applications of free living plant growth-promoting...

25
Applications of free living plant growth-promoting rhizobacteria M. Lucy, E. Reed and Bernard R. Glick * Department of Biology, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1; * Author for correspondence (e-mail: [email protected]; phone: (519) 888-4567 ext. 5208; fax: (519) 746-0614) Received 4 June 2003; accepted in revised form 30 October 2003 teria Abstract Free-living plant growth-promoting rhizobacteria PGPR can be used in a variety of ways when plant growth enhancements are required. The most intensively researched use of PGPR has been in agriculture and horticul- ture. Several PGPR formulations are currently available as commercial products for agricultural production. Re- cently developing areas of PGPR usage include forest regeneration and phytoremediation of contaminated soils. As the mechanisms of plant growth promotion by these bacteria are unravelled, the possibility of more efficient plant-bacteria pairings for novel and practical uses will follow. The progress to date in using PGPR in a variety of applications with different plants is summarized and discussed here. Introduction New and novel solutions for plant growth enhance- ments are required to ease the burden imposed on our environment and other resources. Here we look at potential solutions to these issues by examining some of the research conducted regarding the biological applications of free-living plant growth promoting rhizobacteria PGPR. The major applications of bac- teria for improved plant growth include agriculture, horticulture, forestry and environmental restoration. This review presents an overview of information available on these various applications. Indirect mechanisms used by PGPR include antibi- otic protection against pathogenic bacteria, reduction of iron available to phytopathogens in the rhizo- sphere, synthesis of fungal cell wall-lysing enzymes, and competition with detrimental microorganisms for sites on plant roots. Direct mechanisms of plant growth by PGPR include the provision of bioavail- able phosphorus for plant uptake, nitrogen fixation for plant use, sequestration of iron for plants by sidero- phores, production of plant hormones like auxins, cy- tokinins and gibberellins, and lowering of plant ethylene levels Glick 1995; Glick et al. 1999. Applications of PGPR in Agriculture The most intensively studied application for free liv- ing PGPR is agriculture. Researchers in the former Soviet Union and India conducted widespread tests in the early to the mid part of the 20 th century studying the effects of PGPR on different crops. Though results from different experiments were not harmonized and were often inconsistent, up to 50 to 70% yield increases were reported. Inconsistency of results was due to a lack of quality in experimental design and analysis of results Brown 1974; Cooper 1959. Moreover, during this time an understanding of the detailed mechanisms of plant growth promotion by rhizobacteria was largely unknown. Nevertheless, these field experiments provided clues concerning the optimal conditions for bacterial colonization and growth promotion of target crops Brown 1974. The results of many studies of the effect of free- living rhizobacteria on various crop plants, conducted Antonie van Leeuwenhoek 86: 1–25, 2004. © 2004 Kluwer Academic Publishers. Printed in the Netherlands. 1 Key Review article words: Agriculture, Forestry, Horticulture, Inoculants, Phytoremediation, Plant growth promoting rhizobac-

Upload: phamlien

Post on 26-Sep-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

Applications of free living plant growth-promoting rhizobacteria

M. Lucy, E. Reed and Bernard R. Glick*Department of Biology, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1; *Author forcorrespondence (e-mail: [email protected]; phone: (519) 888-4567 ext. 5208; fax: (519) 746-0614)

Received 4 June 2003; accepted in revised form 30 October 2003

teria

Abstract

Free-living plant growth-promoting rhizobacteria �PGPR� can be used in a variety of ways when plant growthenhancements are required. The most intensively researched use of PGPR has been in agriculture and horticul-ture. Several PGPR formulations are currently available as commercial products for agricultural production. Re-cently developing areas of PGPR usage include forest regeneration and phytoremediation of contaminated soils.As the mechanisms of plant growth promotion by these bacteria are unravelled, the possibility of more efficientplant-bacteria pairings for novel and practical uses will follow. The progress to date in using PGPR in a varietyof applications with different plants is summarized and discussed here.

Introduction

New and novel solutions for plant growth enhance-ments are required to ease the burden imposed on ourenvironment and other resources. Here we look atpotential solutions to these issues by examining someof the research conducted regarding the biologicalapplications of free-living plant growth promotingrhizobacteria �PGPR�. The major applications of bac-teria for improved plant growth include agriculture,horticulture, forestry and environmental restoration.This review presents an overview of informationavailable on these various applications.

Indirect mechanisms used by PGPR include antibi-otic protection against pathogenic bacteria, reductionof iron available to phytopathogens in the rhizo-sphere, synthesis of fungal cell wall-lysing enzymes,and competition with detrimental microorganisms forsites on plant roots. Direct mechanisms of plantgrowth by PGPR include the provision of bioavail-able phosphorus for plant uptake, nitrogen fixation forplant use, sequestration of iron for plants by sidero-phores, production of plant hormones like auxins, cy-

tokinins and gibberellins, and lowering of plantethylene levels �Glick 1995; Glick et al. 1999�.

Applications of PGPR in Agriculture

The most intensively studied application for free liv-ing PGPR is agriculture. Researchers in the formerSoviet Union and India conducted widespread tests inthe early to the mid part of the 20th century studyingthe effects of PGPR on different crops. Though resultsfrom different experiments were not harmonized andwere often inconsistent, up to 50 to 70% yieldincreases were reported. Inconsistency of results wasdue to a lack of quality in experimental design andanalysis of results �Brown 1974; Cooper 1959�.Moreover, during this time an understanding of thedetailed mechanisms of plant growth promotion byrhizobacteria was largely unknown. Nevertheless,these field experiments provided clues concerning theoptimal conditions for bacterial colonization andgrowth promotion of target crops �Brown 1974�.

The results of many studies of the effect of free-living rhizobacteria on various crop plants, conducted

Antonie van Leeuwenhoek 86: 1–25, 2004.© 2004 Kluwer Academic Publishers. Printed in the Netherlands.

1

Key

Review article

words: Agriculture, Forestry, Horticulture, Inoculants, Phytoremediation, Plant growth promoting rhizobac-

over approximately the last twenty-five years, aresummarized in Table 1. Plant growth benefits due tothe addition of PGPR include increases in germina-tion rates, root growth, yield �including grain�, leafarea, chlorophyll content, magnesium content, nitro-gen content, protein content, hydraulic activity, toler-ance to drought, shoot and root weights, and delayedleaf senescence. Another major benefit of PGPR useis disease resistance conferred to the plant, sometimesknown as ‘biocontrol’.

The use of PGPR to increase crop yield has beenlimited due to the variability and inconsistency of re-sults between laboratory, greenhouse and field stud-ies �Mishustin and Naumova 1962�. Soil is anunpredictable environment and an intended result issometimes difficult to obtain �Bashan 1998�. For ex-ample, in a study by Frommel et al. �1993�, poor col-onization of the PGPR on plant roots occurred at onesite due to adverse conditions, including high Verti-cillum infection of the soil, low soil pH, high meantemperature and low rainfall during the growing sea-son. These undesirable growing conditions mostlikely contributed to the low root colonization �Dob-belaere et al. 2001; Klein et al. 1990; Parke 1991;Suslow and Schroth 1982�. Climatic variability alsohas a large impact on the effectiveness of PGPR�Okon and Labandera-Gonzalez 1994� but sometimesunfavourable growth conditions in the field are to beexpected as a normal functioning of agriculture. In-creased yields obtained with wheat inoculated byPseudomonas species in the growth chamber havealso been observed in the field �Weller and Cook1986�. Even though there is a possibility of greatvariability in field results, if a positive effect of aPGPR is seen on a specific crop in greenhouse stud-ies, there is a strong likelihood that those benefits willcarry through to field conditions.

There is a great deal of contradictory informationon the effectiveness of PGPR on plants in soils undervarious conditions of fertilization, especially withAzospirillum species. In the past, the main mechanismof plant growth promotion by Azospirillum wasthought to occur by providing the plant with fixed ni-trogen. In fact, it has been reported that the plantgrowth promotion effect of Azospirillum only occursin nitrogen-limited conditions �Dobbelaere et al.2001; Fallik and Okon 1996�. However, in othercases, much greater increases in plant growth promo-tion have been observed after the addition of fertiliz-ers �Okon and Labandera-Gonzalez 1994�. Anotherway in which Azospirillum species improve plant

growth is through the production of indole acetic acid�IAA�, a plant hormone �Dobbelaere et al. 1999;Okon and Labandera-Gonzalez 1994�.

Different soil types can influence the effectivenessof PGPR �e.g., Kloepper et al. 1980�. In a study withwheat and a pseudomonad, results suggested that theless fertile the soil, the greater the plant growth stim-ulation by the PGPR �De Freitas and Germida 1990�.This is similar to observations in studies conductedwith Azospirillum species, despite the fact thatpseudomonads fix little or no nitrogen. On the otherhand, growth promotion of maize with a strain ofAzospirillum lipoferum has been reported to be inde-pendent of cultivar or soil type in the field �Fages1994�. When choosing an effective PGPR for a plantat a specific site, it is imperative to consider the nu-trient level in the soil and how the intended PGPRwould perform at that location.

Soil moisture content affects the colonization of theplant rhizosphere by the PGPR after inoculation �Burret al. 1978�. Studies in the Soviet Union suggestedthat optimum results were obtained when the soilmoisture was 40% �Brown 1974; Cooper 1959�.However, this may be a function of the type of bac-terium utilized since high moisture content may de-crease the oxygen content of the soil.

In some instances, specific strains of bacteria maypromote bacterial growth only in certain crops. In oneexample, it was found that out of four Pseudomonasstrains that promoted the growth of radish, only onewas effective in promoting the growth of potato�Kloepper et al. 1980�. It has also been observed thatmaximum increases in germination and yield oftenoccur in crops inoculated with PGPR strains isolatedfrom the plants native rhizosphere �Fages and Arsac1991; Favilli et al. 1987�.

During the initial stages of testing in the laboratory,PGPR survival in a microcosm of the field environ-ment should be determined. This is to ensure that anymanipulations conducted on the bacteria are not det-rimental to their growth promotion effect and theircompetitiveness in the field �Tang et al. 1995�. In thefield, the number of PGPR cells applied to the plantis often vital for proper growth promotion �Boddeyand Dobereiner 1988�. Many researchers �Table 1�have applied up to 108 colony forming units �CFU�per seed �De Freitas and Germida 1991; Di Cioccoand Rodriguez-Caceres 1994; Fages 1994; Okon et al.1988; Tran Van et al. 2000; Weller and Cook 1986�or up to 109 CFU/g of inoculant �Barrios et al. 1984;De Freitas and Germida 1990a, 1990b; Fallik and

2

Tabl

e1.

Exa

mpl

esof

free

-liv

ing

plan

tgr

owth

prom

otin

grh

izob

acte

ria

test

edon

vari

ous

crop

type

s

Bac

teri

aPl

ant

Con

ditio

nsR

esul

tsof

addi

tion

ofba

cter

iato

plan

tR

efer

ence

Azo

spir

illu

m�l

ocal

isol

ates

from

Arg

entin

a �W

heat

,M

aize

Fiel

d–

inw

heat

culti

vars

over

seve

nse

ason

s,in

crea

ses

ofyi

eld

from

15to

30%

,an

din

crea

ses

inyi

eld

of50

-60%

whe

nfe

rtili

zed

–ov

ersi

xse

ason

s,in

crea

ses

ofm

aize

yiel

dfr

om15

to25

%ob

serv

ed,

and

with

fert

iliza

tion,

yiel

din

crea

sed

upto

40%

Oko

nan

dL

aban

dera

-Gon

za-

lez

1994

Azo

spir

illu

mbr

asil

ense

Gui

nea

gras

sPe

arl

mill

et,

Dig

itar

iade

cum

bens

Fiel

d–

grea

ter

dry

mat

ter

yiel

dco

mpa

red

toun

inoc

ulat

edco

n-tr

ols

–ap

prox

imat

ely

40kg

/ha

per

year

ofni

trog

enes

timat

edas

save

ddu

eto

inoc

ulat

ion

Smith

etal

.19

78

Azo

spir

illu

mbr

asil

ense

Fing

erm

illet

,So

rghu

m,

Pear

lm

illet

Fiel

d–

aver

age

ofup

to15

%yi

eld

incr

ease

for

finge

rm

illet

–fo

rso

rghu

m,

aver

age

incr

ease

is19

%–

inte

nye

ars

ofst

udy,

Azo

spir

illu

msu

cces

sful

insi

gnifi

-ca

ntly

incr

easi

ngyi

eld

in60

%of

tria

ls

Rao

1986

Azo

spir

illu

mbr

asil

ense

Sorg

hum

Hyd

ropo

nic

syst

emin

gree

n-ho

use

–si

gnifi

cant

incr

ease

sin

dry

mat

ter,

leaf

area

and

grai

nyi

eld

afte

rfo

urw

eeks

–le

afse

nesc

ence

dela

yed

Sari

get

al.

1990

Azo

spir

illu

mbr

asil

ense

Sorg

hum

Gre

enho

use

–in

crea

sed

tota

lnu

mbe

ran

dle

ngth

ofad

vent

itiou

sro

ots

by33

to40

%an

din

crea

sed

hydr

aulic

cond

uctiv

ityby

25-4

0%

Sari

get

al.

1992

Azo

spir

illu

mbr

asil

ense

Bea

nH

ydro

poni

cgr

owth

cham

ber

–in

crea

sed

fres

hro

otan

dsh

oot

wei

ghts

Ved

der-

Wei

sset

al.

1999

Azo

spir

illu

mbr

asil

ense

Sorg

hum

,W

heat

,B

arle

y

Fiel

d�t

este

don

over

200,

000

ha�

–co

nsis

tent

posi

tive

effe

cts

with

upto

26%

incr

ease

ofyi

eld

–be

stre

sults

seen

inlig

htsa

ndy

soils

with

inte

rmed

iate

amou

nts

offe

rtili

zers

Dob

bela

ere

etal

.20

01

Azo

spir

illu

mbr

asil

ense

Cd

Foun

tain

gras

sSo

rghu

mSu

dang

rass

Fiel

d–

incr

ease

sin

yiel

dof

11to

24%

aton

elo

catio

nSm

ithet

al.

1984

Azo

spir

illu

mbr

asil

ense

Cd

Mai

ze,

Mill

etSo

rghu

m,

Whe

atFi

eld

–su

mm

ercr

ops

show

sign

ifica

ntyi

eld

incr

ease

sin

75%

oftr

ial

plot

s,w

hile

win

ter

crop

son

lyha

vesi

gnifi

cant

yiel

din

crea

ses

in5-

12%

oftr

ials

Oko

net

al.

1988

3

Tabl

e1.

Con

tinue

d.

Bac

teri

aPl

ant

Con

ditio

nsR

esul

tsof

addi

tion

ofba

cter

iato

plan

tR

efer

ence

Azo

spir

illu

mbr

asil

ense

Cd

Azo

spir

illu

mli

porf

erum

Br-

17

Mai

zeFi

eld

–co

nsis

tent

incr

ease

sof

yiel

dat

inte

rmed

iate

soil

fert

ility

–re

plac

es35

-40%

ofni

trog

enfe

rtili

zers

Oko

nan

dL

aban

dera

-Gon

za-

lez

1994

Azo

spir

illu

mbr

asil

ense

Cd

Mai

zeFi

eld

–si

gnifi

cant

incr

ease

inth

enu

mbe

rof

adve

ntiti

ous

root

s,ro

otle

ngth

,ro

otan

dsh

oot

dry

wei

ght

inth

ree

diff

eren

tre

gion

s

Dob

bela

ere

etal

.20

01

Azo

spir

illu

mbr

asil

ense

Cd

Chi

ckpe

as,

Faba

bean

sG

reen

hous

ean

dfie

ld–

sign

ifica

ntin

crea

ses

inro

otno

dula

tion

byna

tive

rhiz

o-bi

aan

dim

prov

edro

otan

dsh

oot

deve

lopm

ent

–w

hen

irri

gate

dby

salin

ew

ater

,in

ocul

ated

plan

tsar

eno

tas

nega

tivel

yaf

fect

edco

mpa

red

toco

ntro

l–

field

resu

ltssh

owa

sign

ifica

ntin

crea

sein

shoo

tgr

owth

and

crop

yiel

d

Ham

aoui

etal

.20

01

Azo

spir

illu

mbr

asil

ense

Cd,

245

Oat

,M

aize

,So

rghu

m

Gre

enho

use

and

field

–po

sitiv

ein

crea

ses

inm

aize

and

sorg

hum

biom

ass

inbo

thfie

ldan

dgr

eenh

ouse

,bu

tno

tst

atis

tical

lysi

gnifi

cant

–si

gnifi

cant

incr

ease

ofbi

omas

sof

oat

for

one

year

’sfie

ldte

stbu

tno

tfo

rth

ese

cond

year

Dob

bela

ere

etal

.20

01

Azo

spir

illu

mbr

asil

ense

Cd,

Az-

39A

zosp

iril

lum

lipo

feru

mA

z-30

Mill

etFi

eld

–in

crea

sed

yiel

dup

to30

%an

d21

%in

two

year

sof

plan

tgr

owth

Di

Cio

cco

and

Rod

rigu

ez-

Cac

eres

1994

Azo

spir

illu

mbr

asil

ense

Cd,

Az-

39W

heat

Fiel

d–

plan

tyi

eld

incr

ease

d,es

peci

ally

with

Az-

29C

acer

eset

al.

1996

Azo

spir

illu

mbr

asil

ense

NO

40R

ice

Fiel

d–

incr

ease

dyi

eld

by15

-20%

intw

olo

catio

nsO

mar

etal

.19

89

Azo

spir

illu

mbr

asil

ense

Sp24

5A

zosp

iril

lum

irak

ense

KB

Cl

Win

ter

whe

at,

Mai

zeFi

eld

–pl

ant

grow

thpr

omot

ion

effe

ctdi

sapp

eare

dw

hen

plan

tsov

erfe

rtili

zed

with

nitr

ogen

–in

plot

sw

ithlo

wni

trog

en,

high

eryi

elds

not

obta

ined

,lik

ely

due

toad

vers

ew

eath

erco

nditi

ons

atte

stpl

ots

Dob

bela

ere

etal

.20

01

Azo

spir

illu

mbr

asil

ense

Sp-

111

Whe

atFi

eld

–yi

eld

incr

ease

sof

1.3

to2

fold

over

the

five

year

stud

y–

vari

able

resu

ltsdu

eto

clim

actic

cond

ition

sO

kon

and

Lab

ande

ra-G

onza

-le

z19

94

4

Tabl

e1.

Con

tinue

d.

Bac

teri

aPl

ant

Con

ditio

nsR

esul

tsof

addi

tion

ofba

cter

iato

plan

tR

efer

ence

Azo

spir

illu

mbr

asil

ense

Sp-

245,

Sp-1

07st

Whe

atFi

eld

–si

gnifi

cant

incr

ease

sof

grai

nyi

eld

and

plan

tni

trog

enco

nten

t–

stra

inSp

-245

mos

tef

fect

ive

onw

heat

Bod

dey

and

Dob

erei

ner

1988

Azo

spir

illu

mli

pofe

rum

Sunfl

ower

Gre

enho

use

–st

rain

sor

igin

ally

sele

cted

from

plan

trh

izos

pher

e–

posi

tive

grow

thre

spon

ses

with

resp

ect

toge

rmin

atio

nFa

ges

and

Ars

ac19

91

Azo

spir

illu

mli

pofe

rum

CR

T1

Mai

zeFi

eld

–gr

owth

prom

otio

nef

fect

occu

rred

earl

y,de

spite

rapi

dde

crea

seof

bact

eria

lde

nsity

ofin

trod

uced

bact

eria

–pl

ant

heig

ht,

prim

ary

root

leng

than

dro

otfr

esh

wei

ght

all

enha

nced

byth

ead

ditio

nof

the

bact

eria

Jaco

udet

al.

1998

Azo

spir

illu

mli

pofe

rum

CR

T1

Mai

zeFi

eld

–av

erag

egr

ain

yiel

dsan

dN

cont

ent

high

erfo

rth

ein

ocu-

late

dpl

ants

,bu

tno

tst

atis

tical

lysi

gnifi

cant

–la

rger

root

syst

ems,

and

low

ergr

ain

moi

stur

em

easu

red

Dob

bela

ere

etal

.20

01

Azo

spir

illu

mli

pofe

rum

CR

T-1

Mai

zeFi

eld

–po

sitiv

ere

spon

seof

yiel

dto

inoc

ulat

ion

rega

rdle

ssof

culti

var

orso

ilty

peFa

ges

1994

Azo

spir

illu

msp

.M

aize

Fiel

d–

incr

ease

dyi

eld

of6.

7to

75.1

%K

apul

nik

etal

.19

81

Azo

spir

illu

msp

.W

heat

Fiel

d–

chan

ges

inyi

eld

of�

9.6

to14

.8%

Rey

nder

san

dV

lass

ak19

82

Azo

spir

illu

msp

.W

heat

Fiel

d–

chan

ges

inyi

eld

of�

15.8

to31

%B

alda

niet

al.

1987

Azo

spir

illu

msp

.M

illet

Fiel

d–

chan

ges

inyi

eld

of�

12.1

to31

.7%

Klo

eppe

ret

al.

1989

Azo

spir

illu

msp

.M

usta

rdFi

eld

–in

crea

sed

yiel

dof

16to

128%

Klo

eppe

ret

al.

1989

Azo

spir

illu

msp

.R

ice

Fiel

d–

incr

ease

dyi

eld

of4.

9to

15.5

%K

loep

per

etal

.19

89

Azo

spir

illu

msp

.M

aize

Fiel

d–

sign

ifica

ntin

crea

ses

inyi

eld

inlig

htso

ilsan

dat

inte

r-m

edia

teni

trog

enfe

rtili

zatio

n–

infie

lds

with

noni

trog

enfe

rtili

zatio

n,a

defin

iteyi

eld

incr

ease

over

unin

ocul

ated

plan

ts,

but

not

stat

istic

ally

sig-

nific

ant

–in

field

sw

ithhi

ghni

trog

enfe

rtili

zatio

n,no

grow

then

-ha

ncem

ent

effe

ct

Oko

nan

dL

aban

dera

-Gon

za-

lez

1994

5

Tabl

e1.

Con

tinue

d.

Bac

teri

aPl

ant

Con

ditio

nsR

esul

tsof

addi

tion

ofba

cter

iato

plan

tR

efer

ence

Azo

spir

illu

msp

.M

aize

Fiel

d–

noef

fect

ofin

ocul

atio

non

plan

tyi

elds

whe

nso

ilsar

ehe

avy

and

high

inni

trog

enco

nten

t–

inlig

htso

ilslo

win

nitr

ogen

fert

iliza

tion,

yiel

din

crea

seof

11-1

4%

Falli

kan

dO

kon

1996

Azo

spir

illu

msp

.So

rghu

mFi

eld

–in

crea

sed

yiel

dof

20.5

to30

.5%

Kap

ulni

ket

al.

1997

Azo

spir

illu

msp

.M

aize

Fiel

d–

sign

ifica

ntin

crea

sein

dry

mat

ter

yiel

d–

incr

ease

dm

agne

sium

perc

enta

geH

erna

ndez

etal

.19

97

Azo

spir

illu

msp

.So

rghu

mFi

eld

–in

crea

sed

yiel

dof

12to

18.5

%Sa

rig

etal

.19

98

Azo

spir

illu

msp

.M

aize

Gre

enho

use

–in

crea

sed

activ

ityof

glut

amat

ede

hydr

ogen

ase

and

glut

amin

esy

nthe

tase

–in

crea

sed

Nco

nten

tin

leav

esan

dro

ots

Rib

audo

etal

.20

01

Azo

spir

illu

msp

.W

heat

Gre

enho

use

–hi

gher

biom

ass,

grai

nyi

eld,

prot

ein

cont

ent

and

plan

tni

trog

enco

nten

t–

conc

lude

dth

atni

trog

enup

take

isth

em

echa

nism

ofpl

ant

grow

thpr

omot

ion

inth

isca

se

Saub

idet

etal

.20

02

Azo

toba

cter

chro

ococ

cum

Bar

ley

Gro

wth

cham

ber

assa

ys–

incr

ease

ofse

edge

rmin

atio

nan

dse

edlin

gde

velo

pmen

t–

noch

ange

inth

enu

mbe

rof

seed

sge

rmin

ated

,bu

tin

-cr

ease

seen

inth

eex

tens

ion

ofth

egr

owin

gro

ot–

addi

tion

ofni

trat

ede

crea

ses

plan

tst

imul

atio

nef

fect

–so

me

inco

nsis

tent

resu

ltsse

en,

and

auth

ors

conc

lude

that

Azo

toba

cter

isno

ta

relia

ble

inoc

ulan

t

Har

per

and

Lync

h19

79

Azo

toba

cter

sp.

Bac

illu

ssp

.E

nter

obac

ter

sp.

Xan

thob

acte

rsp

.

Ric

eFi

eld

–in

crea

ses

ofto

tal

dry

mat

ter

yiel

d,gr

ain

yiel

d,an

dni

tro-

gen

accu

mul

atio

nby

6to

24%

over

two

year

sof

stud

y–

hypo

thes

ised

that

yiel

din

crea

ses

due

toin

crea

sein

root

leng

th,

leaf

area

and

chlo

roph

yll

cont

ent

Ala

met

al.

2001

Bac

illu

sam

yliq

uefa

cien

sIN

937

Bac

illu

spu

mil

isIN

R7,

SE34

Bac

illu

ssu

btil

isG

B03

Bac

illu

sce

reus

C4

Tom

ato,

Pepp

erFi

eld

–st

atis

tical

lysi

gnifi

cant

incr

ease

sof

plan

tgr

owth

intw

ogr

owin

gye

ars

inst

emdi

amet

er,

stem

area

,le

afsu

rfac

ear

ea,

wei

ghts

ofro

ots

and

shoo

tsan

dnu

mbe

rof

leav

es–

tran

spla

ntvi

gour

and

frui

tyi

eld

impr

oved

–pa

thog

ennu

mbe

rsan

ddi

seas

eno

tre

duce

din

tom

atoe

sor

pepp

erw

ithth

eex

cept

ion

ofre

duct

ion

ofga

lling

inpe

pper

byro

ot-k

not

nem

atod

e

Kok

alis

-Bur

elle

etal

.20

02

6

Tabl

e1.

Con

tinue

d.

Bac

teri

aPl

ant

Con

ditio

nsR

esul

tsof

addi

tion

ofba

cter

iato

plan

tR

efer

ence

Bac

illu

spo

lym

yxa

Whe

atFi

eld

–in

crea

ses

inpl

ant

yiel

dC

acer

eset

al.

1996

Bac

illu

spo

lym

yxa

Bur

khol

deri

asp

.P

seud

omon

assp

.

Suga

rbe

etFi

eld

–si

gnifi

cant

incr

ease

sin

root

yiel

d�6

.1to

13.0

%�,

suga

ryi

eld

�2.3

to7.

8%

�–

yiel

dsfu

rthe

ren

hanc

edby

N,

Pan

dN

Pap

plic

atio

ns

Cak

mak

ciet

al.

2001

Bac

illu

ssp

.So

rghu

mFi

eld

–in

crea

sed

yiel

dof

15.3

to33

%B

road

bent

etal

.19

77

Bac

illu

ssp

.W

heat

Fiel

d–

chan

ges

inyi

eld

of0

to11

4%K

loep

per

etal

.19

77

Bac

illu

ssu

btil

isA

-13

Pean

utFi

eld

–yi

eld

incr

ease

sup

to37

%;

only

two

of24

test

site

spr

o-du

ced

nega

tive

resu

lts–

plan

tre

spon

ses

mos

tpo

sitiv

ew

hen

subj

ecte

dto

stre

sslik

elim

ited

wat

er,

poor

nutr

ition

,co

ldte

mpe

ratu

res

–pl

ant

dise

ase

redu

ced

Tur

ner

and

Bac

kman

1991

Bac

illu

ssu

btil

isB

2O

nion

Gro

wth

cham

ber

–si

gnifi

cant

incr

ease

sin

shoo

tdr

yw

eigh

t�1

2-94

%�,

dry

root

wei

ght

�13-

100%

�an

dsh

oot

heig

ht�1

2-40

%�

over

cont

rols

–rh

izos

pher

epo

pula

tions

ofin

ocul

ated

bact

eria

decr

ease

dth

roug

hout

stud

y,bu

tgr

owth

prom

otio

nef

fect

still

ob-

serv

ed

Red

dyan

dR

ahe

1989

Bei

jeri

ncki

am

obil

isC

lost

ridi

umsp

.B

eet,

Bar

ley,

Whe

at,

Red

radi

sh,

Cuc

umbe

r

Lab

expe

rim

ents

and

gree

n-ho

use

–in

com

bina

tion

with

min

eral

fert

ilize

rs,

incr

ease

ofpl

ant

prod

uctio

nby

1.5

to2.

5tim

es–

posi

tive

incr

ease

sse

enw

ithse

edge

rmin

atio

nra

te,

mea

npl

ant

leng

than

dpl

ant

wei

ght

–di

ffer

ent

cucu

mbe

rcu

ltiva

rsde

mon

stra

ted

vari

abili

tyin

seed

germ

inat

ion

resp

onse

Poly

ansk

aya

etal

.20

00

Bur

khol

deri

avi

etna

mie

nsis

TV

V75

Ric

eO

utdo

orpo

tan

dfie

ldtr

ials

–w

hen

plan

tsin

ocul

ated

and

tran

spla

nted

atda

y24

,in

-cr

ease

sof

shoo

tw

eigh

t�u

pto

33%

�,ro

otw

eigh

t�u

pto

55%

�an

dle

afsu

rfac

e�u

pto

30%

�ob

serv

ed–

end

grai

nyi

eld

incr

ease

of13

-22%

–gr

ain

wei

ght

�ala

te-s

easo

nyi

eld

com

pone

nt�

sign

ifi-

cant

lyin

crea

sed

due

toin

ocul

atio

n,bu

tno

tdu

eto

the

ad-

ditio

nof

nitr

ogen

Tra

nV

anet

al.

2000

Ent

erob

acte

rcl

oaca

eC

AL

3To

mat

o,Pe

pper

,M

ung

bean

Gre

enho

use

–po

sitiv

ese

edlin

ggr

owth

resp

onse

byal

lth

ree

plan

tsp

e-ci

esto

PGPR

trea

tmen

t,es

peci

ally

tom

ato,

whe

reno

exo-

geno

usm

iner

alnu

trie

nts

adde

d–

earl

yst

imul

atio

nef

fect

onse

edlin

gsob

serv

ed

May

aket

al.

2001

7

Tabl

e1.

Con

tinue

d.

Bac

teri

aPl

ant

Con

ditio

nsR

esul

tsof

addi

tion

ofba

cter

iato

plan

tR

efer

ence

Non

-fluo

resc

ent

pseu

dom

onad

isol

ated

from

onio

nrh

izos

hper

e

Pota

toG

row

thch

ambe

r–

plan

tlets

show

edsi

gnifi

cant

incr

ease

sin

root

dry

wei

ght

of44

to20

1%,

stem

leng

th26

to28

%,

ligni

nup

to43

%,

and

enha

nced

stem

hair

form

atio

n55

to11

0%

From

mel

etal

.19

91

OT

HE

RSp

ecie

san

dM

ix-

ture

s

Pse

udom

onad

ssp

p.�fl

uore

s-ce

ntst

rain

s �W

inte

rw

heat

Fiel

d–

bioc

ontr

olef

fect

sse

enag

ains

tta

keal

l�G

aeum

anno

my-

ces

gram

inis

�,27

%yi

eld

incr

ease

due

toin

ocul

atio

nD

eFr

eita

san

dG

erm

ida

1990

Pse

udom

onas

cepa

cia

Pse

udom

onas

fluor

esce

nsP

seud

omon

aspu

tida

Win

ter

whe

atPo

tted

plan

tsin

grow

thch

ambe

r–

stra

ins

dem

onst

rate

bioc

ontr

olag

ains

tR

hizo

cton

iaso

lani

and

Lep

tosp

haer

am

acul

ans

–di

ffer

ent

stra

ins

stim

ulat

edi

ffer

ent

plan

tpa

rts

–gr

owth

ofpl

ants

inle

ssfe

rtile

soil

stim

ulat

ed

De

Frei

tas

and

Ger

mid

a19

90

Pse

udom

onas

cepa

cia

MR

85,

R85

Pse

udom

onas

puti

daM

R11

1,R

105

Win

ter

whe

atFi

eld

–ba

cter

iain

ocul

ated

onpl

ants

able

toov

erw

inte

ron

root

san

dsu

rviv

e;w

ithle

vels

reac

hing

104

to10

8C

FU/g

–w

heat

grai

nyi

elds

incr

ease

dsi

gnifi

cant

lyat

seve

ral

site

sw

ithth

ese

stra

ins,

how

ever

over

all

resu

ltsw

ere

not

sign

if-

ican

tdu

eto

vari

abili

tyof

resu

ltsbe

twee

nso

me

tria

ls

De

Frei

tas

and

Ger

mid

a19

92b

Pse

udom

onas

cepa

cia

R55

,R

85P

seud

omon

aspu

tida

R10

4

Win

ter

whe

atG

row

thch

ambe

r–

anta

goni

smde

mon

stra

ted

agai

nst

Rhi

zoct

onia

sola

ni–

incr

ease

ofdr

yw

eigh

tof

inoc

ulat

edpl

ants

�62-

78%

�gr

own

inR

.so

lani

infe

cted

soil

–dr

yro

otw

eigh

tin

crea

sed

by92

-128

%an

dsh

oot

dry

wei

ght

incr

ease

dby

28-4

8%

De

Frei

tas

and

Ger

mid

a19

91

Pse

udom

onas

cepa

cia

R85

Pse

udom

onas

fluor

esce

nsR

104,

R10

5P

seud

omon

aspu

tida

R11

1

Win

ter

whe

atPo

tted

plan

tsin

grow

thch

ambe

r–

two

soil

type

ste

sted

unde

rsi

mul

ated

fall

cond

ition

s�5

ºC�

–re

spon

seof

whe

atnu

trie

ntup

take

toin

ocul

atio

nde

pen-

dant

onso

ilco

mpo

sitio

n–

grai

nyi

eld

enha

nced

46-7

5%in

mor

efe

rtile

soil

De

Frei

tas

and

Ger

mid

a19

92a

Pse

udom

onas

chlo

rora

phis

2E3,

O6

Spri

ngw

heat

Fiel

dan

dla

bora

tory

–in

crea

sed

emer

genc

eat

two

diff

eren

tsi

tes

by8

to6%

–st

rong

inhi

bitio

nof

Fus

ariu

mcu

lmor

um–

nopr

omot

ion

effe

ctof

inoc

ulat

edpl

ants

evid

ent

inso

ilsfr

eeof

Fus

ariu

min

fect

ion

Kro

ppet

al.

1996

Pse

udom

onas

corr

ugat

aA

zoto

bact

erch

rooc

occu

mA

mar

anth

uspa

nicu

latu

sE

leus

ine

cora

cana

–pl

ant

grow

than

dni

trog

enco

nten

tin

crea

sed

–hy

poth

esis

edth

atth

egr

owth

prom

otio

nef

fect

isdu

eto

the

stim

ulat

ion

ofna

tive

bact

eria

lco

mm

uniti

es

Pand

eyet

al.

1999

8

Tabl

e1.

Con

tinue

d.

Bac

teri

aPl

ant

Con

ditio

nsR

esul

tsof

addi

tion

ofba

cter

iato

plan

tR

efer

ence

Pse

udom

onas

fluor

esce

nsP

seud

omon

aspu

tida

TL

3,B

K1

Pota

toFi

eld

–la

ckof

grow

thpr

omot

ion

effe

ctan

dba

cter

ial

surv

ival

indr

yso

ils–

inno

rmal

cond

ition

sst

atis

tical

lysi

gnifi

cant

incr

ease

sof

yiel

dof

14-3

3%in

5of

9pl

ots

Bur

ret

al.

1978

Pse

udom

onas

fluor

esce

nsW

inte

rw

heat

Fiel

dan

dgr

owth

cham

ber

–in

grow

thch

ambe

r,se

edlin

ghe

ight

prom

otio

nse

en–

inP

ythi

um-c

onta

min

ated

site

s,si

gnifi

cant

incr

ease

sin

stan

d,pl

ant

heig

ht,

num

ber

ofhe

ads,

and

grai

nyi

eld

Wel

ler

and

Coo

k19

86

Pseu

dom

onas

fluor

esce

ns63

-28,

R17

-FP2

,Q

P5,

R15

-A4

Tom

ato

Gre

enho

use

with

natu

ral

light

ing

–in

favo

urab

lelig

htco

nditi

ons,

frui

tyi

elds

incr

ease

dby

5.6

to9.

4%

–in

unfa

vour

able

light

cond

ition

s,yi

elds

incr

ease

dup

to18

.2%

Gag

néet

al.

1993

Pse

udom

onas

fluor

esce

ns63

-49,

63-2

8,15

Pse

udom

onas

corr

ugat

e13

Serr

atia

plym

thic

aR

1GC

4

Cuc

umbe

rFi

eld

–st

rain

63-4

9si

gnifi

cant

lyin

crea

ses

frui

tnu

mbe

rsby

12%

and

frui

tw

eigh

tby

18%

–st

rain

s13

,15

,R

1GC

4sl

ight

lyin

crea

seyi

elds

–in

Pyt

hium

infe

cted

soils

,yi

eld

incr

ease

dup

to18

%w

ithad

ditio

nof

stra

ins

63-4

9an

d63

-28

McC

ulla

ugh

etal

.20

01

Pse

udom

onas

fluor

esce

nsPf

5B

acil

lus

pum

ilus

Hig

hbus

hbl

uebe

rry

–le

afar

eaan

dst

emdi

amet

erin

crea

ses

deSi

lva

etal

.20

00

Pse

udom

onas

puti

daP

seud

omon

aspu

tida

biov

arB P

seud

omon

asflu

ores

cens

Art

hrob

acte

rci

treu

sSe

rrat

iali

quef

acie

ns

Can

ola

�Bra

ssic

aca

mpe

stri

sL

.an

dB

rass

ica

napu

sL

. �

Fiel

dan

dgr

eenh

ouse

–in

gree

nhou

se,

sele

cted

stra

ins

prod

uce

57%

incr

ease

inyi

eld

–in

field

cond

ition

s,se

lect

stra

ins

incr

ease

seed

ling

emer

-ge

nce

and

vigo

ur–

yiel

din

crea

sefr

om6

to13

%ov

era

two

year

test

pe-

riod

Klo

eppe

ret

al.

1988

Pse

udom

onas

puti

daB

acil

lus

subt

ilis

Ent

erob

acte

rae

roge

nes

Ent

erob

acte

rag

glom

eran

sB

acil

lus

cere

us

Cuc

umbe

rIn

vitr

oan

dgr

eenh

ouse

–m

ost

stra

ins

incr

ease

dro

otle

ngth

inP

ythi

um-i

nfec

ted

plan

tsin

vitr

o–

ingr

eenh

ouse

,in

crea

ses

ofth

ew

eigh

tof

cucu

mbe

rpl

ants

by29

%,

frui

tyi

eld

by14

%an

dfr

uit

num

ber

by50

%by

B.

subt

ilis

Uth

ede

etal

.19

99

Pse

udom

onas

puti

daG

R12

-2C

anol

aG

reen

hous

e–

non-

nitr

ogen

fixin

gm

utan

tspr

ovid

egr

eate

rro

otel

onga

-tio

nef

fect

san

dgr

eate

rph

osph

ate

upta

keL

ifsh

itzet

al.

1987

9

Tabl

e1.

Con

tinue

d.

Bac

teri

aPl

ant

Con

ditio

nsR

esul

tsof

addi

tion

ofba

cter

iato

plan

tR

efer

ence

Pseu

dom

onas

putid

aG

R12

-2C

anol

a,L

ettu

ce,

Tom

ato,

Bar

ley,

Whe

at,

Oat

Gro

wth

cham

ber

–in

dico

tpl

ants

,ro

otel

onga

tion

stim

ulat

edby

the

bact

e-ri

a,bu

tin

mon

ocot

plan

ts,

little

tono

grow

thpr

omot

ion

seen

–di

ffer

ence

due

tose

nsiti

vity

diff

eren

ces

toet

hyle

ne,

this

bact

eria

lst

rain

cont

ains

gene

tore

duce

ethy

lene

synt

hesi

s�i

.e.A

CC

deam

inas

e �

Hal

let

al.

1996

Pse

udom

onas

puti

daW

4P63

Pota

toFi

eld

–in

crea

sed

yiel

dof

10.2

to11

.7%

–po

tato

soft

rot

�Erw

inia

caro

tovo

ra�

supp

ress

edX

uan

dG

ross

,19

86

Pse

udom

onas

sp.

Vari

o-vo

vax

sp.

Agr

obac

teri

umsp

.P

hyll

obac

teri

umsp

.

Can

ola

Gro

wth

cham

ber

–si

gnifi

cant

incr

ease

inro

otdr

yw

eigh

tfr

om11

to52

%–

mos

tim

port

ant

prom

otio

nef

fect

byP

hyll

obac

teri

umsp

.B

ertr

and

etal

.20

01

Pse

udom

onas

sp.

PsJN

Pota

toG

reen

hous

ean

dfie

ldtr

ials

–in

gree

nhou

se,

incr

ease

ofw

hole

plan

tdr

yw

eigh

t;re

sult

not

influ

ence

dby

soil

ster

ility

–in

field

,ea

rly

emer

genc

est

imul

ated

and

sign

ifica

nttu

ber

yiel

din

crea

ses

in3

of4

tria

ls

From

mel

etal

.19

83

Pse

udom

onas

spp.

�fluo

resc

ent

stra

ins �

A1,

B10

,T

L3,

BK

1,E

6

Pota

toG

reen

hous

ean

dfie

ld–

trea

ted

seed

piec

espr

oduc

ela

rger

root

syst

ems

ingr

een-

hous

e–

sign

ifica

ntyi

eld

incr

ease

soc

curr

edin

all

test

field

s,bu

tdi

ffer

ent

stra

ins

prom

ote

plan

tgr

owth

diff

eren

tlyin

diff

er-

ent

soil

type

s–

earl

ypl

ant

resp

onse

sco

rrel

ated

toin

crea

sed

yiel

ds

Klo

eppe

ret

al.

1980

Pse

udom

onas

spp.

�fluo

resc

ent

stra

ins �

A1,

B2,

B4,

E6,

RV

3,SH

5

Suga

rbe

etG

reen

hous

ean

dfie

ldtr

ials

–in

crea

ses

ofse

edlin

gm

ass

byal

lst

rain

sin

gree

nhou

se–

effe

cts

ofin

ocul

atio

npo

sitiv

eon

yiel

din

field

tria

ls,

but

resu

ltsva

riab

lefr

omsi

teto

site

–st

udy

auth

ors

conc

lude

that

prom

otio

nef

fect

due

toan

-ta

goni

smof

plan

tdi

seas

e

Susl

owan

dSc

hrot

h19

82

Pse

udom

onas

spp.

Pota

toFi

eld

–ch

ange

sin

yiel

dof

�10

to37

%H

owie

and

Ech

andi

1983

Pse

udom

onas

spp.

Pota

toFi

eld

–ch

ange

sin

yiel

dof

�9

to20

%G

eels

etal

.19

86

Pse

udom

onas

spp.

Pota

toFi

eld

–ch

ange

sin

yiel

dof

�14

to33

%K

loep

per

etal

.19

89

Pse

udom

onas

spp.

Ric

eFi

eld

–in

crea

sed

yiel

dof

3to

160%

Klo

eppe

ret

al.

1989

10

Tabl

e1.

Con

tinue

d.

Bac

teri

aPl

ant

Con

ditio

nsR

esul

tsof

addi

tion

ofba

cter

iato

plan

tR

efer

ence

Pse

udom

onas

spp.

Let

tuce

,C

ucum

ber,

Tom

ato,

Can

ola

Hyd

ropo

nic

grow

thch

ambe

r–

incr

ease

sof

root

and

shoo

tw

eigh

tsfo

ral

lpl

ants

test

ed–

mos

tsi

gnifi

cant

posi

tive

grow

thre

spon

ses

inle

ttuce

,to

mat

oan

dcu

cum

ber

Van

Peer

and

Schi

pper

s19

98

Pse

udom

onas

spp.

7NSK

2M

aize

,B

arle

y,W

heat

Fiel

d–

incr

ease

dyi

eld

of15

to25

%Is

wan

diet

al.

1987

Pse

udom

onas

syri

ngae

pv.

Pha

seol

icol

aB

ean

Gre

enho

use

–po

ores

tabl

ishm

ent

ofte

stpa

thog

enin

plan

tsin

ocul

ated

with

P.sy

ring

ae–

incr

ease

dam

ount

sof

prot

ein

inin

ocul

ated

plan

ts

Als

trom

1995

Pse

udom

onas

W34

Bac

illu

sce

reus

S18

Let

tuce

,To

mat

oPo

tex

peri

men

t–

sign

ifica

ntre

duct

ion

inga

lling

and

enha

nced

seed

ling

biom

ass

inso

ilsin

fest

edw

ithM

eloi

dogy

nein

cogn

ita

–B

.ce

reus

S18

caus

esup

toa

9%yi

eld

incr

ease

com

-pa

red

toth

eco

ntro

l

Hof

fman

n-H

erga

rten

etal

.19

98

Serr

atia

liqu

faci

ens

Pse

udom

onas

sp.

Bac

illu

ssp

.

Mai

zeG

reen

hous

e–

incr

ease

dof

yiel

dof

8to

14%

–S.

liqu

efac

iens

and

Pse

udom

onas

sp.

give

sth

ehi

ghes

tst

imul

atio

nef

fect

indi

ffer

ent

soils

Lal

ande

etal

.19

89

Serr

atia

prot

eam

acul

ans

102

Serr

atia

liqu

efac

iens

2-68

Soyb

ean

Fiel

d–

trea

tmen

tef

fect

sof

both

bact

eria

lst

rain

sno

tsi

gnifi

cant

over

two

stud

yye

ars

Pan

etal

.20

02

Xan

hom

onas

mal

toph

ila

Sunfl

ower

Lab

and

gree

nhou

se–

incr

ease

dge

rmin

atio

nra

teFa

ges

and

Ars

ac19

91

‘Yie

ldIn

crea

sing

Bac

teri

a’�Y

IB�

�Spe

cies

Unk

now

n �R

ice,

Whe

at,

Cor

n,M

illet

,Sw

eet

Pota

to,

Cot

ton,

Bee

t,R

apes

eed,

Wat

erm

elon

Fiel

d�T

otal

area

ofte

stcr

ops

is3.

46m

illio

nha

�–

maj

orst

udy

cond

ucte

din

Chi

nain

vari

ous

prov

ince

s–

aver

age

yiel

din

crea

ses

of10

.0to

22.5

%af

ter

appl

ica-

tion

ofY

IBon

crop

s

Mei

etal

.19

90

11

Okon 1996; Lalande et al. 2002; Paredes-Cardona1988�. While there may be a threshold number ofbacteria that should be inoculated on a given plant,excessively large numbers of bacteria could be detri-mental to the germination and growth of seeds orplants �Chanway 1997�. However, growth promotioneffects can still occur even with lower bacterial popu-lations �Jacoud et al. 1998�. It has been shown undercontrolled experimental conditions, that initial bacte-rial binding to seed, not necessarily the roots aftergermination, is most important for enhanced plantroot elongation �Hong et al. 1991�.

The over-wintering ability of PGPR is fundamen-tal when considering uses in colder climates. There isevidence that Pseudomonas species are able to over-winter in sufficient quantities on the roots of winterwheat �De Freitas and Germida 1990b�. It has alsobeen argued that antifreeze protein activity of manybacterial species may contribute to their survival incolder climates �Sun et al. 1995; Xu et al. 1998�. Onthe other hand, strains of Azospirillum often have lowsurvival rates in soils that are colder �Lifshitz et al.1986�.

There are a few other points of interest that relateto agricultural uses of PGPR. For example, it has beenshown that some PGPR strains are able to counteractirrigation problems by reducing the negative effect ofirrigation of crops with highly saline water �Hamaouiet al. 1996�. This may reflect the lowering of plantethylene levels elevated by salt stress by means of1-amino-cyclopropane-1-carboxylate �ACC� deami-nase-containing PGPR �S. Mayak, T. Tirosh, B.R.Glick, unpublished results�. Also, it has been ob-served that PGPR numbers decline rapidly in therhizosphere after inoculation �Jacoud et al. 1998�, al-though their effects last throughout the growing sea-son. Several studies show that growth promotioneffects are seen early in plant development, and thesesubsequently translate into higher yields �Glick et al.1997; Hoffmann-Hergarten et al. 1998; Kloepper etal. 1988; Polyanskaya et al. 2000�. Evidence of late-season grain weight increases have also been reportedin studies with PGPR and rice �Tran Van et al. 2000�.

Free living PGPRs can be administered to crops insome formulations that are available commercially�Table 2�. The majority of these products are biocon-trol agents which contribute indirectly to the growthpromotion of crops �Chet and Chernin 2002; Glick etal. 1999�. Commercial free living PGPR inoculantsprovide a possible alternative to the use of pesticides

and fertilizers on various crops, though they are notused widely at present �Glick et al. 1999�.

A broad array of methods and materials exist forthe delivery of bacteria to crops in the field. Presentlythe non-free living symbiotic Rhizobium spp. are mostcommonly incorporated into peat as inoculant carri-ers. Peat carriers, although cheap and easily used,have many disadvantages. Peat is generally used as anon-sterile medium and holds a large contaminantload. Also, peat quality can be variable and peat itselfis not necessarily readily available worldwide. Heatsterilization of peat can release substances toxic to thechosen bacteria. Some peat is known to inhibit plantgrowth, probably a reason for some of the negativeeffects of inoculation by PGPR seen in Table 1. Fi-nally, bacteria in peat formulations are vulnerable totemperature fluctuations and have a limited shelf life�Bashan 1998�.

Understanding the mechanisms of plant growthpromotion is important when deciding what type ofbacteria to use with a plant in a given situation. Forexample, Pseudomonas putida GR12-12 contains thegene for ACC deaminase, which inhibits ethylenesynthesis, ethylene being a product of stress. Thismechanism is most effective on plants that are moresusceptible to the effects of ethylene, such as dicoty-ledonous plants �Hall et al. 1996� especially undersuch stress conditions as flooding �Grichko and Glick,2001� drought �S. Mayak, T. Tirosh, B.R. Glick, un-published results� and phytopathogens �Wang et al.2000�.

More recent knowledge of indirect mechanisms ofplant growth promotion by soil bacteria may aid theagricultural production of certain legume crops. Thehydrogen gas that is produced as a by-product of ni-trogen fixation by rhizobia within legume nodulesmay be recaptured and recycled by those rhizobialstrains that contain a hydrogen uptake system �Evanset al. 1987�. It is clearly beneficial to the plant to ob-tain its nitrogen from a symbiotic diazotroph that hasa hydrogen uptake system; however, this trait is notcommon in naturally occurring rhizobial strains�Evans et al. 1987�. The lack of an endogenous hy-drogen uptake system notwithstanding, many soilscontain large numbers of free living microorganismsthat can capture some of the hydrogen gas producedduring nitrogen fixation and thereby indirectly pro-mote the growth of the rhizobia-treated plants �Dongand Layzell 2001; McLearn and Dong 2002�. In theseinstances, the organisms responsible for this plantgrowth promotion effect have not been characterized.

12

Tabl

e2.

Exa

mpl

esof

com

mer

cial

prod

ucts

usin

gfr

ee-l

ivin

gpl

ant

grow

thpr

omot

ing

rhiz

obac

teri

a�C

het

and

Che

rnin

2002

,G

lick

etal

.19

99�

Bac

teri

alC

onte

ntPr

oduc

tIn

tend

edC

rop

Agr

obac

teri

umra

diob

acte

rD

iega

llG

alltr

ol-A

Nog

all

Nor

bac

84C

Frui

t,nu

t,or

nam

enta

lnu

rser

yst

ock

and

tree

s

Azo

spir

illu

mbr

asil

ense

Azo

-Gre

enT

urf

and

fora

gecr

ops

Azo

spir

illu

mbr

asil

ense

Cd

Azo

spir

illu

mli

pofe

rum

Br-

17Z

ea-N

itM

aize

Azo

spir

illu

mli

pofe

rum

CR

T1

AZ

OG

RE

EN

-mM

aize

Bac

illu

sam

ylol

ique

faci

ens

GB

99B

acil

lus

subt

ilis

CB

122

Qua

ntum

4000

Bio

Yie

ldT

MB

rocc

oli,

cabb

age,

cant

alou

pe,

caul

iflow

er,

cele

ry,

cucu

mbe

r,le

ttuce

,or

nam

enta

ls,

pep-

pers

,to

mat

o,an

dw

ater

mel

on

Bac

illu

ssu

btil

isE

pic

HiS

tick

N/T

Kod

iak

Rhi

zo-P

lus

Sere

nade

Subt

ilex

Syst

em3

Bar

ley,

bean

s,co

tton,

legu

mes

pean

ut,

pea,

rice

,an

dso

ybea

n

Bul

khol

deri

ace

paci

aB

lue

Cir

cle

Den

yIn

terc

ept

Alf

alfa

,ba

rley

,be

ans,

clov

er,

cotto

n,m

aize

,pe

as,

sorg

hum

,ve

geta

bles

and

whe

at

Pse

udom

onas

fluor

esce

nsB

light

Ban

A50

6C

onqu

erV

ictu

s

Alm

ond,

appl

e,ch

erry

,m

ushr

oom

,pe

ach,

pear

,po

tato

,st

raw

berr

yan

dto

mat

o

Pse

udom

onas

syri

ngae

Bio

-sav

e10

Citr

usan

dpo

me

frui

t

Stre

ptom

yces

gris

eovi

rdis

K61

Myc

osto

pFi

eld,

orna

men

tal

and

vege

tabl

ecr

ops

13

In other cases, free living bacteria that promote therhizobial-legume symbiosis have been identified andcharacterized �e.g., Andrade et al. 1998; Marek-Kozaczuk et al. 2000; Xu et al. 1994�. In these cases,the free living bacteria are thought to act by decreas-ing the interference in the nodulation process by othersoil microorganisms.

What is currently missing from the research ofPGPR in agriculture is a lack of comparative studiesbetween crop types and different species or strains ofrhizobacteria. For example, when Pseudomonasputida GR12-2 is inoculated on various crops, thereare dissimilarities in the plant stimulation betweenmonocot and dicot plants �Hall et al. 1996�. There arealso significant differences in yield between summerversus winter crops following inoculation withAzospirillum brasilense Cd �Okon et al. 1988�. Nev-ertheless, as noted by Okon et al. �1994�, the positiveeffects of PGPR shown for several rhizobacterialtypes on many economically important crops is avalid phenomenon, and these results can act as a ba-sis for the effective utilization of PGPR in a varietyof applications.

Applications of PGPR in Forestry

Research on the use of PGPR in forestry is much lesswidespread than for agricultural applications. PGPRand their effect on angiosperms were the initialresearch focus through the 1980s, however from the1990s to the present there has been more research ofPGPR on gymnosperms �Chanway 1997�. A widerscope of studies of both of these tree types and PGPRcould benefit the commercial forestry sector, as wellas reforestation efforts worldwide. Table 3 summa-rizes many of the studies that have been conductedwith different PGPR and tree species.

There are different considerations that must betaken into account when evaluating the performanceof the inoculation of PGPR on tree species, in con-trast to agricultural crops. Fruit and grain yieldincreases are obviously not an imperative aspect oftree growth but biomass increases due to inoculationare quite important. Aspects such as seedling emer-gence and reduction in seedling transplant injury dur-ing the transfer from nursery to field are alsosignificant �Shishido and Chanway 2000�. Whilesome tree types are very good at rapid and effectivegermination, without inoculation, many have diffi-culty in getting established to grow into an adult tree�Zaady and Perevoltsky 1995�. Soil type may also be

a major consideration when testing PGPR in a forestenvironment. Many forest soils are acidic, especiallythose of conifer forests, and some PGPR are sensitiveto low pH conditions �Brown 1974�.

Winter survival of PGPR is imperative, especiallywith trees intended for the colder regions of the world�e.g., Canada, Scandinavia, Russia� and also particu-larly since trees are perennial plants in contrast tomost agricultural crops. Chanway et al. �2000� hasshown that there is promise for many PGPR, such asstrains of Bacillus polymyxa and Pseudomonas fluo-rescens to over-winter on the roots of field-plantedtrees. In that study, from one year to the next, therewas a decrease of approximately two orders of mag-nitude in the inoculated bacterial populations; how-ever, the benefits of inoculation were seen the nextyear �Chanway et al. 2000�.

The medium in which a bacterial strain is preparedpreceding inoculation may affect the root colonizationpattern of the inoculated bacteria �Zaady et al. 1993�.This study showed that malate-grown bacteria werebetter able to promote the growth of oak, than bacte-rial cells of the same strain grown in fructose-basedmedia. It was found that malate-grown cells have atendency to aggregate, while the fructose cellsdisperse through the soil substrate. Fructose-growncells may be adequate for growth promotion of sur-face-rooted plants like maize, however, they were notsufficient for the growth promotion of trees such asoak with deep tap roots �Zaady et al. 1993�.

Similar to the specificity observed in agriculturalcrops, a specific bacterial strain may promote growthonly in certain tree species. �Enebak et al. 1998; Sh-ishido and Chanway 2000�. Sometimes even the treeecovar is important. For example, while a strain ofbacteria was effective at promoting growth in onetype of pine species it was not effective with anotherpine species �Chanway 1995�. Ecotypes, or trees ofthe same species from different regions or altitudes,also show differential responses to bacterial inocula-tion �Chanway 1995�. For example in one case, Hy-drogenophaga pseudoflava consistently promoted thegrowth of only one of two spruce ecovars �Chanwayand Holl 1993�. However, there are also some broad-range bacterial strains, such Bacillus polymxa L6,which consistently promote the growth of many pinevarieties and other tree species �Chanway 1995; Holland Chanway 1992�. It is interesting to note that thisstrain of bacteria was originally isolated from therhizosphere of perennial ryegrass, and not a tree spe-cies �Holl and Chanway 1992�.

14

Tabl

e3.

Exa

mpl

esof

free

-liv

ing

plan

tgr

owth

prom

otin

grh

izob

acte

ria

test

edon

vari

ous

tree

spec

ies.

Bac

teri

aPl

ant

Con

ditio

nsR

esul

tsof

addi

tion

ofba

cter

iato

plan

tR

efer

ence

Agr

obac

teri

umra

diob

acte

rB

eech

,Sc

otch

pine

Gre

enho

use

–be

ech

biom

ass

incr

ease

sof

upto

235%

–pi

nebi

omas

sin

crea

ses

ofup

to15

%L

eyva

lan

dB

erth

elin

1989

Art

hrob

acte

rci

treu

sP

seud

omon

asflu

ores

cens

Pse

udom

onas

puti

da

Bla

cksp

ruce

,Ja

ckpi

ne,

Whi

tesp

ruce

Gre

enho

use

–he

ight

and

biom

ass

incr

ease

sde

mon

stra

ted

Bea

llan

dT

ippi

ng19

89

Art

hrob

acte

rox

ydan

sP

seud

omon

asau

reof

acie

nsD

ougl

asFi

rG

reen

hous

ean

dfie

ld–

heig

htan

dbi

omas

sin

crea

ses

ofup

to68

%–

also

incr

ease

dbr

anch

and

root

wei

ghts

–so

me

vari

abili

tyin

resp

onse

offir

ecot

ypes

toin

ocul

a-tio

n

Cha

nway

and

Hol

l19

94

Art

hrob

acte

rsp

.Pi

neL

abas

say

–sh

oot

leng

thin

crea

ses

upto

69%

Poko

jska

-Bur

dzie

jet

al.

1982

Azo

spir

illu

mbr

asil

ense

Riv

erO

akG

reen

hous

e–

biom

ass

incr

ease

of90

%R

odri

guez

-Bar

ruec

oet

al.

1991

Azo

spir

illu

mbr

asil

ense

Cd

Oak

Gre

enho

use

–ro

otgr

owth

incr

ease

sof

upto

70%

–th

ese

grow

thpr

omot

ion

obse

rved

only

with

cells

cul-

ture

din

mal

ate

and

not

fruc

tose

Zaa

dyet

al.

1993

,Z

aady

and

Pere

volts

ky19

95

Azo

toba

cter

chro

ococ

cum

Oak

,as

hG

row

thch

ambe

r–

biom

ass

incr

ease

sof

13to

26%

Akh

rom

eiko

and

Shes

tako

va19

58

Azo

toba

cter

chro

ococ

cum

Que

rcus

serr

ata

Potte

dpl

ant

expe

rim

ent

outd

oors

–bi

omas

sin

crea

ses

ofup

to38

%Pa

ndey

etal

.19

86

Azo

toba

cter

chro

ococ

cum

Bac

illu

sm

egat

eriu

mE

ucal

yptu

sPo

tted

plan

tex

peri

men

tou

tdoo

rs–

biom

ass

incr

ease

sof

upto

44%

Moh

amm

edan

dPr

asad

1998

Bac

illu

sli

chen

ifor

mis

CE

CT

5105

Bac

illu

spu

mil

isC

EC

T51

06

Silv

ersp

ruce

Gre

enho

use

–st

atis

tical

lysi

gnifi

cant

incr

ease

inae

rial

plan

tgr

owth

–ro

otsy

stem

deve

lopm

ent

not

affe

cted

–in

crea

sed

plan

tni

trog

enco

nten

t

Prob

anza

etal

.20

02

Bac

illu

sli

chen

ifor

mis

Phy

lo-

bact

eriu

msp

.M

angr

ove

Gre

enho

use

–do

ublin

gof

nitr

ogen

inco

rpor

atio

nin

topl

ant

–in

crea

sed

leaf

deve

lopm

ent

Bas

han

and

Hol

guin

2002

,R

ojas

etal

.20

01

15

Tabl

e3.

Con

tinue

d.

Bac

teri

aPl

ant

Con

ditio

nsR

esul

tsof

addi

tion

ofba

cter

iato

plan

tR

efer

ence

Bac

illu

spo

lym

yxa

Dou

glas

Fir,

Lod

gepo

lePi

ne,

Whi

tesp

ruce

Gro

wth

cham

ber

and

gree

n-ho

use

–fo

rlo

dgep

ole

pine

,si

gnifi

cant

incr

ease

sin

root

dry

wei

ght

�1.3

5-fo

ld�

and

the

num

ber

and

leng

thof

seco

nd-

ary

root

s�1

.44-

fold

and

1.92

-fol

d,re

spec

tivel

y �–

inpi

ne,

root

grow

th,

emer

genc

e,he

ight

and

wei

ght,

root

colla

rdi

amet

erin

crea

ses

pres

ent

for

plan

tsgr

own

inst

er-

ileve

rsus

non-

ster

ilem

edia

–se

edlin

gem

erge

nce

incr

ease

sfo

rw

hite

spru

ce

Cha

nway

etal

.19

91

Bac

illu

spo

lym

yxa

Wes

tern

hem

lock

Gre

enho

use

–in

crea

sed

seed

ling

heig

htan

dbi

omas

sup

to30

%,

due

topl

ant

heig

htan

dw

eigh

tin

crea

ses

of1.

19an

d1.

30-f

old

resp

ectiv

ely

–de

gree

ofhe

mol

ock

grow

thpr

omot

ion

diff

eren

tfo

rbi

o-va

rsfr

omdi

ffer

ent

altit

udes

Cha

nway

1995

Bac

illu

spo

lym

yxa

Pse

udom

onas

fluor

esce

nsL

oblo

llypi

ne,

slas

hpi

neG

reen

hous

e–

sign

ifica

ntin

crea

ses

inth

esp

eed

ofse

edlin

gem

erge

nce

and

tota

lbi

omas

s–

post

-em

erge

nce

dam

ping

off

redu

ced

inlo

blol

lypi

ne–

two

bact

eria

lst

rain

ssh

owre

duct

ion

ofbi

omas

sof

both

pine

spec

ies

–lo

blol

lypi

neha

sin

crea

sed

root

leng

thw

ithso

me

stra

ins

Ene

bak

etal

.19

98

Bac

illu

spo

lym

yxa

Pse

udom

onas

fluor

esce

nsH

ybri

dsp

ruce

Fiel

d–

incr

ease

ofsp

ruce

seed

ling

dry

wei

ght

upto

57%

abov

eun

inoc

ulat

edsp

ruce

plan

tsat

five

ofni

nete

stsi

tes

–al

lte

stst

rain

sin

crea

sedr

yw

eigh

tof

spru

ceat

four

ofth

eni

nesi

tes

–so

me

plan

tgr

owth

inhi

bitio

nde

tect

eddu

eto

inoc

ulat

ion

atso

me

site

s

Cha

nway

etal

.20

00

Bac

illu

spo

lym

yxa

Stap

hylo

cocc

usho

min

isH

ybri

dsp

ruce

Gre

enho

use

�usi

ngfie

ldso

il �–

sign

ifica

ntgr

owth

incr

ease

upto

59%

O’N

eill

etal

.19

92

Bac

illu

spo

lym

yxa

L6

Lod

gepo

lePi

neG

reen

hous

e–

som

ese

edlin

gsco

-ino

cula

ted

with

myc

orrh

izae

–no

effe

ctw

ithB

acil

lus

alon

e–

shoo

tan

dro

otbi

omas

sin

crea

ses

Cha

nway

and

Hol

l19

91

Bac

illu

spo

lym

yxa

L6

Lod

gepo

lePi

neG

row

thch

ambe

r–

stat

istic

ally

sign

ifica

ntin

crea

ses

inse

edlin

gbi

omas

sat

6w

eeks

ofpl

ant

grow

th–

mea

nsh

oot

and

root

wei

ghts

incr

ease

dup

to35

%

Hol

lan

dC

hanw

ay19

92

16

Tabl

e3.

Con

tinue

d.

Bac

teri

aPl

ant

Con

ditio

nsR

esul

tsof

addi

tion

ofba

cter

iato

plan

tR

efer

ence

Bac

illu

ssu

btil

isP

seud

omon

assp

p.H

ybri

dsp

ruce

Gre

enho

use

plan

tsou

tpla

nted

tofie

ld–

sign

ifica

ntin

crea

ses

ofpl

ant

biom

ass

byin

ocul

atio

nw

ithP

seud

omon

asst

rain

of10

to23

4%at

all

site

sw

ithty

pica

lin

crea

ses

of28

to70

%–

redu

ctio

nin

seed

ling

shoo

tin

jury

afte

rtr

ansp

lant

–B

acil

lus

stra

inin

effe

ctiv

e

Shis

hido

and

Cha

nway

2000

Hyd

roge

noph

aga

pseu

dofla

vaP

seud

omon

aspu

tida

Hyb

rid

spru

ceFi

eld

–H

.ps

eudo

flava

incr

ease

dse

edlin

gbi

omas

san

dro

otbr

anch

num

bers

upto

49%

intw

osp

ruce

ecot

ypes

test

ed–

one

ecot

ype

show

sro

otgr

owth

prom

otio

n–

P.pu

tida

incr

ease

sse

edlin

gbi

omas

sin

two

tria

lsan

dha

sin

hibi

tory

effe

ctin

othe

rtr

ials

Cha

nway

and

Hol

l19

93

Pse

udom

onas

spp.

App

leG

reen

hous

ean

dfie

ld–

grow

thin

crea

ses

ofse

edlin

gsup

to65

%an

dof

root

-st

ocks

179%

–so

me

bioc

ontr

olse

enag

ains

tpa

thog

enic

fung

i

Cae

sar

and

Bur

r19

87

17

Sterility of the bacterial inoculant carrier can have animpact on the amount of plant growth promotion.Chanway et al. �1991� demonstrated that pine treesinoculated with PGPR in sterilized peat-vermiculitecarrier material promoted growth to a greater extentcompared to when they were inoculated with PGPRin non-sterilized material �Chanway et al. 1991�.Also, many researchers tend to inoculate seedlings orolder plants. This is in contrast to the agricultural useof PGPR, where there is a tendency to inoculateseeds, or the substrate surrounding the seed. This mayhave to do with differential practices in these twodisciplines, since many trees in the forestry industryhave their beginnings in a nursery and are long lived,while crop plants are usually started in the field andare relatively short lived.

There are currently very few research groupsworking in the area of forestry PGPR research. As aconsequence, there is currently no field data for de-ciduous trees and still comparatively little field datafor coniferous trees �Chanway 1997�.

Applications of PGPR for EnvironmentalRemediation

An extension of PGPR technology is the emerginguse of the bacteria with plants for environmental ap-plications. Recent studies in this area include manydifferent uses: for growth promotion of soil stabiliz-ing plants �Bashan et al. 1999�; to counteract flood-ing stress of plants �Grichko and Glick 2001�; to aidplant growth in acidic conditions �Belimov et al.1998a�; to counter high temperature stress �Bensalimet al. 1998�; and the use of PGPR in phytoremedia-tion technologies �Burd et al. 1998; Burd et al. 2000;Huang et al. 2000; Huang et al. 2003a, b�. Besidesenvironmental uses, some of the outcomes of thesestudies may also have an impact on agricultural orforestry applications.

Phytoremediation is the use of plants to extract,degrade or stabilize hazardous substances present inthe environment. �Cunningham and Berti 1993; Cun-ningham et al. 1995; Cunningham and Ow 1996�.Plants used for phytoremediation should be able toaccumulate high amounts of the contaminant, andalso be able to produce a large biomass. However,very often plants can be compromised by growing oncontaminated sites due to the inherent toxicity, soadding PGPR can aid plant growth �Burd et al. 2000�.Clearly, when plants used for phytoremediation are

able to grow well, the site detoxification will begreatly enhanced.

Table 4 shows examples of research that has beenconducted using free-living rhizosphere bacteria withplants and contaminants, to study their potential foruse in phytoremediation technologies. The bacterialisted in this Table include both bacteria with estab-lished plant growth promoting properties as well asbacteria with previously unknown credentials as plantgrowth promoters. Table 4 includes examples ofrhizobacteria which are beneficial to plants by mobi-lization of soil contaminants as well as those whichpromote plant growth. There also exist rhizospherebacteria that degrade contaminants but are not neces-sarily PGPR. In this case, plant roots serve only as asite for contaminant breakdown by the rhizobacteria�Anderson et al. 1993� and these examples have notbeen included in Table 4.

The plant properties that are improved by PGPRduring phytoremediation include biomass, contami-nant uptake, and plant nutrition and health. Grainyield was measured by Belimov et al. �1998b� as anindication of plant health and growth, however thisattribute is obviously not important in plants used forphytoremediation.

Some plants like barley, tomato, canola �Brassicacampestris) and Indian mustard �Brassica juncea� donot accumulate more contaminants �namely metal�per gram of plant material with the addition of PGPR,even though the total biomass increases �Belimov etal. 1998c; Burd et al. 2002; Burd et al. 1998; Nie etal. 2002�. However, Hoflich and Metz �1997� andWhiting et al. �2001� have shown that bacterialinoculation of maize and Thlaspi caerulescens in-creases the uptake of heavy metals by these plants. Inaddition, de Souza et al. �1999� found increased sele-nium accumulation by Brassica juncea after inocula-tion. Upon closer examination, it appears that the verylow level of contaminants used in some studies haveprobably influenced the amount of uptake so that in-creased contaminant accumulation in the presence ofPGPR occurs only at low contaminant concentrationsand not at the higher levels that inhibit plant growth.

When choosing a PGPR to increase metal uptakeby plants, it is important to ensure that the bacteriaused do not cause a reduction in metal uptake. Withbarley, the addition of Azospirillum lipoferum 137significantly reduced the amount of radiolabelled ce-sium uptake per gram of plant dry weight �Belimovet al. 1998c�.

Survival and PGPR success is essential for use inphytoremediation. It has been shown that high con-taminant levels can have inhibitory effects on thegrowth of PGPR. For example, Enterobacter cloacaeCAL2 growth was inhibited by 50% in 20 mM arsen-ate contaminated soils, but was only inhibited by 2%in 2 mM arsenate contamination �Nie et al. 2002�.Also, some bacteria are sensitive to one contaminant,but not another. In a study by Belimov et al. �1998b�,it was shown that Flavobacterium sp. is very sensi-tive to cadmium, but not to lead. In practice, it is es-sential that the bacteria used are at least somewhatresistant to the levels of contaminants endogenous tothe environment to be cleaned up. Thus, preliminaryselection of resistant strains, as performed by Burd etal. �1998� for nickel on Kluyvera ascorbata, isimperative for the practical use of these organisms.

Pairing of PGPR with transgenic plants may be agood way of increasing the efficacy of phytoremedia-tion. In the presence of arsenate, fresh root and shootweights of canola plants were greatly increased dueto the concerted action of the PGPR Enterobactercloacae CAL2 and the canola plants which expressthe stress tolerance gene ACC deaminase �Nie et al.2002�.

Plant exudates are essential for the association ofbacteria with the rhizosphere of the plant as shownby Belimov and Dietz �2000� who demonstrated thatthe addition of an alternate carbon source to the soilcaused an abolition of plant growth promotion in acontaminated site.

PGPRs in association with plants have an impor-tant role in the phytoremediation of soils but the re-search in this area has been limited. As seen in Table4, there have been no field studies of this work andonly controlled studies in greenhouses and/or growthchambers have been conducted. Also, only rudimen-tary inoculation procedures have been used. In addi-tion, only a few known PGPR and plants types havebeen tested. Despite the lack of extensive data, PGPRinoculation technology has a great deal of potentialin the area of phytoremediation.

Conclusions

PGPR present an alternative to the use of chemicalsfor plant growth enhancement in many different ap-plications. Extensive research has demonstrated thatPGPRs could have an important role in agricultureand horticulture in improving crop productivity. In

18

Tabl

e4.

Exa

mpl

esof

free

-liv

ing

plan

tgr

owth

prom

otin

grh

izob

acte

ria

test

edfo

rph

ytor

emed

iatio

nte

chno

logi

es.

Bac

teri

aPl

ant

Con

tam

inan

tC

ondi

tions

Res

ults

ofpa

irin

gof

bact

eria

and

plan

tR

efer

ence

Agr

obac

teri

umra

diob

acte

r10

Art

hrob

acte

rm

ysor

ens

7A

zosp

iril

lum

lipo

feru

m13

7F

lavo

bact

eriu

msp

.L

30

Bar

ley

Cad

miu

m,

Lea

dPo

tex

peri

men

tsin

gree

nhou

se–

Fla

voba

cter

ium

sp.

L30

very

nega

tivel

yse

n-si

tive

toca

dmiu

m–

Fla

voba

cter

ium

sp.

L30

and

A.m

ysor

ens

7gi

vein

crea

ses

ofgr

ain

yiel

d–

enha

nced

lead

accu

mul

atio

nby

plan

tsin

ocu-

late

dw

ithA

.ra

diob

acte

r10

and

A.

mys

oren

s7

–si

gnifi

cant

grow

thim

prov

emen

tsse

enin

plan

tsin

ocul

ated

byal

lst

rain

sat

high

erca

d-m

ium

conc

entr

atio

ns

Bel

imov

etal

.19

98b

Agr

obac

teri

umra

diob

acte

r10

Art

hrob

acte

rm

ysor

ens

7A

zosp

iril

lum

lipo

feru

m13

7F

lavo

bact

eriu

msp

.L

30

Bar

ley

13

4C

esiu

mPo

tex

peri

men

tsin

gree

nhou

se–

Fla

voba

cter

ium

sp.

L30

incr

ease

s1

34C

sup

-ta

keby

barl

ey,

but

not

sign

ifica

ntly

,du

eto

incr

ease

dpl

ant

biom

ass

–A

.li

pofe

rum

137

sign

ifica

ntly

decr

ease

sth

eto

tal

accu

mul

atio

nof

13

4C

s

Bel

imov

etal

.19

98c

Agr

obac

teri

umra

diob

acte

r10

Art

hrob

acte

rm

ysor

ens

7A

zosp

iril

lum

lipo

feru

m13

7F

lavo

bact

eriu

msp

.L

30

Bar

ley

Cad

miu

mPo

tex

peri

men

tsin

grow

thch

ambe

r–

incr

ease

dab

sorp

tion

ofes

sent

ial

nutr

ient

sfr

omco

ntam

inat

edgr

owth

med

ium

–sl

ight

stim

ulat

ion

ofro

otle

ngth

and

biom

ass

inco

ntam

inat

edgr

owth

med

ium

–A

.li

pofe

rum

137

incr

ease

dco

ncen

trat

ion

ofca

dmiu

min

root

s,bu

tno

chan

gein

cadm

ium

upta

keby

plan

tsin

ocul

ated

with

othe

rst

rain

s

Bel

imov

and

Die

tz20

00

Agr

obac

teri

umsp

.P

seud

omon

assp

.St

enot

roph

omas

sp.

Mai

ze,

Rye

,Pe

a,L

upin

Cad

miu

m,

Cop

per,

Lea

d,N

icke

l,Z

inc,

Chr

omiu

m

Pot

expe

rim

ents

ingr

owth

cham

ber

–ba

cter

iast

imul

ates

grow

thof

mai

zean

din

-cr

ease

sm

etal

upta

keby

mai

ze;

this

effe

ctm

ore

pron

ounc

edon

mor

ew

eakl

ypo

llute

dso

ilsco

mpa

red

tohe

avily

-pol

lute

dso

ils–

grow

than

dm

etal

upta

keof

lupi

n,pe

aan

dry

eno

taf

fect

edby

bact

eria

addi

tion

Hofl

ich

and

Met

z19

97

Azo

spir

illu

mbr

asil

ense

Cd

Ent

erob

acte

rcl

oaca

eC

AL

2P

seud

omon

aspu

tida

UW

3

Tall

fesc

uePo

lycy

clic

arom

atic

hydr

ocar

bons

�PA

Hs �

Pot

expe

rim

ents

ingr

owth

cham

ber

–ac

cele

rate

dan

dm

ore

com

plet

ePA

Hre

mov

alfr

omth

eso

ilw

ithin

ocul

atio

n–

effe

ctiv

enes

sof

PAH

rem

oval

furt

her

en-

hanc

edin

com

bina

tion

with

the

use

ofla

nd-

farm

edso

ilan

din

ocul

atio

nw

ithPA

H-

degr

adin

gba

cter

ia

Hua

nget

al.

2003

a,In

pres

s

19

Tabl

e4.

Con

tinue

d.

Bac

teri

aPl

ant

Con

tam

inan

tC

ondi

tions

Res

ults

ofpa

irin

gof

bact

eria

and

plan

tR

efer

ence

Azo

spir

illu

mbr

asil

ense

Cd

Ent

erob

acte

rcl

oaca

eC

AL

2P

seud

omon

aspu

tida

UW

3

Ken

tuck

ybl

uegr

ass,

Tall

fesc

ue,

Wild

rye

PAH

sPo

tex

peri

men

tsin

grow

thch

ambe

r–

incr

ease

dPA

Hre

mov

alfr

omso

il–

germ

inat

ion

ofal

lth

ree

plan

tty

pes

incr

ease

ddr

amat

ical

lyin

PAH

-spi

krd

soil

with

inoc

ula-

tion

–ro

otbi

omas

ssi

gnifi

cant

lyin

crea

sed

inal

lpl

ant

type

s

Hua

nget

al.

2003

b,In

pres

s

Ent

erob

acte

rca

ncer

ogen

esM

i-cr

obac

teri

umsa

perd

aeP

seud

omon

asm

onte

ilii

Thl

aspi

caer

ules

cens

Thl

aspi

arve

nse

Zin

cPo

tex

peri

men

tsin

grow

thch

ambe

r–

T.ca

erul

esce

nsha

stw

o-fo

ldin

crea

seof

zinc

conc

entr

atio

nin

root

saf

ter

inoc

ulat

ion

and

four

fold

incr

ease

ofzi

ncac

cum

ulat

ion

insh

oots

–T.

caer

cule

scen

sha

shi

gher

shoo

tbi

omas

sw

ithin

ocul

atio

n–

T.ar

vens

eha

sno

incr

ease

dgr

owth

orm

etal

accu

mul

atio

nw

ithin

ocul

atio

n

Whi

ting

etal

.20

01

Ent

erob

acte

rcl

oaca

eC

AL

2C

anol

aA

rsen

ate

Pot

expe

rim

ents

ingr

owth

cham

ber

–sl

ight

inhi

bito

ryef

fect

ofC

AL

2on

germ

ina-

tion

ofca

nola

inpr

esen

ceof

arse

nate

–pa

rtne

red

with

tran

sgen

icpl

ants

,ba

cter

iain

duce

dsi

gnifi

cant

lyhi

gher

root

and

shoo

tw

eigh

tsin

plan

ts–

noin

crea

seof

arse

nate

conc

entr

atio

nby

root

sof

plan

ts

Nie

etal

.20

02

Klu

yver

aas

corb

ata

SUD

165

Can

ola,

Tom

ato

Nic

kel

Pot

expe

rim

ents

ingr

owth

cham

ber

–fo

rto

mat

oan

dca

nola

,bo

thro

ots

and

shoo

tspr

otec

ted

from

toxi

city

with

inoc

ulat

ion

–si

gnifi

cant

dece

ase

inet

hyle

nepr

oduc

tion

bypl

ants

–no

incr

ease

orch

ange

inni

ckel

upta

kein

plan

tm

ater

ial

with

inoc

ulat

ion

Bur

det

al.

1998

Klu

yver

aas

corb

ata

SUD

165/

26,

SUD

165

Indi

anm

usta

rd,

Can

ola,

Tom

ato,

Nic

kel,

Lea

d,Z

inc

Pot

expe

rim

ents

ingr

owth

cham

ber

–bo

thst

rain

sde

crea

seso

me

plan

tgr

owth

inhi

-bi

tion

byth

em

etal

s,bu

tno

tal

way

ssi

gnifi

-ca

ntly

–SU

D16

5/26

decr

ease

spl

ant

grow

thin

hibi

tion

best

–no

incr

ease

ofm

etal

upta

kew

ithei

ther

stra

inov

erno

nino

cula

ted

plan

ts

Bur

det

al.

2000

20

addition, these organisms are also useful in forestryand environmental restoration purposes, though re-search in these areas is minimal. PGPR have beenshown to cause very real and positive effects whenmatched correctly to the right plant and the right en-vironmental situation.

What is needed for the future is a clear definitionof what bacterial traits are useful and necessary fordifferent environmental conditions and plants, so thatoptimal bacterial strains can either be selected orconstructed. Also, it would be very useful to have abetter understanding of how different bacterial strainswork together for the synergistic promotion of plantgrowth. Additional studies need to be conducted onthe effectiveness of different and novel inoculant de-livery systems such as alginate encapsulation. In ad-dition, a better understanding of the factors thatfacilitate the environmental persistence of the PGPRstrains would be very useful. Finally inoculant strainsshould be labelled �e.g., with lux of gfp genes�, sothey can be readily detected in the environment aftertheir release.

Acknowledgements

This review was supported by a strategic grant fromthe Natural Sciences and Engineering ResearchCouncil of Canada to B.R.G.

References

Akhromeiko A.I. and Shestakova V.A. 1958. The influence ofrhizosphere microorganisms on the uptake and secretion ofphosphorus and sulphur by the roots of arboreal. Proc. of 2nd

U.N. Internat. Conf. Peace. Uses Atomic Energy seedlings, pp.193–199.

Alam M.S., Cui Z.J., Yamagishi T and Ishii R. 2001. Grain yieldand related physiological characteristics of rice plants �Oryzasativa L.� inoculated with free-living rhizobacteria. Plant Prod.Sci. 4: 125–130.

Alstrom S. 1995. Evidence of disease resistance induced by rhizo-sphere pseudomonad against Pseudomonas syringae pv.phaseolicola. J. Gen. Appl. Microbiol. 41: 315–325.

Anderson T.A., Guthrie E.A. and Walton B.T. 1993. Bioremedia-tion in the rhizosphere: plant roots and associated microbes cleancontaminated soil. Environ. Sci. Technol. 27: 2630–2636.

Andrade G., De Leij F.A.A.M. and Lynch J.M. 1998. Plant medi-ated interactions between Pseudomonas fluorescens, Rhizobiumleguminosarum and arbuscular mycorrhizae on pea. Lett. Appl.Microbiol. 26: 311–316.

Baldani V.L.D., Baldani J.I. and Döbereiner J. 1987. Inoculationon field grown wheat �Triticum aestivum� with Azospirillum spp.in Brazil. Biol. Fert. Soils 4: 37–40.

Bashan Y. 1998. Inoculants of plant growth-promoting bacteria foruse in agriculture. Biotechnol. Adv. 16: 729–770.

Bashan Y. and Holguin G. 2002. Plant growth-promoting bacteria:A potential tool for arid mangrove reforestation. Trees 16: 159–166.

Bashan Y., Rojas A. and Puente M.E. 1999. Improved establish-ment and development of three cactus species inoculated withAzospirillum brasilense transplanted into disturbed urban desertsoil. Can. J. Microbiol. 45: 441–451.

Beall F. and Tipping B. 1989. Plant growth-promoting rhizobacte-ria in forestry. Abstr. 177. For. Res. Market. Proc., Ont. For. Res.Com., Toronto, USA.

Belimov A.A. and Dietz K. 2000. Effect of associative bacteria onelement composition of barley seedlings grown in solution cul-ture at toxic cadmium concentrations. Microbiol. Res. 155: 113–121.

Belimov A.A., Kunakova A.M. and Gruzdeva E.V. 1998a. Influ-ence of soil pH on the interaction of associative bacteria withbarley. Microbiology 67: 463–469.

Belimov A.A., Kunakova A.M., Kozhemiakov A.P., Stepanok V.V.and Yudkin L.Y. 1998b. Effect of associative bacteria on barleygrown in heavy metal contaminated soil. In: Proceedings of theInternational Symposium on Agro-environmental issues and fu-ture strategies: Towards the 21st Century. Faisalakad, Pakistan,May 25–30.

Belimov A.A., Kunakova A.M., Vasilyeva N.D., Kovatcheva T.S.,Dritchko V.F., Kuzovatov S.N., Trushkina I.R. and AlekseyevY.V. 1998. Accumulation of radionuclides by associative bacte-ria and the uptake of 134Cs by the inoculated barley plants. In:Malik et al. �ed.�, Nitrogen Fixation with Non-Legumes. KluwerAcademic Publishers, Great Britain, pp. 275–280.

Bensalim S., Nowak J. and Asiedu S.K. 1998. A plant growth pro-moting rhizobacterium and temperature effects on performanceof 18 clones of potato. Am. J. Potato Res. 75: 145–152.

Bertrand H., Nalin R., Bally R. and Cleyet-Marel J.C. 2001. Iso-lation and identification of the most efficient plant growth-pro-moting bacteria associated with canola �Brassica napus�. Biol.Fert. Soils 33: 152–156.

Boddey R.M. and Dobereiner J. 1988. Nitrogen fixation associatedwith grasses and cereals: recent results and perspectives for fu-ture research. Plant. Soil. 108: 53–65.

Broadbent P., Baker K.F., Franks N. and Holland J. 1977. Effect ofBacillus spp. on increased growth of seedlings in steamed andin non-treated soil. Phytopathol. 67: 1027–1034.

Brown M.E. 1974. Seed and root bacterization. Ann. Rev. Phyto-pathol. 12: 181–197.

Burd G.I., Dixon D.G. and Glick B.R. 2000. Plant growth-promot-ing bacteria that decrease heavy metal toxicity in plants. Can. J.Microbiol. 46: 237–245.

Burd G.I., Dixon D.G. and Glick B.R. 1998. A plant-growth pro-moting bacterium that decreases nickel toxicity in seedlings.Appl. Environ. Microbiol. 64: 3663–3668.

Burr T.J., Schroth M.N. and Suslow T. 1978. Increased potatoyields by treatment of seedpieces with specific strains ofPseudomonas fluorescens and P. putida. Phytopathol. 68: 1377–1383.

21

Caesar A.J. and Burr T.J. 1987. Growth promotion of apple seed-lings and rootstocks by specific strains of bacteria. Phytopathol.77: 1583–1588.

Caceres E.A.R., Anta G.G., Lopex J.R., Di Ciocco C.A., BasurcoJ.C.P. and Parada J.L. 1996. Response of field-grown wheat toinoculation with Azospirillum brasilense and Bacillus polymyxain the semiarid region of Argentina. Arid. Soil. Res. Rehab. 10:13–20.

Cakmakci R., Kantar F. and Sahin F. 2001. Effect of N2-fixing bac-terial inoculations on yield of sugar beet and barley. J. Plant.Nutr. Soil. Sci. 164: 527–531.

Chanway C.P. 1995. Differential response of western hemlock fromlow and high elevations to inoculation with plant growth-promoting Bacillus polymyxa. Soil. Biol. Biochem. 27: 767–775.

Chanway C.P. 1997. Inoculation of tree roots with plant growthpromoting rhizobacteria: An emerging technology for reforesta-tion. For. Sci. 43: 99–112.

Chanway C.P. and Holl F.B. 1991. Biomass increase and associa-tive nitrogen fixation of mycorrhizal Pinus contorta Dougl.Seedlings inoculated with a plant growth promoting Bacillusstrain. Can. J. Microbiol. 69: 507–511.

Chanway C.P. and Holl F.B 1993. First year performance of spruceseedlings after inoculation with plant growth promoting rhizo-bacteria. Can. J. Microbiol. 39: 520–527.

Chanway C.P. and Holl F.B. 1994. Ecological growth responsespecificity of two Douglas-fir ecotypes inoculated with coexist-ent beneficial rhizosphere bacteria. Can. J. Bot. 72: 582–586.

Chanway C.P., Radley R.A. and Holl F.B. 1991. Inoculation of co-nifer seed with plant growth promoting Bacillus strains causesincreased seedling emergence and biomass. Soil Biol. Biochem.23: 575–580.

Chanway C.P., Shishido M., Nairn J., Jungwirth S., Markham J.,Xiao G. and Holl F.B. 2000. Endophytic colonization and fieldresponses of hybrid spruce seedlings after inoculation with plantgrowth-promoting rhizobacteria. For. Ecol. Manage. 133: 81–88.

Chet I. and Chernin L. 2002. Biocontrol, microbial agents in soil..In: Bitton G �ed.�, Encyclopedia of Environmental Microbiology.John Willey and Sons Inc., New York, USA,. pp 45–465.

Cooper R. 1959. Bacterial fertilizers in the Soviet Union. SoilsFertil. 22: 327–333.

Cunningham S.D. and Berti W.R. 1993. Remediation of contami-nated soils with green plants: an overview. In vitro Cell. Dev.Biol. 29P: 207–212.

Cunningham S.D. and Ow D.W. 1996. Promises and Prospects ofphytoremediation. Plant Physiol. 110: 715–719.

Cunningham S.D., Berti W.R. and Huang J.W. 1995. Phytoreme-diation of contaminated soils. Trends Biotechnol. 13: 393–397.

De Freitas J.R. and Germida J.J. 1990. Plant growth promotingrhizobacteria for winter wheat. Can. J. Microbiol. 36: 265–272.

De Freitas J.R. and Germida J.J. 1991. Pseudomonas cepacia andPseudomonas putida as winter wheat inoculants for biocontrolof Rhizoctonia solani. Can. J. Microbiol. 37: 780–784.

De Freitas J.R. and Germida J.J. 1992a. Growth promotion of win-ter wheat by fluorescent pseudomonads under growth chamberconditions. Soil. Biol. Biochem. 24: 1127–1135.

De Freitas J.R. and Germida J.J. 1992b. Growth promotion of win-ter wheat by fluorescent pseudomonads under field conditions.Soil. Biol. Biochem. 24: 1137–1146.

de Silva A., Patterson K., Rothrock C. and Moore J. 2000. Growthpromotion of highbush blueberry by fungal and bacterial inocu-lants. Hort. Sci. 35: 1228–1230.

de Souza M.P., Chu D., Zhao M., Zayed A.M., Ruzin S.E., Schich-nes D. and Terry N. 1999. Rhizosphere bacteria enhance sele-nium accumulation and volatiliation by Indian mustard. Plant.Physiol. 119: 565–573.

Di Ciocco C.A. and Rodriguez-Caceres E. 1994. Field inoculationof Setaria italica with Azospirillum spp. in Argentine humidpampas. Field Crop Res. 37: 253–257.

Dobbelaere S., Croonenborghs A., Thys A., Ptacek D., Vanderley-den J., Dutto P., Labandera-Gonzalez C., Caballero- Mellado,Aguirre J.F., Kapulnik Y., Brener S., Burdman S., Kadouri D.,Sarig S. and Okon Y. 2001. Responses of agronomically impor-tant crops to inoculation with Azospirillum. Aust J. Plant Physiol.28: 871–879.

Dobbelaere S., Croonenborghs A., Thys A., Vande Broek A. andVanderleyden J. 1999. Phytostimulatory effect of Azospirillumbrasilense wild type and mutant strains altered in IAA produc-tion on wheat. Plant Soil. 212: 155–164.

Dong Z. and Layzell D.B. 2001. H2 oxidation, O2 uptake and CO2

fixation in hydrogen treated soils. Plant. Soil. 229: 1–12.Enebak S.A., Wei G. and Kloepper J.W. 1998. Effects of plant

growth-promoting rhizobacteria on loblolly and slash pine seed-lings. For. Sci. 44: 139–144.

Evans H.J., Harker A.R., Papen H., Russell S.A., Hanus F.J. andZuber M. 1987. Physiology, biochemistry and genetics of theuptake hydrogenase in rhizobacteria. Ann. Rev. Microbiol. 41:335–361.

Fages J. 1994. Azospirillum inoculants and field experiments. In:Okon Y. �ed.�, Azospirillum-Plant associations. CRC Press, BocaRaton, Florida, pp 87–110.

Fages J. and Arsac J.F. 1991. Sunflower inoculation with Azospir-illum and other plant growth promoting rhizobacteria. Plant.Soil. 137: 87–90.

Fallik E. and Okon Y. 1996. The response of maize �Zea mays� toAzospirillum inoculation in various types of soils in the field.World J. Microbiol. Biotechnol. 12: 511–515.

Frommel. M. I., Nowak J. and Lazarovitis G. 1991. Growth en-hancement and developmental modifications of in vitro grownpotato �Solanum tuberosum ssp. tuberosum�. Plant Physiol. 96:928–936.

Frommel M.I., Nowak J. and Lazarovitis G. 1993. Treatment ofpotato tubers with a growth promoting Pseudomonas sp.: Plantgrowth responses and bacterium distribution in the rhizosphere.Plant Soil. 150: 51–60.

Gagné S., Dehbi L., Le Quéré D., Cayer F., Morin J., Lemay R.and Fournier N. 1993. Increase of greenhouse tomato fruit yieldsby plant growth-promoting rhizobacteria �PGPR� inoculated intothe peat-based growing media. Soil Biol. Biochem. 25: 269–272.

Gardner J.M., Chandler J.L. and Feldman A.W. 1984. Growth pro-motion and inhibition by antibiotic-producing fluorescentpseudomonads on citrus roots. Plant Soil. 77: 103–113.

Geels F.P., Lamers J.G., Hoekstra O. and Schippers B. 1986. Po-tato plant response to seed tuber bacterization in the field invarious rotations. Neth. J. Plant Pathol. 92: 257–272.

Glick B.R., Patten C.L., Holguin G. and Penrose D.M. 1999. Bio-chemical and genetic mechanisms used by plant growth-promot-ing bacteria. Imperial College Press, London, UK.

Glick B.R., Liu C., Ghosh S. and Dumbroff E.B. 1997. Early de-velopment of canola seedling in the presence of the plantgrowth-promoting rhizobacterium Pseudomonas putida GR12-2.Soil Biol. Biochem. 29: 1233–1239.

22

Glick B.R. 1995. The enhancement of plant growth by free-livingbacteria. Can. J. Microbiol. 41: 109–117.

Grichko V.P. and Glick B.R. 2001. Amelioration of flooding stressby ACC deaminase-containing plant growth-promoting bacteria.Plant Physiol. Biochem. 39: 11–17.

Hall J.A., Peirson D., Ghosh S. and Glick B.R. 1996. Root elon-gation in various agronomic crops by the plant growth promot-ing rhizobacterium Pseudomonas putida GR12-2. Isr. J. PlantSci. 44: 37–42.

Hamaoui B., Abbadi J.M., Burdman S., Rashid A., Sarig S. andOkon Y. 2001. Effects of inoculation with Azospirillumbrasilense on chickpeas �Cicer arietinum� and faba beans �Viciafaba� under different growth conditions. Agronomie 21: 553–560.

Harper S.H.T. and Lynch J.M. 1979. Effects of Azotobacter chroo-coccum on barley seed germination and seedling development.J. Gen. Microbiol. 112: 45–51.

Hernandez Y., Sogo J. and Sarmiento M. 1997. Azospirilluminoculation on Zea mays. Cuban J. Agr. Sci. 31: 203–209.

Hoffmann-Hergarten S., Gulati M.K. and Sikora R.A. 1998. Yieldresponse and biological control of Meloidogyne incognita onlettuce and tomato with rhizobacteria. J. Plant Dis. Protect. 105:349–358.

Hoflich G and Metz R. 1997. Interactions of plant-microorganism-associations in heavy metal containing soils from sewage farms.Bodenkultur 48: 239–247.

Holl F.B. and Chanway C.P. 1992. Rhizosphere colonization andseedling growth promotion of lodgepole pine by Bacillus poly-myxa. Can. J. Microbiol. 38: 303–308.

Hong Y., Glick B.R. and Pasternak J.J. 1991. Plant-microbial in-teraction under gnotobiotic conditions: a scanning electron mi-croscope study. Curr. Microbiol. 23: 111–114.

Howie W.J. and Echandi E. 1983. Rhizobacteria: Influence of cul-tivar and soil type on plant growth and yield of potato. Soil Biol.Biochem. 15: 127–132.

Huang X.D., El-Alawi Y., Penrose D.M., Glick B.R. and Green-berg B.M. 2003a. Multi-process phytoremediation system forremoval of polycyclic aromatic hydrocarbons from contaminatedsoils. Environ. Pollut. In press.

Huang X.D., El-Alawi Y., Penrose D.M., Glick B.R. and Green-berg B.M. 2003b. Responses of plants to creosote during phy-toremediation and their significance for remediation processes.Environ. Pollut. In press.

Huang X.D., Glick B.R. and Greenberg B.M. 2000. Combining re-mediation technologies for removal of persistent organiccontaminants from soil.. In: Greenberg B.M., Hull R.N., RobertsM.H. and Gensomer R.W. �ed.�, Environmental Toxicology andRisk Assessment Science, Policy and Standardization – Implica-tions for Environmental Decisions. American Society for Test-ing Materials, West Conshohochen, Pennsylvania, USA, pp.271–282.

Iswandi A., Bossier P., Vandenbeele J. and Verstraete W. 1987. Ef-fect of seed inoculation with the rhizopseudomonad strain7NSK2 on the root microbiota of maize �Zea mays� and barley�Hordeum vulgare�. Biol. Fert. Soils 3: 153–158.

Jacoud C., Faure D., Wadoux P. and Bally R. 1998. Developmentof a strain-specific probe to follow inoculated Azospirillum li-poferum CRT1 maize root development by inoculation. FEMSMicrobiol. Ecol. 27: 43–51.

Kapulnik Y., Sarig S., Nur I., Okon J., Kigel J. and Henis V 1981.Yield increases in summer cereal crops of Israel in fields inocu-lated with Azospirillum. Experientia Agricola 17: 179–187.

Klein D.A., Salzwedel J.L. and Dazzo F.B. 1990. Microbial colo-nization of plant roots.. In: Nakas J.P. and Hagedorn C. �ed.�,Biotechnology of Plant-Microbe Interactions. McGraw-Hill,New York, USA, pp. 189–225.

Kloepper J.W., Lifshitz R. and Zablotowicz R.M. 1989. Free-liv-ing bacterial inocula for enhancing crop productivity. TrendsBiotechnol. 7: 39–43.

Kloepper J.W., Hume D.J., Scher F.M., Singleton C., Tipping B.,Laliberté M., Frauley K., Kutchaw T., Simonson C., Lifshitz R.,Zaleska I. and Lee L. 1988. Plant growth-promoting rhizobacte-ria on canola �rapeseed�. Plant Dis. 72: 42–46.

Kloepper J.W., Schoth M.N. and Miller T.D. 1980. Effects ofrhizosphere colonization by plant growth-promoting rhizobacte-ria on potato plant development and yield. Phytopathol. 70:1078–1082.

Kokalis-Burelle N., Vavrina E.N., Rosskopf E.N. and Shelby R.A.2002. Field evaluation of plant growth-promoting rhizobacteriaamended transplant mixes and soil solarization for tomato andpepper production in Florida. Plant Soil 238: 257–266.

Kropp B.R., Thomas E., Pounder J.I. and Anderson A.J. 1996. In-creased emergence of spring wheat after inoculation withPseudomonas chlororaphis isolate 2E3 under field and labora-tory conditions. Biol. Fert. Soil. 23: 200–206.

Lalande R., Bissonette N., Coutlée D. and Antoun H. 1989. Iden-tification of rhizobacteria from maize and determination of theplant-growth promoting potential. Plant Soil 115: 7–11.

Leyval C. and Berthelin J. 1989. Influence of acid-producingAgrobacterium and Laccaria laccata on pine and beech growth,nutrient uptake and exudation. Agr. Ecosyst. Environ. 28: 313–319.

Lifshitz R., Kloepper J.W., Scher F.M., Tipping E.M. and LalibertéM. 1986. Nitrogen-Fixing pseudomonads isolated from roots ofplants grown in the Canadian high arctic. Appl. Environ. Micro-biol. 51: 251–255.

Lifshitz R., Kloepper J.W., Kozlowski M., Simonson C., TippingE.M. and Zaleska I. 1987. Growth promotion of canola �rape-seed� seedlings by a strain of Pseudomonas putida under gnoto-tropic conditions. Can. J. Microbiol. 23: 390–395.

Marek-Kozaczuk M., Kopcinska J., Lotocka B., Golinowski W. andSkorupska A. 2000. Infection of clover by plant growth promot-ing Pseudomonas fluorescens strain 267 and Rhizobium legumi-nosarum bv. trifolii studied by mTn-gusA. Antonie vanLeeuwenhoek 78: 1–11.

Mayak S., Tirosh T. and Glick B.R. 2001. Stimulation of thegrowth of tomato, pepper and mung bean plants by the plantgrowth-promoting bacterium Enterobacter cloacae CAL3. Biol.Agr. Hort. 19: 261–274.

McCullagh M., Utkhede R., Menzies J.G., Punja Z.K. and PaulitsT.C. 1996. Evaluation of plant growth promoting rhizobacteriafor biological control of Pythium root rot of cucumbers grownin rockwool and effects on yield. Europ. J. Plant Pathol. 102:747–755.

McLearn N. and Dong Z. 2002. Microbial nature of the hydrogen-oxidizing agent in hydrogen-treated soil. Biol. Fert. Soils 35:465–469.

Mei R., Chen B., Lu S. and Chen Y. 1990. Field application of yieldincreasing bacteria �YIB�. Chin. J. Microecol. 2: 45–49.

23

Mishustin E.N. and Naumova A.N. 1962. Bacterial fertilizers:Their effectiveness and mode of action. Mikrobiologiya 31:543–555.

Mohammad G. and Prasad R. 1988. Influence of microbial fertil-izers on biomass accumulation in polypotted Eucalyptuscamaldulensis Dehn. seedlings. J. Trop. For. 4: 47–77.

Nie L., Shah S., Rashid A., Burd G.I., Dixon D.G. and Glick B.R.2002. Phytoremediation of arsenate contaminated soil by trans-genic canola and the plant growth-promoting bacterium Entero-bacter cloacae CAL2. Plant Physiol. Biochem. 40: 355–361.

Okon Y. 1985. Azospirillum as a potential inoculant for agriculture.Trends Biotechnol. 3: 223–228.

Okon Y., Kapulnik Y. and Sarig S. 1988. Field inoculation studieswith Azospirillium in Israel.. In: Subba Rao N.S. �ed.�, Biologi-cal Nitrogen Fixation Recent Developments. Oxford and IBHPublishing Co. New Delhi, India, pp. 175–195.

Okon Y. and Labandera-Gonzalez C.A. 1994. Agronomic applica-tions of Azospirillum: an evaluation of 20 years worldwide fieldinoculation. Soil Biol. Biochem. 26: 1591–1601.

Omar N., Heulin Th., Weinhard P. and Alaa El-Din M.N. 1989.Field inoculation of rice with in vitro selected plant growth pro-moting-rhizobacteria. Agronomie 9: 803–808.

O’Neill G.A., Chanway C.P., Axelrood P.E., Radley R.A. and HollF.B. 1992. Growth response specificity of spruce inoculated withcoexistent rhizosphere bacteria. Can. J. Bot. 70: 2347–2353.

Pan B., Vessey J.K. and Smith D.L. 2002. Response of field-grownsoybean to co-inoculation with the plant growth promotingrhizobacteria Serratia proteamaculans or Serratia liquefaciensand Bradyrhizobium japonicum pre-incubated with genistien.Europ. J. Agronomy 17: 143–153.

Pandey A., Durgapal A., Joshi M. and Palni L.M.S. 1999. Influ-ence of Pseudomonas corrugate inoculation on root colonizationand growth promotion of two important hill crops. Microbiol.Res. 154: 259–266.

Pandey R.K., Bahl R.K. and Rao P.R.T. 1986. Growth stimulationeffects of nitrogen fixing bacteria �biofertilizer� on oak seedlings.Ind. For. 112: 75–79.

Parke J.L. 1991. Root colonization by indigenous and introducedmicroorganisms.. In: Keister D.L. and Cregan P.B. �ed.�, TheRhizosphere and Plant Growth. Kluwer Academic Publishers,Dordrecht, the Netherlands, pp 33–42.

Pokojska-Burdziej A. 1982. The effect of microorganisms, micro-bial metabolites and plant growth regulators �IAA and GA3� onthe growth of pine seedlings �Pinus sylvestris L.�. Pol. J. SoilSci. 15: 137–143.

Polyanskaya L.M., Vedina O.T., Lysak L.V. and Zvyagintev D.G.2000. The growth-promoting effect of Beijerinckia mobilis andClostridium sp. cultures on some agricultural crops. Microbiol.71: 109–115.

Probanza A., Lucas Garcia J.A., Ruiz Palomino M., Ramos B. andGutiérrez Mañero F.J. 2002. Pinus pinea L. seedling growth andbacterial rhizosphere structure after inoculation with PGPR Ba-cillus �B. licheniformis CECT 5106 and B. pumilis CECT 5105�.Appl. Soil Ecol. 20: 75–84.

Puente M.E. and Bashan Y. 1993. Effect of inoculation withAzospirillum brasilense strains on the germination and seedlingsgrowth of the giant columnar cardon cactus �Pachycereus prin-glei�. Symbiosis 15: 49–60.

Rao NSS 1986. Cereal nitrogen fixation research under the BNFcoordinated project of the ICAR.. In: Wani S.P. �ed.�, Proceed-

ings of the Working Group Meeting on Cereal Nitrogen Fixa-tion. ICRISA, Patancheru, India, pp 23–35.

Reddy M.S. and Rahe J.E. 1989. Growth effects associated withseed bacterization not correlated with populations of Bacillussubtilis inoculant in onion seedling rhizospheres. Soil Biol. Bio-chem. 21: 373–378.

Reynders L. and Vlassak K. 1982. Use of Azospirillum brasilenseas biofertilizer in intensive wheat cropping. Plant Soil 66: 217–223.

Ribaudo C.M., Rondanini D.P., Cura J.A. and Fraschina A.A. 2001.Response of Zea mays to the inoculation with Azospirillum onnitrogen metabolism under greenhouse conditions. Biol. Plan-tarum 44: 631–634.

Rodriguez-Barrueco C.E., Cervantes N.S., Subbarao N.S. and Ro-driguez-Caceres E. 1991. Growth promoting effect of Azospiril-lum brasilense on Casuarina cunninghamiana Miq. seedlings.Plant Soil. 135: 121–124.

Rojas A., Holguin G., Glick B.R. and Bashan Y. 2001. Synergismbetween Phyllobacterium sp. �N2-fixer� and Bacillus lichenifor-mis �P-solubilizer�, both from a semi-arid mangrove rhizosphere.FEMS Microbiol. Ecol. 35: 181–187.

Sarig S., Blum A. and Okon Y. 1998. Improvement of the waterstatus and yield of field grown grain sorghum �Sorghum bico-lour� by inoculation with Azospirillum brasilense. J. Agr. Sci.110: 271–277.

Sarig S., Okon Y. and Blum A. 1992. Effect of Azospirillumbrasilense inoculation on growth dynamics and hydraulic con-ductivity of Sorghum bicolor roots. J. Plant Nutr. 15: 805–819.

Sarig S., Okon Y. and Blum A. 1990. Promotion of leaf area de-velopment and yield in Sorghum bicolor inoculated withAzospirillum brasilense. Symbiosis 9: 235–245.

Saubidet M.I., Fatta N. and Barneix A.J. 2002. The effect of inocu-lation with Azospirillum brasilense on growth and nitrogen uti-lization by wheat plants. Plant Soil. 245: 215–222.

Shishido M. and Chanway C.P. 2000. Colonization and growth ofoutplanted spruce seedlings pre-inoculated with plant growth-promoting rhizobacteria in the greenhouse. Can. J. For. Res. 30:848–854.

Smith R.L., Schank S.C., Bouton J.R. and Quesenberry K.H. 1978.Yield increases in tropical grasses after inoculation withAzospirillum lipoferum. Ecological Bulletin �Stockholm� 26:380–385.

Smith R.L., Schank S.C., Milam J.R. and Baltensperger A. 1984.Responses of sorghum and Pennisetum species to the N2-Fixingbacterium Azospirillum brasilense. Appl. Environ. Microbiol.47: 1331–1336.

Subba Rao N.S. 1999. Soil Microbiology – Fourth Edition of SoilMicroorganisms and Plant Growth. Science Publishers Inc. En-field, New Hampshire, USA.

Sun X., Griffith M., Pasternak J.J. and Glick B.R. 1995. Low tem-perature growth, freezing survival, and production of antifreezeprotein by the plant growth promoting rhizobacteriumPseudomonas putida GR12-2. Can. J. Microbiol. 41: 776–784.

Suslow T.V. and Schroth M.N. 1982. Rhizobacteria of sugar beets:Effects of seed application and root colonization on yield. Phy-topathol. 72: 199–206.

Tang W., Pasternak J.J. and Glick B.R. 1995. Persistence in soil ofthe plant growth promoting rhizobacterium Pseudomonas putidaGR12-2 and genetically manipulated derived strains. Can. J. Mi-crobiol. 41: 445–451.

24

Tran Van V., Berge O., Ngo Ke S., Balandreau J. and Heulin T.2000. Repeated beneficial effects of rice inoculation with a strainwith a strain of Burkholeria vietnamiensis on early and late yieldcomponents in low fertility sulphate acid soils of Vietnam. PlantSoil 281: 273–284.

Turner J.T. and Backman P.A. 1991. Factors relating to peanutyield increases after seed treatment with Bacillus subtilis. PlantDisease 75: 347–353.

Uthede R.S., Koch C.A. and Menzies J.G. 1999. Rhizobacterialgrowth and yield promotion of cucumber plants inoculated withPythium aphanidermatum. Can. J. Plant Pathol. 21: 265–271.

Van Peer R. and Schippers B. 1988. Plant growth responses tobacterization with selected Pseudomonas spp. strains and rhizo-sphere microbial development in hydroponic cultures. Can. J.Microbiol. 35: 456–463.

Vedder-Weiss D., Jurkevitch E., Burdman S., Weiss D. and OkonY. 1999. Root growth, respiration and beta-glucosidase activityin maize �Zea mays� and common bean �Phaseolus vulgaris� in-oculated with Azospirillum brasilense. Symbiosis 26: 363–377.

Wang C., Knill E., Glick B.R. and Défago G. 2000. Effect of trans-ferring 1-aminocyclopropane-1-carboxylic acid �ACC� deami-nase genes into Pseudomonas fluorescens strain CHA0 and itsderivative CHA96 on their plant growth promoting and diseasesuppressive capacities. Can. J. Microbiol. 46: 898–907.

Weller D.M. and Cook R.J. 1986. Increased growth of wheat byseed treatment with fluorescent pseudomonads, and implicationsof Pythium control. Can. J. Microbiol. 8: 328–334.

Whiting S.N., De Souza M.P. and Terry N. 2001. Rhizosphere bac-teria mobilize Zn for hyperaccumulation by Thlaspi caerule-scens. Environ. Sci. Technol. 35: 3144–3150.

Xu G.W. and Gross D.C. 1986. Field evaluations of the interac-tions among fluorescent Pseudomonads, Erwinia carotovora,and potato yields. Phytopathol. 76: 423–430.

Xu H., Griffith M., Patten C.L. and Glick B.R. 1998. Isolation andcharacterization of an antifreeze protein with ice nucleation ac-tivity from the plant growth promoting rhizobacteriumPseudomonas putida GR12-2. Can. J. Microbiol. 44: 64–73.

Xu Y., Yokota A., Sanada H., Hisamatsu M., Araki M., Cho H.,Morinaga and Murooka Y. 1994. Enterobacter cloacae A105,isolated from the surface of root nodules of Astragalus sinicuscv. Japan, stimulates nodulation by Rhizobium huakuii bv. renge.J. Ferment. Bioeng. 77: 630–635.

Zaady E.A., Perevoltsky A. and Okon Y. 1993. Promotion of plantgrowth by inoculum with aggregated and single cell suspensionsof Azospirillum brasilense Cd. Soil Biol. Biochem. 25: 819–823.

Zaady E. and Perevoltsky A. 1995. Enhancement of growth andestablishment of oak seedlings �Quercus ithaburensis Decaisne�by inoculation with Azospirillum brasilense. For. Ecol. Manage.72: 81–83.

25