.75

09-Oct-17 09:22:00 352.00 352.97 347.52 02-Oct-17 05:23:30 331.00 335.25 332.73

09-Oct-17 09:22:30 352.00 352.97 347.51

02-Oct-17 05:24:00 331.00 335.25 332.71

09-Oct-17 09:23:00 352.00 352.98 347.53 02-Oct-17 05:24:30 331.00 335.25 332.71

09-Oct-17 09:23:30 352.00 352.97 347.52

02-Oct-17 05:25:00 331.00 335.25 332.72

09-Oct-17 09:24:00 352.00 352.96 347.49 02-Oct-17 05:25:30 331.00 335.25 332.71

09-Oct-17 09:24:30 352.00 352.95 347.43

02-Oct-17 05:26:00 331.00 335.25 332.72

09-Oct-17 09:25:00 352.00 352.95 347.45 02-Oct-17 05:26:30 331.00 335.25 332.70

09-Oct-17 09:25:30 352.00 352.94 347.45

02-Oct-17 05:27:00 331.00 335.24 332.67

09-Oct-17 09:26:00 352.00 352.93 347.42 02-Oct-17 05:27:30 331.00 335.24 332.66

09-Oct-17 09:26:30 352.00 352.94 347.42

02-Oct-17 05:28:00 331.00 335.24 332.64

09-Oct-17 09:27:00 352.00 352.92 347.42 02-Oct-17 05:28:30 331.00 335.24 332.65

09-Oct-17 09:27:30 352.00 352.92 347.42

02-Oct-17 05:29:00 331.00 335.25 332.67

09-Oct-17 09:28:00 352.00 352.92 347.43 02-Oct-17 05:29:30 331.00 335.25 332.67

09-Oct-17 09:28:30 352.00 352.91 347.43

02-Oct-17 05:30:00 331.00 335.25 332.68

09-Oct-17 09:29:00 352.00 352.91 347.43 02-Oct-17 05:30:30 331.00 335.26 332.69

09-Oct-17 09:29:30 352.00 352.91 347.46

02-Oct-17 05:31:00 331.00 335.26 332.70

09-Oct-17 09:30:00 352.00 352.92 347.50 02-Oct-17 05:31:30 331.00 335.26 332.68

09-Oct-17 09:30:30 352.00 352.93 347.52

02-Oct-17 05:32:00 331.00 335.26 332.67

09-Oct-17 09:31:00 352.00 352.93 347.54 02-Oct-17 05:32:30 331.00 335.26 332.68

09-Oct-17 09:31:30 352.00 352.94 347.56

02-Oct-17 05:33:00 331.00 335.26 332.67

09-Oct-17 09:32:00 352.00 352.94 347.57 02-Oct-17 05:33:30 331.00 335.27 332.67

09-Oct-17 09:32:30 352.00 352.94 347.58

02-Oct-17 05:34:00 331.00 335.28 332.69

09-Oct-17 09:33:00 352.00 352.94 347.55 02-Oct-17 05:34:30 331.00 335.28 332.70

09-Oct-17 09:33:30 352.00 352.94 347.56

02-Oct-17 05:35:00 331.00 335.28 332.69

09-Oct-17 09:34:00 352.00 352.94 347.55 02-Oct-17 05:35:30 331.00 335.27 332.67

09-Oct-17 09:34:30 352.00 352.93 347.54

02-Oct-17 05:36:00 331.00 335.28 332.67

09-Oct-17 09:35:00 352.00 352.94 347.53 02-Oct-17 05:36:30 331.00 335.28 332.67

09-Oct-17 09:35:30 352.00 352.93 347.51

02-Oct-17 05:37:00 331.00 335.28 332.66

09-Oct-17 09:36:00 352.00 352.94 347.50 02-Oct-17 05:37:30 331.00 335.29 332.67

09-Oct-17 09:36:30 352.00 352.94 347.50

02-Oct-17 05:38:00 331.00 335.28 332.68

09-Oct-17 09:37:00 352.00 352.93 347.50 02-Oct-17 05:38:30 331.00 335.28 332.68

09-Oct-17 09:37:30 352.00 352.93 347.51

02-Oct-17 05:39:00 331.00 335.28 332.65

09-Oct-17 09:38:00 352.00 352.93 347.49 02-Oct-17 05:39:30 331.00 335.29 332.66

09-Oct-17 09:38:30 352.00 352.93 347.50

02-Oct-17 05:40:00 331.00 335.28 332.64

09-Oct-17 09:39:00 352.00 352.93 347.50 02-Oct-17 05:40:30 331.00 335.28 332.67

09-Oct-17 09:39:30 352.00 352.93 347.50

02-Oct-17 05:41:00 331.00 335.28 332.66

09-Oct-17 09:40:00 352.00 352.93 347.51 02-Oct-17 05:41:30 331.00 335.28 332.68

09-Oct-17 09:40:30 352.00 352.93 347.49

02-Oct-17 05:42:00 331.00 335.27 332.66

09-Oct-17 09:41:00 352.00 352.94 347.52 02-Oct-17 05:42:30 331.00 335.27 332.66

09-Oct-17 09:41:30 352.00 352.95 347.54

02-Oct-17 05:43:00 331.00 335.27 332.66

09-Oct-17 09:42:00 352.00 352.95 347.54

77

Master of Engineering (Industrial Automation)

02-Oct-17 05:43:30 331.00 335.27 332.67

09-Oct-17 09:42:30 352.00 352.96 347.58 02-Oct-17 05:44:00 331.00 335.27 332.64

09-Oct-17 09:43:00 352.00 352.96 347.59

02-Oct-17 05:44:30 331.00 335.26 332.65

09-Oct-17 09:43:30 352.00 352.97 347.59 02-Oct-17 05:45:00 331.00 335.25 332.61

09-Oct-17 09:44:00 352.00 352.98 347.63

02-Oct-17 05:45:30 331.00 335.26 332.61

09-Oct-17 09:44:30 352.00 352.98 347.63 02-Oct-17 05:46:00 331.00 335.25 332.61

09-Oct-17 09:45:00 352.00 352.98 347.60

02-Oct-17 05:46:30 331.00 335.25 332.61

09-Oct-17 09:45:30 352.00 352.97 347.55 02-Oct-17 05:47:00 331.00 335.25 332.62

09-Oct-17 09:46:00 352.00 352.98 347.54

02-Oct-17 05:47:30 331.00 335.25 332.60

09-Oct-17 09:46:30 352.00 352.99 347.55 02-Oct-17 05:48:00 331.00 335.25 332.61

09-Oct-17 09:47:00 352.00 352.99 347.56

02-Oct-17 05:48:30 331.00 335.26 332.64

09-Oct-17 09:47:30 352.00 352.98 347.55 02-Oct-17 05:49:00 331.00 335.26 332.65

09-Oct-17 09:48:00 352.00 352.98 347.52

02-Oct-17 05:49:30 331.00 335.26 332.61

09-Oct-17 09:48:30 352.00 352.97 347.50 02-Oct-17 05:50:00 331.00 335.26 332.64

09-Oct-17 09:49:00 352.00 352.97 347.50

02-Oct-17 05:50:30 331.00 335.26 332.66

09-Oct-17 09:49:30 352.00 352.98 347.55 02-Oct-17 05:51:00 331.00 335.26 332.66

09-Oct-17 09:50:00 352.00 352.98 347.53

02-Oct-17 05:51:30 331.00 335.27 332.67

09-Oct-17 09:50:30 352.00 352.99 347.57 02-Oct-17 05:52:00 331.00 335.27 332.70

09-Oct-17 09:51:00 352.00 352.99 347.58

02-Oct-17 05:52:30 331.00 335.27 332.69

09-Oct-17 09:51:30 352.00 352.98 347.55 02-Oct-17 05:53:00 331.00 335.27 332.69

09-Oct-17 09:52:00 352.00 352.99 347.57

02-Oct-17 05:53:30 331.00 335.27 332.69

09-Oct-17 09:52:30 352.00 352.98 347.55 02-Oct-17 05:54:00 331.00 335.27 332.69

09-Oct-17 09:53:00 352.00 352.98 347.53

02-Oct-17 05:54:30 331.00 335.27 332.69

09-Oct-17 09:53:30 352.00 352.98 347.56 02-Oct-17 05:55:00 331.00 335.26 332.69

09-Oct-17 09:54:00 352.00 352.98 347.55

02-Oct-17 05:55:30 331.00 335.27 332.70

09-Oct-17 09:54:30 352.00 352.99 347.59 02-Oct-17 05:56:00 331.00 335.26 332.70

09-Oct-17 09:55:00 352.00 353.01 347.61

02-Oct-17 05:56:30 331.00 335.26 332.70

09-Oct-17 09:55:30 352.00 353.01 347.60 02-Oct-17 05:57:00 331.00 335.26 332.67

09-Oct-17 09:56:00 352.00 353.00 347.59

02-Oct-17 05:57:30 331.00 335.26 332.65

09-Oct-17 09:56:30 352.00 353.01 347.57 02-Oct-17 05:58:00 331.00 335.25 332.64

09-Oct-17 09:57:00 352.00 353.03 347.60

02-Oct-17 05:58:30 331.00 335.26 332.68

09-Oct-17 09:57:30 352.00 353.03 347.62 02-Oct-17 05:59:00 331.00 335.26 332.69

09-Oct-17 09:58:00 352.00 353.03 347.61

02-Oct-17 05:59:30 331.00 335.26 332.70

09-Oct-17 09:58:30 352.00 353.03 347.62 02-Oct-17 06:00:00 331.00 335.25 332.66

09-Oct-17 09:59:00 352.00 353.03 347.55

02-Oct-17 06:00:30 331.00 335.25 332.63

09-Oct-17 09:59:30 352.00 353.03 347.57 02-Oct-17 06:01:00 331.00 335.26 332.69

09-Oct-17 10:00:00 352.00 353.03 347.57

02-Oct-17 06:01:30 331.00 335.25 332.70

09-Oct-17 10:00:30 352.00 353.03 347.58 02-Oct-17 06:02:00 331.00 335.26 332.70

09-Oct-17 10:01:00 352.00 353.04 347.59

02-Oct-17 06:02:30 331.00 335.25 332.68

09-Oct-17 10:01:30 352.00 353.03 347.59 02-Oct-17 06:03:00 331.00 335.25 332.69

09-Oct-17 10:02:00 352.00 353.04 347.55

02-Oct-17 06:03:30 331.00 335.25 332.69

09-Oct-17 10:02:30 352.00 353.03 347.52 02-Oct-17 06:04:00 331.00 335.25 332.66

09-Oct-17 10:03:00 352.00 353.05 347.52

02-Oct-17 06:04:30 331.00 335.24 332.65

09-Oct-17 10:03:30 352.00 353.06 347.63 02-Oct-17 06:05:00 331.00 335.24 332.64

09-Oct-17 10:04:00 352.00 353.07 347.64

02-Oct-17 06:05:30 331.00 335.25 332.66

09-Oct-17 10:04:30 352.00 353.07 347.64 02-Oct-17 06:06:00 331.00 335.25 332.67

09-Oct-17 10:05:00 352.00 353.07 347.64

02-Oct-17 06:06:30 331.00 335.25 332.67

09-Oct-17 10:05:30 352.00 353.08 347.68 02-Oct-17 06:07:00 331.00 335.25 332.67

09-Oct-17 10:06:00 352.00 353.10 347.72

02-Oct-17 06:07:30 331.00 335.25 332.67

09-Oct-17 10:06:30 352.00 353.10 347.71 02-Oct-17 06:08:00 331.00 335.25 332.67

09-Oct-17 10:07:00 352.00 353.10 347.70

02-Oct-17 06:08:30 331.00 335.26 332.67

09-Oct-17 10:07:30 352.00 353.10 347.70 02-Oct-17 06:09:00 331.00 335.25 332.66

09-Oct-17 10:08:00 352.00 353.10 347.72

02-Oct-17 06:09:30 331.00 335.25 332.65

09-Oct-17 10:08:30 352.00 353.11 347.73 02-Oct-17 06:10:00 331.00 335.25 332.65

09-Oct-17 10:09:00 352.00 353.12 347.76

02-Oct-17 06:10:30 331.00 335.25 332.67

09-Oct-17 10:09:30 352.00 353.12 347.77 02-Oct-17 06:11:00 331.00 335.25 332.67

09-Oct-17 10:10:00 352.00 353.13 347.78

02-Oct-17 06:11:30 331.00 335.25 332.66

09-Oct-17 10:10:30 352.00 353.13 347.83

78

Master of Engineering (Industrial Automation)

02-Oct-17 06:12:00 331.00 335.25 332.65

09-Oct-17 10:11:00 352.00 353.14 347.85 02-Oct-17 06:12:30 331.00 335.25 332.66

09-Oct-17 10:11:30 352.00 353.14 347.83

02-Oct-17 06:13:00 331.00 335.25 332.69

09-Oct-17 10:12:00 352.00 353.14 347.83 02-Oct-17 06:13:30 331.00 335.25 332.68

09-Oct-17 10:12:30 352.00 353.15 347.85

02-Oct-17 06:14:00 331.00 335.25 332.68

09-Oct-17 10:13:00 352.00 353.15 347.85 02-Oct-17 06:14:30 331.00 335.25 332.67

09-Oct-17 10:13:30 352.00 353.16 347.88

02-Oct-17 06:15:00 331.00 335.25 332.67

09-Oct-17 10:14:00 352.00 353.16 347.89 02-Oct-17 06:15:30 331.00 335.24 332.67

09-Oct-17 10:14:30 352.00 353.16 347.88

02-Oct-17 06:16:00 331.00 335.24 332.63

09-Oct-17 10:15:00 352.00 353.16 347.86 02-Oct-17 06:16:30 331.00 335.24 332.63

09-Oct-17 10:15:30 352.00 353.17 347.88

02-Oct-17 06:17:00 331.00 335.23 332.61

09-Oct-17 10:16:00 352.00 353.18 347.89 02-Oct-17 06:17:30 331.00 335.23 332.59

09-Oct-17 10:16:30 352.00 353.19 347.88

02-Oct-17 06:18:00 331.00 335.23 332.60

09-Oct-17 10:17:00 352.00 353.18 347.87 02-Oct-17 06:18:30 331.00 335.22 332.59

09-Oct-17 10:17:30 352.00 353.19 347.88

02-Oct-17 06:19:00 331.00 335.22 332.57

09-Oct-17 10:18:00 352.00 353.20 347.87 02-Oct-17 06:19:30 331.00 335.21 332.57

09-Oct-17 10:18:30 352.00 353.21 347.91

02-Oct-17 06:20:00 331.00 335.22 332.57

09-Oct-17 10:19:00 352.00 353.22 347.91 02-Oct-17 06:20:30 331.00 335.22 332.59

09-Oct-17 10:19:30 352.00 353.22 347.90

02-Oct-17 06:21:00 331.00 335.22 332.58

09-Oct-17 10:20:00 352.00 353.23 347.90 02-Oct-17 06:21:30 331.00 335.21 332.58

09-Oct-17 10:20:30 352.00 353.24 347.94

02-Oct-17 06:22:00 331.00 335.21 332.57

09-Oct-17 10:21:00 352.00 353.24 347.94 02-Oct-17 06:22:30 331.00 335.22 332.60

09-Oct-17 10:21:30 352.00 353.25 347.89

02-Oct-17 06:23:00 331.00 335.22 332.59

09-Oct-17 10:22:00 352.00 353.28 347.87 02-Oct-17 06:23:30 331.00 335.22 332.61

09-Oct-17 10:22:30 352.00 353.31 347.86

02-Oct-17 06:24:00 331.00 335.22 332.60

09-Oct-17 10:23:00 352.00 353.33 347.85 02-Oct-17 06:24:30 331.00 335.21 332.56

09-Oct-17 10:23:30 352.00 353.35 347.89

02-Oct-17 06:25:00 331.00 335.20 332.57

09-Oct-17 10:24:00 352.00 353.37 347.90 02-Oct-17 06:25:30 331.00 335.22 332.60

09-Oct-17 10:24:30 352.00 353.38 347.91

02-Oct-17 06:26:00 331.00 335.22 332.59

09-Oct-17 10:25:00 352.00 353.39 347.91 02-Oct-17 06:26:30 331.00 335.22 332.62

09-Oct-17 10:25:30 352.00 353.40 347.91

02-Oct-17 06:27:00 331.00 335.22 332.62

09-Oct-17 10:26:00 352.00 353.41 347.94 02-Oct-17 06:27:30 331.00 335.22 332.65

09-Oct-17 10:26:30 352.00 353.42 347.94

02-Oct-17 06:28:00 331.00 335.22 332.67

09-Oct-17 10:27:00 352.00 353.43 347.95 02-Oct-17 06:28:30 331.00 335.23 332.69

09-Oct-17 10:27:30 352.00 353.43 347.93

02-Oct-17 06:29:00 331.00 335.23 332.72

09-Oct-17 10:28:00 352.00 353.45 347.92 02-Oct-17 06:29:30 331.00 335.24 332.73

09-Oct-17 10:28:30 352.00 353.46 347.93

02-Oct-17 06:30:00 331.00 335.24 332.74

09-Oct-17 10:29:00 352.00 353.47 347.89 02-Oct-17 06:30:30 331.00 335.24 332.74

09-Oct-17 10:29:30 352.00 353.49 347.91

02-Oct-17 06:31:00 331.00 335.23 332.76

09-Oct-17 10:30:00 352.00 353.50 347.90 02-Oct-17 06:31:30 331.00 335.23 332.76

09-Oct-17 10:30:30 352.00 353.53 347.91

02-Oct-17 06:32:00 331.00 335.23 332.77

09-Oct-17 10:31:00 352.00 353.55 347.91 02-Oct-17 06:32:30 331.00 335.24 332.79

09-Oct-17 10:31:30 352.00 353.58 347.96

02-Oct-17 06:33:00 331.00 335.23 332.79

09-Oct-17 10:32:00 352.00 353.59 347.93 02-Oct-17 06:33:30 331.00 335.23 332.78

09-Oct-17 10:32:30 352.00 353.61 347.97

02-Oct-17 06:34:00 331.00 335.23 332.81

09-Oct-17 10:33:00 352.00 353.64 347.97 02-Oct-17 06:34:30 331.00 335.23 332.81

09-Oct-17 10:33:30 352.00 353.65 347.96

02-Oct-17 06:35:00 331.00 335.23 332.82

09-Oct-17 10:34:00 352.00 353.67 347.95 02-Oct-17 06:35:30 331.00 335.24 332.84

09-Oct-17 10:34:30 352.00 353.70 347.95

02-Oct-17 06:36:00 331.00 335.24 332.84

09-Oct-17 10:35:00 352.00 353.71 347.93 02-Oct-17 06:36:30 331.00 335.24 332.84

09-Oct-17 10:35:30 352.00 353.73 347.95

02-Oct-17 06:37:00 331.00 335.24 332.84

09-Oct-17 10:36:00 352.00 353.76 348.03 02-Oct-17 06:37:30 331.00 335.24 332.84

09-Oct-17 10:36:30 352.00 353.78 348.04

02-Oct-17 06:38:00 331.00 335.24 332.82

09-Oct-17 10:37:00 352.00 353.79 348.01 02-Oct-17 06:38:30 331.00 335.24 332.81

09-Oct-17 10:37:30 352.00 353.79 348.00

02-Oct-17 06:39:00 331.00 335.24 332.78

09-Oct-17 10:38:00 352.00 353.83 348.05 02-Oct-17 06:39:30 331.00 335.24 332.78

09-Oct-17 10:38:30 352.00 353.85 348.08

02-Oct-17 06:40:00 331.00 335.24 332.79

09-Oct-17 10:39:00 352.00 353.86 348.05

79

Master of Engineering (Industrial Automation)

02-Oct-17 06:40:30 331.00 335.25 332.80

09-Oct-17 10:39:30 352.00 353.86 348.02 02-Oct-17 06:41:00 331.00 335.26 332.81

09-Oct-17 10:40:00 352.00 353.88 348.03

02-Oct-17 06:41:30 331.00 335.26 332.81

09-Oct-17 10:40:30 352.00 353.89 348.03 02-Oct-17 06:42:00 331.00 335.28 332.86

09-Oct-17 10:41:00 352.00 353.91 348.08

02-Oct-17 06:42:30 331.00 335.30 332.87

09-Oct-17 10:41:30 352.00 353.92 348.09 02-Oct-17 06:43:00 331.00 335.32 332.89

09-Oct-17 10:42:00 352.00 353.91 348.05

02-Oct-17 06:43:30 331.00 335.33 332.88

09-Oct-17 10:42:30 352.00 353.93 348.12 02-Oct-17 06:44:00 331.00 335.34 332.91

09-Oct-17 10:43:00 352.00 353.93 348.08

02-Oct-17 06:44:30 331.00 335.36 332.90

09-Oct-17 10:43:30 352.00 353.93 348.10 02-Oct-17 06:45:00 331.00 335.36 332.86

09-Oct-17 10:44:00 352.00 353.94 348.13

02-Oct-17 06:45:30 331.00 335.37 332.88

09-Oct-17 10:44:30 352.00 353.93 348.13 02-Oct-17 06:46:00 331.00 335.38 332.84

09-Oct-17 10:45:00 353.00 353.93 348.15

02-Oct-17 06:46:30 331.00 335.39 332.86

09-Oct-17 10:45:30 353.00 353.93 348.16 02-Oct-17 06:47:00 331.00 335.41 332.86

09-Oct-17 10:46:00 353.00 353.93 348.13

02-Oct-17 06:47:30 331.00 335.42 332.89

09-Oct-17 10:46:30 353.00 353.94 348.13 02-Oct-17 06:48:00 331.00 335.44 332.90

09-Oct-17 10:47:00 353.00 353.95 348.16

02-Oct-17 06:48:30 331.00 335.44 332.89

09-Oct-17 10:47:30 353.00 353.95 348.15 02-Oct-17 06:49:00 331.00 335.45 332.88

09-Oct-17 10:48:00 353.00 353.95 348.15

02-Oct-17 06:49:30 331.00 335.46 332.89

09-Oct-17 10:48:30 353.00 353.95 348.12 02-Oct-17 06:50:00 331.00 335.47 332.87

09-Oct-17 10:49:00 353.00 353.92 348.10

02-Oct-17 06:50:30 331.00 335.48 332.88

09-Oct-17 10:49:30 353.00 353.94 348.10 02-Oct-17 06:51:00 331.00 335.48 332.84

09-Oct-17 10:50:00 353.00 353.96 348.09

02-Oct-17 06:51:30 331.00 335.48 332.84

09-Oct-17 10:50:30 353.00 353.95 348.07 02-Oct-17 06:52:00 331.00 335.47 332.78

09-Oct-17 10:51:00 353.00 353.96 348.10

02-Oct-17 06:52:30 331.00 335.48 332.76

09-Oct-17 10:51:30 353.00 353.97 348.10 02-Oct-17 06:53:00 331.00 335.48 332.76

09-Oct-17 10:52:00 353.00 353.97 348.11

02-Oct-17 06:53:30 331.00 335.48 332.73

09-Oct-17 10:52:30 353.00 353.98 348.12 02-Oct-17 06:54:00 331.00 335.47 332.71

09-Oct-17 10:53:00 353.00 353.98 348.10

02-Oct-17 06:54:30 331.00 335.47 332.69

09-Oct-17 10:53:30 353.00 353.97 348.09 02-Oct-17 06:55:00 331.00 335.47 332.71

09-Oct-17 10:54:00 353.00 354.00 348.18

02-Oct-17 06:55:30 331.00 335.48 332.71

09-Oct-17 10:54:30 353.00 353.99 348.17 02-Oct-17 06:56:00 331.00 335.48 332.73

09-Oct-17 10:55:00 353.00 353.99 348.17

02-Oct-17 06:56:30 331.00 335.48 332.69

09-Oct-17 10:55:30 353.00 354.00 348.18 02-Oct-17 06:57:00 331.00 335.47 332.68

09-Oct-17 10:56:00 353.00 354.00 348.17

02-Oct-17 06:57:30 331.00 335.47 332.65

09-Oct-17 10:56:30 353.00 354.00 348.16 02-Oct-17 06:58:00 331.00 335.46 332.62

09-Oct-17 10:57:00 353.00 354.01 348.16

02-Oct-17 06:58:30 331.00 335.47 332.66

09-Oct-17 10:57:30 353.00 354.00 348.17 02-Oct-17 06:59:00 331.00 335.46 332.59

09-Oct-17 10:58:00 353.00 354.00 348.15

02-Oct-17 06:59:30 331.00 335.46 332.58

09-Oct-17 10:58:30 353.00 354.01 348.10 02-Oct-17 07:00:00 331.00 335.45 332.57

09-Oct-17 10:59:00 353.00 354.00 348.05

02-Oct-17 07:00:30 331.00 335.45 332.53

09-Oct-17 10:59:30 353.00 354.00 348.09 02-Oct-17 07:01:00 331.00 335.45 332.53

09-Oct-17 11:00:00 353.00 354.01 348.11

02-Oct-17 07:01:30 331.00 335.45 332.53

09-Oct-17 11:00:30 353.00 354.00 348.05 02-Oct-17 07:02:00 331.00 335.44 332.53

09-Oct-17 11:01:00 353.00 354.01 348.06

02-Oct-17 07:02:30 331.00 335.44 332.53

09-Oct-17 11:01:30 353.00 354.01 348.07 02-Oct-17 07:03:00 331.00 335.43 332.51

09-Oct-17 11:02:00 353.00 354.01 348.02

02-Oct-17 07:03:30 331.00 335.43 332.48

09-Oct-17 11:02:30 353.00 354.01 347.99 02-Oct-17 07:04:00 331.00 335.42 332.48

09-Oct-17 11:03:00 353.00 354.01 347.97

02-Oct-17 07:04:30 331.00 335.43 332.49

09-Oct-17 11:03:30 353.00 354.02 347.97 02-Oct-17 07:05:00 331.00 335.43 332.53

09-Oct-17 11:04:00 353.00 354.04 348.04

02-Oct-17 07:05:30 331.00 335.42 332.51

09-Oct-17 11:04:30 353.00 354.04 348.00 02-Oct-17 07:06:00 331.00 335.42 332.51

09-Oct-17 11:05:00 353.00 354.04 348.00

02-Oct-17 07:06:30 331.00 335.42 332.51

09-Oct-17 11:05:30 353.00 354.05 348.01 02-Oct-17 07:07:00 331.00 335.41 332.50

09-Oct-17 11:06:00 353.00 354.05 348.01

02-Oct-17 07:07:30 331.00 335.40 332.48

09-Oct-17 11:06:30 353.00 354.05 348.00 02-Oct-17 07:08:00 331.00 335.39 332.48

09-Oct-17 11:07:00 353.00 354.06 347.99

02-Oct-17 07:08:30 331.00 335.39 332.48

09-Oct-17 11:07:30 353.00 354.05 347.94

80

Master of Engineering (Industrial Automation)

02-Oct-17 07:09:00 331.00 335.39 332.50

09-Oct-17 11:08:00 353.00 354.06 347.93 02-Oct-17 07:09:30 331.00 335.38 332.47

09-Oct-17 11:08:30 353.00 354.07 347.93

02-Oct-17 07:10:00 331.00 335.38 332.50

09-Oct-17 11:09:00 353.00 354.06 347.93 02-Oct-17 07:10:30 331.00 335.37 332.51

09-Oct-17 11:09:30 353.00 354.07 348.00

02-Oct-17 07:11:00 331.00 335.37 332.50

09-Oct-17 11:10:00 353.00 354.07 348.00 02-Oct-17 07:11:30 331.00 335.36 332.51

09-Oct-17 11:10:30 353.00 354.07 347.95

02-Oct-17 07:12:00 331.00 335.36 332.54

09-Oct-17 11:11:00 353.00 354.07 347.98 02-Oct-17 07:12:30 331.00 335.35 332.54

09-Oct-17 11:11:30 353.00 354.07 347.96

02-Oct-17 07:13:00 331.00 335.35 332.57

09-Oct-17 11:12:00 353.00 354.07 347.95 02-Oct-17 07:13:30 331.00 335.35 332.58

09-Oct-17 11:12:30 353.00 354.08 347.94

02-Oct-17 07:14:00 331.00 335.34 332.58

09-Oct-17 11:13:00 353.00 354.07 347.93 02-Oct-17 07:14:30 331.00 335.33 332.57

09-Oct-17 11:13:30 353.00 354.07 347.92

02-Oct-17 07:15:00 331.00 335.33 332.57

09-Oct-17 11:14:00 353.00 354.08 347.94 02-Oct-17 07:15:30 331.00 335.33 332.59

09-Oct-17 11:14:30 353.00 354.07 347.91

02-Oct-17 07:16:00 331.00 335.32 332.58

09-Oct-17 11:15:00 353.00 354.07 347.93 02-Oct-17 07:16:30 331.00 335.32 332.58

09-Oct-17 11:15:30 353.00 354.07 347.92

02-Oct-17 07:17:00 331.00 335.32 332.59

09-Oct-17 11:16:00 353.00 354.06 347.89 02-Oct-17 07:17:30 331.00 335.31 332.59

09-Oct-17 11:16:30 353.00 354.07 347.92

02-Oct-17 07:18:00 331.00 335.31 332.59

09-Oct-17 11:17:00 353.00 354.07 347.89 02-Oct-17 07:18:30 331.00 335.29 332.57

09-Oct-17 11:17:30 353.00 354.06 347.86

02-Oct-17 07:19:00 331.00 335.29 332.59

09-Oct-17 11:18:00 353.00 354.07 347.89 02-Oct-17 07:19:30 331.00 335.29 332.60

09-Oct-17 11:18:30 353.00 354.06 347.86

02-Oct-17 07:20:00 331.00 335.28 332.61

09-Oct-17 11:19:00 353.00 354.05 347.83 02-Oct-17 07:20:30 331.00 335.27 332.61

09-Oct-17 11:19:30 353.00 354.06 347.85

02-Oct-17 07:21:00 331.00 335.26 332.61

09-Oct-17 11:20:00 353.00 354.06 347.89 02-Oct-17 07:21:30 331.00 335.26 332.62

09-Oct-17 11:20:30 353.00 354.05 347.79

02-Oct-17 07:22:00 331.00 335.26 332.62

09-Oct-17 11:21:00 353.00 354.06 347.85 02-Oct-17 07:22:30 331.00 335.26 332.63

09-Oct-17 11:21:30 353.00 354.05 347.86

02-Oct-17 07:23:00 331.00 335.25 332.63

09-Oct-17 11:22:00 353.00 354.03 347.86 02-Oct-17 07:23:30 331.00 335.24 332.64

09-Oct-17 11:22:30 353.00 354.04 347.74

02-Oct-17 07:24:00 331.00 335.23 332.62

09-Oct-17 11:23:00 353.00 354.03 347.72 02-Oct-17 07:24:30 331.00 335.22 332.61

09-Oct-17 11:23:30 353.00 354.01 347.65

02-Oct-17 07:25:00 331.00 335.22 332.62

09-Oct-17 11:24:00 353.00 354.01 347.64 02-Oct-17 07:25:30 331.00 335.21 332.62

09-Oct-17 11:24:30 353.00 353.99 347.58

02-Oct-17 07:26:00 331.00 335.20 332.62

09-Oct-17 11:25:00 353.00 353.98 347.51 02-Oct-17 07:26:30 331.00 335.20 332.61

09-Oct-17 11:25:30 353.00 353.98 347.56

02-Oct-17 07:27:00 331.00 335.20 332.61

09-Oct-17 11:26:00 353.00 353.97 347.54 02-Oct-17 07:27:30 331.00 335.18 332.63

09-Oct-17 11:26:30 353.00 353.97 347.53

02-Oct-17 07:28:00 331.00 335.18 332.67

09-Oct-17 11:27:00 353.00 353.97 347.56 02-Oct-17 07:28:30 331.00 335.18 332.67

09-Oct-17 11:27:30 353.00 353.96 347.52

02-Oct-17 07:29:00 331.00 335.17 332.67

09-Oct-17 11:28:00 353.00 353.94 347.46 02-Oct-17 07:29:30 331.00 335.17 332.69

09-Oct-17 11:28:30 353.00 353.95 347.48

02-Oct-17 07:30:00 331.00 335.17 332.70

09-Oct-17 11:29:00 353.00 353.94 347.45 02-Oct-17 07:30:30 331.00 335.16 332.68

09-Oct-17 11:29:30 353.00 353.93 347.46

02-Oct-17 07:31:00 331.00 335.15 332.67

09-Oct-17 11:30:00 353.00 353.93 347.47 02-Oct-17 07:31:30 331.00 335.15 332.66

09-Oct-17 11:30:30 353.00 353.92 347.45

02-Oct-17 07:32:00 331.00 335.15 332.67

09-Oct-17 11:31:00 353.00 353.90 347.42 02-Oct-17 07:32:30 331.00 335.15 332.68

09-Oct-17 11:31:30 353.00 353.89 347.41

02-Oct-17 07:33:00 331.00 335.14 332.68

09-Oct-17 11:32:00 353.00 353.88 347.38 02-Oct-17 07:33:30 331.00 335.14 332.69

09-Oct-17 11:32:30 353.00 353.87 347.37

02-Oct-17 07:34:00 331.00 335.14 332.67

09-Oct-17 11:33:00 353.00 353.88 347.41 02-Oct-17 07:34:30 331.00 335.13 332.68

09-Oct-17 11:33:30 353.00 353.86 347.38

02-Oct-17 07:35:00 331.00 335.13 332.69

09-Oct-17 11:34:00 353.00 353.85 347.38 02-Oct-17 07:35:30 331.00 335.13 332.67

09-Oct-17 11:34:30 353.00 353.85 347.40

02-Oct-17 07:36:00 331.00 335.12 332.65

09-Oct-17 11:35:00 353.00 353.84 347.39 02-Oct-17 07:36:30 331.00 335.12 332.65

09-Oct-17 11:35:30 353.00 353.82 347.34

02-Oct-17 07:37:00 331.00 335.11 332.64

09-Oct-17 11:36:00 353.00 353.82 347.34

81

Master of Engineering (Industrial Automation)

02-Oct-17 07:37:30 331.00 335.10 332.61

09-Oct-17 11:36:30 353.00 353.81 347.34 02-Oct-17 07:38:00 331.00 335.10 332.58

09-Oct-17 11:37:00 353.00 353.79 347.34

02-Oct-17 07:38:30 331.00 335.10 332.60

09-Oct-17 11:37:30 353.00 353.79 347.34 02-Oct-17 07:39:00 331.00 335.10 332.59

09-Oct-17 11:38:00 353.00 353.77 347.33

02-Oct-17 07:39:30 331.00 335.10 332.58

09-Oct-17 11:38:30 353.00 353.76 347.31 02-Oct-17 07:40:00 331.00 335.10 332.58

09-Oct-17 11:39:00 353.00 353.75 347.31

02-Oct-17 07:40:30 331.00 335.10 332.56

09-Oct-17 11:39:30 353.00 353.73 347.25 02-Oct-17 07:41:00 331.00 335.09 332.56

09-Oct-17 11:40:00 353.00 353.71 347.21

02-Oct-17 07:41:30 331.00 335.10 332.56

09-Oct-17 11:40:30 353.00 353.71 347.26 02-Oct-17 07:42:00 331.00 335.10 332.57

09-Oct-17 11:41:00 353.00 353.70 347.21

02-Oct-17 07:42:30 331.00 335.11 332.62

09-Oct-17 11:41:30 353.00 353.70 347.25 02-Oct-17 07:43:00 331.00 335.12 332.62

09-Oct-17 11:42:00 353.00 353.69 347.25

02-Oct-17 07:43:30 331.00 335.12 332.63

09-Oct-17 11:42:30 353.00 353.67 347.22 02-Oct-17 07:44:00 331.00 335.13 332.66

09-Oct-17 11:43:00 353.00 353.65 347.27

02-Oct-17 07:44:30 331.00 335.13 332.65

09-Oct-17 11:43:30 353.00 353.65 347.21 02-Oct-17 07:45:00 331.00 335.14 332.66

09-Oct-17 11:44:00 353.00 353.64 347.20

02-Oct-17 07:45:30 331.00 335.16 332.71

09-Oct-17 11:44:30 353.00 353.64 347.27 02-Oct-17 07:46:00 331.00 335.17 332.76

09-Oct-17 11:45:00 353.00 353.63 347.24

02-Oct-17 07:46:30 331.00 335.17 332.76

09-Oct-17 11:45:30 353.00 353.62 347.24 02-Oct-17 07:47:00 331.00 335.18 332.76

09-Oct-17 11:46:00 353.00 353.61 347.25

02-Oct-17 07:47:30 331.00 335.20 332.81

09-Oct-17 11:46:30 353.00 353.59 347.19 02-Oct-17 07:48:00 331.00 335.21 332.83

09-Oct-17 11:47:00 353.00 353.60 347.20

02-Oct-17 07:48:30 331.00 335.24 332.89

09-Oct-17 11:47:30 353.00 353.57 347.22 02-Oct-17 07:49:00 331.00 335.25 332.89

09-Oct-17 11:48:00 353.00 353.56 347.22

02-Oct-17 07:49:30 331.00 335.25 332.86

09-Oct-17 11:48:30 353.00 353.56 347.23 02-Oct-17 07:50:00 331.00 335.25 332.83

09-Oct-17 11:49:00 353.00 353.53 347.19

02-Oct-17 07:50:30 331.00 335.26 332.83

09-Oct-17 11:49:30 353.00 353.52 347.22 02-Oct-17 07:51:00 331.00 335.27 332.80

09-Oct-17 11:50:00 353.00 353.52 347.26

02-Oct-17 07:51:30 331.00 335.27 332.79

09-Oct-17 11:50:30 353.00 353.51 347.21 02-Oct-17 07:52:00 331.00 335.28 332.80

09-Oct-17 11:51:00 353.00 353.48 347.20

02-Oct-17 07:52:30 331.00 335.28 332.78

09-Oct-17 11:51:30 353.00 353.47 347.24 02-Oct-17 07:53:00 331.00 335.30 332.79

09-Oct-17 11:52:00 353.00 353.44 347.15

02-Oct-17 07:53:30 331.00 335.30 332.79

09-Oct-17 11:52:30 353.00 353.43 347.19 02-Oct-17 07:54:00 331.00 335.31 332.82

09-Oct-17 11:53:00 353.00 353.42 347.16

02-Oct-17 07:54:30 331.00 335.32 332.82

09-Oct-17 11:53:30 353.00 353.40 347.16 02-Oct-17 07:55:00 331.00 335.33 332.86

09-Oct-17 11:54:00 353.00 353.40 347.20

02-Oct-17 07:55:30 331.00 335.35 332.85

09-Oct-17 11:54:30 353.00 353.39 347.17 02-Oct-17 07:56:00 331.00 335.36 332.85

09-Oct-17 11:55:00 353.00 353.39 347.23

02-Oct-17 07:56:30 331.00 335.37 332.84

09-Oct-17 11:55:30 353.00 353.37 347.20 02-Oct-17 07:57:00 331.00 335.38 332.85

09-Oct-17 11:56:00 353.00 353.36 347.17

02-Oct-17 07:57:30 331.00 335.40 332.85

09-Oct-17 11:56:30 353.00 353.35 347.17 02-Oct-17 07:58:00 331.00 335.42 332.86

09-Oct-17 11:57:00 353.00 353.32 347.15

02-Oct-17 07:58:30 331.00 335.43 332.86

09-Oct-17 11:57:30 353.00 353.32 347.16 02-Oct-17 07:59:00 331.00 335.44 332.82

09-Oct-17 11:58:00 353.00 353.32 347.19

02-Oct-17 07:59:30 331.00 335.46 332.86

09-Oct-17 11:58:30 353.00 353.29 347.13 02-Oct-17 08:00:00 332.00 335.48 332.86

09-Oct-17 11:59:00 353.00 353.28 347.14

02-Oct-17 08:00:30 332.00 335.50 332.88

09-Oct-17 11:59:30 353.00 353.28 347.17 02-Oct-17 08:01:00 332.00 335.51 332.87

09-Oct-17 12:00:00 353.00 353.26 347.13

02-Oct-17 08:01:30 332.00 335.52 332.86

09-Oct-17 12:00:30 353.00 353.26 347.13 02-Oct-17 08:02:00 332.00 335.54 332.89

09-Oct-17 12:01:00 353.00 353.24 347.13

02-Oct-17 08:02:30 332.00 335.57 332.93

09-Oct-17 12:01:30 353.00 353.22 347.09 02-Oct-17 08:03:00 332.00 335.59 332.98

09-Oct-17 12:02:00 353.00 353.22 347.11

02-Oct-17 08:03:30 332.00 335.61 333.03

09-Oct-17 12:02:30 353.00 353.21 347.09 02-Oct-17 08:04:00 332.00 335.62 333.00

09-Oct-17 12:03:00 353.00 353.20 347.07

02-Oct-17 08:04:30 332.00 335.63 332.97

09-Oct-17 12:03:30 353.00 353.19 347.09 02-Oct-17 08:05:00 332.00 335.64 332.99

09-Oct-17 12:04:00 353.00 353.16 347.04

02-Oct-17 08:05:30 332.00 335.67 333.02

09-Oct-17 12:04:30 353.00 353.16 347.04

82

Master of Engineering (Industrial Automation)

02-Oct-17 08:06:00 332.00 335.69 333.07

09-Oct-17 12:05:00 353.00 353.17 347.07 02-Oct-17 08:06:30 332.00 335.70 333.11

09-Oct-17 12:05:30 353.00 353.15 347.03

02-Oct-17 08:07:00 332.00 335.72 333.13

09-Oct-17 12:06:00 353.00 353.15 347.02 02-Oct-17 08:07:30 332.00 335.75 333.24

09-Oct-17 12:06:30 353.00 353.15 347.08

02-Oct-17 08:08:00 332.00 335.77 333.28

09-Oct-17 12:07:00 353.00 353.15 347.07 02-Oct-17 08:08:30 332.00 335.78 333.29

09-Oct-17 12:07:30 353.00 353.14 347.07

02-Oct-17 08:09:00 332.00 335.79 333.31

09-Oct-17 12:08:00 353.00 353.15 347.10 02-Oct-17 08:09:30 332.00 335.80 333.32

09-Oct-17 12:08:30 353.00 353.14 347.08

02-Oct-17 08:10:00 332.00 335.82 333.32

09-Oct-17 12:09:00 353.00 353.13 347.08 02-Oct-17 08:10:30 332.00 335.82 333.30

09-Oct-17 12:09:30 353.00 353.13 347.08

02-Oct-17 08:11:00 332.00 335.84 333.30

09-Oct-17 12:10:00 353.00 353.12 347.07 02-Oct-17 08:11:30 332.00 335.85 333.30

09-Oct-17 12:10:30 353.00 353.12 347.07

02-Oct-17 08:12:00 332.00 335.86 333.30

09-Oct-17 12:11:00 353.00 353.11 347.06 02-Oct-17 08:12:30 332.00 335.87 333.28

09-Oct-17 12:11:30 353.00 353.11 347.07

02-Oct-17 08:13:00 332.00 335.88 333.26

09-Oct-17 12:12:00 353.00 353.12 347.08 02-Oct-17 08:13:30 332.00 335.89 333.25

09-Oct-17 12:12:30 353.00 353.11 347.05

02-Oct-17 08:14:00 332.00 335.90 333.23

09-Oct-17 12:13:00 353.00 353.10 347.06 02-Oct-17 08:14:30 332.00 335.90 333.20

09-Oct-17 12:13:30 353.00 353.10 347.06

02-Oct-17 08:15:00 332.00 335.90 333.14

09-Oct-17 12:14:00 353.00 353.08 347.06 02-Oct-17 08:15:30 332.00 335.91 333.14

09-Oct-17 12:14:30 353.00 353.08 347.00

02-Oct-17 08:16:00 332.00 335.92 333.16

09-Oct-17 12:15:00 353.00 353.08 346.97 02-Oct-17 08:16:30 332.00 335.94 333.14

09-Oct-17 12:15:30 353.00 353.06 346.96

02-Oct-17 08:17:00 332.00 335.95 333.13

09-Oct-17 12:16:00 353.00 353.06 346.97 02-Oct-17 08:17:30 332.00 335.97 333.15

09-Oct-17 12:16:30 353.00 353.06 346.99

02-Oct-17 08:18:00 332.00 335.98 333.14

09-Oct-17 12:17:00 353.00 353.04 346.95 02-Oct-17 08:18:30 332.00 336.00 333.14

09-Oct-17 12:17:30 353.00 353.04 346.96

02-Oct-17 08:19:00 332.00 336.00 333.13

09-Oct-17 12:18:00 353.00 353.04 346.97 02-Oct-17 08:19:30 332.00 336.02 333.14

09-Oct-17 12:18:30 353.00 353.03 346.96

02-Oct-17 08:20:00 332.00 336.04 333.17

09-Oct-17 12:19:00 353.00 353.03 346.99 02-Oct-17 08:20:30 332.00 336.06 333.19

09-Oct-17 12:19:30 353.00 353.03 347.01

02-Oct-17 08:21:00 332.00 336.07 333.21

09-Oct-17 12:20:00 353.00 353.04 347.03 02-Oct-17 08:21:30 332.00 336.08 333.23

09-Oct-17 12:20:30 353.00 353.04 347.05

02-Oct-17 08:22:00 332.00 336.09 333.25

09-Oct-17 12:21:00 353.00 353.04 347.05 02-Oct-17 08:22:30 332.00 336.09 333.27

09-Oct-17 12:21:30 353.00 353.03 346.99

02-Oct-17 08:23:00 332.00 336.09 333.24

09-Oct-17 12:22:00 353.00 353.04 347.02 02-Oct-17 08:23:30 332.00 336.10 333.26

09-Oct-17 12:22:30 353.00 353.04 347.03

02-Oct-17 08:24:00 332.00 336.09 333.24

09-Oct-17 12:23:00 353.00 353.03 347.01 02-Oct-17 08:24:30 332.00 336.09 333.21

09-Oct-17 12:23:30 353.00 353.04 347.01

02-Oct-17 08:25:00 332.00 336.09 333.20

09-Oct-17 12:24:00 353.00 353.03 346.99 02-Oct-17 08:25:30 332.00 336.10 333.24

09-Oct-17 12:24:30 353.00 353.02 347.01

02-Oct-17 08:26:00 332.00 336.10 333.31

09-Oct-17 12:25:00 353.00 353.02 346.98 02-Oct-17 08:26:30 332.00 336.10 333.35

09-Oct-17 12:25:30 353.00 353.02 346.98

02-Oct-17 08:27:00 332.00 336.10 333.38

09-Oct-17 12:26:00 353.00 353.03 347.03 02-Oct-17 08:27:30 332.00 336.08 333.37

09-Oct-17 12:26:30 353.00 353.01 346.96

02-Oct-17 08:28:00 332.00 336.07 333.35

09-Oct-17 12:27:00 353.00 353.00 346.94 02-Oct-17 08:28:30 332.00 336.07 333.34

09-Oct-17 12:27:30 353.00 353.02 347.00

02-Oct-17 08:29:00 332.00 336.07 333.35

09-Oct-17 12:28:00 353.00 353.00 346.97 02-Oct-17 08:29:30 332.00 336.05 333.35

09-Oct-17 12:28:30 353.00 352.99 346.90

02-Oct-17 08:30:00 332.00 336.05 333.35

09-Oct-17 12:29:00 353.00 352.99 346.91 02-Oct-17 08:30:30 332.00 336.04 333.33

09-Oct-17 12:29:30 353.00 352.97 346.85

02-Oct-17 08:31:00 332.00 336.02 333.31

09-Oct-17 12:30:00 353.00 352.97 346.86 02-Oct-17 08:31:30 332.00 336.01 333.27

09-Oct-17 12:30:30 353.00 352.97 346.89

02-Oct-17 08:32:00 332.00 336.00 333.25

09-Oct-17 12:31:00 353.00 352.96 346.85 02-Oct-17 08:32:30 332.00 335.99 333.24

09-Oct-17 12:31:30 353.00 352.97 346.88

02-Oct-17 08:33:00 332.00 335.99 333.23

09-Oct-17 12:32:00 353.00 352.97 346.89 02-Oct-17 08:33:30 332.00 335.97 333.19

09-Oct-17 12:32:30 353.00 352.96 346.84

02-Oct-17 08:34:00 332.00 335.96 333.16

09-Oct-17 12:33:00 353.00 352.96 346.87

83

Master of Engineering (Industrial Automation)

02-Oct-17 08:34:30 332.00 335.96 333.15

09-Oct-17 12:33:30 353.00 352.97 346.88 02-Oct-17 08:35:00 332.00 335.96 333.15

09-Oct-17 12:34:00 353.00 352.96 346.80

02-Oct-17 08:35:30 332.00 335.96 333.13

09-Oct-17 12:34:30 353.00 352.96 346.83 02-Oct-17 08:36:00 332.00 335.95 333.13

09-Oct-17 12:35:00 353.00 352.96 346.81

02-Oct-17 08:36:30 332.00 335.95 333.14

09-Oct-17 12:35:30 353.00 352.95 346.77 02-Oct-17 08:37:00 332.00 335.95 333.14

09-Oct-17 12:36:00 353.00 352.95 346.82

02-Oct-17 08:37:30 332.00 335.96 333.15

09-Oct-17 12:36:30 353.00 352.94 346.76 02-Oct-17 08:38:00 332.00 335.95 333.15

09-Oct-17 12:37:00 353.00 352.94 346.77

02-Oct-17 08:38:30 332.00 335.95 333.13

09-Oct-17 12:37:30 353.00 352.93 346.71 02-Oct-17 08:39:00 332.00 335.95 333.14

09-Oct-17 12:38:00 353.00 352.92 346.73

02-Oct-17 08:39:30 332.00 335.94 333.16

09-Oct-17 12:38:30 353.00 352.92 346.74 02-Oct-17 08:40:00 332.00 335.94 333.20

09-Oct-17 12:39:00 353.00 352.90 346.67

02-Oct-17 08:40:30 332.00 335.95 333.24

09-Oct-17 12:39:30 353.00 352.91 346.72 02-Oct-17 08:41:00 332.00 335.95 333.28

09-Oct-17 12:40:00 353.00 352.89 346.67

02-Oct-17 08:41:30 332.00 335.94 333.28

09-Oct-17 12:40:30 353.00 352.88 346.63 02-Oct-17 08:42:00 332.00 335.94 333.35

09-Oct-17 12:41:00 353.00 352.87 346.64

02-Oct-17 08:42:30 332.00 335.93 333.37

09-Oct-17 12:41:30 353.00 352.86 346.64 02-Oct-17 08:43:00 332.00 335.92 333.37

09-Oct-17 12:42:00 353.00 352.86 346.63

02-Oct-17 08:43:30 332.00 335.91 333.36

09-Oct-17 12:42:30 353.00 352.86 346.64 02-Oct-17 08:44:00 332.00 335.89 333.38

09-Oct-17 12:43:00 353.00 352.83 346.57

02-Oct-17 08:44:30 332.00 335.88 333.37

09-Oct-17 12:43:30 353.00 352.83 346.59 02-Oct-17 08:45:00 332.00 335.87 333.36

09-Oct-17 12:44:00 353.00 352.83 346.60

02-Oct-17 08:45:30 332.00 335.85 333.36

09-Oct-17 12:44:30 353.00 352.81 346.54 02-Oct-17 08:46:00 332.00 335.83 333.34

09-Oct-17 12:45:00 353.00 352.82 346.56

02-Oct-17 08:46:30 332.00 335.81 333.33

09-Oct-17 12:45:30 353.00 352.80 346.51 02-Oct-17 08:47:00 332.00 335.80 333.32

09-Oct-17 12:46:00 353.00 352.80 346.50

02-Oct-17 08:47:30 332.00 335.78 333.32

09-Oct-17 12:46:30 353.00 352.80 346.54 02-Oct-17 08:48:00 332.00 335.76 333.29

09-Oct-17 12:47:00 353.00 352.79 346.51

02-Oct-17 08:48:30 332.00 335.74 333.29

09-Oct-17 12:47:30 353.00 352.78 346.50 02-Oct-17 08:49:00 332.00 335.73 333.31

09-Oct-17 12:48:00 353.00 352.78 346.52

02-Oct-17 08:49:30 332.00 335.72 333.31

09-Oct-17 12:48:30 353.00 352.77 346.48 02-Oct-17 08:50:00 332.00 335.71 333.33

09-Oct-17 12:49:00 353.00 352.77 346.52

02-Oct-17 08:50:30 332.00 335.70 333.33

09-Oct-17 12:49:30 353.00 352.76 346.49 02-Oct-17 08:51:00 332.00 335.68 333.33

09-Oct-17 12:50:00 353.00 352.75 346.47

02-Oct-17 08:51:30 332.00 335.67 333.35

09-Oct-17 12:50:30 353.00 352.76 346.53 02-Oct-17 08:52:00 332.00 335.67 333.39

09-Oct-17 12:51:00 353.00 352.74 346.48

02-Oct-17 08:52:30 332.00 335.66 333.40

09-Oct-17 12:51:30 353.00 352.73 346.44 02-Oct-17 08:53:00 332.00 335.66 333.44

09-Oct-17 12:52:00 353.00 352.73 346.48

02-Oct-17 08:53:30 332.00 335.66 333.48

09-Oct-17 12:52:30 353.00 352.70 346.40 02-Oct-17 08:54:00 332.00 335.65 333.46

09-Oct-17 12:53:00 353.00 352.70 346.41

02-Oct-17 08:54:30 332.00 335.65 333.49

09-Oct-17 12:53:30 353.00 352.68 346.40 02-Oct-17 08:55:00 332.00 335.64 333.49

09-Oct-17 12:54:00 353.00 352.66 346.37

02-Oct-17 08:55:30 332.00 335.64 333.49

09-Oct-17 12:54:30 353.00 352.65 346.34 02-Oct-17 08:56:00 332.00 335.64 333.53

09-Oct-17 12:55:00 353.00 352.63 346.29

02-Oct-17 08:56:30 332.00 335.64 333.52

09-Oct-17 12:55:30 353.00 352.60 346.21 02-Oct-17 08:57:00 332.00 335.64 333.52

09-Oct-17 12:56:00 353.00 352.59 346.22

02-Oct-17 08:57:30 332.00 335.64 333.52

09-Oct-17 12:56:30 353.00 352.57 346.15 02-Oct-17 08:58:00 332.00 335.63 333.58

09-Oct-17 12:57:00 353.00 352.56 346.16

02-Oct-17 08:58:30 332.00 335.64 333.60

09-Oct-17 12:57:30 353.00 352.55 346.20 02-Oct-17 08:59:00 332.00 335.62 333.58

09-Oct-17 12:58:00 353.00 352.53 346.15

02-Oct-17 08:59:30 332.00 335.63 333.61

09-Oct-17 12:58:30 353.00 352.52 346.18 02-Oct-17 09:00:00 332.00 335.63 333.63

09-Oct-17 12:59:00 353.00 352.52 346.21

02-Oct-17 09:00:30 332.00 335.63 333.63

09-Oct-17 12:59:30 353.00 352.50 346.17 02-Oct-17 09:01:00 332.00 335.62 333.62

09-Oct-17 13:00:00 353.00 352.51 346.27

02-Oct-17 09:01:30 332.00 335.62 333.66

09-Oct-17 13:00:30 353.00 352.51 346.26 02-Oct-17 09:02:00 332.00 335.62 333.67

09-Oct-17 13:01:00 353.00 352.48 346.19

02-Oct-17 09:02:30 332.00 335.62 333.68

09-Oct-17 13:01:30 353.00 352.48 346.18

84

Master of Engineering (Industrial Automation)

02-Oct-17 09:03:00 332.00 335.61 333.64

09-Oct-17 13:02:00 353.00 352.45 346.19 02-Oct-17 09:03:30 332.00 335.61 333.67

09-Oct-17 13:02:30 353.00 352.43 346.15

02-Oct-17 09:04:00 332.00 335.61 333.67

09-Oct-17 13:03:00 353.00 352.42 346.15 02-Oct-17 09:04:30 332.00 335.60 333.66

09-Oct-17 13:03:30 353.00 352.39 346.07

02-Oct-17 09:05:00 332.00 335.61 333.69

09-Oct-17 13:04:00 353.00 352.37 346.04 02-Oct-17 09:05:30 332.00 335.60 333.69

09-Oct-17 13:04:30 353.00 352.35 346.02

02-Oct-17 09:06:00 332.00 335.61 333.72

09-Oct-17 13:05:00 353.00 352.32 345.95 02-Oct-17 09:06:30 332.00 335.61 333.73

09-Oct-17 13:05:30 353.00 352.31 345.96

02-Oct-17 09:07:00 332.00 335.61 333.72

09-Oct-17 13:06:00 353.00 352.29 345.96 02-Oct-17 09:07:30 332.00 335.62 333.72

09-Oct-17 13:06:30 353.00 352.25 345.88

02-Oct-17 09:08:00 332.00 335.62 333.72

09-Oct-17 13:07:00 353.00 352.23 345.84 02-Oct-17 09:08:30 332.00 335.62 333.73

09-Oct-17 13:07:30 353.00 352.21 345.86

02-Oct-17 09:09:00 332.00 335.63 333.73

09-Oct-17 13:08:00 353.00 352.20 345.84 02-Oct-17 09:09:30 332.00 335.64 333.75

09-Oct-17 13:08:30 353.00 352.19 345.86

02-Oct-17 09:10:00 332.00 335.64 333.75

09-Oct-17 13:09:00 353.00 352.17 345.87 02-Oct-17 09:10:30 332.00 335.65 333.74

09-Oct-17 13:09:30 353.00 352.15 345.84

02-Oct-17 09:11:00 332.00 335.66 333.76

09-Oct-17 13:10:00 353.00 352.14 345.88 02-Oct-17 09:11:30 332.00 335.66 333.72

09-Oct-17 13:10:30 353.00 352.12 345.88

02-Oct-17 09:12:00 332.00 335.67 333.73

09-Oct-17 13:11:00 353.00 352.10 345.84 02-Oct-17 09:12:30 332.00 335.67 333.71

09-Oct-17 13:11:30 353.00 352.10 345.88

02-Oct-17 09:13:00 332.00 335.67 333.68

09-Oct-17 13:12:00 353.00 352.08 345.86 02-Oct-17 09:13:30 332.00 335.67 333.67

09-Oct-17 13:12:30 353.00 352.06 345.79

02-Oct-17 09:14:00 332.00 335.68 333.71

09-Oct-17 13:13:00 353.00 352.06 345.82 02-Oct-17 09:14:30 332.00 335.68 333.68

09-Oct-17 13:13:30 353.00 352.05 345.81

02-Oct-17 09:15:00 332.00 335.70 333.72

09-Oct-17 13:14:00 353.00 352.02 345.79 02-Oct-17 09:15:30 332.00 335.69 333.70

09-Oct-17 13:14:30 353.00 352.02 345.83

02-Oct-17 09:16:00 332.00 335.70 333.70

09-Oct-17 13:15:00 353.00 352.00 345.81 02-Oct-17 09:16:30 332.00 335.71 333.71

09-Oct-17 13:15:30 353.00 351.97 345.77

02-Oct-17 09:17:00 332.00 335.72 333.71

09-Oct-17 13:16:00 353.00 351.96 345.80 02-Oct-17 09:17:30 332.00 335.72 333.71

09-Oct-17 13:16:30 353.00 351.96 345.81

02-Oct-17 09:18:00 332.00 335.73 333.76

09-Oct-17 13:17:00 353.00 351.93 345.78 02-Oct-17 09:18:30 332.00 335.74 333.77

09-Oct-17 13:17:30 353.00 351.91 345.78

02-Oct-17 09:19:00 332.00 335.74 333.77

09-Oct-17 13:18:00 353.00 351.89 345.78 02-Oct-17 09:19:30 332.00 335.74 333.76

09-Oct-17 13:18:30 353.00 351.87 345.78

02-Oct-17 09:20:00 332.00 335.75 333.76

09-Oct-17 13:19:00 353.00 351.85 345.77 02-Oct-17 09:20:30 332.00 335.76 333.80

09-Oct-17 13:19:30 353.00 351.84 345.76

02-Oct-17 09:21:00 332.00 335.76 333.75

09-Oct-17 13:20:00 353.00 351.82 345.81 02-Oct-17 09:21:30 332.00 335.77 333.75

09-Oct-17 13:20:30 353.00 351.80 345.78

02-Oct-17 09:22:00 332.00 335.77 333.76

09-Oct-17 13:21:00 353.00 351.78 345.76 02-Oct-17 09:22:30 332.00 335.78 333.75

09-Oct-17 13:21:30 353.00 351.76 345.74

02-Oct-17 09:23:00 332.00 335.79 333.75

09-Oct-17 13:22:00 353.00 351.74 345.72 02-Oct-17 09:23:30 332.00 335.81 333.80

09-Oct-17 13:22:30 353.00 351.73 345.77

02-Oct-17 09:24:00 332.00 335.82 333.81

09-Oct-17 13:23:00 353.00 351.71 345.76 02-Oct-17 09:24:30 332.00 335.83 333.79

09-Oct-17 13:23:30 353.00 351.68 345.71

02-Oct-17 09:25:00 332.00 335.83 333.75

09-Oct-17 13:24:00 353.00 351.67 345.73 02-Oct-17 09:25:30 332.00 335.84 333.77

09-Oct-17 13:24:30 353.00 351.65 345.73

02-Oct-17 09:26:00 332.00 335.86 333.82

09-Oct-17 13:25:00 353.00 351.66 345.81 02-Oct-17 09:26:30 332.00 335.87 333.82

09-Oct-17 13:25:30 353.00 351.64 345.81

02-Oct-17 09:27:00 332.00 335.88 333.81

09-Oct-17 13:26:00 353.00 351.62 345.80 02-Oct-17 09:27:30 332.00 335.90 333.82

09-Oct-17 13:26:30 353.00 351.62 345.85

02-Oct-17 09:28:00 332.00 335.91 333.83

09-Oct-17 13:27:00 353.00 351.60 345.89 02-Oct-17 09:28:30 332.00 335.91 333.83

09-Oct-17 13:27:30 353.00 351.58 345.89

02-Oct-17 09:29:00 332.00 335.93 333.85

09-Oct-17 13:28:00 353.00 351.56 345.78 02-Oct-17 09:29:30 332.00 335.93 333.83

09-Oct-17 13:28:30 353.00 351.54 345.80

02-Oct-17 09:30:00 332.00 335.95 333.82

09-Oct-17 13:29:00 353.00 351.52 345.78 02-Oct-17 09:30:30 332.00 335.95 333.79

09-Oct-17 13:29:30 353.00 351.51 345.80

02-Oct-17 09:31:00 332.00 335.96 333.79

09-Oct-17 13:30:00 353.00 351.50 345.84

85

Master of Engineering (Industrial Automation)

02-Oct-17 09:31:30 332.00 335.97 333.79

09-Oct-17 13:30:30 353.00 351.48 345.84 02-Oct-17 09:32:00 332.00 335.99 333.83

09-Oct-17 13:31:00 353.00 351.47 345.87

02-Oct-17 09:32:30 332.00 335.99 333.83

09-Oct-17 13:31:30 353.00 351.45 345.89 02-Oct-17 09:33:00 332.00 336.01 333.85

09-Oct-17 13:32:00 353.00 351.43 345.88

02-Oct-17 09:33:30 332.00 336.01 333.85

09-Oct-17 13:32:30 353.00 351.41 345.86 02-Oct-17 09:34:00 332.00 336.01 333.85

09-Oct-17 13:33:00 353.00 351.40 345.87

02-Oct-17 09:34:30 332.00 336.02 333.81

09-Oct-17 13:33:30 353.00 351.39 345.88 02-Oct-17 09:35:00 332.00 336.02 333.80

09-Oct-17 13:34:00 353.00 351.37 345.90

02-Oct-17 09:35:30 332.00 336.03 333.78

09-Oct-17 13:34:30 353.00 351.36 345.90 02-Oct-17 09:36:00 332.00 336.03 333.77

09-Oct-17 13:35:00 353.00 351.33 345.86

02-Oct-17 09:36:30 332.00 336.04 333.76

09-Oct-17 13:35:30 353.00 351.31 345.80 02-Oct-17 09:37:00 332.00 336.03 333.71

09-Oct-17 13:36:00 353.00 351.31 345.84

02-Oct-17 09:37:30 332.00 336.04 333.72

09-Oct-17 13:36:30 353.00 351.30 345.87 02-Oct-17 09:38:00 332.00 336.04 333.72

09-Oct-17 13:37:00 353.00 351.30 345.90

02-Oct-17 09:38:30 332.00 336.04 333.69

09-Oct-17 13:37:30 353.00 351.29 345.89 02-Oct-17 09:39:00 332.00 336.05 333.69

09-Oct-17 13:38:00 353.00 351.28 345.88

02-Oct-17 09:39:30 332.00 336.06 333.69

09-Oct-17 13:38:30 353.00 351.29 345.96 02-Oct-17 09:40:00 332.00 336.07 333.72

09-Oct-17 13:39:00 353.00 351.30 346.00

02-Oct-17 09:40:30 332.00 336.07 333.72

09-Oct-17 13:39:30 353.00 351.29 346.02 02-Oct-17 09:41:00 332.00 336.08 333.73

09-Oct-17 13:40:00 353.00 351.28 345.99

02-Oct-17 09:41:30 332.00 336.09 333.76

09-Oct-17 13:40:30 353.00 351.27 345.98 02-Oct-17 09:42:00 332.00 336.09 333.76

09-Oct-17 13:41:00 353.00 351.27 345.99

02-Oct-17 09:42:30 332.00 336.09 333.76

09-Oct-17 13:41:30 353.00 351.26 345.98 02-Oct-17 09:43:00 332.00 336.09 333.76

09-Oct-17 13:42:00 353.00 351.25 345.97

02-Oct-17 09:43:30 332.00 336.09 333.75

09-Oct-17 13:42:30 353.00 351.23 345.95 02-Oct-17 09:44:00 332.00 336.09 333.73

09-Oct-17 13:43:00 353.00 351.24 345.93

02-Oct-17 09:44:30 332.00 336.10 333.77

09-Oct-17 13:43:30 353.00 351.24 345.93 02-Oct-17 09:45:00 332.00 336.10 333.77

09-Oct-17 13:44:00 353.00 351.23 346.01

02-Oct-17 09:45:30 332.00 336.10 333.76

09-Oct-17 13:44:30 353.00 351.23 346.01 02-Oct-17 09:46:00 332.00 336.10 333.77

09-Oct-17 13:45:00 353.00 351.22 346.01

02-Oct-17 09:46:30 332.00 336.10 333.76

09-Oct-17 13:45:30 353.00 351.20 346.00 02-Oct-17 09:47:00 332.00 336.10 333.75

09-Oct-17 13:46:00 353.00 351.22 346.00

02-Oct-17 09:47:30 332.00 336.10 333.74

09-Oct-17 13:46:30 353.00 351.22 346.10 02-Oct-17 09:48:00 332.00 336.11 333.75

09-Oct-17 13:47:00 353.00 351.22 346.12

02-Oct-17 09:48:30 332.00 336.11 333.74

09-Oct-17 13:47:30 353.00 351.21 346.11 02-Oct-17 09:49:00 332.00 336.11 333.74

09-Oct-17 13:48:00 353.00 351.21 346.12

02-Oct-17 09:49:30 332.00 336.12 333.74

09-Oct-17 13:48:30 353.00 351.23 346.19 02-Oct-17 09:50:00 332.00 336.12 333.75

09-Oct-17 13:49:00 353.00 351.23 346.22

02-Oct-17 09:50:30 332.00 336.13 333.75

09-Oct-17 13:49:30 353.00 351.24 346.23 02-Oct-17 09:51:00 332.00 336.13 333.77

09-Oct-17 13:50:00 353.00 351.25 346.27

02-Oct-17 09:51:30 332.00 336.14 333.77

09-Oct-17 13:50:30 353.00 351.26 346.29 02-Oct-17 09:52:00 332.00 336.13 333.73

09-Oct-17 13:51:00 353.00 351.27 346.35

02-Oct-17 09:52:30 332.00 336.13 333.72

09-Oct-17 13:51:30 353.00 351.27 346.33 02-Oct-17 09:53:00 332.00 336.13 333.73

09-Oct-17 13:52:00 353.00 351.27 346.31

02-Oct-17 09:53:30 332.00 336.14 333.74

09-Oct-17 13:52:30 353.00 351.27 346.29 02-Oct-17 09:54:00 332.00 336.14 333.74

09-Oct-17 13:53:00 353.00 351.29 346.33

02-Oct-17 09:54:30 332.00 336.14 333.75

09-Oct-17 13:53:30 353.00 351.30 346.35 02-Oct-17 09:55:00 332.00 336.14 333.75

09-Oct-17 13:54:00 353.00 351.30 346.35

02-Oct-17 09:55:30 332.00 336.15 333.78

09-Oct-17 13:54:30 353.00 351.31 346.36 02-Oct-17 09:56:00 332.00 336.16 333.79

09-Oct-17 13:55:00 353.00 351.32 346.37

02-Oct-17 09:56:30 332.00 336.16 333.78

09-Oct-17 13:55:30 353.00 351.34 346.46 02-Oct-17 09:57:00 332.00 336.16 333.76

09-Oct-17 13:56:00 353.00 351.35 346.46

02-Oct-17 09:57:30 332.00 336.15 333.73

09-Oct-17 13:56:30 353.00 351.36 346.48 02-Oct-17 09:58:00 332.00 336.15 333.74

09-Oct-17 13:57:00 353.00 351.38 346.52

02-Oct-17 09:58:30 332.00 336.16 333.75

09-Oct-17 13:57:30 353.00 351.39 346.54 02-Oct-17 09:59:00 332.00 336.16 333.76

09-Oct-17 13:58:00 353.00 351.40 346.54

02-Oct-17 09:59:30 332.00 336.16 333.78

09-Oct-17 13:58:30 353.00 351.42 346.61

86

Master of Engineering (Industrial Automation)

02-Oct-17 10:00:00 332.00 336.16 333.78

09-Oct-17 13:59:00 353.00 351.43 346.59 02-Oct-17 10:00:30 332.00 336.16 333.78

09-Oct-17 13:59:30 353.00 351.44 346.60

02-Oct-17 10:01:00 332.00 336.17 333.80

09-Oct-17 14:00:00 353.00 351.46 346.64 02-Oct-17 10:01:30 332.00 336.16 333.81

09-Oct-17 14:00:30 353.00 351.48 346.63

02-Oct-17 10:02:00 332.00 336.17 333.82

09-Oct-17 14:01:00 353.00 351.50 346.63 02-Oct-17 10:02:30 332.00 336.17 333.81

09-Oct-17 14:01:30 353.00 351.52 346.68

02-Oct-17 10:03:00 332.00 336.16 333.80

09-Oct-17 14:02:00 353.00 351.52 346.55 02-Oct-17 10:03:30 332.00 336.16 333.76

09-Oct-17 14:02:30 353.00 351.53 346.54

02-Oct-17 10:04:00 332.00 336.15 333.78

09-Oct-17 14:03:00 353.00 351.56 346.42 02-Oct-17 10:04:30 332.00 336.16 333.77

09-Oct-17 14:03:30 353.00 351.58 346.40

02-Oct-17 10:05:00 332.00 336.15 333.78

09-Oct-17 14:04:00 353.00 351.59 346.42 02-Oct-17 10:05:30 332.00 336.15 333.76

09-Oct-17 14:04:30 353.00 351.59 346.39

02-Oct-17 10:06:00 332.00 336.16 333.76

09-Oct-17 14:05:00 353.00 351.58 346.36 02-Oct-17 10:06:30 332.00 336.16 333.81

09-Oct-17 14:05:30 353.00 351.58 346.36

02-Oct-17 10:07:00 332.00 336.16 333.82

09-Oct-17 14:06:00 353.00 351.57 346.36 02-Oct-17 10:07:30 332.00 336.16 333.84

09-Oct-17 14:06:30 353.00 351.56 346.29

02-Oct-17 10:08:00 332.00 336.16 333.85

09-Oct-17 14:07:00 353.00 351.55 346.26 02-Oct-17 10:08:30 332.00 336.16 333.85

09-Oct-17 14:07:30 353.00 351.56 346.26

02-Oct-17 10:09:00 332.00 336.16 333.85

09-Oct-17 14:08:00 353.00 351.56 346.25 02-Oct-17 10:09:30 332.00 336.16 333.86

09-Oct-17 14:08:30 353.00 351.56 346.25

02-Oct-17 10:10:00 332.00 336.16 333.85

09-Oct-17 14:09:00 353.00 351.59 346.45 02-Oct-17 10:10:30 332.00 336.16 333.85

09-Oct-17 14:09:30 353.00 351.59 346.53

02-Oct-17 10:11:00 332.00 336.16 333.84

09-Oct-17 14:10:00 353.00 351.57 346.43 02-Oct-17 10:11:30 332.00 336.16 333.84

09-Oct-17 14:10:30 353.00 351.59 346.48

02-Oct-17 10:12:00 332.00 336.15 333.83

09-Oct-17 14:11:00 353.00 351.61 346.51 02-Oct-17 10:12:30 332.00 336.15 333.81

09-Oct-17 14:11:30 353.00 351.64 346.54

02-Oct-17 10:13:00 332.00 336.15 333.81

09-Oct-17 14:12:00 353.00 351.65 346.56 02-Oct-17 10:13:30 332.00 336.14 333.79

09-Oct-17 14:12:30 353.00 351.68 346.52

02-Oct-17 10:14:00 332.00 336.14 333.76

09-Oct-17 14:13:00 353.00 351.72 346.55 02-Oct-17 10:14:30 332.00 336.15 333.78

09-Oct-17 14:13:30 353.00 351.75 346.55

02-Oct-17 10:15:00 332.00 336.14 333.76

09-Oct-17 14:14:00 353.00 351.78 346.65 02-Oct-17 10:15:30 332.00 336.14 333.75

09-Oct-17 14:14:30 353.00 351.78 346.61

02-Oct-17 10:16:00 332.00 336.14 333.75

09-Oct-17 14:15:00 353.00 351.82 346.66 02-Oct-17 10:16:30 332.00 336.14 333.70

09-Oct-17 14:15:30 353.00 351.82 346.60

02-Oct-17 10:17:00 332.00 336.14 333.71

09-Oct-17 14:16:00 353.00 351.83 346.62 02-Oct-17 10:17:30 332.00 336.14 333.71

09-Oct-17 14:16:30 353.00 351.85 346.61

02-Oct-17 10:18:00 332.00 336.14 333.70

09-Oct-17 14:17:00 353.00 351.85 346.56 02-Oct-17 10:18:30 332.00 336.15 333.71

09-Oct-17 14:17:30 353.00 351.86 346.60

02-Oct-17 10:19:00 332.00 336.15 333.69

09-Oct-17 14:18:00 353.00 351.87 346.60 02-Oct-17 10:19:30 332.00 336.14 333.68

09-Oct-17 14:18:30 353.00 351.88 346.61

02-Oct-17 10:20:00 332.00 336.15 333.70

09-Oct-17 14:19:00 353.00 351.87 346.58 02-Oct-17 10:20:30 332.00 336.15 333.67

09-Oct-17 14:19:30 353.00 351.88 346.60

02-Oct-17 10:21:00 332.00 336.15 333.66

09-Oct-17 14:20:00 353.00 351.90 346.68 02-Oct-17 10:21:30 332.00 336.16 333.68

09-Oct-17 14:20:30 353.00 351.90 346.66

02-Oct-17 10:22:00 332.00 336.17 333.71

09-Oct-17 14:21:00 353.00 351.92 346.72 02-Oct-17 10:22:30 332.00 336.17 333.71

09-Oct-17 14:21:30 353.00 351.92 346.68

02-Oct-17 10:23:00 332.00 336.17 333.71

09-Oct-17 14:22:00 353.00 351.94 346.71 02-Oct-17 10:23:30 332.00 336.17 333.72

09-Oct-17 14:22:30 353.00 351.96 346.73

02-Oct-17 10:24:00 332.00 336.17 333.72

09-Oct-17 14:23:00 353.00 351.98 346.73 02-Oct-17 10:24:30 332.00 336.17 333.68

09-Oct-17 14:23:30 353.00 352.02 346.73

02-Oct-17 10:25:00 332.00 336.17 333.68

09-Oct-17 14:24:00 353.00 352.03 346.84 02-Oct-17 10:25:30 332.00 336.18 333.68

09-Oct-17 14:24:30 353.00 352.06 346.84

87