applications of numerical field modeling to electromagnetic methods of nondestructive testing

6
IEEE TRANSACTIONS ON MAGNETICS, VOL. MAG-19, NO. 6, NOVEMBER 1983 APPLICATIONS OF NUMERICAL FIELD MODELING TO ELECTROMAGNETIC METHODS OF NONDESTRUCTIVE. TESTING William Lord Abstract - Electromagnetic field interactions with metals can be used to determine both material proper- ties and the presence of defects. Such techniques are used widely in the nondestructive testing of critical components foraerospace,transportation, energy and metals industries where reliability, safety and product quality considerations are important. This paper describes the common p h y s i c a l basis for activedc,residualandacmethodsofspecimen magne- tization and shows how finite element analysis tech- niques originally developed for the study of fields in electrical machinery can be extended to predict electromagnetic NDT t r a n s d u c e r s i g n a l s f o r a l l three forms of specimen excitation. INTRODUCTION The science of nondestructive testing (NDT) is interdisciplinary in nature, covering the classical areas of radiography, ultrasonics, electromagnetics and visual inspection. Historically, progress in NDT has closely paralleled developments in the sciences in that all physical phenomena are potential candidates for the nondestructive measurement of material proper- ties orthedetectionofdefects.Inthecaseof electromagnetic NDT methods,theuseofeddycurrent phenomena f o r metals classification [l] is ofthe same vintage as Maxwell's Treatise. It is only recently however, that widespread, sustained effort has gone into the development and modeling of NDT techniques. This resurgence of interest has been brought about by the use of metal structures in the most demanding of environmentsandtheconcomitantcosts,botheconomic and social, of catastrophic failures, particularly in the aerospace, transportation and power industries. Traditional electromagnetic NDT methodscover a wide range of frequencies from dc to microwave. How- ever, the common i n d u s t r i a l techniques are limited to active dc, residual and eddy current forms of excita- tion; all lowfrequency phenomena for which displace- ment current effects can be neglected. Analytical approaches to the modeling of electro- magnetic field/defect interactions have largely been unsuccessful, due to both the awkward boundaries associated with realistic defect shapes and the lack of generality that ensues when making the necessary assumptions needed to obtain tractable analytical solu- tions [Z]. Viable models are needed inordertounder- stand the ways in which fields and defects interact to producemeasurableindications,tohelpinthedesign of detection probes for diverse applications, to simu- late those testing environments which are difficult and/or expensive to replicate in the laboratory and, perhaps most importantly in many o f t h e critical testingsituationsfacingindustriestoday,toprovide training data for automated defect characterization schemes. Successful application of finite difference andfiniteelementanalysistechniquestofieldprob- lems inbothdcandacmachineryhaspavedthe way f o r similar, paralleldevelopmentsinthemodelingof electromagnetic NDT phenomena [3]. This work has been supported by both the Army R e s e a r c h Office and the Electric Power Research Institute. W. Lord is with the Electrical Engineering Department, ColoradoStateUniversity,FortCollins, CO 80523. 2431 The purpose of this paper is to serve both as a review of the more common methods for nondestructively testing metals using electromagnetic phenomena, and to show how numerical methods have been applied as a modeling tool. ACTIVE EXCITATION Those nondestructive testing techniques character- i z e d a s requiring a continuous dc source of excitation are classified as 'active' methods [4], and include magnetic particle testing [5], magnetography [6], perturbation techniques [7], potential drop methods [8] and variable reluctance probes [9]. The major differ- ence in these techniques, as applied to defect detec- t i o n , relates to the way in which the defect leakage fieldsaredetected. All of the methods are used to detect defects in ferromagnetic materials (although potential drop and current perturbation methods can be usedwithanyconductingspecimen)andFig. 1 shows how a dc excitation current in a steel billet sets up an active leakage field around a defect. f I Fig. 1. Active excitation of a ferromagnetic specimen. Each partofthespecimenunder test operates at a different point along the materiaSs initial magnetiza- tion curve and the associated magnetostatic fields can be modeled by the nonlinear Poisson equation v X(vV x 2) = 3 (1) where v=S/v, the nonlinear reluctivity obtained from thematerial B/H characteristic. If a Hall element or other flux density sensitive transducer is scannedover the surface of a r e c t a n g u l a r slot a 3 dimensional "leakage field profile" would be obtained similar to that shown inFig. 2. Such profiles are a function of a number of variables including the shape of the defect; indeed, the problem of interest to the NDT community is whether the shape of the defect can be predicted from t h e d e f e c t s l e a k a g e f i e l d p r o f i l e i n such a way t h a t the testing procedure can be automated for a specific application. Analytically, the modeling of leakage field phenomena has largely been limited to equivalent dipole approaches where "magnetic charge" is assumed to reside on the walls of defects [lo]. Equations derived for s i m p l e r e c t a n g u l a r s l o t s a r e i n f a c t i d e n t i c a l i n form to those derived by Karlquist for predicting the leak- age field of a magnetic tape head [ll] and are not readily extendible to arbitrarily shaped defects in materialshavingnonlinear B/H characteristics. A key parameter in the dipole equations is t h e fictitious surface magnetic charge density, which can only be estimated for a g i v e n s l o t a n d e x c i t a t i o n c u r r e n t after its leakage field profile has been measured 0018-9464/83/1100-2437$01.00 O 1983IEEE

Upload: w

Post on 24-Sep-2016

212 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Applications of numerical field modeling to electromagnetic methods of nondestructive testing

IEEE TRANSACTIONS ON MAGNETICS, VOL. MAG-19, NO. 6, NOVEMBER 1983

APPLICATIONS OF NUMERICAL FIELD MODELING TO ELECTROMAGNETIC METHODS OF NONDESTRUCTIVE. TESTING

William Lord

Abs t rac t - E l e c t r o m a g n e t i c f i e l d i n t e r a c t i o n s w i t h meta ls can be used to de te rmine bo th mater ia l p roper - ties and t he p re sence o f de fec t s . Such techniques a r e u s e d w i d e l y i n t h e n o n d e s t r u c t i v e t e s t i n g o f c r i t i c a l components f o r a e r o s p a c e , t r a n s p o r t a t i o n , e n e r g y a n d m e t a l s i n d u s t r i e s w h e r e r e l i a b i l i t y , s a f e t y and p roduc t qua l i t y cons ide ra t ions a r e impor t an t . Th i s pape r desc r ibes t he common p h y s i c a l b a s i s f o r act ive dc, res idual and ac methods of specimen magne- t i z a t i o n a n d shows how f in i t e e l emen t ana lys i s t ech - n i q u e s o r i g i n a l l y d e v e l o p e d f o r t h e s t u d y o f f i e l d s i n e l e c t r i c a l m a c h i n e r y c a n b e e x t e n d e d t o p r e d i c t e l e c t r o m a g n e t i c NDT t r a n s d u c e r s i g n a l s f o r a l l t h r e e forms of specimen exci ta t ion.

INTRODUCTION

The s c i e n c e o f n o n d e s t r u c t i v e t e s t i n g (NDT) i s i n t e r d i s c i p l i n a r y i n n a t u r e , c o v e r i n g t h e c l a s s i c a l a r eas o f r ad iog raphy , u l t r a son ic s , e l ec t romagne t i c s a n d v i s u a l i n s p e c t i o n . H i s t o r i c a l l y , p r o g r e s s i n NDT h a s c l o s e l y p a r a l l e l e d d e v e l o p m e n t s i n t h e s c i e n c e s i n t h a t a l l p h y s i c a l phenomena are p o t e n t i a l c a n d i d a t e s fo r t he nondes t ruc t ive measu remen t o f ma te r i a l p rope r - ties o r t h e d e t e c t i o n o f d e f e c t s . I n t h e c a s e o f e l e c t r o m a g n e t i c NDT methods, the use of eddy current phenomena f o r m e t a l s c l a s s i f i c a t i o n [ l ] i s o f t h e same v i n t a g e as Maxwell ' s Treat ise . I t is o n l y r e c e n t l y h o w e v e r , t h a t w i d e s p r e a d , s u s t a i n e d e f f o r t h a s gone into the development and model ing o f NDT techniques . Th i s r e su rgence o f i n t e re s t has been b rough t abou t by t h e u s e o f m e t a l s t r u c t u r e s i n t h e most demanding of environments and the concomitant costs , both economic a n d s o c i a l , o f c a t a s t r o p h i c f a i l u r e s , p a r t i c u l a r l y i n t he ae rospace , t r anspor t a t ion and power i n d u s t r i e s .

T r a d i t i o n a l e l e c t r o m a g n e t i c NDT methods cover a wide range of f requencies f rom dc to microwave. How- e v e r , t h e common i n d u s t r i a l t e c h n i q u e s a r e l i m i t e d t o act ive dc, res idual and eddy current forms of exci ta- t i o n ; a l l low frequency phenomena for which d i sp lace- ment c u r r e n t e f f e c t s c a n b e n e g l e c t e d .

Ana ly t i ca l app roaches t o t he mode l ing o f e l ec t ro - m a g n e t i c f i e l d / d e f e c t i n t e r a c t i o n s h a v e l a r g e l y b e e n unsuccess fu l , due t o bo th t he awkward boundar ies a s s o c i a t e d w i t h r e a l i s t i c d e f e c t s h a p e s a n d t h e l a c k o f g e n e r a l i t y t h a t e n s u e s when making t h e n e c e s s a r y a s s u m p t i o n s n e e d e d t o o b t a i n t r a c t a b l e a n a l y t i c a l s o l u - t i o n s [ Z ] . Viable models are needed i n o r d e r t o u n d e r - s t a n d t h e ways i n which f i e l d s and d e f e c t s i n t e r a c t t o produce measurable ind ica t ions , to he lp in the des ign o f d e t e c t i o n p r o b e s f o r d i v e r s e a p p l i c a t i o n s , t o simu- l a t e t h o s e t e s t i n g e n v i r o n m e n t s w h i c h a r e d i f f i c u l t a n d / o r e x p e n s i v e t o r e p l i c a t e i n t h e l a b o r a t o r y a n d , perhaps most important ly in many o f t h e c r i t i c a l t e s t i n g s i t u a t i o n s f a c i n g i n d u s t r i e s t o d a y , t o p r o v i d e t r a i n i n g d a t a f o r a u t o m a t e d d e f e c t c h a r a c t e r i z a t i o n schemes . Success fu l app l i ca t ion o f f i n i t e d i f f e rence and f i n i t e e l emen t ana lys i s t echn iques t o f i e ld p rob - lems in both dc and ac machinery has paved the way f o r similar, para l le l deve lopments in the model ing of e lec t romagnet ic NDT phenomena [ 3 ] .

This work has been supported by both the Army Research O f f i c e a n d t h e E l e c t r i c Power R e s e a r c h I n s t i t u t e .

W. Lord is wi th the E lec t r ica l Engineer ing Depar tment , Co lo rado S t a t e Un ive r s i ty , Fo r t Co l l in s , CO 80523.

2431

The purpose o f th i s paper is t o s e r v e b o t h as a rev iew of the more common methods f o r n o n d e s t r u c t i v e l y t e s t i n g metals using electromagnetic phenomena, and t o show how numerical methods have been applied as a model ing tool .

ACTIVE EXCITATION

Those nondes t ruc t ive t e s t ing t echn iques cha rac t e r - i z e d a s r e q u i r i n g a cont inuous dc source o f exc i ta t ion are c l a s s i f i e d a s ' a c t i v e ' methods [ 4 ] , and inc lude magne t i c pa r t i c l e t e s t ing [5 ] , magne tography [ 6 ] , per turba t ion techniques [7] , po ten t ia l d rop methods [8] and va r i ab le r e luc t ance p robes [ 9 ] . The major differ- e n c e i n t h e s e t e c h n i q u e s , a s a p p l i e d t o d e f e c t d e t e c - t i o n , r e l a t e s to t h e way in wh ich t he de fec t l eakage f i e l d s a r e d e t e c t e d . All of t h e methods a r e u s e d t o d e t e c t d e f e c t s i n f e r r o m a g n e t i c m a t e r i a l s ( a l t h o u g h po ten t i a l d rop and cu r ren t pe r tu rba t ion me thods can be used with any conducting specimen) and Fig. 1 shows how a d c e x c i t a t i o n c u r r e n t i n a s t e e l b i l l e t sets up a n a c t i v e l e a k a g e f i e l d a r o u n d a de fec t .

f

I

Fig. 1. A c t i v e e x c i t a t i o n o f a ferromagnetic specimen.

Each par t of the specimen under test o p e r a t e s a t a d i f f e r e n t p o i n t a l o n g t h e m a t e r i a S s i n i t i a l m a g n e t i z a - t i o n c u r v e a n d t h e a s s o c i a t e d m a g n e t o s t a t i c f i e l d s c a n b e modeled by the non l inea r Po i s son equa t ion

v X(vV x 2) = 3 (1)

where v=S /v , t he non l inea r r e luc t iv i ty ob ta ined f rom t h e m a t e r i a l B / H c h a r a c t e r i s t i c . I f a Ha l l e l emen t o r o t h e r f l u x d e n s i t y s e n s i t i v e t r a n s d u c e r is scanned over t h e s u r f a c e o f a r e c t a n g u l a r s l o t a 3 dimensional " l eakage f i e ld p ro f i l e " wou ld be ob ta ined similar t o t h a t shown i n F i g . 2. Such p r o f i l e s a r e a func t ion of a number o f va r i ab le s i nc lud ing t he shape o f t he de fec t ; i n d e e d , t h e p r o b l e m o f i n t e r e s t t o t h e NDT community is whe the r t he shape o f t he de fec t can be p red ic t ed f rom t h e d e f e c t s l e a k a g e f i e l d p r o f i l e i n s u c h a way t h a t t he t e s t ing p rocedure can be au tomated fo r a s p e c i f i c a p p l i c a t i o n .

Ana ly t i ca l ly , t he mode l ing o f l eakage f i e ld phenomena h a s l a r g e l y b e e n l i m i t e d t o e q u i v a l e n t d i p o l e approaches where "magnetic charge" i s assumed t o r e s i d e on t he walls o f d e f e c t s [ l o ] . Equat ions der ived for s i m p l e r e c t a n g u l a r s l o t s a r e i n f a c t i d e n t i c a l i n f o r m t o t h o s e d e r i v e d b y K a r l q u i s t f o r p r e d i c t i n g t h e l e a k - a g e f i e l d o f a magne t i c t ape head [ l l ] and a r e no t r e a d i l y e x t e n d i b l e t o a r b i t r a r i l y s h a p e d d e f e c t s i n m a t e r i a l s h a v i n g n o n l i n e a r B / H c h a r a c t e r i s t i c s . A key parameter i n t h e d i p o l e e q u a t i o n s i s t h e f i c t i t i o u s sur face magnet ic charge dens i ty , which can on ly be e s t i m a t e d f o r a g i v e n s l o t a n d e x c i t a t i o n c u r r e n t a f t e r i t s l e a k a g e f i e l d p r o f i l e h a s b e e n m e a s u r e d

0018-9464/83/1100-2437$01.00 O 1983 IEEE

Page 2: Applications of numerical field modeling to electromagnetic methods of nondestructive testing

2438

Fig . 2. 3-D l e a k a g e f i e l d p r o f i l e f o r a r e c t a n g u l a r s l o t i n a s t e e l b a r .

exper imenta l ly .

Ac t ive l eakage f i e ld p ro f i l e s have a l so been s t u d i e d u s i n g a conventional 2-dimensional and axisYmet- r i c m a g n e t o s t a t i c f i n i t e e l e m e n t c o d e t a k i n g i n t o a c c o u n t t h e n o n l i n e a r m a g n e t i z a t i o n c h a r a c t e r i s t i c s of t h e t e s t s p e c i m e n [ 4 ] . A v a r i e t y o f d e f e c t s h a p e s h a v e been s tudied, and Fig. 3 shows t y p i c a l f i n i t e e l e m e n t p r e d i c t i o n s o f t h e p r o f i l e s f o r t h r e e d i f f e r e n t l y s h a p e d s l o t s .

'- 0.4 r 0.4

- 0.4

Fig. 3. F i n i t e e l e m e n t p r e d i c t i o n s o f l e a l c a g e f i e l d p r o f i l e s f o r r e c t a n g u l a r a n d o b l i q u e s l o t s i n a steel b a r . (€3 B and B a r e t he no rma l ,

t a n g e n t i a l a n d t o t a l f i e l d s r e s p e c t i v e l y . , ) N' T

This work has l ed t o t he deve lopmen t o f a d e f e c t c h a r a c t e r i z a t i o n a l g o r i t h m c a p a b l e o f p r e d i c t i n g t h e equ iva len t w id th , dep th and i nc l ina t ion o f su r f ace d e f e c t s i n f e r r o m a g n e t i c test specimens [13]. More r ecen t ly [14 ] , t he magne tos t a t i c f i n i t e e l emen t code has been ex tended t o t h ree d imens ions , and t he fu l l 3-D l e a k a g e f i e l d p r o f i l e p r e d i c t e d f o r a r e c t a n g u l a r s l o t i n a s t e e l b a r b y f i r s t e s t i m a t i n g t h e 3-D c u r r e n t d i s t r i b u t i o n a r o u n d t h e s l o t [ 1 5 ] .

Under a c t i v e e x c i t a t i o n c o n d i t i o n s t h e n , a d i r e c t c u r r e n t i s app l i ed t o t he f e r romagne t i c spec imen s e t t i n g up l eakage f i e lds a round su r f ace and subsu r face f laws which can be de tec ted us ing any magnet ic f lux s e n s i t i v e t r a n s d u c e r s u c h as a Hal l e lement , moving co i l , magne t i c t ape head , e t c . [ 3 ] . The development o f l e a k a g e f i e l d p r o f i l e s f o r a v a r i e t y o f s u r f a c e a n d subsu r face f l aw shapes is o f impor t ance t o t he manu- f a c t u r e r s a n d u s e r s o f s t e e l p r o d u c t s . A p a r t i c u l a r example o f d i r ec t exc i t a t ion and its f i n i t e e l e m e n t m o d e l i n g f a m i l i a r t o t h e a u t h o r , r e l a t e s t o t h e u s e o f a v a r i a b l e r e l u c t a n c e (VR) p r o b e f o r t h e d e t e c t i o n o f magne t i t e bu i ldup i n t he c r ev ice gaps o f p re s su r i zed water r e a c t o r s t e a m g e n e r a t o r s .

F igure 4 shows d e t a i l s o f s u c h a g e n e r a t o r t o g e t h e r w i t h t h e f i n i t e e l e m e n t mesh s t r u c t u r e f o r m o d e l i n g t h e m a g n e t o s t a t i c f i e l d s i n t h e c r e v i c e gap region between tube and support p la te [16,17].

I+srrau io TURBlNE

b

Fig . 4 . PWR s t eam gene ra to r t ube t e s t ing ,

a ) S t eam gene ra to r de t a i l , b ) Eddy c u r r e n t p r o b e i n t h e c r e v i c e

c ) F in i t e e l emen t mesh f o r v a r i a b l e gap region,

r e l u c t a n c e p r o b e s t u d i e s .

The VR p robe cons i s t s o f a mild steel bobb in ca r ry ing a d c w i n d i n g ( a c t i v e e x c i t a t i o n ) . F l u x d e n s i t y l e v e l s a round t he pe r iphe ry o f t he bobb in can be r e l a t ed t o c r e v i c e gap c l e a r a n c e a n d a r e m o n i t o r e d i n t h e f i e l d p r o t o t y p e [la] by e i g h t Hall p l a t e s . F i g . 5 shows

Page 3: Applications of numerical field modeling to electromagnetic methods of nondestructive testing

2439

t y p i c a l f l u x p l o t s f o r t h e VR p r o b e a s i t passes through a s u p p o r t p l a t e . Use of t h e f i n i t e e l e m e n t code a l lowed des ign s tud ie s t o be made o n d i f f e r e n t b o b b i n s i z e s as w e l l as the deve lopment o f the inver - s i o n a l g o r i t h m f o r p r e d i c t i n g c r e v i c e gap c l e a r a n c e a t e igh t po in t s a round t he 'pe r iphe ry o f t he p robe .

Fig. 5. VR p r o b e f l u x d i s t r i b u t i o n s i n t h e c r e v i c e gap reg ion of a s team genera tor .

By i n c r e a s i n g t h e mesh d e t a i l i n t h e c r e v i c e gap region p r o b e s e n s i t i v i t y s t u d i e s c a n b e made f o r t h e d i f f e r e n t m a g n e t i t e c o n f i g u r a t i o n s l i k e l y t o b e e n c o u n t e r e d i n chemica l f lush ing procedures .

RESIDUAL LEAKAGE FIELDS

R e s i d u a l l e a k a g e f i e l d s e x i s t a r o u n d d e f e c t s i n f e r r o m a g n e t i c s p e c i m e n s a f t e r t h e d c a c t i v e e x c i t a t i o n c u r r e n t is removed. The m a t e r i a l w o r k i n g p o i n t s ( a t o f ) o n t h e i n i t i a l m a g n e t i z a t i o n c u r v e now re lax towards the s econd quadran t o f t he B/H c h a r a c t e r i s t i c ( p o i n t s a ' t o f ' ) a s shown i n F i g . 6. As i n t h e c a s e o f

Fig. 6. B/H p lane behavior o f a fe r romagnet ic Faterial a f t e r r e m o v a l o f a c t l v e d c e x c i t a t i o n .

Fig. 7. 3-D r e s i d u a l l e a k a g e f i e l d p r o f i l e f o r a s l o t i n a steel b a r .

where x and y a r e C a r t e s i a n c o o r d i a n t e s , b is o n e h a l f t h e s l o t w i d t h , h i s t h e s l o t d e p t h i n t h e y d i r e c t i o n and u is the exper imenta l ly de te rmined magnet ic charge d e n s i t y .

The c l a s s i c a l m a g n e t o s t a t i c f i n i t e e l e m e n t c o d e o r i g i n a l l y d e v e l o p e d f o r t h e s t u d y o f f i e l d s i n d c machinery [19] can be used to model the exc i ta t ion o f the specimen from 0 through f i n F i g . 6. However, a f t e r r e m o v a l o f t h e e x c i t a t i o n c u r r e n t e a c h w o r k i n g p o i n t of t h e m a t e r i a l r e l a x e s t o p o i n t s s u c h a s a' t o f ' i n t h e s e c o n d q u a d r a n t .

I n t h e m a c h i n e s l i t e r a t u r e s u c h phenomena (asso- c i a t ed w i th t he des ign o f pe rmanen t magne t s t ruc tu res ) have been modeled by e q u i v a l e n t c u r r e n t e f f e c t s . Such a n a p p r o a c h i n t h e NDT context would be phenomenclogi- c a l l y i n c o r r e c t , a n d c o n s e q u e n t l y a t t e m p t s h a v e b e e n made to fo rce each work ing po in t i n t he ma te r i a l a long i t s a p p r o p r i a t e h y s t e r e s i s c u r v e ( s u c h as dd ' ) , reducing t h e e x c i t a t i o n c u r r e n t g r a d u a l l y t o z e r o , a n d s t o p p i n g t h e r e l a x a t i o n p r o c e s s when t h e f l u x d e n s i t y a t some p o i n t i n t h e b a r s u c h as A i n F i g . 8 approaches i t s expec ted va lue [20-221.

a c t i v e e x c i t a t i o n t h e r e s u l t a n t l e a k a g e f i e l d s , a l t hough cons ide rab ly weake r t han ac t ive l eakage f i e lds can be measured by f l u x d e n s i t y s e n s i t i v e t r a n s d u c e r s a s b e f o r e . F i g . 7 shows a t y p i c a l r e s i d u a l l e a k a g e f i e l d p r o f i l e o b t a i n e d f o r t h e same s l o t t h a t . p r o d u c e d t h e a c t i v e l e a k a g e f i e l d p r o f i l e o f F i g . 2. A s can be seen f rom F igs . 2 .and 7 t h e r e a r e s i g n i f i c a n t d i f f e r - ences be tween ac t ive and r e s idua l l eakage f i e lds a round the same s l o t which unfor tuna te ly are no t t aken in to accoun t i n t he d ipo le mode l ing q f [ l o ] , where i t is assumed tha t t he equa t ion desc r ib*g bo th phenomena is of the form:

~ ~ l n [ ( x + b ) ~ + ( y + h ) ~ ] [(x-b) 2 2 +y ]

[(x+b)*+y2] [ ( ~ - b ) ~ + ( y + h ) ~ ] H = (2)

Fig. 8. F i n i t e e l e m e n t p r e d i c t i o n o f t h e r e s i d u a l l eakage f i e ld a round a r e c t a n g u l a r s l o t .

Page 4: Applications of numerical field modeling to electromagnetic methods of nondestructive testing

2440

Fig. 8 shows a t y p i c a l r e s i d u a l f l u x p l o t o b t a i n e d by fo l lowing th i s " forced re laxa t ion" p rocedure which would correspond to a s o l u t i o n o f t h e e q u a t i o n

Vx(vVXx) = 0 ( 3 )

By noting the normal f lux densi ty components a t each p o i n t on t h e s u r f a c e o f t h e b a r , r e s i d u a l l e a k a g e f i e l d p r o f i l e s similar to t hose o f F ig . 7 would be ob ta ined [ = I .

EDDY CURRENT NDT

With a l t e r n a t i n g c u r r e n t e x c i t a t i o n , b o t h f e r r o - magnet ic and nonfer romagnet ic mater ia l s can be t es ted n o n d e s t r u c t i v e l y . The presence o f d e f e c t s o r o t h e r inhomogeneities cause induced eddy current paths to c h a n g e , r e s u l t i n g i n m e a s u r a b l e v a r i a t i o n s i n t h e tes t

d e v e l o p e d f o r t h e study of eddy c u r r e n t s i n e lectr ical co i l impedance . A f i n i t e e l e m e n t code similar t o t h a t

machinery [23] has been used successfu l ly for p red ic t - i n g d i f f e r e n t i a l a n d a b s o l u t e eddy cur ren t p robe impedance p l ane t r a j ec to r i e s fo r bo th two dimensional and axisymmetric testing geometries [24-261. A s eddy c u r r e n t NDT p r o b e e x c i t a t i o n l e v e l s are r e l a t i v e l y l o w , a l i n e a r i n i t i a l permeabi l i ty value has been found adequate for model ing those t es t ing s i tua t ions where fe r romagnet ic materials are p r e s e n t .

In terms o f t h e B/H behavior o f fe r romagnet ic materials, a c e x c i t a t i o n c a u s e s e a c h w o r k i n g p o i n t t o move around a c o m p l e t e h y s t e r e s i s l o o p c l o s e t o t h e o r i g i n o f t h e B/H p l a n e f o r low e x c i t a t i o n l e v e l s as shown in F ig . 9.

Fig. 9 . AC e x c i t a t i o n o f a ferromagnet ic test specimen.

The f i e l d s a s s o c i a t e d w i t h s u c h phenomena s a t i s f y (4)

where t he exc i t a t ion angu la r f r equency , ma te r i a l con- d u c t i v i t y a n d s o u r c e c u r r e n t d e n s i t y are given by w, u and J respect ively. Both axisymmetr ic and 2-D eddy cus-rent code has been developed and confirmed by s tudying geometr ies such as a c o i l i n a i r and a con- ductor above a conduc t ing s l ab fo r wh ich known ana ly t - i ca l r e s u l t s e x i s t [25] . In add i t ion , t he ax i symmet r i c code has been appl ied to the model ing of eddy current NDT phenomena i n steam gene ra to r t ube i n spec t ion as i l l u s t r a t e d i n F i g . 4 c ) [ 2 4 , 2 7 ] .

A t y p i c a l f i n i t e e l e m e n t mesh f o r s t u d y i n g d i f f e r - en t i a l p robe impedance p l ane t r a j ec to r i e s is shown i n Fig. 10. From t h e r e s u l t i n g m a g n e t i c v e c t o r p o t e n t i a l va lues co i l impedance , eddy cu r ren t dens i t i e s , f l ux p l o t s , e t c . c a n b e c a l c u l a t e d . Numerous s t u d i e s h a v e

Fig. 10. F i n i t e e l e m e n t d i s c r e t i z a t i o n f o r t h e suppor t p l a t e r eg ion o f a PWR steam genera tor .

been made o f b o t h a b s o l u t e a n d d i f f e r e n t i a l p r o b e i m p e d a n c e p l a n e t r a j e c t o r i e s f o r a v a r i e t y o f a x i - symmetr ic defect shapes and the resul ts confirmed experimental ly . Such numerical s tudies can be used f o r p r o b e d e s i g n , s i m u l a t i n g f i e l d c o n d i t i o n s d i f f i - c u l t t o r e p l i c a t e e x p e r i m e n t a l l y , a n d g e n e r a t i n g t r a in ing da t a fo r au tomated s igna l p rocess ing s chemes . I n add i t ion t he f l ux p lo t s gene ra t ed can p rov ide u se - f u l i n s i g h t i n t o t h e p h y s i c s o f p r o b e f i e l d / d e f e c t i n t e r a c t i o n s . In t h i s r e g a r d , a shor t an imated f i lm sequence has been produced [27] which shows how t h e d i f f e r e n t i a l p r o b e f i e l d s i n t e r a c t w i t h a carbon steel s u p p o r t p l a t e t o p r o d u c e t h e c h a r a c t e r i s t i c L i s s a j o u s - pa t te rned impedance p lane t ra jec tory as i l l u s t r a t e d i n F i g . 11.

Movement o f t he p robe t h rough t he t ube i s simu- l a t e d by c a r r y i n g o u t a comple te f in i te e lement s tudy a t d i s c r e t e p o i n t s as t h e c o i l i n t h e mesh of F ig . 10 is moved p a s t t h e s u p p o r t p l a t e . To produce the com- p l e t e impedance p l a n e ' t r a j e c t o r y shown p a r t i a l l y comple t ed i n F ig . l l b ) r equ i r ed s even ty pos i t i ons pe r l obe . Th i s p rocedure t he re fo re neg lec t s any e f f e c t s o f ve loc i ty i nduced vo l t ages i n t he t ube walls and s u p p o r t p l a t e . A t t he p robe speeds u sed i n ac tua l s t e a m g e n e r a t o r t e s t i n g t h i s e r r o r a p p e a r s t o b e n e g l i g i b l e .

Using a magne t i c vec to r po ten t i a l fo rmula t ion and hexahedra l i sopa rame t r i c e l emen t s , Ida [14 ] has recent ly ex tended the 2-D f in i t e e l emen t code t o a f u l l 3-dimensional treatment. The code has been ver i - f i e d by s t u d y i n g eddy c u r r e n t d e n s i t i e s i n a s l a b benea th a current carrying conductor , and by predict ing t h e d i f f e r e n t i a l eddy c u r r e n t c o i l impedance plane t r a j e c t o r y f o r a square through-wall hole in a steam gene ra to r t ube .

COMPUTATIONAL CONSIDEPATIONS AND DISCUSSION

Most of the e l ec t romagne t i c NDT problems discussed i n t h i s p a p e r h a v e b e e n r u n on a VAX 780 computer o r a Cyber 720 system. The complexi t ies of extending t h e f i n i t e e l e m e n t c o d e t o t h r e e d i m e n s i o n s c a n b e imagined by examining Table 1 where the computer core requirements for producing Fig. l lb) f rom axisymmetr ic

Page 5: Applications of numerical field modeling to electromagnetic methods of nondestructive testing

2441

a

b

Fig. 11. Fin i te e lement p red ic t ion of eddy cur ren t p r o b e f l u x p a t t e r n s .

a ) Di f fe ren t ia l p robe pass ing th rough a s u p p o r t p l a t e .

b ) One frame of animation sequence showing par t ia l ly comple ted impedance p lane . t r a j e c t o r y .

code a r e summarized and compared to the requirements f o r a f u l l 3-D a n a l y s i s . C o n s i d e r a t i o n s l i k e t h i s h a v e l e d t o a carefu l ana lys i s o f computer requi rements and the development of minimum s t o r a g e m a t r i x i n v e r s i o n algori thms based on Gauss e l i m i n a t i o n a n d f r o n t a l t echniques [28] . Such codes .a re needed in the 3-D modeling of e l e c t r o m a g n e t i c f i e l d / d e f e c t i n t e r a c t i o n s i n o r d e r t o p r e d i c t l e a k a g e f i e l d p r o f i l e s and imped- a n c e p l a n e t r a j e c t o r i e s f o r r e a l i s t i c d e . f e c t s h a p e s . The research group a t Colorado S ta te Univers i ty has b e e n f o r t u n a t e i n h a v i n g t h e ' T e k t r o n i x g r a p h i c s s y s t e m o f F ig . 12 ava i lab le for the deve lopment o f the 3-D code. I n the nea r fu tu re t he g raph ic s sys t em w i l l b e connec ted t o a Cyber 205 supercomputer which, although

4954 DIGIIAL IABLEl HOST COMPUTER

4863 DIGITAL PLOllER

4805 MASS STORAGE MODULE

Fig. 1 2 . Graphics system used in development o f 3-D f in i t e e l emen t code .

r e q u i r i n g v e c t o r i z a t i o n o f a l l c o d e , w i l l speed t he 3-D runs cons iderably . A s w i t h a l l n u m e r i c a l s t u d i e s g r e a t c a r e must b e t a k e n i n i n t e r p r e t i n g r e s u l t s , a n d i t i s t h e a u t h o r ' s e x p e r i e n c e t h a t c a r e f u l e x p e r i m e n t a l work i s r e q u i r e d a t e v e r y s t a g e o f a lgor i thm deve lop- ment i n o r d e r t o v a l i d a t e t h e c o d e , p a r t i c u l a r l y f o r those t es t ing geometr ies where no a n a l y t i c a l s o l u t i o n s a re ava i lab le for compar ison . Al though the e lec t romag- n e t i c f i e l d s a s s o c i a t e d w i t h NDT t e s t i n g t e c h n i q u e s a r e w e l l b e h a v e d ( v e r y l o c a l i z e d a n d ' t i g h t ' ) when com- p a r e d t o f i e l d s i n e l e c t r i c a l m a c h i n e r y a n d f u s i o n magne t s fo r example , ca re mus t s t i l l ' be t aken in choos ing an appropr ia te mesh s t r u c t u r e i n r e l a t i o n t o bo th de fec t s i ze and sk in dep th . In add i t ion , t he a c c u r a t e s p e c i f i c a t i o n o f m a t e r i a l c o n d u c t i v i t y . a n d p e r m e a b i l i t y p r o p e r t i e s as code input da ta is important. The model ing of res idua l l eakage f ie lds is p a r t i c u l a r l y s e n s i t i v e t o t h e B/H da ta p rov ided fo r fo rced r e l axa - t i o n .

2-D Animation frame problem

Mesh - 120 x 25 t r i a n g l e s 6000 elements 3146 v a r i a b l e s Semibandwidth - 28 Matr ix - 3146 x 28 88,088 words of memory

3-D Animation frame problem

Mesh - 120 x 25 x 25 hexahedra 75,000 elements 245388 v a r i a b l e s Semibandwidth - 4209 Matr ix - 245388 x 4209

1.03 x 10 words of memory 9

Table 1. Comparison of 2-D and 3-D code core requi rements .

The purpose o f th i s paper has been to g ive an over - v iew of the appl ica t ion of numer ica l methods to e lec- t romagnet ic NDT problems. Space l imi ta t ions p rec lude t h e f u l l d i s c u s s i o n t h a t t h e s u b j e c t m a t t e r w a r r a n t s , a n d t h e i n t e r e s t e d r e a d e r i s encouraged to pursue the s u b j e c t m a t t e r f u r t h e r b y s t a r t i n g w i t h some o f t he r e f e r e n c e m a t e r i a l i n t h e n e x t s e c t i o n . C o n s i d e r a b l e work remains to be done in apply ing computer based mode l ing t echn iques bo th t o spec i f i c t e s t ing geomet r i e s and t o a r e a s s u c h as pulsed eddy current and microwave techniques .

Page 6: Applications of numerical field modeling to electromagnetic methods of nondestructive testing

2.442

ACKNOWLEDGMENTS

During the past decade i t has been my p r i v i l e g e t o work w i t h some e x c e l l e n t g r a d u a t e s t u d e n t s on t h e appl icacion of numerical methods to eLectromagnet ic NDT f i e l d p r o b l e m s . W i t h o u t t h e c o n s i d e r a b l e e f f o r t s of J. H . Hwang, R. Palanisamy, S. R. Sa t i sh and N. Ida, none of the work descr ibed in this paper would have heen poss ib le . The au thor i s a l s o d e e p l y i n d e b t e d t o D r . J. Hur t o f the Army Research Off ice and Drs. G. Dau and J. Quinn of the E lec t r ic Power R e s e a r c h I n s t i t u t e f o r t h e i r s u s t a i n e d s u p p o r t a n d encouragement.

REFERENCES

D. E. Hughes, "Induction-balance and experi- men ta l r e sea rches t he rewi th , " Ph i l . Mag., 1879, vo l . 8 , pp. 50-56.

W. Lord and R. Palanisamy, "Development of t h e o r e t i c a l models f o r NDT eddy current phenom- e n a , " i n Eddy Cur ren t Cha rac t e r i za t ion o f Ma te r i a l s and S t ruc tu res , ASTM STP 722, G. B. Birnbaum and G. Free, Eds. , ASTM, 1981, pp. 5-21.

W. Lord, "A survey of e lectromagnet ic methods of n o n d e s t r u c t i v e t e s t i n g , " C h a p t e r 3 i n Mechanics o f Nondes t ruc t ive Tes t ing , ed i t ed by W . W. Stinchcomb, Plenum Press, 1980, pp. 77-100.

W. Lord and D. J. Oswald. "Leakage f i e l d methods of d e f e c t d e t e c t i o n , " I n t . J. NDT, vo l . 4 , 1972, pp. 249-274.

Metals Handbook, vol. 11, Nondestruct ive Inspec- t i o n and Qual i ty Cont ro l , Amer ican Soc ie ty for Metals, 1976, pp. 44-74.

Y. B. Feshchenko and N . K . Frolova, "Development of Magnetographic Metal Inspection," Defekto- skopiya, no. 4 , July-Aug. 1973, pp. 72-79.

J. Lankford and P. H . Franc is , " Magnet ic F ie ld P e r t u r b a t i o n d u e t o M e t a l l u r g i c a l D e f e c t s ," I n t . J. NDT, vo l . 3, 1971, pp. 77-94.

K. H. Schwalbe and D. Hellmann, "Application of t h e e l e c t r i c p o t e n t i a l method t o c r a c k l e n g t h measurements using Johnson's formula," J. Tes t . and Eval. , vol. 9, no. 3, May 1981, pp. 218-221.

S. R. S a t i s h , e t a l . , "A v a r i a b l e r e l u c t a n c e p robe fo r t he de t ec t ion o f magne t i t e bu i ldup in s t e a m g e n e r a t o r s , " i n Review o f P r o g r e s s i n Quan t i t a t ive Nondes t ruc t ive Eva lua t ion , D. 0. Thompson and D. Chimenti, Eds., Plenum Press , 1982, pp, 79-81.

V. E. Shcherbinin and N . N. Zatsepin, "Calcula- t i o n o f t h e m a g n e t o s t a t i c f i e l d o f s u r f a c e defec ts , " Defektoskopiya , Sept . /Oct . 1966, pp. 59-65.

0. Kar lqv i s t , "Ca lcu la t ion o f t he magne t i c f i e ld i n t h e f e r r o m a g n e t i c l a y e r o f a magnetic drum," Trans . Royal Ins t i tu te o f Technolooy, no. 86, Stockholm, 1954.

W. Lord and J. H. Hwang, "Fini te e lement model ing of m a g n e t i c f i e l d / d e f e c t i n t e r a c t i o n s , " ASTM Test . Eval . , vo l . 3 , no. 1, January 1975, pp. 21- 25.

13 1

14 1

15 1

1

[201

W. Lord and J. H. Hwang, "Defec t charac te r iza- t ion f rom magnet ic l eakage f ie lds ," Brit. J . NDT, vo l . 19 , no. 1, January 1977, pp. 14-18.

N. Ida, "Three dimensional f ini te e lement model- i ng o f e l ec t romagne t i c NDT phenomena," Ph.D. Thes is , Colorado S ta te Univers i ty , 1983.

N. Ida and W . Lord, "3-D f i n i t e e l e m e n t p r e d i c - t i o n s o f m a g n e t o s t a t i c l e a k a g e f i e l d s , " t o b e p u b l i s h e d i n I E E E Trans. Magn., Sept.,1983.

W. Lord and R. Palanisamy, "Magnetic probe in spec t ion o f steam gene ra to r t ub ing , " Ma te r i a l s Evaluat ion, vol . 38, no. 5 , May 1980, pp. 38-40.

W. Lord and R. Palanisamy, "Detection and model- i ng magne t i t e bu i ldup i n s t eam gene ra to r s , ' ' IEEE Trans. Magn., vo l . MAG-l6,-no. 5 , September , 1980, pp. 695-697.

W . Lord, R. Palanisamy and S. R. Sat ish, "Elec- t romagne t i c me thods o f de t ec t ing magne t i t e i n PWR s t e a m g e n e r a t o r s , " i n Q u a n t i t a t i v e NDE i n the Nuc lea r Indus t ry , Amer ican Soc ie ty fo r Metals, Metals Park, Ohio, 1983.

P. S i l v e s t e r and M.V.K. Char i , "F in i te e lement so lu t ion o f s a tu rab le magne t i c f i e ld p rob lems , " IEEE Trans. PAS, vo l . PAS-89, no. 7, Sept./Oct., 1970, pp. 1642-1651.

W. Lord, J. M. Br idges , W. Yen and R. Palanisamy, "Residual and act ive leakage f ie lds around d e f e c t s i n f e r r o m a g n e t i c m a t e r i a l s , " M a t e r i a l s Evaluat ion, vol . 36, no. 8, July 1978, pp. 47-54.

S . , R . Sa t i sh , "F in i te e lement model ing of res id- ual magnetic phenomena," M.S. Thesis, Colorado S ta t e Un ive r s i ty , 1981 .

R. Palanisamy and W . Lord, "Fini te e lement model- i ng o f e l ec t romagne t i c NDT phenomena," = Trans . , vo l . MAG-15, no. 6 , Nov. 1979, pp. 1479- 1481.

M.V.K. Cha r i , "F in i t e e l emen t so lu t ion o f t he eddy cur ren t p roblem in magnet ic s t ruc tures , " IEEE Trans. PAS, vo l . PAS-93, no. 1, Jan . /Feb . , 1974, pp. 62-72.

R. Palanisamy and W. Lord, "Prediction of eddy c u r r e n t p r o b e s i g n a l t r a j e c t o r i e s , " IEEE Trans. -, vo l . MAG-16, no. 5, September 1980, pp. 1083-1085.

R. Palanisamy and W. Lord, "Fini te e lement a n a l y s i s o f eddy c u r r e n t phenomena," M a t e r i a l s Evaluat ion, vol . 38, no. 13, Oct. 1980, pp. 39- 43.

R. Palanisamy and W . Lord , " In te rac t ion of suppor t p l a t e and de fec t eddy cu r ren t t r a j ec - t o r i e s i n s t e a m g e n e r a t o r t u b i n g NDT," M a t e r i a l s Evaluat ion, vol . 39, no. 7, June 1981, pp. 651- 655.

N. IdaandW. Lord, "Simulat ing e lectromagnet ic NDT p r o b e f i e l d s ," IEEE' Compucer Graphics , vo l . 3 , May/June 1983, pp. 21-28.

N. 2da and W. Lo rd , "So lu t ion o f l i nea r equa t ions f o r small computer sys tems," to be publ i shed in Int. J. Numerical Methods, 1983.