applied mathematics and computation - matjaž perc · 2018. 11. 22. · 266 z. wei, b. zhu and j....

17
Applied Mathematics and Computation 347 (2019) 265–281 Contents lists available at ScienceDirect Applied Mathematics and Computation journal homepage: www.elsevier.com/locate/amc Bifurcation analysis of two disc dynamos with viscous friction and multiple time delays Zhouchao Wei a , Bin Zhu a , Jing Yang a , Matjaž Perc b,c,d,, Mitja Slavinec b a School of Mathematics and Physics, China University of Geosciences, Wuhan 430074, China b Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160 SI-2000 Maribor, Slovenia c Center for Applied Mathematics and Theoretical Physics, University of Maribor, Mladinska 3 SI-2000 Maribor, Slovenia d Complexity Science Hub Vienna, Josefstädterstraße 39 A-1080 Vienna, Austria a r t i c l e i n f o Keywords: Disc dynamos Chaotic attractors Hopf bifurcation Multiple time delays a b s t r a c t The impact of multiple time delays on the dynamics of two disc dynamos with viscous friction is studied in this paper. We consider the stability of equilibrium states for different delay values, and determine the location of relevant Hopf bifurcations using the normal form method and the center manifold theory. By performing numerical calculations and analysis, we verify the validity of our analytically obtained results. Our research results reveal a classical period-doubling route towards deterministic chaos in the studied system, and play an important role for the better understanding of the complex dynamics of two disc dynamos with viscous friction subject to multiple time delays. © 2018 Elsevier Inc. All rights reserved. 1. Introduction In the past five decades, analysis and applications of chaos have been widely explored. It is obvious and necessary to consider complex dynamics and topological structure in some existing chaotic or hyperchaotic systems [1–5]. Therefore, as one of the most widespread concern nonlinear topics, magnetic field has attracted the attention of magnetic scientists be- cause disk dynamo models can often show bifurcation and chaos phenomena. Researchers have been investigating stability, chaos synchronization and practical applications of disc dynamos [6–15]. From the aspect of dynamo maintenance of the magnetic field of Earth, Bullard has given a single-disk dynamo system in 1955 [16]. In 1970, Cook and Roberts considered chaotic dynamics in the Rikitake two-disk dynamo [17], which comprises two disks connected with one another as shown in Fig. 1, and belongs to this one of the simplest systems that simulate the irregular reversals of the geomagnetic field [18]. Then, Prof. Ershov et al. was aware of the importance of viscous friction that reduces the angular momentum of the disks, and gave out the following model [19] ˙ x 1 = kx 1 + x 2 x 3 , ˙ x 2 = kx 2 + x 1 x 4 , ˙ x 3 = 1 x 1 x 2 v 1 x 3 , ˙ x 4 = 1 x 1 x 2 v 2 x 4 , (1) Corresponding author at: Faculty of Natural Sciences and Mathematics, University of Maribor, Koroska cesta 160 SI-2000 Maribor, Slovenia. E-mail addresses: [email protected] (Z. Wei), [email protected], [email protected], [email protected] (M. Perc), [email protected] (M. Slavinec). https://doi.org/10.1016/j.amc.2018.10.090 0096-3003/© 2018 Elsevier Inc. All rights reserved.

Upload: others

Post on 15-Feb-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • Applied Mathematics and Computation 347 (2019) 265–281

    Contents lists available at ScienceDirect

    Applied Mathematics and Computation

    journal homepage: www.elsevier.com/locate/amc

    Bifurcation analysis of two disc dynamos with viscous friction

    and multiple time delays

    Zhouchao Wei a , Bin Zhu a , Jing Yang a , Matjaž Perc b , c , d , ∗, Mitja Slavinec b

    a School of Mathematics and Physics, China University of Geosciences, Wuhan 430074, China b Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160 SI-20 0 0 Maribor, Slovenia c Center for Applied Mathematics and Theoretical Physics, University of Maribor, Mladinska 3 SI-20 0 0 Maribor, Slovenia d Complexity Science Hub Vienna, Josefstädterstraße 39 A-1080 Vienna, Austria

    a r t i c l e i n f o

    Keywords:

    Disc dynamos

    Chaotic attractors

    Hopf bifurcation

    Multiple time delays

    a b s t r a c t

    The impact of multiple time delays on the dynamics of two disc dynamos with viscous

    friction is studied in this paper. We consider the stability of equilibrium states for different

    delay values, and determine the location of relevant Hopf bifurcations using the normal

    form method and the center manifold theory. By performing numerical calculations and

    analysis, we verify the validity of our analytically obtained results. Our research results

    reveal a classical period-doubling route towards deterministic chaos in the studied system,

    and play an important role for the better understanding of the complex dynamics of two

    disc dynamos with viscous friction subject to multiple time delays.

    © 2018 Elsevier Inc. All rights reserved.

    1. Introduction

    In the past five decades, analysis and applications of chaos have been widely explored. It is obvious and necessary to

    consider complex dynamics and topological structure in some existing chaotic or hyperchaotic systems [1–5] . Therefore, as

    one of the most widespread concern nonlinear topics, magnetic field has attracted the attention of magnetic scientists be-

    cause disk dynamo models can often show bifurcation and chaos phenomena. Researchers have been investigating stability,

    chaos synchronization and practical applications of disc dynamos [6–15] .

    From the aspect of dynamo maintenance of the magnetic field of Earth, Bullard has given a single-disk dynamo system

    in 1955 [16] . In 1970, Cook and Roberts considered chaotic dynamics in the Rikitake two-disk dynamo [17] , which comprises

    two disks connected with one another as shown in Fig. 1 , and belongs to this one of the simplest systems that simulate the

    irregular reversals of the geomagnetic field [18] . Then, Prof. Ershov et al. was aware of the importance of viscous friction

    that reduces the angular momentum of the disks, and gave out the following model [19] ⎧ ⎪ ⎨ ⎪ ⎩

    ˙ x 1 = −kx 1 + x 2 x 3 , ˙ x 2 = −kx 2 + x 1 x 4 , ˙ x 3 = 1 − x 1 x 2 − v 1 x 3 , ˙ x 4 = 1 − x 1 x 2 − v 2 x 4 ,

    (1)

    ∗ Corresponding author at: Faculty of Natural Sciences and Mathematics, University of Maribor, Koroska cesta 160 SI-20 0 0 Maribor, Slovenia. E-mail addresses: [email protected] (Z. Wei), [email protected] , [email protected] , [email protected] (M. Perc), [email protected] (M.

    Slavinec).

    https://doi.org/10.1016/j.amc.2018.10.090

    0 096-30 03/© 2018 Elsevier Inc. All rights reserved.

    https://doi.org/10.1016/j.amc.2018.10.090http://www.ScienceDirect.comhttp://www.elsevier.com/locate/amchttp://crossmark.crossref.org/dialog/?doi=10.1016/j.amc.2018.10.090&domain=pdfmailto:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]://doi.org/10.1016/j.amc.2018.10.090

  • 266 Z. Wei, B. Zhu and J. Yang et al. / Applied Mathematics and Computation 347 (2019) 265–281

    Fig. 1. The two-disk dynamo. The sketch indicates that x 1 and x 2 are dimensionless measures of the currents in the loops, while x 3 and x 4 are proportional

    to the angular velocities of the disks.

    where x 1 and x 2 are the electric currents in the disks, and x 3 and x 4 are their angular velocities; k is the ohmic dissipation

    coefficient, the same for both circuits, and v 1 and v 2 are the different coefficients of viscous friction in each disk. Whenv 1 = v 2 � = 0 , a similar model with different torques on the two disks was considered in [17] . When v 1 = v 2 = 0 , model (1)could be reduced to the frictionless Rikitake system [18] . However, the assumption about frictionless dynamos is inconsistent

    with the findings of the realistic study, which shows that mechanical friction can lead to ‘structurally unstable’ for Rikitake

    dynamo [20] . In reality, the disc will not get rid of friction because of its bearings and the brushes that close the circuit

    [21,22] .

    On the other hand, we can not neglect the fact that changes in the core have to be transmitted across the intervening

    fluid by Alfvén waves and electromagnetic diffusion. Therefore, understanding the effects of delays in the disc dynamos is

    great important. To a first approximation, the following equations without viscous friction were proposed [17] : ⎧ ⎪ ⎨ ⎪ ⎩

    ˙ x 1 = −kx 1 + x 2 (t − τ ) x 3 , ˙ x 2 = −kx 2 + x 1 (t − τ ) x 4 , ˙ x 3 = 1 − x 1 x 2 (t − τ ) , ˙ x 4 = 1 − x 1 (t − τ ) x 2 .

    (2)

    where τ > 0 and τ denotes communication delay in diffusion. In recent years, more and more scholars have begun to pay attention to hidden chaos [23–27] . It means that multistability

    is a rich character in many non-linear problems. In many realistic chaotic systems, some deep-seated complex behaviors

    have not been studied thoroughly [28–32] . The magnetic field inside the liquid part of the Earth’s core is known to be much

    more complex than that at the surface. In 2015, Wei et al. have studied an extended Rikitake system, which can generate

    bifurcations and hidden chaos [33] . In 2016, four disk dynamos model from eight degrees of freedom has been presented

    and considered from the viewpoint of mathematics [34] . In 2017, hidden chaos and hyperchaos have been found in the 3D,

    4D and 5D self-exciting homopolar disc dynamos [35–38] .

    However, many fundamental questions, such as complex chaotic behavior and the effect of multiple time delays, are still

    not solved theoretically. Although time delays are often very small in practical situations, they cannot be ignored and can

    cause a series of complex phenomena. Therefore, the effect of multitime delays is considered as an important factor, which

    will be closer to reality. Compared to the case of single time delay or the case without delay, research on multitime delays

    will be more close to the actuality and helpful to understand the disc dynamos. It is meaning for us to consider the case

    that three communication delays due to diffusion may be incorporated into the Rikitake model. More precisely, base on

    existing results and facts, we describe the delayed disc dynamos with viscous friction by ⎧ ⎪ ⎨ ⎪ ⎩

    ˙ x 1 = −kx 1 + x 2 (t − τ2 ) x 3 , ˙ x 2 = −kx 2 + x 1 (t − τ1 ) x 4 , ˙ x 3 = 1 − x 1 x 2 (t − τ3 ) − v 1 x 3 , ˙ x 4 = 1 − x 1 (t − τ1 ) x 2 − v 2 x 4 ,

    (3)

    where τi > 0(i = 1 , 2) represent communication delays in different diffusion pathways and v i (i = 1 , 2) denote viscous fric-tion in each disk. The research in this paper can be seen as an improvement and a supplementary of systems (1) and (2) .

    Here, the frame of this article is constructed: In Section 2 , Hopf bifurcation analysis of the multiple-delayed disc dynamos

    with viscous friction is considered. In Section 3 , some characteristics of the bifurcating periodic orbits are confirmed. In

    Section 4 , the numerical results of Hopf bifurcation analysis are given out. Moreover, for the proposed two disc dynamos

    with viscous friction and multiple time delays, changes of delays will be a key to produce chaos through period doubling

    bifurcation. Finally, the conclusions are stated in Section 5 .

  • Z. Wei, B. Zhu and J. Yang et al. / Applied Mathematics and Computation 347 (2019) 265–281 267

    Fig. 2. Chaos occurs for system (3) when τ1 = 0 . 001 < τ 0 1 , τ2 = 0 . 02 < τ 0 2 , τ3 = 0 . 2 > τ 0 3 and initial conditions (0.9, 0.9, 0.65, 1.2): (a) Phase portraits in x 1 − x 2 − x 3 space; (b) Time series for t ∈ [0, 200]; (c) Phase portraits on x 3 − x 2 plane; (d) Phase portraits on x 1 − x 4 plane.

    2. Stability of equilibria and Hopf bifurcation analysis of system (3) with multiple delays

    It is clear that when k √ v 1 v 2 ≥ 1 , system (3) has only one equilibrium

    E 0 = (

    0 , 0 , 1

    v 1 ,

    1

    v 2

    ).

    When k √ v 1 v 2 < 1 , system (3) has three equilibria

    E 0 = (

    0 , 0 , 1

    v 1 ,

    1

    v 2

    ), E 1 , 2 =

    (±e 1 , ±e 2 , ke 1

    e 2 ,

    ke 2 e 1

    ),

    where e 1 = √

    (1 − k √ v 1 v 2 ) √

    v 2 v 1

    , e 2 = √

    (1 − k √ v 1 v 2 ) √

    v 1 v 2

    .

    In particular, for parameter values k = 1 , v 1 = 0 . 004 , v 2 = 0 . 002 and delays τ1 = 0 . 001 , τ2 = 0 . 02 , τ3 = 0 . 2 , chaos ex-ists with initial conditions (0.9, 0.9, 0.65, 1.2). The chaotic attractor and its different projections are shown in Fig. 2 . There-

    fore, understanding delays’ characteristics of the chaotic disc dynamos with viscous friction is of great importance in po-

    tential applications. Complexity also arises in another form when different types of attractors coexist for fixed parameter

    values. Fig. 3 shows an example for multistability with delays τ1 = 0 . 001 , τ2 = 0 . 02 , τ3 = 0 . 005 where a stable equilibriumand chaos coexist for initial conditions (0.9, 0.9, 0.65, 1.2) and (0.1, 0.5, 0.1, 0), respectively. Therefore, depending on the

    given initial state, the trajectories of the system selectively tend to one of the attracting sets.

    To understand properties of this system (3) better, we analyze the stability properties of equilibrium point and Hopf

    bifurcation under different conditions about delays.

    The characteristic equation of system (3) at E 0 is

    (λ + v 1 )(λ + v 2 ) (λ2 + 2 kλ2 + k 2 − 1

    v v

    )= 0 . (4)

    1 2

  • 268 Z. Wei, B. Zhu and J. Yang et al. / Applied Mathematics and Computation 347 (2019) 265–281

    Fig. 3. Time series of x 1 , x 2 , x 3 and x 4 when τ1 = 0 . 001 , τ2 = 0 . 02 , τ3 = 0 . 005 . Multistability occurs at different initial conditions: (a) Initial conditions (0.9, 0.9, 0.65, 1.2); (b) Initial conditions (0.1,0.5,0.1,0).

    Hence if k √ v 1 v 2 < 1 , equilibrium E 0 is an unstable saddle. If k

    √ v 1 v 2 > 1 , equilibrium E 0 is a stable node. From a physicalview that the viscous friction will be very small, we will focus on the case k

    √ v 1 v 2 < 1 into key account and analyze com-plex dynamics around equilibria E 1, 2 when τ 1, 2, 3 > 0. Because of symmetry (x 1 , x 2 , x 3 , x 4 ) −→ (−x 1 , −x 2 , x 3 , x 4 ) , we onlyconsider equilibrium E 1 . By the linear transform

    x 1 → x 1 + e 1 , x 2 → x 2 + e 2 , x 3 → x 3 + ke 1 e 2

    , x 4 → x 4 + ke 2 e 1

    ,

    the equilibrium E 1 in (3) is transferred to the origin (0,0,0,0), and system (3) becomes ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩

    ˙ x 1 = −kx 1 + ke 1 e 2

    x 2 (t − τ2 ) + e 2 x 3 + x 2 (t − τ2 ) x 3 ,

    ˙ x 2 = ke 2 e 1

    x 1 (t − τ1 ) − kx 2 + e 1 x 4 + x 1 (t − τ1 ) x 4 , ˙ x 3 = −e 2 x 1 − e 1 x 2 (t − τ3 ) − v 1 x 3 − x 1 x 2 (t − τ3 ) , ˙ x 4 = −e 2 x 1 (t − τ1 ) − e 1 x 2 − v 2 x 4 − x 1 (t − τ1 ) x 2 .

    (5)

    Then, the characteristic equation at equilibrium (0,0,0,0) is

    λ4 + (2 k + v 1 + v 2 ) λ3 + (k 2 + 2 k v 1 + 2 k v 2 + v 1 v 2 + e 2 1 + e 2 2 ) λ2 + (k 2 v 1 + k 2 v 2 + 2 k v 1 v 2 + ke 2 1 + v 1 e 2 1 + ke 2 2 + v 2 e 2 2 ) λ+ k 2 v 1 v 2 + k v 1 e 2 1 + k v 2 e 2 2 + e 2 1 e 2 2 + e −λ(τ1 + τ3 ) (k v 2 e 2 2 − e 2 1 e 2 2 + ke 2 2 λ) + e −λ(τ1 + τ2 ) (k v 1 e 2 1 − k 2 v 1 v 2 + (−k 2 v 1 − k 2 v 2 + ke 2 1 ) λ − k 2 λ2 ) = 0 . (6)

    Case 1. τ1 = τ2 = τ3 = 0 Characteristic Eq. (6) becomes

    (λ + 2 k )(λ3 + (v 1 + v 2 ) λ2 + (v 1 v 2 + e 2 1 + e 2 2 ) λ + v 1 e 2 1 + v 2 e 2 2 ) = 0 . (7) According to the Routh–Hurwitz criterion, equilibria E 1, 2 are both asymptotically stable since (v 1 + v 2 )(v 1 v 2 + e 2 1 + e 2 2 ) −(v 1 e 2 1 + v 2 e 2 2 ) = v 2 1 v 2 + v 1 v 2 2 + v 2 e 2 1 + v 1 e 2 2 > 0 . Remark 2.1. Complex dynamics and numerical results have also been extracted from system (3) when τ1 = τ2 = τ3 = 0 andviscous friction v 1 , 2 > 0 [19] .

    Case 2. τ1 = τ3 = 0 , τ2 > 0 The characteristic equation of system (3) with τ1 = τ3 = 0 , τ2 > 0 at the equilibrium O (0, 0, 0) is

    b 0 + b 1 λ + b 2 λ2 + b 3 λ3 + λ4 + e −λτ2 (b 6 + b 5 λ + b 4 λ2 ) = 0 , (8) where

    b 0 = k 2 v 1 v 2 + k v 1 e 2 1 + 2 k v 2 e 2 2 , b 1 = k 2 v 1 + k 2 v 2 + 2 k v 1 v 2 + ke 2 1 + v 1 e 2 1 + 2 ke 2 2 + v 2 e 2 2 , b 2 = k 2 + 2 k v 1 + 2 k v 2 + v 1 v 2 + e 2 1 + e 2 2 , b 3 = 2 k + v 1 + v 2 , b 4 = −k 2 , b 5 = −k 2 v 1 − k 2 v 2 + ke 2 1 , b 6 = −k 2 v 1 v 2 + k v 1 e 2 1 .

  • Z. Wei, B. Zhu and J. Yang et al. / Applied Mathematics and Computation 347 (2019) 265–281 269

    If i ω ( ω > 0 and ω is related to τ 2 ) is the imaginary root of Eq. (8) , we can obtain

    b 0 + b 6 cos (τ2 ω) + b 5 sin (τ2 ω) ω − b 2 ω 2 − b 4 cos (τ2 ω ) ω 2 + ω 4 = 0 , −b 6 sin (τ2 ω) + b 1 ω + b 5 cos (τ2 ω) ω + b 4 sin (τ2 ω ) ω 2 − b 3 ω 3 = 0 . (9)

    Then,

    b 2 0 − b 2 6 + (b 2 1 − 2 b 0 b 2 − b 2 5 + 2 b 4 b 6 ) ω 2 + (2 b 0 + b 2 2 − 2 b 1 b 3 − b 2 4 ) ω 4 + (−2 b 2 + b 2 3 ) ω 6 + ω 8 = 0 . (10)Noticing that b 2 0 − b 2 6 = 4 k 2 v 2 (k v 1 + e 2 2 )(v 1 e 2 1 + v 2 e 2 2 ) > 0 , we can know Eq. (10) has at most four positive real roots.

    Here we assume that Eq. (10) has finite positive roots ω i , (i = 1 , . . . , s, s ≤ 4) . Substituting ω i into Eq. (9) , we have

    τ2 (i, j) =

    ⎧ ⎪ ⎨ ⎪ ⎩

    1

    ω i [ arccos (P 1 ) + 2 jπ ] , Q 1 ≥ 0 ,

    1

    ω i [ 2 π − arccos (P 1 ) + 2 jπ ] , Q 1 < 0 ,

    (11)

    where

    P 1 = −b 5 ω i (b 1 ω i − b 3 ω 3 i ) − (b 4 ω 2 i − b 6 )(b 0 − b 2 ω 2 i + ω 4 i )

    b 2 6

    + b 2 5 ω 2

    i − 2 b 4 b 6 ω 2 i + b 2 4 ω 4 i

    ,

    Q 1 = −ω i (b 0 b 5 − b 1 b 6 + b 1 b 4 ω 2 i − b2 b5 ω 2 i + b 3 b 6 ω 2 i − b 3 b 4 ω 4 i + b 5 ω 4 i )

    b 2 6

    + b 2 5 ω 2

    i − 2 b 4 b 6 ω 2 i + b 2 4 ω 4 i

    ,

    and 1 ≤ i ≤ s ; j = 0 , 1 , . . . .

    Theorem 2.1. For τ1 = τ3 = 0 , τ2 > 0 , the following conclusions hold: (1) If Eq. (10) has no real roots, the equilibria E 1, 2 are asymptotically stable for all τ 2 > 0, and system (3) does not undergo

    Hopf bifurcation at the equilibria E 1, 2 ;

    (2) We define τ 0 2

    = min { τ2 (i, j) | 1 ≤ i ≤ s, j = 0 , 1 , . . . . } and suppose [ d(Reλ) dτ ] τ= τ 0 2 � = 0 . If Eq. (10) has positive roots ω i , (i =1 , . . . , s, s ≤ 4) ., the equilibria E 1, 2 are asymptotically stable for τ2 ∈ (0 , τ 0 2 ) . Then system (3) goes through Hopf bifurcation atthe equilibria E 1, 2 when τ2 = τ 0 2 .

    Case 3. τ1 > 0 , τ2 > 0 , τ3 = 0 Characteristic Eq. (6) becomes

    d 0 + d 1 λ + d 2 λ2 + d 3 λ3 + λ4 + e λτ1 (d 5 + d 4 λ) + e λτ1 −λτ2 (d 8 + d 7 λ + d 6 λ2 ) = 0 , (12)where

    d 0 = k 2 v 1 v 2 + k v 1 e 2 1 + k v 2 e 2 2 + e 2 1 e 2 2 , d 1 = k 2 v 1 + k 2 v 2 + 2 k v 1 v 2 + ke 2 1 + v 1 e 2 1 + ke 2 2 + v 2 e 2 2 , d 2 = (k 2 + 2 k v 1 + 2 k v 2 + v 1 v 2 + e 2 1 + e 2 2 , d 3 = 2 k + v 1 + v 2 , d 4 = ke 2 2 d 5 = k v 2 e 2 2 − e 2 1 e 2 2 , d 6 = −k 2 , d 7 = −k 2 v 1 − k 2 v 2 + ke 2 1 , d 8 = −k 2 v 1 v 2 + k v 1 e 2 1 .

    When τ1 = τ3 = 0 , we denote �2 as stable interval of τ 2 . Now consider τ1 > 0 , τ2 ∈ �2 , τ3 = 0 , and let λ = iω ( ω > 0, ω isrelated to τ 1 ) be a root of Eq. (12) . Then the following two equations hold

    d 0 + d 5 cos (τ2 ω) + d 8 cos (τ2 ω) cos (τ1 ω) − d 8 sin (τ2 ω) sin (τ1 ω) + d 4 sin (τ2 ω) ω + d 7 cos (τ1 ω) sin (τ2 ω) ω + d 7 cos (τ2 ω) sin (τ1 ω) ω − d 2 ω 2 − d 6 cos (τ2 ω) cos (τ1 ω ) ω 2 + d 6 sin (τ2 ω ) sin (τ1 ω ) ω 2 + ω 4 = 0 ,

    −d 5 sin (τ2 ω) − d8 cos (τ1 ω) sin (τ2 ω) − d 8 cos (τ2 ω) sin (τ1 ω) + d 1 ω + d 4 cos (τ2 ω) ω + d 7 cos (τ2 ω) cos (τ1 ω) ω − d 7 sin (τ2 ω) sin (τ1 ω) ω + d 6 cos (τ1 ω) sin (τ2 ω ) ω 2 + d 6 cos (τ2 ω ) sin (τ1 ω ) ω 2 − d 3 ω 3 = 0 . (13)

    We eliminate these items about τ 1 and get

    d 2 0 + d 2 5 − d 2 8 + 2 d 0 d 5 cos (τ2 ω) + (2 d 0 d 4 − 2 d 1 d 5 ) sin (τ2 ω) ω + (d 2 1 − 2 d 0 d 2 + d 2 4 − d 2 7 + 2 d 6 d 8 + 2 d 1 d 4 cos (τ2 ω) − 2 d 2 d 5 cos (τ2 ω )) ω 2 + 2(d 3 d 5 − d 2 d 4 ) sin (τ2 ω ) ω 3 + (2 d 0 + d 2 2 − 2 d 1 d 3 − d 2 6 − 2 d 3 d 4 cos (τ2 ω) + 2 d 5 cos (τ2 ω )) ω 4 + 2 d 4 sin (τ2 ω ) ω 5 + (−2 d 2 + d 2 3 ) ω 6 + ω 8 = 0 , (14)

  • 270 Z. Wei, B. Zhu and J. Yang et al. / Applied Mathematics and Computation 347 (2019) 265–281

    From Eq. (14) , one can know at most four positive roots ω i (i = 1 , 2 , . . . , N, N ≤ 4) . According to (13) , let

    τ1 (i, j) =

    ⎧ ⎪ ⎨ ⎪ ⎩

    1

    ω i [ arccos (P 2 ) + 2 jπ ] , Q 2 ≥ 0 ,

    1

    ω i [ 2 π − arccos (P 2 ) + 2 jπ ] , Q 2 < 0 ,

    (15)

    where i = 1 , 2 , . . . , N; j = 0 , 1 , . . . and

    P 2 = ˜ P 2

    d 2 8

    + d 2 7 w 2 − 2 d 6 d 8 w 2 + d 2 6 w 4

    , Q 2 = ˜ Q 2

    d 2 8

    + d 2 7 w 2 − 2 d 6 d 8 w 2 + d 2 6 w 4

    ,

    ˜ P 2 = d 0 d 8 cos (τ2 ω) + d 5 d 8 cos (2 τ2 ω) + ((d 0 d 7 + d 1 d 8 ) sin (τ2 ω) + (d 5 d 7 + d 4 d 8 ) sin (2 τ2 ω)) w − ((d 0 d 6 + d 1 d 7 + d 2 d 8 ) cos (τ2 ω) + (d 5 d 6 + d 4 d 7 ) cos (2 τ2 ω)) w 2 − (d 1 d 6 + d 2 d 7 + d 3 d 8 + 2 d 4 d 6 cos (τ2 ω)) sin (τ2 ω) w 3 + (d 2 d 6 + d 3 d 7 + d 8 ) cos (τ2 ω) w 4 + (d 3 d 6 + d 7 ) sin (τ2 ω) w 5 − d 6 cos (τ2 ω) w 6 , ˜ Q 2 = d 0 d 8 sin (τ2 ω) + (d 4 d 8 − d 5 d 7 − d 0 d 7 cos (τ2 ω) + d 1 d 8 cos (τ2 ω)) w + (d 1 d 7 − d 0 d 6 − d 2 d 8 ) sin (τ2 ω) w 2 + ((d 2 d 7 − d 1 d 6 − d 3 d 8 ) cos (τ2 ω) − d 4 d 6 ) w 3 + (d 2 d 6 − d 3 d 7 + d 8 ) sin (τ2 ω) w 4 + (d 3 d 6 − d 7 ) cos (τ2 ω) w 5 − d 6 sin (τ2 ω) w 6 .

    We denote τ 0 1

    = min { τ1 (i, j) , i = 1 , 2 , . . . , N; j = 0 , 1 , . . . } . Let λ(τ1 ) = α(τ1 ) + iσ (τ1 ) be the root of Eq. (17) and suppose [d Re (λ)

    dτ1

    ]τ1 = τ 0 1

    � = 0 . (16)

    Theorem 2.2. Suppose τ3 = 0 and τ2 ∈ (0 , τ 0 2 ) . If Eq. (14) has positive roots and (16) are satisfied, all roots of Eq. (12) havenegative real parts for τ1 ∈ [0 , τ 0 1 ) . Moreover, the equilibria E 1, 2 of system (3) are asymptotically stable when τ1 ∈ [0 , τ 0 1 ) . Addi-tionally, system (3) undergoes a Hopf bifurcation at the equilibria E 1, 2 when τ1 = τ 0 1 . Case 4. τ 1 > 0, τ 2 > 0, τ 3 > 0

    Characteristic Eq. (6) becomes

    p 0 + p 1 λ + p 2 λ2 + p 3 λ3 + λ4 + e −λτ1 −λτ3 (p 5 + p 4 λ) + e −λτ1 −λτ2 (p 8 + p 7 λ + p 6 λ2 ) = 0 , (17) where

    p 0 = k 2 v 1 v 2 + k v 1 e 2 1 + k v 2 e 2 2 + e 2 1 e 2 2 , p 1 = k 2 v 1 + k 2 v 2 + 2 k v 1 v 2 + ke 2 1 + v 1 e 2 1 + ke 2 2 + v 2 e 2 2 , p 2 = k 2 + 2 k v 1 + 2 k v 2 + v 1 v 2 + e 2 1 + e 2 2 , p 3 = 2 k + v 1 + v 2 , p 4 = ke 2 2 , p 5 = k v 2 e 2 2 − e 2 1 e 2 2 , p 6 = −k 2 , p 7 = −k 2 v 1 − k 2 v 2 + ke 2 1 , p 8 = −k 2 v 1 v 2 + k v 1 e 2 1 .

    We know equilibrium E ( x 0 , y 0 , z 0 ) of Eq. (17) is asymptotically stable when τ1 ∈ (0 , τ 0 1 ) , τ2 ∈ (0 , τ 0 2 ) and τ3 = 0 . Now weconsider τ 3 as a parameter.

    Let λ = iω ( ω > 0, ω is related to τ 3 ) be a root of Eq. (17) . Then we obtain p 0 + cos (τ1 ω) cos (τ3 ω) p 5 − sin (τ1 ω) sin (τ3 ω) p 5 + cos (τ2 ω) cos (τ1 ω) p 8 − sin (τ2 ω) sin (τ1 ω) p 8

    + cos (τ3 ω) sin (τ1 ω) p 4 ω + cos (τ1 ω) sin (τ3 ω) p 4 ω + cos (τ1 ω) sin (τ2 ω) p 7 ω + cos (τ2 ω) sin (τ1 ω ) p 7 ω − p 2 ω 2 − cos (τ2 ω ) cos (τ1 ω ) p 6 ω 2 + sin (τ2 ω ) sin (τ1 ω ) p 6 ω 2 + ω 4 = 0 ,

    − cos (τ3 ω) sin (τ1 ω) p 5 − cos (τ1 ω) sin (τ3 ω) p 5 − cos (τ1 ω) sin (τ2 ω) p 8 − cos (τ2 ω) sin (τ1 ω) p 8 + p 1 ω + cos (τ1 ω) cos (τ3 ω) p 4 ω − sin (τ1 ω) sin (τ3 ω) p 4 ω + cos (τ2 ω) cos (τ1 ω) p 7 ω − sin (τ2 ω) sin (τ1 ω) p 7 ω + cos (τ1 ω) sin (τ2 ω ) p 6 ω 2 + cos (τ2 ω ) sin (τ1 ω ) p 6 ω 2 − p 3 ω 3 = 0 . (18)

    Then

    m 0 + m 1 ω + m 2 ω 2 + m 3 ω 3 + m 4 ω 4 + m 5 ω 5 + m 6 ω 6 + m 7 ω 7 + ω 8 = 0 , (19) where

    m 0 = p 2 0 − p 2 5 + 2 cos (τ2 ω) cos (τ1 ω) p 0 p 8 − 2 sin (τ1 ω) sin (τ2 ω) p 0 p 8 + p 2 8 , m 1 = 2 cos (τ2 ω) sin (τ1 ω) p 0 p 7 + 2 cos (τ1 ω) sin (τ2 ω) p 0 p 7 − 2 M sin (τ1 ω) p 1 p 8 − 2 cos (τ1 ω) sin (τ2 ω) p 1 p 8 , m 1 = p 2 1 − 2 p 0 p 2 − p 2 4 − 2 cos (τ2 ω) cos (τ1 ω) p 0 p 6 + 2 sin (τ1 ω) sin (τ2 ω) p 0 p 6

    + 2 cos (τ2 ω) cos (τ1 ω) p 1 p 7 − 2 sin (τ1 ω) sin (τ2 ω) p 1 p 7 + p 2 7 − 2 cos (τ2 ω) cos (τ1 ω) p 2 p 8 + 2 sin (τ1 ω) sin (τ2 ω) p 2 p 8 − 2 p 6 p 8 ,

  • Z. Wei, B. Zhu and J. Yang et al. / Applied Mathematics and Computation 347 (2019) 265–281 271

    m 3 = 2 cos (τ2 ω) sin (τ1 ω) p 1 p 6 + 2 cos (τ1 ω) sin (τ2 ω) p 1 p 6 − 2 cos (τ2 ω) sin (τ1 ω) p 2 p 7 − 2 cos (τ1 ω) sin (τ2 ω) p 2 p 7 + 2 cos (τ2 ω) sin (τ1 ω) p 3 p 8 + 2 cos (τ1 ω) sin (τ2 ω) p 3 p 8 ,

    m 4 = 2 p 0 + p 2 2 − 2 p 1 p 3 + 2 cos (τ2 ω) cos (τ1 ω) p 2 p 6 − 2 sin (τ1 ω) sin (τ2 ω) p 2 p 6 + p 2 6 − 2 cos (τ2 ω) cos (τ1 ω) p 3 p 7 + 2 sin (τ1 ω) sin (τ2 ω) p 3 p 7 + 2 cos (τ2 ω) cos (τ1 ω) p 8 − 2 sin (τ1 ω) sin (τ2 ω) p 8 ,

    m 5 = −2 cos (τ2 ω) sin (τ1 ω) p 3 p 6 − 2 cos (τ1 ω) sin (τ2 ω) p 3 p 6 + 2 cos (τ2 ω) sin (τ1 ω) p 7 + 2 cos (τ1 ω) sin (τ2 ω) p 7 , m 6 = −2 p 2 + p 2 3 − 2 cos (τ2 ω) cos (τ1 ω) p 6 + 2 sin (τ1 ω) sin (τ2 ω) p 6 , m 7 = 0 .

    From Eq. (19) , one can know at most eight positive roots ω i (i = 1 , 2 , . . . , N, N ≤ 8) . According to (18) , let

    τ3 (i, j) =

    ⎧ ⎪ ⎨ ⎪ ⎩

    1

    ω i [ arccos (P 3 ) + 2 jπ ] , Q 3 ≥ 0 ,

    1

    ω i [ 2 π − arccos (P 3 ) + 2 jπ ] , Q 3 < 0 ,

    (20)

    where i = 1 , 2 , . . . , N; j = 0 , 1 , . . . and

    P 3 = ˜ P 3

    p 2 5

    + p 2 4 ω 2

    i

    , Q 3 = ˜ Q 3

    p 2 5

    + p 2 4 ω 2

    i

    ,

    ˜ P 3 = − cos (τ1 ω) p 0 p 5 − cos (τ2 ω) p 5 p 8 + ((p 1 p 5 − p 0 p 4 ) sin (τ1 ω) + (p 4 p 8 − p 5 p 7 ) sin (τ2 ω)) w + ((p 2 p 5 − p 1 p 4 ) cos (τ1 ω) + (p 5 p 6 − p 4 p 7 ) cos (τ2 ω)) w 2 + ( sin (τ1 ω) p 2 p 4 − sin (τ1 ω) p 3 p 5 − sin (τ2 ω) p 4 p 6 ) w 3 + (p 3 p 4 − p 5 ) cos (τ1 ω) w 4 − sin (τ1 ω) p 4 w 5 , ˜ Q 3 = sin (τ1 ω) p 0 p 5 − sin (τ2 ω) p 5 p 8 + ((p 1 p 5 − p 0 p 4 ) cos (τ1 ω) + (p 5 p 7 − p 4 p 8 ) cos (τ2 ω)) w + ((p 1 p 4 − p 2 p 5 ) sin (τ1 ω) + (p 5 p 6 − p 4 p 7 ) sin (τ2 ω)) w 2 + ( cos (τ1 ω) p 2 p 4 − cos (τ1 ω) p 3 p 5 + cos (τ2 ω) p 4 p 6 ) w 3 + (p 5 − p 3 p 4 ) sin (τ1 ω) w 4 − cos (τ1 ω) p 4 w 5 .

    We denote τ 0 3

    = min { τ3 (i, j) , i = 1 , 2 , . . . , N; j = 0 , 1 , . . . } . Let λ(τ3 ) = α(τ3 ) + iσ (τ3 ) be the root of Eq. (17) and suppose [d Re (λ)

    dτ3

    ]τ3 = τ 0 3

    � = 0 . (21)

    Thus, the following results will hold with τ 1 > 0, τ 2 > 0, τ 2 > 0.

    Theorem 2.3. Suppose that τ1 ∈ (0 , τ 0 1 ) , τ2 ∈ (0 , τ 0 2 ) . If Eq. (19) has positive roots and (21) are satisfied. all roots of Eq. (17) havenegative real parts for τ3 ∈ [0 , τ 0 3 ) . Moreover, the equilibria E 1, 2 of system (3) are asymptotically stable when τ3 ∈ [0 , τ 0 3 ) . Addi-tionally, system (3) undergoes a Hopf bifurcation at the equilibria E 1, 2 when τ3 = τ 0 3 .

    Remark: When τ1 = τ2 = τ3 = τ > 0 and viscous friction v 1 , 2 = 0 (In fact, it is not possible), numerical results for thespecial case of (3) were considered by Prof. Cook’s work [17] . Here, we will study the effects of different delays and viscous

    friction in system (3) theoretically, which are closer to the actual reality.

    3. Direction of Hopf bifurcations and stability of the bifurcating periodic orbits

    If τ1 < τ0 1 , τ2 < τ

    0 2

    and τ3 = τ 0 3 , results of the Hopf bifurcations at equilibrium E 1 are analyzed by utilizing the centralmanifold theorem [39–43] .

    System (24) can be transformed into a FDE in C ∈ C([ −1 , 0] , R 4 ) as

    ˙ u (t) = L μ(u t ) + f (μ, u t ) , (22)

    where u (t) = (u 1 (t) , u 2 (t) , u 3 (t) , u 4 (t)) T ∈ R 4 , and L μ: C → R 4 , f : R × C → R 4 , u t (θ ) = u (t + θ ) ∈ C are given, respectively, by

    L μ(φ) = (τ 0 3 + k ) Jφ(0) + (τ 0 3 + k ) Hφ(

    − τ∗1

    τ 0 3

    )+ (τ 0 3 + k ) Uφ

    (− τ

    ∗2

    τ 0 3

    )+ (τ 0 3 + k ) T φ(−1) ,

  • 272 Z. Wei, B. Zhu and J. Yang et al. / Applied Mathematics and Computation 347 (2019) 265–281

    where

    J =

    ⎛ ⎜ ⎝

    −k 0 e 2 0 0 −k 0 e 1

    −e 2 0 −v 1 0 0 −e 1 0 −v 2

    ⎞ ⎟ ⎠ , H =

    ⎛ ⎜ ⎜ ⎜ ⎝

    0 0 0 0 ke 2 e 1

    0 0 0

    0 0 0 0 −e 2 0 0 0

    ⎞ ⎟ ⎟ ⎟ ⎠ ,

    U =

    ⎛ ⎜ ⎜ ⎜ ⎝

    0 ke 1 e 2

    0 0

    0 0 0 0 0 0 0 0 0 0 0 0

    ⎞ ⎟ ⎟ ⎟ ⎠ , T =

    ⎛ ⎜ ⎝

    0 0 0 0 0 0 0 0 0 −e 1 0 0 0 0 0 0

    ⎞ ⎟ ⎠ ,

    and

    φ(t) = (φ1 (t) , φ2 (t) , φ3 (t) , φ4 (t)) T ,

    f (μ, u t ) = (μ + τ 0 3 )

    ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝

    φ2

    (− τ

    ∗2

    τ 0 3

    )φ3 (0)

    φ1

    (− τ

    ∗1

    τ 0 3

    )φ4 (0)

    −φ1 (0) φ2 (−1)

    −φ2 (0) φ1 (

    − τ∗1

    τ 0 3

    )

    ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠

    .

    Based on the Riesz representation theorem, there is a 4 × 4 matrix function η( θ , μ) in θ ∈ [ −1 , 0] such that

    L μ(φ) = ∫ 0

    −1 dη(θ, μ) φ(θ ) , for φ ∈ C.

    Now we choose

    η(θ, μ) =

    ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩

    (τ 0 3 + k )(J + H + U + T ) θ = 0 ,

    (τ 0 3 + k )(H + U + T ) θ ∈ [− τ

    ∗1

    τ 0 3

    , 0

    ),

    (τ 0 3 + k )(U + T ) θ ∈ [− τ

    ∗2

    τ 0 3

    , − τ∗1

    τ 0 3

    ),

    (τ 0 3 + k ) T θ ∈ (

    −1 , − τ∗2

    τ 0 3

    ),

    0 θ = −1 . For φ ∈ C([ −1 , 0] , R 4 ) , define

    A (μ) φ =

    ⎧ ⎪ ⎨ ⎪ ⎩

    dφ(θ )

    dθ, θ ∈ [ −1 , 0) , ∫ 0

    −1 dη(ξ , μ) φ(ξ ) , θ = 0 ,

    and

    R (μ) φ = {

    0 , θ ∈ [ −1 , 0) , f (μ, φ) , θ = 0 .

    Furthermore, system (22) can be rewritten in form of an operate equation

    ˙ u (t) = A (μ) u t + R (μ) u t , (23) where u t (θ ) = u (t + θ ) , θ ∈ [ −1 , 0] .

  • Z. Wei, B. Zhu and J. Yang et al. / Applied Mathematics and Computation 347 (2019) 265–281 273

    For ψ ∈ C 1 ([0, 1], ( R 4 ) ∗), we define

    A ∗ψ(s ) =

    ⎧ ⎪ ⎨ ⎪ ⎩

    −dψ(s ) ds

    , s ∈ (0 , 1] , ∫ 0 −1

    dηT (t, 0) ψ(−t) , s = 0 ,

    and a bilinear inner product

    < ψ, φ > = ψ̄ (0) φ(0) −∫ 0

    −1

    ∫ θξ=0

    ψ̄ (ξ − θ ) dη(θ ) φ(ξ ) dξ , (24)

    where η(θ ) = η(θ, 0) . Obviously A ∗ and A (0) are the adjoint operators, and have some eigenvalues. We need to calculatethe eigenvectors of A (0) and A ∗, corresponding to iω 0 τ 0 3 and −iω 0 τ 0 3 , respectively.

    Let q (θ ) = (1 , α, β, γ ) T e iω 0 τ 0 3 be the eigenvectors of A (0). i.e. A (0) q (θ ) = iω 0 τ 0 3 q (θ ) . It is easy to obtain

    α = −e i (τ2 + τ 0 3 ) ω 0 (k v 1 − ω 2 0 + e 2 2 + ikω 0 + i v 1 ω 0 ) e 2

    e 1 (−e iτ 0 3 ω 0 k v 1 − ie iτ 0 3 ω 0 kω 0 + e iτ2 ω 0 e 2 2 ) ,

    β = − (−ie iτ 0 3 ω 0 k − ie iτ2 ω 0 k + ω 0 e iτ2 ω 0 ) e 2

    e iτ0 3 ω 0 k (−i v 1 + ω 0 ) + ie iτ2 ω 0 e 2 2

    ,

    γ = e −iτ1 ω 0 e 2 (e iτ

    0 3 ω 0 k (v 1 + iω 0 ) − e iτ2 ω 0 e 2 2 + e i (τ2 + τ

    0 3 ) ω 0 e iτ1 ω 0 (k v 1 − ω 2 0 + e 2 2 + ikω 0 + i v 1 ω 0 ))

    (−i v 2 + ω 0 )(e iτ 0 3 ω 0 k (−i v 1 + ω 0 ) + ie iτ2 ω 0 e 2 2 ) .

    Similarly, we can let q ∗(s ) = D (1 , α∗, β∗, γ ∗) T e isω 0 τ 0 3 be the eigenvector of A ∗ corresponding to −iω 0 , and have

    α∗ = −e iτ1 ω 0 (i v 2 + ω 0 )(−k v 1 + ikω 0 + i v 1 ω 0 + ω 2 0 − e 2 2 ) e 1

    (i v 1 + ω 0 )(k v 2 − ikω 0 − e 2 1 ) e 2 ,

    β∗ = e 2 v 1 − iω 0

    ,

    γ ∗ = e iτ1 ω 0 e 2 1 (−k v 1 + ikω 0 + i v 1 ω 0 + ω 2 0 − e 2 2 )

    (i v 1 + ω 0 )(ik v 2 + kω 0 − ie 2 1 ) e 2 .

    Here D is a constant making < q ∗(s ) , q (θ ) > = 1 . By (24) , we get

    < q ∗(s ) , q (θ ) > = q̄ ∗(0) q (0) −∫ 0

    −1

    ∫ θξ=0

    q̄ ∗(ξ − θ ) dη(θ ) q (ξ ) dξ

    = q̄ ∗(0) q (0) −∫ 0

    −1

    ∫ θξ=0

    D̄ (1 , ᾱ∗, β̄∗, γ̄ ∗) e −i (ξ−θ ) σh 0 dη(θ )(1 , α, β, γ ) T e iξω 0 τ0 3 dξ

    = q̄ ∗(0) q (0) − q̄ ∗(0) ∫ 0

    −1 θe iθω 0 τ

    0 3 dη(θ ) q (0)

    = q̄ ∗(0) q (0) + q̄ ∗(0)(τ ∗1 He −iω 0 τ∗1 + τ ∗2 Ue −iω 0 τ

    ∗2 + τ 0 3 T e −iω 0 τ

    0 3 ) q (0)

    = D̄ (

    1 + αᾱ∗ + ββ̄∗ + γ γ̄ ∗ − αβ̄∗e −iτ 0 3 ω 0 τ 0 3 e 1 − γ̄ ∗e −iτ1 ω 0 τ1 e 2 (25)

    + ᾱ∗e −iτ1 ω 0 kτ1 e 1

    e 2 + αe

    −iτ2 ω 0 kτ2 e 2 e 1

    ). (26)

    Therefore, we let D have the following form

    D = 1 1 + ᾱα∗ + β̄β∗ + γ̄ γ ∗ − ᾱβ∗e iτ 0 3 ω 0 τ 0

    3 e 1 − γ ∗e iτ1 ω 0 τ1 e 2 + α∗e

    iτ1 ω 0 kτ1 e 1 e 2

    + ᾱe iτ2 ω 0 kτ2 e 2 e 1

    .

    The coordinate will be computed to describe the center manifold C 0 at μ = 0 by using the same notation as shown in[39–42] . Let u t be the solution of (23) when μ = 0 . Define

    z(t) = < q ∗, u t >, W (t, θ ) = u t (θ ) − 2 Re { z(t) q (θ ) } . (27)On manifold C 0 , it can be obtained:

    W (t, θ ) = W (z(t) , ̄z (t) , θ ) = W 20 (θ ) z 2

    2 + W 11 (θ ) z ̄z + W 02 (θ ) z̄

    2

    2 + W 0 3 (θ )

    z 3

    6 + · · ·,

  • 274 Z. Wei, B. Zhu and J. Yang et al. / Applied Mathematics and Computation 347 (2019) 265–281

    where z and z̄ are local coordinates for the manifold C 0 in the directions of q ∗ and q̄ ∗. Note that W is real if u t is real, so we

    deal with real solutions only. For solution u t ∈ C 0 , since μ = 0 , we have

    ˙ z (t) = iσk τ 0 3 z+ < q ∗(θ ) , f (0 , W (z(t) , ̄z (t) , θ ) + 2 Re { z(t) q (θ ) } ) > = iω 0 τ 0 3 z + q ∗(0) (( f (0 , W (z(t) , ̄z (t) , 0)) + 2 Re { z(t) q (0) } ) .

    Let f (0 , W (z(t) , ̄z (t) , 0) + 2 Re { z(t) q (0) } ) = f 0 (z, ̄z ) , then ˙ z (t) = iσh 0 z + q ∗(0) f 0 (z, ̄z ) ,

    and

    ˙ z (t) = iσh 0 z + g(z, ̄z ) , where

    g(z, ̄z ) = g 20 z 2

    2 + g 11 z ̄z + g 02 z̄

    2

    2 + g 21 z

    2 z̄

    2 + · · ·. (28)

    Since

    q (θ ) = (1 , α, β, γ ) T e iω 0 τ 0 3

    and

    x t (θ ) = (u 1 t (θ ) , u 2 t (θ ) , u 3 t (θ ) , u 4 t (θ )) = W (t, θ ) + z(t) q (θ ) + z̄ (t) ̄q (θ ) . From (28) ,

    g(z, ̄z ) = q ∗(0) f 0 (z, ̄z )

    = D̄ (1 , α∗, β∗, γ ∗) τ 0 3

    ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝

    φ2

    (− τ

    ∗2

    τ 0 3

    )φ3 (0)

    φ1

    (− τ

    ∗1

    τ 0 3

    )φ4 (0)

    −φ1 (0) φ2 (−1)

    −φ2 (0) φ1 (

    − τ∗1

    τ 0 3

    )

    ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠

    = D̄ τ 0 3 {φ2

    (− τ

    ∗2

    τ 0 3

    )φ3 (0) + α∗φ1

    (− τ

    ∗1

    τ 0 3

    )φ4 (0) − β∗φ1 (0) φ2 (−1) − γ ∗φ2 (0) φ1

    (− τ

    ∗1

    τ 0 3

    )}.

    Comparing with the coefficients of (28) , we can easily to find

    g 20 = 2 ̄D τ 0 3 (αβe −iω 0 τ∗2 + ᾱ∗γ e −iω 0 τ ∗1 − β̄∗αe −iω 0 τ 0 3 − γ̄ ∗αe −iω 0 τ ∗1 ) ,

    g 11 = D̄ τ 0 3 ( ̄αβe iω 0 τ∗2 + ᾱ∗γ e iω 0 τ ∗1 − ᾱβ̄∗e iω 0 τ 0 3 − γ̄ αe iω 0 τ ∗1 + β̄αe −iω 0 τ ∗2 + ᾱ∗γ̄ e −iω 0 τ ∗1 − β̄∗αe −iω 0 τ 0 3 − γ ∗ᾱe −iω 0 τ ∗1 ) ,

    g 02 = 2 ̄D τ 0 3 ( ̄βᾱe iω 0 τ∗2 + ᾱ∗γ̄ e −iω 0 τ ∗1 − β̄∗ᾱe iω 0 τ 0 3 − γ̄ ∗ᾱe iω 0 τ ∗1 ) ,

    g 21 = 2 ̄D τ 0 3 {

    1

    2 W (3)

    20 (0) ̄αe iω 0 τ

    ∗2 + 1

    2 W (2)

    20

    (− τ

    ∗2

    τ 0 3

    )+ W (3)

    11 (0) αe −iω 0 τ

    ∗2 + βW (2)

    11

    (− τ

    ∗2

    τ 0 3

    )

    + ᾱ∗(

    1

    2 W (4)

    20 (0) e iω 0 τ

    ∗1 + 1

    2 γ̄W (1)

    20

    (− τ

    ∗1

    τ 0 3

    ))+ W (4)

    11 (0) e −iω 0 τ

    ∗1 + γW (1)

    11

    (− τ

    ∗1

    τ 0 3

    )

    − β̄∗(

    1

    2 W (1)

    20 (0) ̄αe iω 0 τ

    0 3 + 1

    2 W (2)

    20 (−1) + W (1)

    11 (0) e −iω 0 τ

    0 3 + W (2)

    11 (−1)

    )−γ ∗

    (1

    2 W (2)

    20 (0) e iω 0 τ

    ∗1 + 1

    2 ᾱW (1)

    20 (−1) + W (2)

    11 (0) e −iω 0 τ

    0 3 + αW (1)

    11 (−1)

    )}. (29)

    Therefore, W 20 ( θ ) and W 11 ( θ ) must be worked out. From (23) and (27) , we have

    ˙ W = ˙ u t − ˙ z q − ˙ z̄ ̄q = {

    A (0) W − 2 Re { ̄q ∗(0) f 0 q (θ ) } , θ ∈ [ −1 , 0) A (0) W − 2 Re { ̄q ∗(0) f 0 q (θ ) } + f 0 , θ = 0 . (30)

  • Z. Wei, B. Zhu and J. Yang et al. / Applied Mathematics and Computation 347 (2019) 265–281 275

    Let

    H(z, ̄z , θ ) = {

    2 Re { ̄q ∗(0) f 0 q (θ ) } , θ ∈ [ −1 , 0) 2 Re { ̄q ∗(0) f 0 q (θ ) } + f 0 , θ = 0 .

    We rewrite (30)

    ˙ W = A (0) W + H(z, ̄z , θ ) , where

    H(z, ̄z , θ ) = H 20 (θ ) z 2

    2 + H 11 (θ ) z ̄z + H 02 (θ ) z̄

    2

    2 + · · ·. (31)

    From (30) and (31) and the definition of W , expanding the series and comparing the coefficients, we use series expansion

    and compare the coefficient to obtain the following equations

    (A (0) − 2 iω 0 ) W 20 (θ ) = −H 20 (θ ) , A (0) W 11 (θ ) = −H 11 (θ ) . (32)From (30) , we know that for θ ∈ [ −1 , 0) ,

    H(z, ̄z , θ ) = −q̄ ∗(0) f 0 q (θ ) − q ∗(0) ̄f 0 ̄q (θ ) = −g(z, ̄z ) q (θ ) − ḡ (z, ̄z ) ̄q (θ ) . Comparing with the coefficients of (31) ,

    H 20 (θ ) = −g 20 q (θ ) − ḡ 02 ̄q (θ ) , H 11 (θ ) = −g 11 q (θ ) − ḡ 11 ̄q (θ ) . (33)

    From (32) and (33) and the definition of A (0),

    ˙ W 20 = 2 iω 0 W 20 (θ ) + g 20 q (θ ) + ḡ 02 ̄q (θ ) . Substituting q (θ ) = (1 , α, β) T e iθσh 0 into the last equation, one can have

    W 20 (θ ) = ig 20 ω 0

    q (0) e iθτ0 3 ω 0 + i ̄g 02

    3 ω 0 q̄ (0) e −iθτ

    0 3 ω 0 + G 1 e 2 iθτ 0 3 ω 0 ,

    and similarly

    W 11 (θ ) = − ig 11 ω 0

    q (0) e iθτ0 3 ω 0 + i ̄g 11

    ω 0 q̄ (0) e −iθτ

    0 3 ω 0 + G 2 , (34)

    where

    G 1 = (G (1) 1 , G (2) 1 , G (3) 1 , G (4) 1 ) T , G 2 = (G (1) 2 , G (2) 2 , G (3) 2 , G (4) 2 ) T .

    Next we will find the values of G 1 and G 2 . For (32) , we have

    ˙ W 20 (θ ) = ∫ 0

    −1 dη(θ ) W 20 (θ ) = 2 iθω 0 W 20 (0) − H 20 (0) , (35)

    and

    ˙ W 11 (θ ) = ∫ 0

    −1 dη(θ ) W 11 (θ ) = −H 11 (0) , (36)

    where η(θ ) = η(θ, 0) . From Eq. (30) , we have H 20 (0) = −g 20 q (0) − ḡ 02 ̄q (0) + 2(αβe −iω 0 τ ∗2 , γ e −iω 0 τ ∗1 , −αe −iω 0 τ 0 3 , −αe −iω 0 τ ∗1 ) T , (37)

    and

    H 11 (0) = −g 11 q (0) − ḡ 11 ̄q (0) + ( ̄αβe iω 0 τ ∗2 + αβ̄e −iω 0 τ ∗2 , γ e iω 0 τ ∗1 + γ̄ e −iω 0 τ ∗1 , −ᾱe iω 0 τ 0 3 − αe −iω 0 τ 0 3 , −αe iω 0 τ ∗1 − ᾱe −iω 0 τ ∗1 ) T . (38)

    i ω 0 and q (0) are the eigenvalue and corresponding eigenvector of A (0) respectively. Thus we obtain (iω 0 τ

    0 3 −

    ∫ 0 −1

    e iθω 0 τ0 3 dη(θ )

    )q (0) = 0 , (

    −iω 0 τ 0 3 −∫ 0

    −1 e −iθω 0 τ

    0 3 dη(θ )

    )q̄ (0) = 0 . (39)

  • 276 Z. Wei, B. Zhu and J. Yang et al. / Applied Mathematics and Computation 347 (2019) 265–281

    When μ = 0 , we have ∫ 0 −1

    e −iθω 0 τ0 3 dη(θ ) = τ 0 3 (J + He −2 iθω 0 τ1 + Ue −2 iθω 0 τ2 + T e −2 iθω 0 τ

    0 3 ) .

    Substituting Eqs. (34) and (37) into Eq. (35) , we obtain (2 iω 0 τ

    0 3 I −

    ∫ 0 −1

    e 2 iθω 0 τ0 3 dη(θ )

    )G 1 = 2 τ 0 3 (αβe −iω 0 τ

    ∗2 , γ e −iω 0 τ

    ∗1 , −αe −iω 0 τ 0 3 , −αe −iω 0 τ ∗1 ) T . (40)

    That is ⎛ ⎜ ⎜ ⎜ ⎜ ⎝

    2 iω 0 + k −ke 1 e 2

    e −2 iω 0 τ∗2 −e 2 0

    −ke 2 e 1

    e −2 iω 0 τ∗1 2 iω 0 + k 0 −e 1

    e 2 e 1 e −2 iω 0 2 iω 0 + v 1 0

    e 2 e −2 iω 0 τ ∗1 e 1 0 v 2 + 2 iω 0

    ⎞ ⎟ ⎟ ⎟ ⎟ ⎠ G 1 = 2

    ⎛ ⎜ ⎝

    αβe −iω 0 τ∗2

    γ e −iω 0 τ∗1

    −αe −iω 0 τ 0 3 −αe −iω 0 τ ∗1

    ⎞ ⎟ ⎠ .

    It follows that

    G (1) 1

    = �11 �1

    , G (2) 1

    = �12 �1

    , G (3) 1

    = �13 �1

    , G (4) 1

    = �14 �1

    ,

    where

    �11 =

    ∣∣∣∣∣∣∣∣2 αβe −iω 0 τ

    ∗2 −ke 1

    e 2 e −2 iω 0 τ

    ∗2 −e 2 0

    2 γ e −iω 0 τ∗1 2 iω 0 + k 0 −e 1

    −2 αe −iω 0 e 1 e −2 iω 0 2 iω 0 + v 1 0 −2 αe −iω 0 τ ∗1 e 1 0 v 2 + 2 iω 0

    ∣∣∣∣∣∣∣∣,

    �12 =

    ∣∣∣∣∣∣∣∣2 iω 0 + k 2 αβe −iω 0 τ ∗2 −e 2 0

    −ke 2 e 1

    e −2 iω 0 τ∗1 2 γ e −iω 0 τ

    ∗1 0 −e 1

    e 2 −2 αe −iω 0 2 iω 0 + v 1 0 e 2 e

    −2 iω 0 τ ∗1 −2 αe −iω 0 τ ∗1 0 v 2 + 2 iω 0

    ∣∣∣∣∣∣∣∣,

    �13 =

    ∣∣∣∣∣∣∣∣∣∣

    2 iω 0 + k −ke 1 e 2

    e −2 iω 0 τ∗2 2 αβe −iω 0 τ

    ∗2 0

    −ke 2 e 1

    e −2 iω 0 τ∗1 2 iω 0 + k 2 γ e −iω 0 τ ∗1 −e 1

    e 2 e 1 e −2 iω 0 −2 αe −iω 0 0

    e 2 e −2 iω 0 τ ∗1 e 1 −2 αe −iω 0 τ ∗1 v 2 + 2 iω 0

    ∣∣∣∣∣∣∣∣∣∣,

    �14 =

    ∣∣∣∣∣∣∣∣∣∣

    2 iω 0 + k −ke 1 e 2

    e −2 iω 0 τ∗2 −e 2 2 αβe −iω 0 τ ∗2

    −ke 2 e 1

    e −2 iω 0 τ∗1 2 iω 0 + k 0 2 γ e −iω 0 τ ∗1

    e 2 e 1 e −2 iω 0 2 iω 0 + v 1 −2 αe −iω 0

    e 2 e −2 iω 0 τ ∗1 e 1 0 −2 αe −iω 0 τ ∗1

    ∣∣∣∣∣∣∣∣∣∣,

    �1 =

    ∣∣∣∣∣∣∣∣∣∣

    2 iω 0 τ0 3 + k −

    ke 1 e 2

    e −2 iω 0 τ∗2 −e 2 0

    −ke 2 e 1

    e −2 iω 0 τ∗1 2 iω 0 τ

    0 3 + k 0 −e 1

    e 2 e 1 e −2 iω 0 τ 0 3 2 iω 0 τ 0 3 + v 1 0

    e 2 e −2 iω 0 τ ∗1 e 1 0 v 2

    ∣∣∣∣∣∣∣∣∣∣.

    Similarly, substituting Eqs. (34) and (38) into Eq. (36) , we have ⎛ ⎜ ⎜ ⎜ ⎜ ⎝

    k −ke 1 e 2

    −e 2 0

    −ke 2 e 1

    k 0 −e 1 e 2 e 1 v 1 0 e 2 e 1 0 v 2

    ⎞ ⎟ ⎟ ⎟ ⎟ ⎠ G 2 =

    ⎛ ⎜ ⎝

    ᾱβe iω 0 τ∗2 + αβ̄e −iω 0 τ ∗2

    γ e iω 0 τ∗1 + γ̄ e −iω 0 τ ∗1

    −ᾱe iω 0 τ 0 3 − αe −iω 0 τ 0 3 −αe iω 0 τ ∗1 − ᾱe −iω 0 τ ∗1

    ⎞ ⎟ ⎠ .

    It follows that

    G (1) 2

    = �21 �2

    , G (2) 2

    = �22 �2

    , G (3) 2

    = �23 �2

    , G (4) 2

    = �24 �2

    ,

  • Z. Wei, B. Zhu and J. Yang et al. / Applied Mathematics and Computation 347 (2019) 265–281 277

    where

    �21 =

    ∣∣∣∣∣∣∣∣ᾱβe iω 0 τ

    ∗2 + αβ̄e −iω 0 τ ∗2 −ke 1

    e 2 −e 2 0

    γ e iω 0 τ∗1 + γ̄ e −iω 0 τ ∗1 k 0 −e 1

    −ᾱe iω 0 τ 0 3 − αe −iω 0 τ 0 3 e 1 v 1 0 −αe iω 0 τ ∗1 − ᾱe −iω 0 τ ∗1 e 1 0 v 2

    ∣∣∣∣∣∣∣∣,

    �22 =

    ∣∣∣∣∣∣∣∣∣

    k ᾱβe iω 0 τ∗2 + αβ̄e −iω 0 τ ∗2 −e 2 0

    −ke 2 e 1

    γ e iω 0 τ∗1 + γ̄ e −iω 0 τ ∗1 0 e 1

    e 2 −ᾱe iω 0 τ 0 3 − αe −iω 0 τ 0 3 v 1 0 e 2 −αe iω 0 τ ∗1 − ᾱe −iω 0 τ ∗1 0 v 2

    ∣∣∣∣∣∣∣∣∣,

    �23 =

    ∣∣∣∣∣∣∣∣∣∣

    k −ke 1 e 2

    ᾱβe iω 0 τ∗2 + αβ̄e −iω 0 τ ∗2 0

    −ke 2 e 1

    k γ e iω 0 τ∗1 + γ̄ e −iω 0 τ ∗1 −e 1

    e 2 e 1 −ᾱe iω 0 τ 0 3 − αe −iω 0 τ 0 3 0 e 2 e 1 −αe iω 0 τ ∗1 − ᾱe −iω 0 τ ∗1 v 2

    ∣∣∣∣∣∣∣∣∣∣,

    �24 =

    ∣∣∣∣∣∣∣∣∣∣

    k −ke 1 e 2

    −e 2 ᾱβe iω 0 τ ∗2 + αβ̄e −iω 0 τ ∗2

    −ke 2 e 1

    k 0 γ e iω 0 τ∗1 + γ̄ e −iω 0 τ ∗1

    e 2 e 1 v 1 −ᾱe iω 0 τ 0 3 − αe −iω 0 τ 0 3 e 2 e 1 0 −αe iω 0 τ ∗1 − ᾱe −iω 0 τ ∗1

    ∣∣∣∣∣∣∣∣∣∣,

    �2 =

    ∣∣∣∣∣∣∣∣∣∣

    k −ke 1 e 2

    −e 2 0

    −ke 2 e 1

    k 0 −e 1 e 2 e 1 v 1 0 e 2 e 1 0 v 2

    ∣∣∣∣∣∣∣∣∣∣.

    Following the basic work in [39,42] , we can know the bifurcation direction and the stability of Hopf bifurcation from the

    following parameters:

    C 1 (0) = i 2 ω 0

    (g 20 g 11 − 2 | g 11 | 2 − 1

    3 | g 02 | 2

    )+ g 21

    2 , (41)

    μ2 = −Re { C 1 (0) } Re { dλ

    dτ 0 3

    } , (41)

    T 2 = −Im C 1 (0) + μ2 Im { dλ

    dτ 0 3

    } σh 0

    , (41)

    β2 = 2 Re { C 1 (0) } . (41)

    Theorem 3.1. In (41) , we choose τ1 ∈ (0 , τ 0 1 ) and τ2 ∈ (0 , τ 0 2 ) , then we have (1) If μ2 > 0( μ2 < 0), then the supercritical(subcritical) Hopf bifurcation exists and the bifurcating periodic solutions exist for

    τ3 > τ0 3 (τ3 < τ

    0 3 ) ;

    (2) The bifurcating periodic solutions are orbitally stable (unstable) if β2 < 0( β2 > 0), and the period of the bifurcating periodicsolutions increases (decreases) if T 2 > 0( T 2 < 0) .

    4. Bifurcating periodic orbits and chaos

    In the previous section, we dealt with existence of Hopf bifurcation of system (3) in detail. In this section, we choose a set

    of parameters k = 1 , v 1 = 0 . 004 , v 2 = 0 . 002 in Section 2 , and give numerical simulations, which will support our analyticalresults in Section 3 .

  • 278 Z. Wei, B. Zhu and J. Yang et al. / Applied Mathematics and Computation 347 (2019) 265–281

    Fig. 4. When τ1 , 3 = 0 , Hopf bifurcation for system (3) occurs at τ2 = τ 0 2 . = 3 . 77202 . Stable periodic orbit could be found for τ2 = 4 > τ 0 2

    . = 3 . 77202 and initial conditions (1.2, 1.5, 0.5, 1.4): (a) Time series for t ∈ [0, 350]; (b) Time series for t ∈ [120 0, 150 0].

    4.1. Numerical simulations about Hopf bifurcation

    When τ1 = τ3 = 0 , we choose τ 2 as a parameter. Then from Eq. (20) , we have N = 2 and ω 1 = 1 . 4646 , ω 2 = 1 . 5507 .Furthermore, by direct computation,

    τ2 (1 , j) 4 . 25851 + 4 . 28997 j, τ2 (2 , j) ≈ 3 . 77202 + 4 . 05172 j, where j = 0 , 1 , 2 , . . . Therefore, τ 0

    2 ≈ 3 . 77202 . Moreover, [

    d Re (λ)

    dτ2

    ]−1 τ2 = τ 0 2 ,τ1 , 3 =0

    = 0 . 1606 > 0 ,

    By the Theorem 2.1 , equilibrium E 1 is asymptotically stable for τ2 ∈ (0 , τ 0 2 ) . When τ 2 exceeds the critical value τ 0 2 , E 1 losesits stability and Hopf bifurcation occurs. when τ2 = 4 > τ 0 2 and initial conditions (1.2, 1.5, 0.5, 1.4), which are shown inFig. 4 (a) and (b). Bifurcating periodic solution is stable because E 1 is unstable in system (3) with single delay τ 2 .

    When τ2 = 0 . 02 < τ 0 2 , τ3 = 0 , we choose τ 1 as a parameter. Then from Eq. (20) , we have N = 2 and ω 1 = 1 . 4322 , ω 2 =1 . 5782 . By direct computation,

    τ1 (1 , j) 0 . 0695367 + 4 . 38706 j, τ1 (2 , j) ≈ 3 . 60062 + 3 . 98115 j, where j = 0 , 1 , 2 , . . . Therefore, τ 0

    1 ≈ 0 . 0695367 . Moreover, [

    d Re (λ)

    dτ1

    ]−1 τ1 = τ 0 1 ,τ2 =0 . 02 ,τ3 =0

    = 0 . 2497 > 0 ,

    By the Theorem 2.2 , equilibrium E 1 is asymptotically stable for τ1 ∈ (0 , τ 0 1 ) . When τ 1 exceeds the critical value τ 0 2 , E 1 losesits stability and Hopf bifurcation occurs. When τ1 = 0 . 1 > τ 0 1 and initial conditions are (0.9, 0.9, 0.65, 1.2), the correspondingdynamics could be depicted in Fig. 5 (a) and (d). Periodic solution from bifurcating is stable because E 1 is unstable in system

    (3) with two delays τ 1 and τ 2 . From above results, it shows that τ 0

    1 = 0 . 0695367 , τ 0

    2 = 3 . 77202 and choose τ 3 as a parameter. Then from Eq. (20) , we

    have N = 2 and τ3 = 0 . 0085 , ω 1 = 0 . 6100 , ω 2 = 1 . 4472 . Furthermore by direct computation, τ3 (1 , j) 7 . 0015 + 10 . 2999 j, τ3 (2 , j) ≈ 0 . 008476 + 4 . 34169 j,

    where j = 0 , 1 , 2 , . . . Therefore, τ 0 3

    ≈ 0 . 0085 . Moreover, [d Re (λ)

    dτ3

    ]−1 τ1 =0 . 001 ,τ2 =0 . 02 ,τ3 = τ 0 3

    = 0 . 1606 > 0 ,

    By the Theorem 2.3 , equilibrium E 1 is asymptotically stable for τ1 = 0 . 001 , τ2 = 0 . 02 and τ3 ∈ [0 , τ 0 3 ) ( Fig. 3 (a)). When τpasses through the critical value τ 0

    2 , E 1 loses its stability and Hopf bifurcation occurs. According to the algorithms derived

    in (41) and Theorem 3.1 , it follows that C 1 (0) = −0 . 0043 − 0 . 0185 i, μ2 = 0 . 0139 , β2 = −0 . 0086 . Since μ2 > 0 and β2 < 0, theHopf bifurcation is supcritical and the direction of the Hopf bifurcation is τ3 > τ

    0 3

    . = 0 . 0085 and these bifurcating periodicsolutions around the unstable E ( Fig. 6 ).

    1

  • Z. Wei, B. Zhu and J. Yang et al. / Applied Mathematics and Computation 347 (2019) 265–281 279

    Fig. 5. When τ2 = 0 . 02 , τ3 = 0 , Hopf bifurcation for system (3) occurs at τ1 = τ 0 1 . = 0 . 0695367 . Stable periodic orbit could be found for τ1 = 0 . 1 > τ 0 1

    . = 0 . 0695367 and initial conditions (0.9, 0.9, 0.65, 1.2): (a) Phase portraits in x 1 − x 2 − x 3 space; (b) Time series for t ∈ [0, 600]; (c) Phase portraits on x 3 − x 2 plane; (d) Phase portraits on x 1 − x 4 plane.

    Fig. 6. When τ1 = 0 . 001 , τ2 = 0 . 02 , Hopf bifurcation for system (3) occurs at τ3 = τ 0 3 . = 0 . 0085 . Stable periodic orbit could be found for τ3 = 0 . 04 > τ 0 3 and

    initial conditions (0.9, 0.9, 0.65, 1.2): (a) Phase portraits in x 1 − x 2 − x 3 space; (b) Time series for t ∈ [0, 1200].

    4.2. Forming mechanism of chaotic attractors

    Choosing these parameter values k = 1 , v 1 = 0 . 004 , v 2 = 0 . 002 , delays τ1 = 0 . 001 , τ2 = 0 . 02 , and initial conditions (0.9,0.9, 0.65, 1.2), we have the bifurcation value τ3 = τ 0 3 = 0 . 008476 , and the system (3) undergoes a Hopf bifurcation whenthe delay parameter τ 3 passes τ3 = τ 0 3 . Furthermore, to better characterize the effect of τ 3 for dynamic behavior of thesystem (3) , we take τ = 0 . 15 in Fig. 7 (a) and τ = 0 . 18 in Fig. 7 (b). It confirms that when the parameter τ stays aloof from

    3 3 3

  • 280 Z. Wei, B. Zhu and J. Yang et al. / Applied Mathematics and Computation 347 (2019) 265–281

    Fig. 7. Phase diagrams for system (3) with initial conditions (0.9, 0.9, 0.65, 1.2) and different τ 3 (Omitting starting points): (a) Period-2 orbit for τ3 = 0 . 15 ; (b) Period-4 orbit for τ3 = 0 . 18 .

    Fig. 8. Period doubling bifurcation occurs from the limit cycles that arose in the Hopf bifurcation. Bifurcation diagram of system (3) with initial conditions

    (0.9, 0.9, 0.65, 1.2).

    the critical value τ3 = τ 0 3 , period doubling bifurcation occurs from the limit cycles that arose in the Hopf bifurcation (seeFig. 8 ). Finally, a chaotic attractor occurs in Fig. 2 . This is one of the classic mechanisms through which system (3) enters

    into chaotic region. Observe that it begins with the generation of the limit cycles in the Hopf bifurcation at the equilibrium

    E 1 .

    5. Conclusion

    In this paper, the conditions have been obtained when Hopf bifurcation occurs. The stability of equilibrium is considered

    and analyzed for two disc dynamos with viscous friction and multiple time delays. By using the center manifold method

    and normal form theory, we also give some properties about Hopf bifurcation and the stability of the bifurcating periodic

    solutions. Our theoretical results show that chaos of delayed disc dynamos with viscous friction can be suppressed by a

    certain range of delays. Further, the periodic orbits and chaos attractor will appear when delays span a certain values.

    Disk dynamo models represent old and interesting topic in field of geomagnetism. Complex dynamical behaviors in ge-

    omagnetism need to continue to be studied in the sense of frictions and time delays. More profound discussions and good

    results will be provided in the forthcoming study.

    Acknowledgments

    This work was supported by the Natural Science Foundation of China (Grant no’s. 11772306 , 11705122 ), the Scientific

    Research Program of Hubei Provincial Department of Education (Grant no. B2017599), and by the Slovenian Research Agency

    (Grant no’s J1-7009 , J4-9302 , J1-9112 and P5-0027 )

    https://doi.org/10.13039/501100001809https://doi.org/10.13039/501100004329

  • Z. Wei, B. Zhu and J. Yang et al. / Applied Mathematics and Computation 347 (2019) 265–281 281

    References

    [1] I. Fister Jr. , M. Perc , S.M. Kamal , I. Fister , A review of chaos-based firefly algorithms: perspectives and research challenges, Appl. Math. Comput. 252

    (2015) 155–165 .

    [2] F. Nazarimehr , S. Jafari , S.M.R.H. Golpayegani , M. Perc , J.C. Sprott , Predicting tipping points of dynamical systems during a period-doubling route tochaos, Chaos 28 (2018) 073102 .

    [3] J.M. Ginoux , H. Ruskeepää, M. Perc , R. Naeck , V.D. Costanzo , M. Bouchouicha , F. Fnaiech , M. Sayadi , T. Hamdi , Is type 1 diabetes a chaotic phenomenon?Chaos Solitons Fractals 111 (2018) 198–205 .

    [4] Z. Levnajic , I. Mezic , Ergodic theory and visualization. II. Fourier mesochronic plots visualize (quasi) periodic sets, Chaos 25 (2015) 053105 . [5] C.B. Li , J.C. Sprott , How to bridge attractors and repellors, Int. J. Bifurc. Chaos 27 (2017) 1750149 .

    [6] H.K. Moffatt , A self consistent treatment of simple dynamo systems, Geophys. Astrophys. Fluid Dyn. 14 (1979) 147–166 .

    [7] M. Moroz , R. Hide , A. M. Soward , On self-exciting coupled Faraday disk homopolar dynamos driving series motors, Physica D 117 (1998) 128–144 . [8] M. Moroz , Unstable periodic orbits in a four-dimensional Faraday disk dynamo, Geophys. Astrophys. Fluid. Dyn. 105 (2011) 273–286 .

    [9] L. Jaume , C. V , Darboux integrability and algebraic invariant surfaces for the Rikitake system, J. Math. Phys. 49 (2008) 032702 . [10] R.A. Tudoran , On asymptotically stabilizing the Rikitake two-disk dynamo dynamics, Nonlinear Anal. Real World Appl. 12 (2011) 2505–2510 .

    [11] L. Cristian , T. B , A Rikitake type system with quadratic control, Int. J. Bifurc. Chaos 22 (2012) 1250274 . [12] B. Tudor , L. Cristian , A Rikitake type system with one control, Discret. Contin. Dyn. Syst. Ser.B 18 (2013) 1755–1776 .

    [13] V. Vembarasan , P. Balasubramaniam , Chaotic synchronization of Rikitake system based on T-S fuzzy control techniques, Nonlinear Dyn. 74 (2013)

    31–44 . [14] Y.Y. Hou , Design and implementation of EP-based PID controller for chaos synchronization of Rikitake circuit systems, ISA Transactions 70 (2017)

    260–268 . [15] Z.C. Wei , K. Rajagopal , W. Zhang , S.T. Kingni , A. Akgül , Synchronisation, electronic circuit implementation, and fractional-order analysis of 5D ordinary

    differential equations with hidden hyperchaotic attractors, Pramana J. Phys. 90 (2018) 50 . [16] E. Bullard , The stability of a homopolar dynamo, Math. Proc. Camb. Philos. Soc. 51 (1955) 744–760 .

    [17] A.E. Cook , Two disc dynamos with viscous friction and time delay, Proc. Camb. Philos. Soc. 17 (1972) 135–153 . [18] A.E. Cook , P.H. Roberts , The Rikitake two-disk dynamo system, Proc. Camb. Philos. Soc. 68 (1970) 547–569 .

    [19] S.V. Ershov , G.G. Malinetskii , A .A . Ruzmaikin , A generalized two-disk dynamo model, Geophys. Astrophys. Fluid Dyn. 47 (1989) 251–277 .

    [20] R. Hide , Structural instability of the Rikitake disk dynamo, Geophys. Res. Lett. 22 (1995) 1057–1059 . [21] E. Knobloch , Chaos in the segmented disc dynamo, Phys. Lett. A 82 (1981) 439–440 .

    [22] M.T. Xu , Impact of nonlinearity on a homopolar oscillating-disc dynamo, Phys. Lett. A 382 (2018) 601–607 . [23] G.A. Leonov , N.V. Kuznetsov , V.I. Vagaitsev , Localization of hidden Chua’s attractors, Phys. Lett. A 375 (2011) 2230–2233 .

    [24] G.A. Leonov , N.V. Kuznetsov , Hidden attractors in dynamical systems: from hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman problemsto hidden chaotic attractor in Chua circuits, Int. J. Bifurc. Chaos 23 (2013) 1330 0 02 .

    [25] G.A. Leonov , N.V. Kuznetsov , V.I. Vagaitsev , Hidden attractor in smooth Chua systems, Physica D 241 (2012) 1482–1486 .

    [26] D. Dudkowski , A. Prasad , T. Kapitaniak , Perpetual points and hidden attractors in dynamical systems, Phys. Lett. A 379 (2015) 2591–2596 . [27] D. Dudkowski , A. Prasad , T. Kapitaniak , Describing chaotic attractors: regular and perpetual points, Chaos 28 (2018) 033604 .

    [28] M. Perc , Visualizing the attraction of strange attractors, Eur. J. Phys. 26 (2005) 579–587 . [29] P.H.O. Silva , L.G. Nardo , S.A.M. Martins , E.G. Nepomuceno , M. Perc , Graphical interface as a teaching aid for nonlinear dynamical systems, Eur. J. Phys.

    39 (2018) 065105 . [30] Y.J. Liu , Q.G. Yang , Dynamics of a new Lorenz-like chaotic system, Nonlinear Anal. Real World Appl. 11 (2010) 2563–2572 .

    [31] C.B. Li , J.C. Sprott , An infinite 3-D quasiperiodic lattice of chaotic attractors, Phys. Lett. A 382 (2018) 581–587 .

    [32] C.B. Li , J.C. Sprott , T. Kapitaniak , T.A. Lu , Infinite lattice of hyperchaotic strange attractors, Chaos Solitons Fractals 109 (2018) 76–82 . [33] Z.C. Wei , W. Zhang , Z. Wang , M.H. Yao , Hidden attractors and dynamical behaviors in an extended Rikitake system, Int. J. Bifurc. Chaos 25 (2015)

    1550028 . [34] P. Muthukumar , P. Balasubramaniam , K. Ratnavelu , Detecting chaos in a system of four disk dynamos and its control, Nonlinear Dyn. 83 (2015)

    2419–2426 . [35] Z.C. Wei , I. Moroz , J.C. Sprott , A. Akgul , W. Zhang , Hidden hyperchaos and electronic circuit application in a 5D self-exciting homopolar disc dynamo,

    Chaos 27 (2017a) 033101 .

    [36] Z.C. Wei , I. Moroz , J.C. Sprott , Z. Wang , W. Zhang , Detecting hidden chaotic regions and complex dynamics in the self-exciting homopolar disc dynamo,Int. J. Bifurc. Chaos 27 (2017b) 1730 0 08 .

    [37] Y. Feng , W.Q. Pan , Hidden attractors without equilibrium and adaptive reduced-order function projective synchronization from hyperchaotic Rikitakesystem, Pramana J. Phys. 88 (2017) 62 .

    [38] J.H. Bao , D.D. Chen , Coexisting hidden attractors in a 4D segmented disc dynamo with one stable equilibrium or a line equilibrium, Chin. Phys. B 26(2017) 1056–1674 .

    [39] J. Hale , Theory of Functional Differential Equations, Springer, New York, 1977 .

    [40] B. Hassard , N. Kazarinoff, Y. Wan , Theory and Applications of Hopf Bifurcation, Cambridge University Press, Cambridge, 1981 . [41] Y. Song , J. Wei , Bifurcation analysis for Chens system with delayed feedback and its application to control of chaos, Chaos Solitons Fractals 22 (2004)

    75–91 . [42] Z.C. Wei , V.T. Pham , T. Kapitaniak , Z. Wang , Bifurcation analysis and circuit realization for multiple-delayed Wang–Chen system with hidden chaotic

    attractors, Nonlinear Dyn. 85 (2016) 1635–1650 . [43] G.D. Zhang , Y. Shen , B.S. Chen , Hopf bifurcation of a predator–prey system with predator harvesting and two delays, Nonlinear Dyn. 73 (2013)

    2119–2131 .

    http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0001http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0001http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0001http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0001http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0001http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0002http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0002http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0002http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0002http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0002http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0002http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0003http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0003http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0003http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0003http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0003http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0003http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0003http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0003http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0003http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0003http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0004http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0004http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0004http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0005http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0005http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0005http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0006http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0006http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0007http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0007http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0007http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0007http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0008http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0008http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0009http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0009http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0009http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0010http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0010http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0011http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0011http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0011http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0012http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0012http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0012http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0013http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0013http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0013http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0014http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0014http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0015http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0015http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0015http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0015http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0015http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0015http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0016http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0016http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0017http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0017http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0018http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0018http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0018http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0019http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0019http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0019http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0019http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0020http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0020http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0021http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0021http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0022http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0022http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0023http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0023http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0023http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0023http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0024http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0024http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0024http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0025http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0025http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0025http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0025http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0026http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0026http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0026http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0026http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0027http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0027http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0027http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0027http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0028http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0028http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0029http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0029http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0029http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0029http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0029http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0029http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0030http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0030http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0030http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0031http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0031http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0031http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0032http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0032http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0032http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0032http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0032http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0033http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0033http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0033http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0033http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0033http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0034http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0034http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0034http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0034http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0035http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0035http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0035http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0035http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0035http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0035http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0036http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0036http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0036http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0036http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0036http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0036http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0037http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0037http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0037http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0038http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0038http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0038http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0039http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0039http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0040http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0040http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0040http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0040http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0041http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0041http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0041http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0042http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0042http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0042http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0042http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0042http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0043http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0043http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0043http://refhub.elsevier.com/S0096-3003(18)30970-6/sbref0043

    Bifurcation analysis of two disc dynamos with viscous friction and multiple time delays1 Introduction2 Stability of equilibria and Hopf bifurcation analysis of system (3) with multiple delays3 Direction of Hopf bifurcations and stability of the bifurcating periodic orbits4 Bifurcating periodic orbits and chaos4.1 Numerical simulations about Hopf bifurcation4.2 Forming mechanism of chaotic attractors

    5 ConclusionAcknowledgmentsReferences