application of fluid-structure interaction algorithms to seismic analysis zuhal ozdemir, mhamed...

32
Application of Fluid- Structure Interaction Algorithms to Seismic Analysis Zuhal OZDEMIR, Mhamed SOULI Université des Sciences et Technologies de Lille Laboratoire de Mécanique de Lille University of Bosphor, Istanbul GDR IFS 3 - 4 Juin 2010 UTC Compiegne

Upload: james-hardy

Post on 14-Jan-2016

220 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: Application of Fluid-Structure Interaction Algorithms to Seismic Analysis Zuhal OZDEMIR, Mhamed SOULI Université des Sciences et Technologies de Lille

Application of Fluid-Structure Interaction Algorithms to Seismic

AnalysisZuhal OZDEMIR, Mhamed SOULI

Université des Sciences et Technologies de LilleLaboratoire de Mécanique de Lille

University of Bosphor, Istanbul

GDR IFS 3 - 4 Juin 2010

UTC Compiegne

Page 2: Application of Fluid-Structure Interaction Algorithms to Seismic Analysis Zuhal OZDEMIR, Mhamed SOULI Université des Sciences et Technologies de Lille

Outline of the Presentation

General Objective of the Studies Carried out on Tanks

Difficulties in the Analysis of Tanks

Analysis Methods for Tanks

Fluid-Structure Interaction for Tank Problems

2D Rigid Tank

3D Flexible Tank

Page 3: Application of Fluid-Structure Interaction Algorithms to Seismic Analysis Zuhal OZDEMIR, Mhamed SOULI Université des Sciences et Technologies de Lille

- Limit the tank damages observed during earthquakes

- Determine the response parameters in order to take precautions - sloshing wave height (freeboard) - uplift displacement (flexible attachments for pipes)

General Objective of the Studies Carried out on Tanks

Page 4: Application of Fluid-Structure Interaction Algorithms to Seismic Analysis Zuhal OZDEMIR, Mhamed SOULI Université des Sciences et Technologies de Lille

Difficulties in the Analysis of Tanks

- Three different domains * Structure

* Fluid

* Soil

- Material and geometric nonlinearities

- Complex support condition * Anchored

* Unanchored

Page 5: Application of Fluid-Structure Interaction Algorithms to Seismic Analysis Zuhal OZDEMIR, Mhamed SOULI Université des Sciences et Technologies de Lille

- Large amplitude wall deformations (Buckling)

- Violent sloshing which causes damage at the tank wall and shell

General Performance of Tanks during Earthquakes

- High plastic deformation at the tank base

Sloshing damage

Page 6: Application of Fluid-Structure Interaction Algorithms to Seismic Analysis Zuhal OZDEMIR, Mhamed SOULI Université des Sciences et Technologies de Lille

Diamond Shape Buckling (Elastic Buckling)

Elephant-Foot Buckling (Elasto-Plastic Buckling)

Tank Shell Buckling

Page 7: Application of Fluid-Structure Interaction Algorithms to Seismic Analysis Zuhal OZDEMIR, Mhamed SOULI Université des Sciences et Technologies de Lille

Analysis Methods for Tanks

Irrotational flow, incompressible and inviscid fluid (potantiaql flow theory)

- Simplified Analytical Methods

02 Fluid : Laplace equation

Spring-Mass Equivalent Analogue

Most of the provisions recommended in the current tank design codes employ a modified version of Housner’s method

Structure : rigid tank

Base Shear and

Overturning Moment

Ordinary Beam Theory

Shell Stresses (Axial

Compressive and Hoop)

Page 8: Application of Fluid-Structure Interaction Algorithms to Seismic Analysis Zuhal OZDEMIR, Mhamed SOULI Université des Sciences et Technologies de Lille

Structure FluidLagrangian Formulation

Dynamic Structure equation Navier Stokes equations in

ALE Formulation

Fluid-Structure Interaction for Tank Problems

fdivtd

vd )(

Page 9: Application of Fluid-Structure Interaction Algorithms to Seismic Analysis Zuhal OZDEMIR, Mhamed SOULI Université des Sciences et Technologies de Lille

2D Tank Problem

width = 57 cm

height = 30 cm

Hwater= 15 cm

Sinusoidal harmonic motion non-resonance caseresonance case

h

a2

)1n2(tanh

a2

)1n2(g2

n

The sketch of the 2D sloshing experiment (Liu and Lin, 2008)

o = 6.0578 rad/s

Page 10: Application of Fluid-Structure Interaction Algorithms to Seismic Analysis Zuhal OZDEMIR, Mhamed SOULI Université des Sciences et Technologies de Lille

2D Tank ProblemLagrangian

Page 11: Application of Fluid-Structure Interaction Algorithms to Seismic Analysis Zuhal OZDEMIR, Mhamed SOULI Université des Sciences et Technologies de Lille
Page 12: Application of Fluid-Structure Interaction Algorithms to Seismic Analysis Zuhal OZDEMIR, Mhamed SOULI Université des Sciences et Technologies de Lille

2D Tank Problem

= 0.583 o

= 1 o

non-resonance case

resonance case

amplitude = 0.005 m

amplitude = 0.005 m

Page 13: Application of Fluid-Structure Interaction Algorithms to Seismic Analysis Zuhal OZDEMIR, Mhamed SOULI Université des Sciences et Technologies de Lille

3

3D Tank Problem

Cylindrical tank size:

- radius of 1.83 m

- a total height of 1.83 m

- filled up to height of 1.524 m

Maximum ground acceleration = 0.5 g in horizontal direction (El Centro Earthquake record scaled with )3

Page 14: Application of Fluid-Structure Interaction Algorithms to Seismic Analysis Zuhal OZDEMIR, Mhamed SOULI Université des Sciences et Technologies de Lille

Large mesh Deformation

Page 15: Application of Fluid-Structure Interaction Algorithms to Seismic Analysis Zuhal OZDEMIR, Mhamed SOULI Université des Sciences et Technologies de Lille

Large mesh Deformation

Lagrangian Method

Page 16: Application of Fluid-Structure Interaction Algorithms to Seismic Analysis Zuhal OZDEMIR, Mhamed SOULI Université des Sciences et Technologies de Lille

Coupling Method

Page 17: Application of Fluid-Structure Interaction Algorithms to Seismic Analysis Zuhal OZDEMIR, Mhamed SOULI Université des Sciences et Technologies de Lille

Structure

Fluid

Fluid Structure Coupling

2) Euler Lagrange Coupling

Page 18: Application of Fluid-Structure Interaction Algorithms to Seismic Analysis Zuhal OZDEMIR, Mhamed SOULI Université des Sciences et Technologies de Lille

Up Lift for sloshing Tank

Page 19: Application of Fluid-Structure Interaction Algorithms to Seismic Analysis Zuhal OZDEMIR, Mhamed SOULI Université des Sciences et Technologies de Lille

3D Tank Problem

Comparisons of the time histories of pressure for the numerical method and experimental data

Page 20: Application of Fluid-Structure Interaction Algorithms to Seismic Analysis Zuhal OZDEMIR, Mhamed SOULI Université des Sciences et Technologies de Lille

3D Tank Problem

Comparisons of the time histories of pressure for the numerical method and experimental data

Page 21: Application of Fluid-Structure Interaction Algorithms to Seismic Analysis Zuhal OZDEMIR, Mhamed SOULI Université des Sciences et Technologies de Lille

3D Tank Problem

Comparisons of the time histories of surface elevation for the numerical method and experimental data

Page 22: Application of Fluid-Structure Interaction Algorithms to Seismic Analysis Zuhal OZDEMIR, Mhamed SOULI Université des Sciences et Technologies de Lille

3D Tank Problem

Comparisons of the time histories of tank base uplift for the numerical method and experimental data

Page 23: Application of Fluid-Structure Interaction Algorithms to Seismic Analysis Zuhal OZDEMIR, Mhamed SOULI Université des Sciences et Technologies de Lille

Conclusions

(1) ALE algorithm lead highly consisted results with the experimental

data in terms of peak level timing, shape and amplitude of pressure

and sloshing.

(2) Method gives reliable results for every frequency range of external

excitation.

(3) ALE method combined with/without the contact algorithms can be

utilized as a design tool for the seismic analysis of rigid and flexible

liquid containment tanks.

(4) As a further study, a real size tank will be analysed

Page 24: Application of Fluid-Structure Interaction Algorithms to Seismic Analysis Zuhal OZDEMIR, Mhamed SOULI Université des Sciences et Technologies de Lille

MerciMerci

Page 25: Application of Fluid-Structure Interaction Algorithms to Seismic Analysis Zuhal OZDEMIR, Mhamed SOULI Université des Sciences et Technologies de Lille

Analysis Methods for Tanks (cond)

- Numerical Methods

FEM is the best choice, because

-structure, fluid and soil can be modelled in the same system -proper modelling of contact boundary conditions-nonlinear formulation for fluid and structure -nonlinear formulation for fluid and structure interaction effects

* 2D finite difference method * FEM * BEM * Volume of fluid technique (VOF)

Page 26: Application of Fluid-Structure Interaction Algorithms to Seismic Analysis Zuhal OZDEMIR, Mhamed SOULI Université des Sciences et Technologies de Lille

3D Tank Problem

Pressure distribution inside the tank

Page 27: Application of Fluid-Structure Interaction Algorithms to Seismic Analysis Zuhal OZDEMIR, Mhamed SOULI Université des Sciences et Technologies de Lille

Analysis Methods for Tanks (cond)

- Experimental Methods

* Static tilt tests

* Shaking table tests

Schematic view of static tilt test A cylindrical tank mounted on the shaking table

Page 28: Application of Fluid-Structure Interaction Algorithms to Seismic Analysis Zuhal OZDEMIR, Mhamed SOULI Université des Sciences et Technologies de Lille

3D Tank Problem

Change of free surface in time

Page 29: Application of Fluid-Structure Interaction Algorithms to Seismic Analysis Zuhal OZDEMIR, Mhamed SOULI Université des Sciences et Technologies de Lille

3D Tank Problem

Von Mises stresses on the anchored tank shell

Page 30: Application of Fluid-Structure Interaction Algorithms to Seismic Analysis Zuhal OZDEMIR, Mhamed SOULI Université des Sciences et Technologies de Lille

3D Tank Problem

Von Mises stresses on the unanchored tank shell

(displacements magnified 10 times)

Page 31: Application of Fluid-Structure Interaction Algorithms to Seismic Analysis Zuhal OZDEMIR, Mhamed SOULI Université des Sciences et Technologies de Lille

ALE

2D Tank Problem

Page 32: Application of Fluid-Structure Interaction Algorithms to Seismic Analysis Zuhal OZDEMIR, Mhamed SOULI Université des Sciences et Technologies de Lille

2D Tank Problem

width = 57 cm

height = 30 cm

Hwater= 15 cm

Sinusoidal harmonic motion non-resonance caseresonance case

h

a2

)1n2(tanh

a2

)1n2(g2

n

The sketch of the 2D sloshing experiment (Liu and Lin, 2008)

o = 6.0578 rad/s