april 2008 aisc - ce.jhu.edu aisc fac fellow... · analysis on the w‐ sections in the aisc (v3)...

85
April 2008 To: Tom Schlafly AISC Committee on Research Subject: Progress Report No. 2 AISC Faculty Fellowship Crosssection Stability of Structural Steel Tom, Please find enclosed the second progress report for the AISC Faculty Fellowship. The report summarizes research efforts to study the crosssection stability of structural steel, and to extend the Direct Strength Method to hotrolled steel sections. The finite strip analysis reported herein focuses on proposing simplified formulas for estimating the local buckling coefficients for all types of structural steel sections. The reported parametric studies and finite element analysis of Wsections focus on webflange interaction, and comparisons of the AISC, AISI – Effective Width, and AISI – Direct Strength design methods for columns with slender crosssections. Sincerely, Mina Seif ([email protected] ) Graduate Research Assistant Ben Schafer ([email protected] ) Associate Professor

Upload: truongdieu

Post on 25-May-2018

220 views

Category:

Documents


2 download

TRANSCRIPT

   

    

 April 2008  To:    Tom Schlafly   AISC Committee on Research  Subject:   Progress Report No. 2 ‐ AISC Faculty Fellowship   Cross‐section Stability of Structural Steel 

 Tom,  Please find enclosed the second progress report for the AISC Faculty Fellowship. The report summarizes research efforts to study the cross‐section stability of structural steel, and to extend the Direct Strength Method to hot‐rolled steel sections.  The finite strip analysis reported herein focuses on proposing simplified formulas for estimating the local buckling coefficients for all types of structural steel sections. The reported parametric studies and finite element analysis of W‐sections focus on web‐flange interaction, and comparisons of the AISC, AISI – Effective Width, and AISI – Direct Strength design methods for columns with slender cross‐sections.     Sincerely,  

 Mina Seif  ([email protected]) Graduate Research Assistant 

  Ben Schafer ([email protected]) Associate Professor 

2

Summary of Progress   

The primary goal of  this AISC  funded  research  is  to study and assess  the 

cross‐section stability of structural steel. A timeline and brief synopsis follows. 

 

Research begins    March 2006 

(Note, Mina Seif joined project in October 2006) 

 

Progress Report #1   June 2007 

 

Completed work: 

• Performed axial and major axis bending elastic cross‐section stability analysis on  the W‐ sections  in  the AISC  (v3) shapes database using the finite strip elastic buckling analysis software CUFSM. 

• Evaluated  and  found  simple  design  formulas  for  plate  buckling coefficients of W‐sections  in  local buckling  that  include web‐flange interaction. 

• Reformulated  the AISC, AISI,  and DSM  column  design  equations into a single notation so that the methods can be readily compared to one another, and so that the centrality of elastic buckling predictions for all the methods could be readily observed.  

• Performed a finite strip elastic buckling analysis parametric study on AISC, AISI,  and DSM  column  design  equations  for W‐sections  to compare and contrast the design methods. 

• Created educational tutorials to explore elastic cross‐section stability of structural steel with the finite strip method, tutorials include clear 

3

learning  objectives,  step‐by‐step  instructions,  and  complementary homework problems for students. 

 

Papers from this research:  Schafer, B.W., Seif, M.. “Cross‐section Stability  of Structural Steel.” SSRC Annual Stability Conference, April 2008.    

Progress Report #2   April 2008 

 

Completed work: 

• Performed  axial,  positive  and  negative  major  axis  bending,  and positive  and  negative minor  axis  bending  finite  strip  elastic  cross‐section buckling stability analysis on all the sections in the AISC (v3) shapes  database  using  the  finite  strip  elastic  buckling  analysis software CUFSM. 

• Evaluated and determined simple design formulas that include web‐flange interaction for local plate buckling coefficients of all structural steel section types. 

• Performed ABAQUS  finite element elastic buckling analyses on W‐sections,  comparing  and  assessing  a  variety  of  element  types  and mesh densities. 

• Initiated  an ABAQUS  nonlinear  finite  element  analysis  parameter study  on  W‐section  stub  columns,  and  assessed  and  compared results  to  the sections strengths predicted by AISC, AISI, and DSM column design equations.  

 

4

Table of Contents 

Summary of Progress .......................................................................................................2

1 Introduction ...............................................................................................................6

2 Elastic buckling finite strip analysis of the AISC sections database and 

proposed local plate buckling coefficients ....................................................................9

2.1 Objectives ...........................................................................................................9 2.2 Methodology....................................................................................................10 2.3 Results...............................................................................................................12 2.4 Development of approximate local buckling coefficients expressions ...23

3 Mesh and element sensitivity in finite element elastic buckling analysis of hot-

rolled W-section steel columns .........................................................................................40

3.1 Introduction and motivation ............................................................................40 3.2 Problem statement and modeling ................................................................41 3.3 Results and comments ......................................................................................44

3.3.1 Buckling loads ..........................................................................................44 3.3.2 Buckling modes ........................................................................................49 3.3.3 CUFSM comparison..................................................................................53

3.4 Summary and conclusions ................................................................................55 3.5 Ongoing / future work ...................................................................................55

4 FEA nonlinear collapse analysis parameter study for comparing the AISC, AISI, 

and DSM design methods..............................................................................................57

4.1 Introduction and motivation .........................................................................57

5

4.2 Methodology and modeling ..........................................................................63 4.2.1 Chosen sections, dimensions, and boundary conditions ...................63 4.2.2 Parameters..................................................................................................64 4.2.3 Mesh...........................................................................................................65 4.2.4 Material modeling......................................................................................65 4.2.5 Residual stresses ........................................................................................67 4.2.6 Geometric imperfections............................................................................68

4.3 Results................................................................................................................70 4.3.1 W14 sections with variable flange thickness .............................................70 4.3.2 W14 sections with variable flange and web thicknesses at a fixed ratio ...74 4.3.3 W36 sections with variable web thickness ................................................77 4.3.4 W36 sections with variable flange and web thicknesses at a fixed ratio ...80

4.4 Ongoing / future work ...................................................................................82

5 References ................................................................................................................84

 

6

1 Introduction 

The research work presented in this progress report represents a continuing 

effort  towards  a  fuller  understanding  of  hot‐rolled  steel  cross‐sectional  local 

stability.  Typically,  locally  slender  cross‐sections  are  avoided  in  the  design  of 

hot‐rolled  steel  structural  elements,  but  completely  avoiding  local  buckling 

ignores  the  beneficial post‐buckling  reserve  that  exists  in  this mode. With  the 

appearance of high and ultra‐high yield strength steels this practice may become 

uneconomical, as the local slenderness limits for a section to remain compact are 

function of  the yield  stress. The effect of  increasing  the yield  strength on  local 

buckling is a topic that has seen some study in recent years (see e.g., Earls 1999). 

Currently, the AISC employs the Q‐factor approach when slender elements exist 

in  the  cross‐section,  but  analysis  in  Progress  Report  #1  indicates  geometric 

regions  where  the  Q‐factor  approach may  be  overly  conservative,  and  other 

regions where it may be moderately unconservative as well. It is postulated that 

a more accurate accounting of web‐flange  interaction will create a more  robust 

method for the design of high yield stress structural steel cross‐sections that are 

locally slender.  

Progress report #1 summarized how  the  locally slender W‐section column 

design  equations  from  the  AISC  Q‐factor  approach,  AISI  Effective  Width 

7

Method,  and  AISI  Direct  Strength  Method  (DSM)  can  be  reformulated  and 

arranged  into  a  common  set of notation. This  common notation highlights  the 

central role of cross‐section stability in predicting member strength. 

The first part of this document, progress report #2, provides results of finite 

strip elastic cross‐section buckling analysis performed on all  the sections  in  the 

AISC (v3) shapes database (2005) under: axial, positive and negative major‐axis 

bending, and positive and negative minor‐axis bending. The results are used to 

evaluate  the plate  local buckling coefficients underlying  the AISC cross‐section 

compactness limits (e.g., bf/2tf and h/tw limits). In addition, the finite strip results 

provide  the  basis  for  the  creation  of  simple  design  formulas  for  local  plate 

buckling  that  include  web‐flange  interaction,  and  better  represent  the  elastic 

stability behavior of structural steel sections, for all different loading types. 

The  second  part  of  this  progress  report  provides  a  comparison  and 

assessment of the different two‐dimensional shell elements which are commonly 

used  in modeling  structural  steel.  The  assessment  is  completed  through  finite 

element  elastic  buckling  analysis  performed  on W‐sections  using  a  variety  of 

element types and mesh densities in the program ABAQUS. 

The  final  part  of  this  report  presents  and  discusses  the  initiation  of  a 

nonlinear  finite  element  analysis parameter  study  (performed  in ABAQUS) on 

8

W‐section stub columns. The study aims to highlight the parameters that lead to 

the  divergence  of  the  section  strength  capacity  predictions,  provided  by  the 

different design methods: AISC, AISI, and DSM column design equations.  

 

 

9

2 Elastic buckling finite strip analysis of the AISC sections database and proposed local plate buckling coefficients 

2.1 Objectives 

Finite strip analysis was performed on all the sections of the shape database 

(v3) from the AISC (2005) Manual of Steel Construction (excluding pipe sections). 

The  analysis  was  completed  using  CUFSM  version  3.12  (Schafer  and  Adany 

2006). Sections were simplified to their centerline geometry (the increased width 

in the k‐zone was thus ignored) and analyzed under different loading conditions:  

axial  compression, positive and negative major‐axis bending, and positive  and 

negative minor‐axis  bending.  The  analysis was  used  to  investigate  the  elastic 

local buckling behavior of the section (thus including web‐flange interaction) so 

that the exact elastic local buckling values of the plate buckling coefficients,  ck ’s, 

could be compared to those underlying the AISC Specification.  

Based  on  the  exact  values  for  elastic  local  buckling,  approximate  design 

expressions that include web‐flange interaction for kc are developed for all of the 

section types under compression and major‐ and minor‐axis bending.  

It  is  noted  that  the  finite  strip method  has  been  a  reliable  approach  for 

studying  the  local buckling of W‐sections, even prior  to  the existence of highly 

10

powerful  computational machines  (e.g. Yoshida and Maegawa  (1978) or Wang 

and Rammerstorfer (1996)).  

2.2  Methodology 

The  cross‐section  elastic  local buckling  stress,  fcrl,  is  found  from  the  finite 

strip analysis. That  stress  is  converted  into  local plate buckling  coefficients  for 

comparison  to  existing design provisions  and  for  the development of  the new 

approximate design expressions. As  shown  in Progress Report #1  the buckling 

coefficients are found as follows: 

The plate buckling solution for the elastic buckling of a flange is: 

( )2

2

2

112 ⎟⎟⎠

⎞⎜⎜⎝

−=

btEkf f

fcrb νπ                                                                                         2.1 

where: 

fk :  Flange  (horizontal  element)  local  plate  buckling  coefficient  (noted  as 

bk for angles and box sections). 

b : Unsupported flange width (i.e., ½ of bf for a W‐section) 

bf : Total flange width. 

ft : Flange thickness. 

E:  Modulus of elasticity. 

v:  Poisson’s ratio. 

11

Setting fcrb = fcrl and solving for kf: 

( ) 2

2

2112⎟⎟⎠

⎞⎜⎜⎝

⎛−=

fcrf t

bE

fkπ

νl                                                                        2.2 

Similarly, the web buckling coefficient,  wk , can be found, where: 

( )2

2

2

112⎟⎠⎞

⎜⎝⎛

ν−π

=htEkf w

wcrh                                                                                           2.3 

Again, after setting fcrh = fcrl, we can solve for kw as: 

( ) 2

2

2112⎟⎟⎠

⎞⎜⎜⎝

⎛π

ν−=

wcrw t

hE

fk l                                                                                           2.4 

where: 

wk : Web  (vertical element)  local plate buckling  coefficient  (noted as  dk for 

angles and box sections). 

h : Clear distance between flanges less the fillet (see AISC 2005). 

wt : Web thickness. 

Using  the  full  cross‐section  elastic  local  buckling  stress,  fcrl,  the  plate 

buckling coefficients resulting from Equations 2.2 and 2.4 will thus include web‐

flange interaction. 

12

2.3 Results 

Results are shown here in the form of plots of the plate buckling coefficients 

versus parameters of the cross‐section geometry representing the web and flange 

slenderness.  The  figures  indicate  that  simple  relationships  exist  between  the 

element  local  slenderness  and  the  plate  buckling  coefficients.  For  example,. 

Figure  2.1  shows  the  results  for  the  flange  (or  horizontal  element)  buckling 

coefficients, kf, for the different sections under axial compression loading. Figure 

2.2  shows  similar plots  for  the web  (or  vertical  element)  buckling  coefficients. 

Figures 2.3 through 2.10 show the results of web and flange buckling coefficients 

for the sections under various loading conditions:   positive and negative major‐ 

axis bending, and positive and negative minor‐axis bending, respectively. 

13

0 2 4 6 8 10 120

0.1

0.2

0.3

0.4

0.5

0.6

0.7W-sections

(h/tw )(2tf/bf)

k f

0 2 4 6 8 10 120

0.2

0.4

0.6

0.8

1M,S,HP-sections

(h/tw )(2tf/bf)

k f

0 5 10 150

0.2

0.4

0.6

0.8

1C-sections

(d/tw )(tf/bf)

k f

1 1.5 2 2.5

0.35

0.4

0.45

0.5

0.55L-sections

d/b

k b

1 2 3 4 5 6 70

0.05

0.1

0.15

0.2

0.25

0.3

0.35WT-sections

(h/tw )(2tf/bf)

k f

1 2 3 4 5 6 73.5

4

4.5

5

5.5

6Hss-sections

h/b

k h

Figure 2-1 Flange local plate buckling coefficients determined by finite strip analysis under pure axial compression for full cross-section of AISC structural steel shapes.  

14

0 2 4 6 8 10 121

2

3

4

5

6W-sections

(h/tw )(2tf/bf)

k w

0 2 4 6 8 10 121

2

3

4

5

6M,S,HP-sections

(h/tw )(2tf/bf)

k w

0 5 10 151

2

3

4

5

6

7

8C,MC-sections

(d/tw )(tf/bf)

k w

1 1.5 2 2.50.1

0.2

0.3

0.4

0.5L-sections

d/b

k d

1 2 3 4 5 6 71

1.1

1.2

1.3

1.4

1.5

1.6

1.7WT-sections

(h/tw )(2tf/bf)

k w

1 2 3 4 5 6 70

1

2

3

4

5Hss-sections

h/b

k b

Figure 2-2 Web local plate buckling coefficients determined by finite strip analysis under pure axial compression for full cross-section of AISC structural steel shapes. 

15

0 2 4 6 8 10 120.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9W-sections

(h/tw )(2tf/bf)

k f

0 2 4 6 8 10 120

0.5

1

1.5

2

2.5M,S,HP-sections

(h/tw )(2tf/bf)

k f

0 5 10 150

0.2

0.4

0.6

0.8

1

1.2

1.4C,MC-sections

(d/tw )(tf/bf)

k f

1 1.1 1.2 1.3 1.41.05

1.1

1.15

1.2

1.25

1.3L-sections

d/b

k b

1 2 3 4 5 6 70

0.2

0.4

0.6

0.8

1WT-sections

(h/tw )(2tf/bf)

k f

1 2 3 4 5 6 70

5

10

15

20

25

30

35Hss-sections

h/b

k h

Figure 2-3 Flange local plate buckling coefficients determined by finite strip analysis under positive bending about the major axis for full cross-section of AISC structural steel shapes. 

16

0 2 4 6 8 10 120

5

10

15

20

25

30

35W-sections

(h/tw )(2tf/bf)

k w

0 2 4 6 8 10 120

5

10

15

20

25

30

(h/tw )(2tf/bf)

k w

M,S,HP-sections

0 5 10 150

5

10

15

20

25

30

35C,MC-sections

(d/tw )(tf/bf)

k w

1 1.1 1.2 1.3 1.4

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4L-sections

d/b

k d

1 2 3 4 5 6 71

1.5

2

2.5

3WT-sections

(h/tw )(2tf/bf)

k w

1 2 3 4 5 6 70

1

2

3

4

5

6Hss-sections

h/b

k b

Figure 2-4 Web local plate buckling coefficients determined by finite strip analysis under positive bending about the major axis for the full cross-section of AISC structural steel shapes. 

17

0 2 4 6 8 10 120.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9W-sections

(h/tw )(2tf/bf)

k f

0 2 4 6 8 10 120

0.5

1

1.5

2M,S,HP-sections

(h/tw )(2tf/bf)

k f

0 5 10 150

0.2

0.4

0.6

0.8

1

1.2

1.4C,MC-sections

(d/tw )(tf/bf)

k f

1 1.5 2 2.50.5

1

1.5

2

2.5L-sections

d/b

k b

1 2 3 4 5 6 70.4

0.6

0.8

1

1.2

1.4

1.6

1.8WT-sections

(h/tw )(2tf/bf)

k f

1 2 3 4 5 6 70

5

10

15

20

25

30

35Hss-sections

h/b

k h

Figure 2-5 Flange local plate buckling coefficients determined by finite strip analysis under negative bending about the major axis for the full cross-section of AISC structural steel shapes. 

18

0 2 4 6 8 10 120

5

10

15

20

25

30

35W-sections

(h/tw )(2tf/bf)

k w

0 2 4 6 8 10 120

5

10

15

20

25

30

(h/tw )(2tf/bf)

k w

M,S,HP-sections

0 5 10 150

5

10

15

20

25

30

35C,MC-sections

(d/tw )(tf/bf)

k w

1 1.5 2 2.50.4

0.5

0.6

0.7

0.8

0.9

1L-sections

d/b

k d

1 2 3 4 5 6 70

5

10

15

20

25WT-sections

(h/tw )(2tf/bf)

k w

1 2 3 4 5 6 70

1

2

3

4

5

6Hss-sections

h/b

k b

Figure 2-6 Web local plate buckling coefficients determined by finite strip analysis under negative bending about the major axis for the full cross-section of AISC structural steel shapes. 

19

0 2 4 6 8 10 120.7

0.8

0.9

1

1.1

1.2

1.3

1.4W-sections

(h/tw )(2tf/bf)

k f

0 2 4 6 8 10 121

1.1

1.2

1.3

1.4

1.5M,S,HP-sections

(h/tw )(2tf/bf)

k f

0 5 10 150.9

1

1.1

1.2

1.3

1.4

1.5

1.6C,MC-sections

(d/tw )(tf/bf)

k f

1 1.5 2 2.51

2

3

4

5L-sections

(d/b)

k b

1 2 3 4 5 6 70.9

1

1.1

1.2

1.3

1.4WT-sections

(h/tw )(2tf/bf)

k f

1 2 3 4 5 6 74.5

5

5.5

6

6.5Hss-sections

h/b

k h

Figure 2-7 Flange local plate buckling coefficients determined by finite strip analysis under positive bending about the minor axis for full cross-section of AISC structural steel shapes. 

20

0 2 4 6 8 10 120

20

40

60

80

100

120

140W-sections

(h/tw )(2tf/bf)

k w

0 2 4 6 8 10 120

20

40

60

80

100

120

(h/tw )(2tf/bf)

k w

M,S,HP-sections

0 5 10 150

50

100

150

200

(d/tw )(tf/bf)

k w

C,MC-sections

1 1.5 2 2.50.9

1

1.1

1.2

1.3L-sections

d/b

k d

1 2 3 4 5 6 70

10

20

30

40

50WT-sections

(h/tw )(2tf/bf)

k w

1 2 3 4 5 6 70

1

2

3

4

5

6Hss-sections

h/b

k b

Figure 2-8 Web local plate buckling coefficients determined by finite strip analysis under positive bending about the minor axis for full cross-section of AISC structural steel shapes. 

21

0 2 4 6 8 10 120.7

0.8

0.9

1

1.1

1.2

1.3

1.4W-sections

(h/tw )(2tf/bf)

k f

0 2 4 6 8 10 121

1.1

1.2

1.3

1.4

1.5M,S,HP-sections

(h/tw )(2tf/bf)

k f

0 5 10 150

0.5

1

1.5

2C,MC-sections

(d/tw )(tf/bf)

k f

1 1.2 1.4 1.6 1.80.7

0.8

0.9

1

1.1

1.2

1.3

1.4L-sections

d/b

k b

1 2 3 4 5 6 70.9

1

1.1

1.2

1.3

1.4WT-sections

(h/tw )(2tf/bf)

k f

1 2 3 4 5 6 74.5

5

5.5

6

6.5Hss-sections

h/b

k h

Figure 2-9 Flange local plate buckling coefficients determined by finite strip analysis under negative bending about the minor axis for full cross-section of AISC structural steel shapes. 

22

0 2 4 6 8 10 120

20

40

60

80

100

120

140W-sections

(h/tw )(2tf/bf)

k w

0 2 4 6 8 10 120

20

40

60

80

100

120

(h/tw )(2tf/bf)

k w

M,S,HP-sections

0 5 10 152

3

4

5

6

7

8

(d/tw )(tf/bf)

k w

C,MC-sections

1 1.2 1.4 1.6 1.80.4

0.5

0.6

0.7

0.8

0.9

1L-sections

d/b

k d

1 2 3 4 5 6 70

10

20

30

40

50WT-sections

(h/tw )(2tf/bf)

k w

1 2 3 4 5 6 70

1

2

3

4

5

6Hss-sections

h/b

k b

Figure 2-10 Web local plate buckling coefficients determined by finite strip analysis under negative bending about the minor axis for full cross-section of AISC structural steel shapes. 

 

 

 

23

2.4 Development of approximate local buckling coefficients expressions 

From  the  results  in  the  previous  section  the  dependence  of  the  local 

buckling  coefficients,  kf  and  kw,  on  web‐flange  interaction  is  demonstrated. 

Simple  functional  relations  exist  such  that  the  local plate  buckling  coefficients 

can be expressed as a function of section geometry. 

Note that using the same full cross‐sections elastic local buckling stress, fcrl, 

instead  of  the  individual  plate  buckling  stresses,  fcrb  and  fcrh,  implies  that 

Equations  2.1  and  2.3 must  be  equal,  thus  giving  a  relationship  between  the 

flange and web local buckling coefficients: 

22

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎠⎞

⎜⎝⎛=

f

wwf t

bhtkk   or  

22

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛=

w

ffw t

hbt

kk                                        2.5 

Thus, via Equation 2.5 only one local plate buckling coefficient needs to be 

determined  for  a  cross‐section. Therefore,  for  each  loading  case,  either  kf or  kw 

was selected to develop the desired functional relation. (Furthermore, the values 

of  the y‐axis  (k’s) were  inverted  for some of  the cases  in order  to use  the same 

functional form for the prediction equations). Figures 2.11 through 2.15 provide 

the  finite  strip  analysis  data  employed  for  development  of  the  empirical 

prediction equations of the local plate buckling coefficients. 

24

0 2 4 6 8 10 120

0.1

0.2

0.3

0.4

0.5

0.6

0.7W-sections

(h/tw )(2tf/bf)

k f

0 2 4 6 8 10 120

0.2

0.4

0.6

0.8

1M,S,HP-sections

(h/tw )(2tf/bf)

k f

0 5 10 150

0.2

0.4

0.6

0.8

1C-sections

(d/tw )(tf/bf)

k f

1 1.5 2 2.50.1

0.2

0.3

0.4

0.5L-sections

d/b

k d

1 2 3 4 5 6 70

0.05

0.1

0.15

0.2

0.25

0.3

0.35WT-sections

(h/tw )(2tf/bf)

k f

1 2 3 4 5 6 70

1

2

3

4

5Hss-sections

h/b

k b

Figure 2-11 Chosen results for developing the local plate buckling coefficients equations for sections under pure axial compression loading. 

25

0 2 4 6 8 10 120

0.1

0.2

0.3

0.4

0.5W-sections

(h/tw )(2tf/bf)

1/k w

0 2 4 6 8 10 120

0.2

0.4

0.6

0.8

1

(h/tw )(2tf/bf)

1/k w

M,S,HP-sections

0 5 10 150

0.1

0.2

0.3

0.4

0.5C,MC-sections

(d/tw )(tf/bf)

1/k w

1 1.1 1.2 1.3 1.4

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4L-sections

d/b

k d

1 2 3 4 5 6 70

0.2

0.4

0.6

0.8

1WT-sections

(h/tw )(2tf/bf)

k f

1 2 3 4 5 6 70

0.05

0.1

0.15

0.2

0.25Hss-sections

h/b

1/k h

Figure 2-12 Chosen results for developing the local plate buckling coefficients equations for sections under pure positive bending loading about the sections major axis. 

26

0 2 4 6 8 10 120

0.1

0.2

0.3

0.4

0.5W-sections

(h/tw )(2tf/bf)

1/k w

0 2 4 6 8 10 120

0.2

0.4

0.6

0.8

1

(h/tw )(2tf/bf)

1/k w

M,S,HP-sections

0 5 10 150

0.1

0.2

0.3

0.4

0.5C,MC-sections

(d/tw )(tf/bf)

1/k w

1 1.5 2 2.50.4

0.6

0.8

1

1.2

1.4L-sections

d/b

1/k b

1 2 3 4 5 6 70

0.1

0.2

0.3

0.4WT-sections

(h/tw )(2tf/bf)

1/k w

1 2 3 4 5 6 70

0.05

0.1

0.15

0.2

0.25Hss-sections

h/b

1/k h

Figure 2-13 Chosen results for developing the local plate buckling coefficients equations for sections under pure negative bending loading about the sections major axis. 

27

0 2 4 6 8 10 120

0.05

0.1

0.15

0.2

0.25

0.3

0.35W-sections

(h/tw )(2tf/bf)

1/k w

0 2 4 6 8 10 120

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(h/tw )(2tf/bf)

1/k w

M,S,HP-sections

0 5 10 150

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(d/tw )(tf/bf)

1/k w

C,MC-sections

0.8 1 1.2 1.4 1.6 1.8 20

0.2

0.4

0.6

0.8

L-sections

(d/b)

1/k b

1 2 3 4 5 6 70

0.1

0.2

0.3

0.4

0.5

0.6

0.7WT-sections

(h/tw )(2tf/bf)

1/k w

1 2 3 4 5 6 70

1

2

3

4

5

6Hss-sections

h/b

k b

Figure 2-14 Chosen results for developing the local plate buckling coefficients equations for sections under pure positive bending loading about the sections minor axis. 

28

0 2 4 6 8 10 120

0.05

0.1

0.15

0.2

0.25

0.3

0.35W-sections

(h/tw )(2tf/bf)

1/k w

0 2 4 6 8 10 120

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(h/tw )(2tf/bf)

1/k w

M,S,HP-sections

0 5 10 150

0.5

1

1.5

2C,MC-sections

(d/tw )(tf/bf)

k f

1 1.2 1.4 1.6 1.80.7

0.8

0.9

1

1.1

1.2

1.3

1.4L-sections

d/b

1/k b

1 2 3 4 5 6 70

0.1

0.2

0.3

0.4

0.5

0.6

0.7WT-sections

(h/tw )(2tf/bf)

1/k w

1 2 3 4 5 6 70

1

2

3

4

5

6Hss-sections

h/b

k b

Figure 2-15 Chosen results for developing the local plate buckling coefficients equations for sections under pure negative bending loading about the sections minor axis. 

 

29

Table  B4.1  in  the  AISC  (2005)  Manual  of  Steel  Construction  gives  the 

limiting width‐to‐thickness ratios for stiffened (e.g., webs) and unstiffened (e.g., 

flanges) compression elements  in  terms of  pλ and  rλ as  functions of E and  fy. A 

similar table, Table 2.1, is constructed here that includes additional data: 

‐ The  theoretical  plate  buckling  coefficients  assumed  in  the  AISC 

Specification, as discussed, e.g., in Salmon and Johnson (1996). 

‐ The  theoretical  cry ff / slenderness  limits  assumed  in  the  AISC 

Specification expressions. 

‐ The  average plate  buckling  coefficients  found  from  the  finite  strip 

analysis of related cross‐sections. 

‐ Histograms  of  the  related  plate  buckling  coefficients  determined 

from the finite strip analysis. 

Other  columns  in  this  table,  including  the  example  column,  are  direct 

reproductions of portions of Table B4.1 of the AISC manual. From the histograms 

inset  in Table 2‐1  it  is  shown  that  the plate buckling  coefficients  fall  in a wide 

range, and it can be extremely approximate to represent the whole range with a 

single value. The histograms also show that the AISC assumed k value is close to 

the mean value from the finite strip analysis for some cases, but extremely far for 

other cases.   

30

A series of simple empirical equations were developed, using the results of 

Figures  2.11  through  2.15,  to provide  an  approximate means  of predicting  the 

local plate buckling coefficients. The equations developed were used to construct 

Table 2‐2 which  is essentially a proposed alternative  to Table B4.1  in  the AISC 

manual  for  analyzing  local  stability.    Table  2‐2  provides  the  suggested  plate 

buckling  coefficients expressions  for different  section  types under  the different 

loading  cases.  Finally,  the  expressions  developed  and  shown  in  Table  2‐2  are 

plotted  along with  the  buckling  coefficient  values  found  from  the  finite  strip 

analysis in Figures 2.16 through 2.21.  

 

 

 

 

 

 

 

31

Table 2-1 Plate buckling coefficients from the AISC theory and from the finite strip analysis, presented in the format of the limiting width to thickness ratios table B4.1 in the AISC Manual of Steel Construction

pλ rλ k values

Limit cr

yf

f

Limit cr

yf

f

AIS

C1

Mea

n

Histogram Example

1 Flexure in flanges of rolled I-shaped sections and channels

tb /

yF

E38.0 0.46 yF

E0.1 0.7 2.15 1.18

0.5 1 1.5 2 2.50

20

40

60

80

flange plate buckling coefficient (kf)

coun

t

kAISC

mean k FSM

2

Flexure in flanges of doubly and singly symmetric I-shaped built up sections

tb /

yF

E38.0 0.46L

cF

Ek95.0 0.7 NA NA NA

3

Uniform compression in flanges of rolled I-shaped sections, plates projecting from rolled I-shaped sections; outstanding legs of pairs of angles in continuous contact and flanges of channels

tb /

NA -

yFE56.0 0.686 0.70 0.23

0 0.2 0.4 0.6 0.8 10

20

40

60

80

flange plate buckling coefficient (kf)

coun

t

kAISC

mean k FSM

4

Uniform compression in flanges of built-up I-shaped sections and plates or angle legs projecting from built-up I-shaped sections

tb /

NA -

yFE64.0 0.7 0.435 NA NA

5

Uniform compression in legs of single angles, legs of double angles with separators, and all other unstiffened elements

tb /

NA -

yFE45.0 0.708 0.425 0.45

0.35 0.4 0.45 0.5 0.550

5

10

15

leg plate buckling coefficient (kf)

coun

t

kAISC

mean k FSM

6 Flexure in legs of single angles

tb /

yF

E54.0 0.46yF

E91.0 0.7 1.78 2.16

1 1.5 2 2.5 30

5

10

leg plate buckling coefficient (kf)

coun

t

kAISC

mean k FSM

7 Flexure in flanges of tees

tb /

yF

E38.0 0.46yF

E0.1 0.7 2.15 1.17

0.8 1 1.2 1.4 1.6 1.8 2 2.20

10

20

30

40

flange plate buckling coefficient (kf)

coun

t

kAISC

mean k FSM

Uns

tiffe

ned

Ele

men

ts

8 Uniform compression in stems of tees

td /

NA -

yFE75.0 0.681 1.277 1.25

1 1.2 1.4 1.6 1.80

10

20

30

stem plate buckling coefficient (kf)

coun

t

kAISC

mean k FSM

32

9 Flexure in webs of doubly symmetric I-shaped sections and channels

wth /

yFE76.3 0.58

yFE70.5 0.7 69.7 15.0

0 10 20 30 40 50 60 700

20

40

60

80

web plate buckling coefficient (kf)

coun

t

kAISC

mean k FSM

10

Uniform compression in webs of doubly symmetric I-shaped sections

wth / NA -

yFE49.1 0.683 5.0 4.54

1 2 3 4 5 60

50

100

web plate buckling coefficient (kf)

coun

t

kAISC

mean k FSM

11 Flexure in webs of singly-symmetric I-shaped sections

wc th /

r

y

p

yp

c

M

M

FEhh

λ≤

⎟⎟

⎜⎜

⎛− 09.054.0

/

0.58

yFE70.5 0.7 69.7 NA NA

12

Uniform compression in flanges of rectangular box and hollow structural sections of uniform thickness subject to bending or compression; flange cover plates and diaphragm plates between lines of fasteners or welds

tb /

yF

E12.1 0.58yF

E40.1 0.642 5.0 4.85

3.5 4 4.5 5 5.5 60

20

40

60

flange plate buckling coefficient (kf)

coun

t

kAISC

mean k FSM

13 Flexure in webs of rectangular HSS

th /

yF

E42.2 0.58yF

E7.5 0.7 69.7 15.3

0 10 20 30 40 50 60 700

50

100

plate buckling coefficient (kf)

coun

t

kAISC

mean k FSM

14 Uniform compression in all other stiffened elements

tb /

NA -

yFE49.1 0.683 5.0 NA NA

Stiff

ened

Ele

men

ts

15

Circular hollow sections In uniform compression In Flexure

tD /tD /

NA

yFE07.0

-

0.58

yFE11.0

yFE31.0

NA

NA

NA

NA

NA

NA

NA

1The theoretical limits provided here are the limits for an isolated plate which has simple supports at the loaded edges and varying support along the longitudinal edges, see Galambos (1998) or Salmon and Johnson (1996) .

33

Table 2-2 Suggested plate buckling expressions for different sections under different loading conditions

Example Loading Type Suggested k expression crf ji kk / *

Axial Compression 18.02

/5.115.2

+⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛=

f

f

ww bt

th

k 2

2

2

)1(12⎟⎟⎠

⎞⎜⎜⎝

−=

htEkf w

wcrhν

π ⎟⎟

⎜⎜

⎛⎟⎟⎠

⎞⎜⎜⎝

f

fwt

bh

t2

Major axis bending (+ve/-ve) 015.0

2/5.11

2

+⎟⎟

⎜⎜

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛=

f

f

ww bt

th

k 2

2

2

)1(12⎟⎟⎠

⎞⎜⎜⎝

−=

htEkf w

wcrhν

π ⎟⎟

⎜⎜

⎛⎟⎟⎠

⎞⎜⎜⎝

f

fwt

bh

t2

W, M, S,

HP

Minor axis bending (+ve/-ve) 008.0

2/5.11

5.2

+⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛=

f

f

ww bt

th

k 2

2

2

)1(12⎟⎟⎠

⎞⎜⎜⎝

−=

htEkf w

wcrhν

π ⎟⎟

⎜⎜

⎛⎟⎟⎠

⎞⎜⎜⎝

f

fwt

bh

t2

Axial Compression 05.0/0.22.1

−⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛=

f

f

wf b

ttdk

2

2

2

)1(12 ⎟⎟

⎜⎜

−=

f

ffcrb b

tEkfν

π ⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟

⎜⎜

wf

ftd

bt

Major axis bending (+ve/-ve) 02.0/1.11

2

+⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛=

f

f

ww bt

td

k 2

2

2

)1(12⎟⎟⎠

⎞⎜⎜⎝

−=

dtEkf w

wcrhν

π ⎟⎟

⎜⎜

⎛⎟⎟⎠

⎞⎜⎜⎝

f

fwtb

dt

Minor axis bending (+ve)

2

/8.01⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛=

f

f

ww bt

td

k 2

2

2

)1(12⎟⎟⎠

⎞⎜⎜⎝

−=

dtEkf w

wcrhν

π ⎟⎟

⎜⎜

⎛⎟⎟⎠

⎞⎜⎜⎝

f

fwtb

dt

C, MC

Minor axis bending

(-ve)

4.2

/0.6 ⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛=

f

f

wf b

ttdk

2

2

2

)1(12 ⎟⎟

⎜⎜

−=

f

ffcrb b

tEkfν

π ⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟

⎜⎜

wf

ftd

bt

Axial Compression 3.1

/38.0 ⎟⎠⎞

⎜⎝⎛=

bdkd

2

2

2

)1(12⎟⎠

⎞⎜⎝

−=

dtEkf dcrh

ν

π ⎟⎠

⎞⎜⎝

⎛db

Major axis bending (+ve)

2

/2.1 ⎟⎠⎞

⎜⎝⎛=

bdkd

2

2

2

)1(12⎟⎠

⎞⎜⎝

−=

dtEkf dcrh

ν

π ⎟⎠

⎞⎜⎝

⎛db

Major axis bending (-ve)

3.1

/2.11⎟⎠⎞

⎜⎝⎛=

bd

kb

2

2

2

)1(12⎟⎠

⎞⎜⎝

−=

btEkf bcrb

ν

π ⎟⎠

⎞⎜⎝

⎛bd

Minor axis bending (+ve)

2

/9.01⎟⎠⎞

⎜⎝⎛=

bd

kb

2

2

2

)1(12⎟⎠

⎞⎜⎝

−=

btEkf bcrb

ν

π ⎟⎠

⎞⎜⎝

⎛bd

L

Minor axis bending (-ve)

8.0

/2.11⎟⎠⎞

⎜⎝⎛=

bd

kb

2

2

2

)1(12⎟⎠

⎞⎜⎝

−=

btEkf bcrb

ν

π ⎟⎠

⎞⎜⎝

⎛bd

34

Axial Compression 2

2/3.1 ⎟

⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛=

f

f

wf b

tthk

2

2

2 2

)1(12 ⎟⎟

⎜⎜

−=

f

ffcrb b

tEkfν

π ⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟

⎜⎜

wf

fth

bt2

Major axis bending (+ve)

22

/8.1 ⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛=

f

f

wf b

tthk

2

2

2 2

)1(12 ⎟⎟

⎜⎜

−=

f

ffcrb b

tEkfν

π ⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟

⎜⎜

wf

fth

bt2

Major axis bending (-ve) 01.0

2/6.01

5.1

+⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛=

f

f

ww bt

th

k 2

2

2

)1(12⎟⎟⎠

⎞⎜⎜⎝

−=

htEkf w

wcrhν

π ⎟⎟

⎜⎜

⎛⎟⎟⎠

⎞⎜⎜⎝

f

fwt

bh

t2

WT, MT, ST

Minor axis bending (+ve/-ve)

22

/8.01⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛=

f

f

ww bt

th

k 2

2

2

)1(12⎟⎟⎠

⎞⎜⎜⎝

−=

htEkf w

wcrhν

π ⎟⎟

⎜⎜

⎛⎟⎟⎠

⎞⎜⎜⎝

f

fwt

bh

t2

Axial Compression 7.1

/0.4 ⎟⎠⎞

⎜⎝⎛=

bhkb

2

2

2

)1(12⎟⎠

⎞⎜⎝

−=

btEkf bcrb

ν

π ⎟⎠

⎞⎜⎝

⎛bh

Major axis bending (+ve/-ve) 03.0/19.01 3

+⎟⎠⎞

⎜⎝⎛=

bh

kh

2

2

2

)1(12⎟⎠

⎞⎜⎝

−=

htEkf hcrh

ν

π ⎟⎠

⎞⎜⎝

⎛hb HSS

Minor axis bending (+ve/-ve)

2

/5.5 ⎟⎠⎞

⎜⎝⎛=

bhkb

2

2

2

)1(12⎟⎠

⎞⎜⎝

−=

btEkf bcrb

ν

π ⎟⎠

⎞⎜⎝

⎛bh

* The relation between the web and flange plate buckling coefficients, where the ki is the web or flange coefficient calculated from the expression provided, and kj is the other one as shown in equation 2.5.

35

0 2 4 6 8 10 120

0.2

0.4

0.6

0.8

(h/tw )(2tf/bf)

1/k w

Axial Compression

k FSMk Suggested

0 2 4 6 8 10 120

0.2

0.4

0.6

0.8

(h/tw )(2tf/bf)

1/k w

Major Axis Bending (+ve/-ve)

k FSMk Suggested

0 2 4 6 8 10 120

0.1

0.2

0.3

0.4

(h/tw )(2tf/bf)

1/k w

Minor Axis Bending (+ve/-ve)

k FSMk Suggested

Figure 2-16 Comparison of recommended empirical equations with finite strip analysis for plate buckling coefficients of W, M, S, and HP-sections under different loading conditions.

36

0 2 4 6 8 10 12 140

0.5

1

1.5

(d/tw )(tf/bf)

k f

Axial Compression

k FSMk Suggested

0 2 4 6 8 10 12 140

0.2

0.4

0.6

0.8

(d/tw )(tf/bf)

1/k w

Major Axis Bending (+ve/-ve)

k FSMk Suggested

0 2 4 6 8 10 12 140

0.1

0.2

0.3

0.4

(d/tw )(tf/bf)

1/k w

Minor Axis Bending (+ve)

k FSMk Suggested

0 2 4 6 8 10 12 140

0.5

1

1.5

2

(d/tw )(tf/bf)

k f

Minor Axis Bending (-ve)

k FSMk Suggested

 Figure 2-17 Comparison of recommended empirical equations with finite strip analysis for plate

buckling coefficients of C and MC-sections under different loading conditions. 

37

1 1.2 1.4 1.6 1.8 2 2.2 2.40

0.5

1

d/b

k d

Axial Compression

k FSMk Suggested

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.40.5

1

1.5

d/b

k d

Major Axis Bending (+ve)

k FSMk Suggested

1 1.2 1.4 1.6 1.8 2 2.2 2.40

0.5

1

1.5

d/b

1/k b

Major Axis Bending (-ve)

k FSMk Suggested

1 1.2 1.4 1.6 1.8 2 2.2 2.40

0.5

1

1.5

(d/b)

1/k b

Minor Axis Bending (+ve)

k FSMk Suggested

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.80.5

1

1.5

d/b

1/k b

Minor Axis Bending (-ve)

k FSMk Suggested

Figure 2-18 Comparison of recommended empirical equations with finite strip analysis for plate buckling coefficients of the L-sections under different loading conditions. 

38

1 2 3 4 5 6 70

0.1

0.2

0.3

0.4

(h/tw )(2tf/bf)

k f

Axial Compression

k FSMk Suggested

1 2 3 4 5 6 70

0.5

1

(h/tw )(2tf/bf)

k f

Major Axis Bending (+ve)

k FSMk Suggested

1 2 3 4 5 6 70

0.1

0.2

0.3

0.4

(h/tw )(2tf/bf)

1/k w

Major Axis Bending (-ve)

k FSMk Suggested

1 2 3 4 5 6 70

0.2

0.4

0.6

0.8

(h/tw )(2tf/bf)

1/k w

Minor Axis Bending (+ve/-ve)

k FSMk Suggested

Figure 2-19 Comparison of recommended empirical equations with finite strip analysis for plate buckling coefficients of the WT, MT, and ST-sections under different loading conditions. 

39

1 2 3 4 5 6 70

1

2

3

4

5

h/b

k b

Axial Compression

k FSMk Suggested

1 2 3 4 5 6 70

0.05

0.1

0.15

0.2

0.25

h/b

1/k h

Major Axis Bending (+ve/-ve)

k FSMk Suggested

1 2 3 4 5 6 70

2

4

6

h/b

k b

Minor Axis Bending (+ve/-ve)

k FSMk Suggested

Figure 2-20 Comparison of recommended empirical equations with finite strip analysis for plate buckling coefficients of the HSS-sections under different loading conditions. 

 

40

3 Mesh and element sensitivity in finite element elastic buckling analysis of hot-rolled W-section steel columns

3.1 Introduction and motivation

The proper choice of element type and mesh refinement is a key aspect in

any finite element analysis. In structural steel analysis research, where cross-

section distortion and stability are of interest, researchers typically simplify the

cross-section as a two-dimensional model at the cross-section mid-surface and

employ shell finite elements to discretise the web and flanges. ABAQUS, which

is a widely used finite element analysis package, provides an element library that

contains a wide range of different two-dimensional shell elements. The most

commonly used shell elements are the S4, S4R, and S9R5 (as discussed below).

The S4 element has six degrees of freedom per node, adopts bilinear

interpolation for the displacement and rotation fields, incorporates finite

membrane strains, and its shear stiffness is yielded by “full” integration. The S4R

element is similar to the S4 element, except that it obtains the shear stiffness by

“reduced” integration. The S9R5 element has five degrees of freedom per node,

uses full quadratic interpolation for calculating the displacement and rotation

fields, obtains the shear stiffness by “reduced” integration, and accounts for only

“small” membrane strains. For hot-rolled structural steel sections, typically the

S4 or S4R elements are employed (with some debate between the two existing in

41

the research community) as these elements lead to slightly easier mesh

generation while adequately simulating the relevant phenomena.

It is clear from the literature that steel researchers agree that the use of S4

elements yields in stiffer members that sustain higher loads than the S4R

elements. Some, e.g. Dinis and Camotim (2006), attribute this to an “artificial”

under-estimation of the member shear stiffness in the S4R element which affects

the elements when the cross-section distorts. Others, e.g. Earls (2001), focus on

the fact that the S4 element, which is fully integrated and thus does not need

stabilization, should theoretically outperform the S4R element. However, Earls

found that within the context of the present modeling the more computationally

expensive S4 element is not required, and even yields overly stiff results,

evidenced by side-by-side comparisons between the S4 element, the S4R element,

and available experimental tests.

3.2 Problem statement and modeling

To assess and compare the different shell elements, an elastic buckling

analysis was performed on a W-section column modeled using different types

and densities of shell elements. As a reference, the section was also analyzed

using finite strip analysis, performed with CUFSM version 3.12 (Schafer and

Adany 2006).

A W14X233 section was chosen for the first step of this study, as its

geometry (depth, width, and thicknesses) represents an average W14 section,

42

which is the category of W-sections most commonly used as structural columns.

The length of the column was chosen to be 120”, which is an average story

height, and so an average unbraced height for a column. The section was

simplified to its centerline geometry therefore the increased width in the k-zone

was ignored. The simplified geometric dimensions of the W14X233 section are

shown in Figure 3.1.

16.0”

1.72”

1.07”

15.9”

16.0”

1.72”

1.07”

15.9”

Figure 3-1 Sketch showing the simplified geometric dimensions of a W14X233 section

Five shell element models were created for the finite element elastic

buckling analysis, in addition to a fine solid element model as a reference for

comparison. The solid element model is believed to give the most accurate

results, but is rarely used due to the enormous computation time and memory

space needed for analysis. The solid element model was analyzed using both

buckling analysis options available in ABAQUS: subspace iteration, and the

Lanczos eigensolvers. All models have pin-pin boundary conditions.

The models used for the study are defined as follows: (a) The S4 model,

which is built using S4 shell elements, with five finite elements across on each

unstiffened element (flange) and ten finite elements across on each stiffened

43

element (web). (b) The S4R model, which is similar to the S4 one, but built using

the S4R shell elements. (c) The S4 HD model, which is similar to the S4 one, but

with double the number of elements, i.e. half the seeding length. (d) The S4R HD

model, which is similar to the S4 HD one, but built using the S4R shell elements.

(e) The S9R5 model, which is similar to the S4 one, but built using the S9R5 shell

elements. (f) The SOLID model, which is built using three dimensional S3D8R

solid elements and a mesh seeding size around 0.29”. The SOLID model uses the

real section geometry where the increased width in the k-zone is taken into

consideration. Figure 3.2 provides the meshes of the different models used.

(a)

(b) (c)

(a)

(b) (c)

Figure 3-2 Finite element mesh of the models used for analysis:

(a) SOLID model, (b) Shell models, and (c) Shell HD models

44

3.3 Results and comments

3.3.1 Buckling loads

Table 3.1 provides the buckling loads, for the first ten buckling modes, for

all of the different models. For the SOLID model the buckling loads are shown

for both the Subspace iteration, and the Lanczos eigensolvers analysis. For the

rest of the models only the Subspace iteration method was used. Table 3.1 shows

that both eigensolvers yielded identical buckling loads for all buckling modes,

except the first mode, with a difference of 0.075%.

Table 3.1 Buckling loads (lbs.) for the first ten buckling modes for the different models

Mode Solid (Subspace)

Solid (Lanczos) Shell S4 Shell S4R Shell S4

(HD) Shell S4R

(HD) Shell S9R5

1 22170 22153 22174 21956 22146 22091 21670

2 44248 44248 41844 42147 41396 41438 41315

3 44329 44329 42530 42821 41982 42006 41911

4 45156 45156 43765 44105 43480 43564 42809

5 47294 47294 44560 44523 44521 44511 43459

6 48431 48431 45619 45869 45102 45143 44974

7 53062 53062 48961 49170 48310 48338 48128

8 53406 53406 50672 51096 50174 50283 50118

9 56284 56284 50783 51161 50362 50425 50298

10 56539 56539 51341 51775 50746 50859 50895

The buckling load for the first mode is at a much lower value than those for

the higher modes, where the loads tend to concentrate on local buckling mode

shapes at a variety of different half-wavelengths. The first mode buckling load

(which is a global mode) is of most importance, and the results show that the S4

45

model yields the closest load, with a 0.018% difference, to that of the SOLID

model, which is believed to be the most accurate model. An interesting point

brought to light by this analysis is the complicated influence of mesh refinement

on the solution. Typically one assumes a finer mesh, results in a more flexible

model, which should provide a lower buckling load, and closer to the

theoretically true value. For the S4, increased mesh density (S4 HD) moderately

decreases the stiffness and resulting buckling load, but for the S4R increasing the

mesh density actually increases the buckling load. Apparently, the reduced

integration of the S4R element requires a finer mesh density to provide accurate

solutions. Figure 3.1 shows the values of the first mode buckling load for all

models, along with their variation from the SOLID model.

0 .20500

0 .20700

0 .20900

0 .21100

0 .21300

0 .21500

0 .21700

0 .21900

0 .22100

0 .22300

Solid(Su bsp ace)

So lid(Lanczos)

Sh e ll S4 She ll S4 R She ll S4 (HD) She ll S4R(HD)

She ll S9 R5

Eleme n t T ype

Bu

cklin

g L

oa

d x

10

E5

0.02%0.02%

-0.97%-0.97%

-0.11%-0.11% -0.36%-0.36%

-2.26%-2.26%

Figure 3-3 First mode buckling loads for the different models, and variation from the solid model

Figure 3.4 provides the buckling load as a function of buckling mode

numbers (in order from lowest to highest) for the first 10 modes Figure 3.5

highlights modes 2 through 7 of Figure 3.4 for further clarification. The SOLID

(lb)

46

model buckles at higher loads (is stiffer) than those of the other models, perhaps

due to accounting for the k-zone. (Completion of a SOLID model without the k-

zone to provide further examination of this point is planned for future research)

Interestingly, at higher buckling modes, the S4R model gives closer results to the

SOLID model than the S4, but both the S4 and S4R models yielded closer results

to the SOLID model than the S4 HD and S4R HD models - a truly counter-

intuitive result!

Figure 3.6 indicates the relation between buckling load and buckling mode

number for the first 100 buckling modes for the shell models: S4, S4R, S4 HD, and

S4R HD models. Changing the element type from S4 to S4R does not significantly

affect the results, the difference between S4 and S4R, and between S4 HD and

S4R HD is always less than 1.0%, while changing the mesh density has a much

greater effect where the differences between the S4 and S4 HD and between S4R

and S4R HD reaches the order of 15%. This is to be expected as higher modes

typically include buckling modes with short buckling wavelength and finer

meshes (the HD models) are required to accurately represent such deformations.

Dinis and Camotim (2006) indicate that for short columns where local

buckling governs, the S4 and S4R elements show practically identical results,

while for longer columns where global flexural buckling modes govern, they

give different results, with up to 20% differences. This was not observed in the

47

cases studied here, where the global flexural buckling mode governed and the

difference was less than 1.0%.

1 2 3 4 5 6 7 8 9 100.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Buckling Mode

Buc

klin

g Lo

ad x

105 (l

b)

Solid SubspaceSolid LanczosS4S4RS4 HDS4R HDS9R5

Figure 3-4 Buckling load versus buckling mode for the first 10 modes of the different models

48

1 2 3 4 5 6 7 80.4

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

0.49

0.5

Buckling Mode

Buc

klin

g Lo

ad x

105 (l

b)

Solid SubspaceSolid LanczosS4S4RS4 HDS4R HDS9R5

Figure 3-5 Buckling load versus buckling mode for modes 2 through 7 of Figure 3-4.

0 10 20 30 40 50 60 70 80 90 1000.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Buckling Mode

Buc

klin

g Lo

ad x

105 (l

b)

S4S4RS4 HDS4R HD

Figure 3-6 Buckling load versus buckling mode for the first 100 modes of the S4, S4R, S4 HD, and

S4R HD models (HD = high density mesh, see Figure 3-2)

49

3.3.2 Buckling modes

Two buckling mode shapes were observed: global flexural buckling, and

local buckling. Global flexural buckling was observed as the first buckling mode,

with bending about the section’s weak axis, and the fourth buckling mode with

bending about the section’s major axis. Figure 3.7 shows different views of the

global flexural buckling about the section’s minor axis.

(a)

(b) (c)

(a)

(b) (c)

Figure 3-7 Global flexural buckling about the section’s minor axis (a) ABAQUS 3D view, (b)

ABAQUS front view, and (c) CUFSM front view.

50

The rest of the buckling modes observed were typically pure local buckling,

where the two corners (web-flange intersections) remain in place, the web

buckles in a single wave (or more for very high modes) vertically, several waves

longitudinally, and the flanges tilt about the corners. Figure 3.8 shows different

views of a typical observed local buckling mode shape.

(a)

(b) (c)

Figure 3-8 Typical local buckling mode shape (a) ABAQUS 3D view, (b) ABAQUS front view, and (c)

CUFSM front view.

Figure 3.9 provides the buckling shape for all models for the first buckling

mode. All models show the same buckling shape.

51

Figure 3-9 Buckling mode shapes for the first buckling mode via the following models:

SOLID, S4, S4 HD, S4R, S4R HD, and S9R5 (from left to right, top to bottom)

Figures 3.10 and 3.11 show the buckling mode shape for all models, for the

fourth and fifth buckling modes, respectively. These figures show that one

cannot directly compare buckling load values for the different models without

first checking that those loads represent the same buckling mode shape. The

figures show that the SOLID and S9R5 models predicted major-axis global

flexural buckling in the fourth mode, while the rest of the models show this

mode as the fifth mode. It is also noted that the difference in mode number is not

of any important significance as the buckling loads of the fourth and fifth modes

are in actuality, numerically close.

52

Figure 3-10 Buckling mode shapes for the fourth buckling mode via the following models: SOLID, S4, S4 HD, S4R, S4R HD, and S9R5

Figure 3-11 Buckling mode shapes for the fifth buckling mode via the following models: SOLID, S4, S4 HD, S4R, S4R HD, and S9R5

53

3.3.3 CUFSM comparison

For additional comparison, the same simplified centerline geometry

W14x233 section was analyzed using finite strip analysis, performed using

CUFSM version 3.12 (Schafer and Adany 2006). A unit uniform compressive

stress was applied on the section for analysis. At a half wave length of 120”, the

first buckling mode observed was the minor-axis global flexural mode. Figure

3.10 shows the CUFSM output for the minor-axis global flexural buckling mode

at the half wave length of 120”. The mode occurs at a load factor of 0.3146 ksi,

which when multiplied by the section’s area of 70 in2, gives a buckling load of

22.022 kips which is closest to the S4R model’s load of 22.091 kips (and for

practical purposes is identical to any level of meaningful significant digits).

Although the studied cross-section is reasonably thick the close agreement

between CUFSM and the ABAQUS models indicates that CUFSM’s assumptions

of Kirchoff thin plate theory and small membrane strains are valid for such a

section.

Also at the 120” half wave length, the third buckling mode observed in the

CUFSM analysis is the major-axis global flexural mode. This mode occurs at a

load factor of 0.6203 ksi, which implies a buckling load of 43.421 kips which is in

the same order of that observed using the finite element analysis. Figure 3.11

shows the CUFSM output for the major-axis global flexural buckling mode at the

half wave length of 120”.

54

Figure 3-12 CUFSM output for the minor axis global flexural buckling mode.

Figure 3-13 CUFSM output for the major axis global flexural buckling mode.

55

3.4 Summary and conclusions

An elastic buckling analysis was performed on an average W-section

column (W14X233) modeled using different types and densities of shell finite

elements. Results were assessed and compared to one another and to the results

of a section modeled using 3D solid elements. Results were also compared to

CUFSM (finite strip analysis).

The analysis indicates that reduced integration elements such as the S4R do

not exhibit strict convergence with increased mesh density. In addition,

especially for higher modes, mesh density is more important than the use of full

or reduced integration schemes. Kirchoff thin plate theory (as employed in

CUFSM or enforced in the S9R5 element) is sufficiently accurate for elastic

buckling studies of structural steel cross-sections. The details of the k-zone may

have a non-negligible impact on elastic local buckling.

3.5 Ongoing / future work

• Extend the work of this project to study the effect of the column length on 

the  results  to  further examine  the  findings of Dinis and Camotim  (2006) 

where large differences between the S4 and S4R were observed. 

• Create a SOLID model using the three dimensional S3D8R elements, and 

using the sections center line simplified dimensions (without the increased 

width  in  the k‐zone) and compare  its results  to  the models used  for  this 

56

study  to  assess  the  effect of  the k‐zone on  the  results  and  so  assess  the 

validity of the center line geometry simplification. 

• Conduct  a  parametric  study  varying  the  cross  sections  geometric 

parameters,  thus  assessing  the  effect  of  the  sections  slenderness  on  the 

results. 

57

4 FEA nonlinear collapse analysis parameter study for comparing the AISC, AISI, and DSM design methods 

4.1 Introduction and motivation 

As discussed in Progress Report #1, a number of different methods exist for 

the design  of  steel  columns with  slender  cross‐sections. The  three  selected  for 

further study here are: AISC, AISI, and DSM. The AISC method, as embodied in 

the  2005  AISC  Specification,  uses  the  Q‐factor  approach  to  adjust  the  global 

slenderness in the inelastic regime of the column curve to account for local‐global 

interaction, and further uses a mixture of effective width (for stiffened elements) 

and  average  stress  (for  unstiffened  elements)  to  determine  the  final  reduced 

strength. The AISI method, from the main body of the 2007 AISI Specification for 

cold‐formed  steel,  uses  the  effective width  approach.  In  the AISI method  the 

global column curve is unmodified but the column area is reduced to account for 

local buckling  in both stiffened and unstiffened elements via  the same effective 

width  equation.  Finally,  the  DSM  or  Direct  Strength  Method,  as  given  in 

Appendix  1  of  the  2007  AISI  Specification  for  cold‐formed  steel,  uses  a  new 

approach where  the global column strength  is determined and  then reduced  to 

account for local buckling based on the local buckling cross‐section slenderness.  

58

To provide more definitive comparisons between  these  three methods  the 

formulas were detailed for a centerline model of a W‐section in compression. The 

formulas were presented in a common set of notation so that they may be more 

directly  compared.  In  addition,  the  format  of presentation was modified  from 

that used directly  in  the  respective  Specifications  so  that  the methods may  be 

most readily compared to one another and the key input parameters are brought 

to light. 

Table 4.1 shows the design equations for all three methods rearranged and 

formulated  into a common set of notation system as was presented  in progress 

report #1. Table 4.2 shows  the same equations, but using  the cross‐section  local 

buckling stress, fcrl, instead of the plate buckling stresses, fcrb and fcrh. The variables 

used in the tables are defined following the tables.  It is clear from the tables that 

the number of free parameters in slender column design is actually significantly 

less  than  one  might  typically  think.  Based  on  table  4.1,  the  parameters  for 

determining the column strength of an idealized W‐section are: 

AISC:   Pn/Py = f (fe/fy, fcrb/fy, fcrh/fy, htw/Ag)  

AISI:   Pn/Py = f (fe/fy, fcrb/fy, fcrh/fy, htw/Ag or 2bftf/Ag)  

DSM:   Pn/Py = f (fe/fy, fcrl/fy,)  

59

Figure 4.1 shows an example of how  the equations presented  in Table 4.1 

are  used  to  compare  the  design  capacities,  predicted  by  the  different  design 

methods.  Now,  the  main  goal  is  to  further  understand  and  highlight  the 

parameters  that  lead  to  the  divergence  of  the  design  methods  capacity 

predictions.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

0.2

0.4

0.6

0.8

1

local flange slenderness (fy/fcrb)0.5

Pn/P

y

Stub ColumnTypical heavy W14 dimensions:htw /Ag=0.2 2bftf/Ag=0.8

fcrb/fcrh=0.8, fcrb/fcrlocal=1.3

AISCAISI - Eff. WidthDSM (AISI App. 1)

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.2

0.4

0.6

0.8

1

local web slenderness (fy/fcrh)0.5

Pn/P

y

Stub Column

Typical heavy W36 dimensions:htw /Ag=0.4 2bftf/Ag=0.6

fcrb/fcrh=8, fcrb/fcrlocal=6

flange becomes partially effective

transitioning through AISC Qs equations

AISCAISI - Eff. WidthDSM (AISI App. 1)

 

Figure 4-1 Examples of comparing predicted design capacities using the different design methods (from progress report 1). 

60

Table 4.1 Comparison of column design equations for a slender W‐section in a common notation* AISC 

inputs to find Pn  Ag = gross area fe = global buckling stress fy  = yield stress fcrb = flange local buckling fcrh = web local buckling htw/Ag = web/gross area   Comments: shifts the slenderness in the global column curve in the inelastic range only, assumes that unstiffened elements (flange) should be referenced to fy, only applies an effective width style reduction to stiffened elements (the web), includes an awkward iteration for web stress f. 

1 with determined

2 if 16019011

2 if 01

53 if 11

253 if 5904151

2 if 01

440 if 8770440 if 6580

===

⎪⎩

⎪⎨

≤⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛−−−

>

=

⎪⎪⎪

⎪⎪⎪

<<−

=

⎪⎩

⎪⎨⎧

<≥

=

=

asnga

n

crhg

wcrhcrh

crh

a

ycrby

crb

ycrbycrb

y

ycrb

s

yasee

yasey)f/f(QQ

asn

ngn

QQf̂~AQ

Pf

ffAht

ff.

ff.

ff.Q

ffff.

fffff

..

ff.

Q

fQQ.ff.fQQ.ff).(QQ

f̂APyeas

 

AISI‐Eff. Width inputs to find Pn  Ag = gross area fe = global buckling stress fy  = yield stress fcrb = flange local buckling fcrh = web local buckling btf = flange area  htw = web area   Comments:  no  shift  in global  column  curve, effective  width  used  for stiffened  and  unstiffened elements. 

⎪⎩

⎪⎨

<⎟⎟⎠

⎞⎜⎜⎝

⎛−

≥=ρρ=

⎪⎩

⎪⎨

<⎟⎟⎠

⎞⎜⎜⎝

⎛−

≥=ρρ=

ρ+ρ=

⎪⎩

⎪⎨⎧

<≥

=

=

ncrhn

crh

n

crh

ncrh

hhe

ncrbn

crb

n

crb

ncrb

bbe

whfbeff

yee

yey)f/f(

n

neffn

f.fff

ff.

f.fhh

f.fff

ff.

f.fbb

htbtA

f.ff.f.ff).(

f

fAPye

22 if 2201

22 if 1 where

22 if 2201

22 if 1 where

4

440 if 8770440 if 6580

 

AISI‐DSM inputs to find Pn  Ag = gross area fe = global buckling stress fy  = yield stress fcr� = local buckling stress   Comments:  similar  to AISI but  reductions  on  whole section and “effective width” equation modified. 

661 if 1501

661 if 1

440 if 8770440 if 6580

4040

⎪⎩

⎪⎨

<⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟

⎜⎜

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛−

ρ=

⎪⎩

⎪⎨⎧

<≥

=

=

ncr

.

n

cr

.

n

cr

ncr

geff

yee

yey)f/f(

n

neffn

f.fff

ff.

f.f

AA

f.ff.f.ff).(

f

fAPye

lll

l

 

* centerline model of W‐section, in practice AISC and AISI use slightly different k values for fcrb and fcrh. 

61

 Table 4.2 Comparison of stub column design equations for a slender W‐section  

when cross‐section elastic local buckling replaces isolated plate buckling solutions, i.e., fcrl = fcrb = fcrh  and when global buckling is assumed to be fully braced. 

AISC inputs to find Pn  Ag = gross area fy  = yield stress fcrl = local buckling stress htw/Ag = web/gross area   Comments: adoption of fcr� for fcrb and fcrh does not simplify the AISC methodology significantly. Unstiffened and stiffened elements are treated inherently differently in the AISC methodology. 

⎪⎩

⎪⎨

≤⎟⎟

⎜⎜

⎟⎟⎠

⎞⎜⎜⎝

⎛−−−

>

=

⎪⎪⎪

⎪⎪⎪

<<−

=

=

ycrg

w

y

cr

y

cr

ycr

a

ycry

cr

ycrycr

y

ycr

s

ygasn

ffAht

ff.

ff.

ff.

Q

ffff.

fffff

..

ff.

Q

fAQQP

2 if 16019011

2 if 01

53 if 11

253 if 5904151

2 if 01

lll

l

ll

l

l

l

AISI‐Eff. Width inputs to find Pn  Ag = gross area fy  = yield stress fcrl = local buckling stress   Comments:  when  fcrl  is  used for fcrb and fcrh the methodology becomes the same as DSM, but with a more conservative  local buckling predictor equation. 

⎪⎩

⎪⎨

<⎟⎟⎠

⎞⎜⎜⎝

⎛−

ρ=

=

ycry

cr

y

cr

ycr

geff

yeffn

f.fff

ff.

f.f

AA

fAP

22 if 2201

22 if 1

lll

l

 

AISI‐DSM inputs to find Pn  Ag = gross area fy  = yield stress fcrl = local buckling stress Comments:  no  change  from general case 

661 if 1501

661 if 1

4040

⎪⎪⎩

⎪⎪⎨

<⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟

⎜⎜

⎟⎟⎠

⎞⎜⎜⎝

⎛−

ρ=

=

ycr

.

y

cr

.

y

cr

ycr

geff

yeffn

f.fff

ff.

f.f

AA

fAP

lll

l

 

62

 

Basic definitions: 

nP : Nominal section compressive strength. 

gA : Gross area of the section. 

b : Half of the flange width (bf = 2b). 

ft : Flange thickness. 

h : Height of section, between the two flange centerlines. 

wt : Web thickness. 

ef : Elastic global critical buckling stress, e.g., ( )2

2

rKLEπ . 

L : Laterally unbraced length of the member. 

r : Governing radius of gyration. 

K : Effective length factor. 

yf : Yield stress. 

crbf : Flange elastic critical local buckling stress = ( )2

2

2

112 ⎟⎟⎠

⎞⎜⎜⎝

⎛ν−

πbtEk f

f . 

crhf : Web elastic critical buckling stress = ( )2

2

2

112⎟⎠⎞

⎜⎝⎛

ν−π

htEk w

w . 

fk : Flange local buckling coefficient. 

wk : Web local buckling coefficient. 

E : Young’s modulus of elasticity. 

v : Poisson’s ratio. 

lcrf : Section local buckling stress, e.g., determined by finite strip analysis. 

63

aQ : Web reduction factor depends on  crhf .

sQ : Flange reduction factor depends on  crbf . 

4.2 Methodology and modeling 

A  nonlinear  finite  element  analysis  parameter  study  is  initiated  for  the 

purpose  of  understanding  and  highlighting  the  parameters  that  lead  to  the 

divergence between the capacity predictions of the different design methods.  

4.2.1 Chosen sections, dimensions, and boundary conditions 

As a first step, the analysis is conducted on stub (short) columns, avoiding 

global  (flexural)  buckling  modes,  and  focusing  primarily  on  local  buckling 

modes. The length of the studied columns was determined according to the stub 

column definitions of SSRC (i.e., Galambos 1998). For this section, W14 and W36 

sections  are  chosen  for  the  study,  as  they  represent  “common”  sections  for 

columns  and  beams  in  high‐rise  buildings.  The W14x233  section  in  chosen  to 

represent the W14 group and the W36x330 for the W36 group, as the dimensions 

of  each of  these  sections  represent approximately “average” dimensions of  the 

listed/available groups. 

All columns are modeled with pin‐pin boundary conditions, and loaded via 

applying an incremental displacement. 

64

4.2.2 Parameters

Local buckling web-flange interaction is a function of  four  geometric 

variables  h,  tw,  bf,  and  tf  as  well  as  loading  (compression,  bending,  etc)  and 

material  parameters.  With  respect  to  the  geometric  variables,  two  non‐

dimensional  pairs  are  in  common  use:  h/tw  and  bf/2tf;  however  given  4  free 

geometric  variables  a  third  non‐dimensional  pair  must  also  influence  the 

solution, with h/bf or tf/tw being the obvious candidates.  

To create ABAQUS finite element models that will provide strength

predictions that may be compared to the capacity predictions of Figure 4.1, it is

desired to vary the local slenderness, cry ff / .  This  may  be  accomplished 

through varying any of the parameters previously mentioned. In this section, the 

following sections are examined:  

‐ A W14x233 section with a variable flange thickness, and all other

dimensions fixed (thus bf/2tf and tf/tw varied, h/tw, h/bf fixed).

‐ A W14x233 section with variable flange and web thicknesses, but a

fixed flange thickness to web thickness ratio, and all other

dimensions fixed (thus h/tw and bf/2tf varied, tf/tw, h/bf fixed).

‐ A W36x330 section with a variable web thickness, and all other

dimensions fixed (thus h/tw and tf/tw varied, bf/2tf, h/bf fixed).

65

‐ A W36x330 section with variable flange and web thicknesses, but a

fixed flange thickness to web thickness ratio, and all other

dimensions fixed (thus h/tw and bf/2tf varied, tf/tw, h/bf fixed).

It is noted that decreasing an element’s thickness has an equivalent effect

on the comparison curves as increasing the material’s yield strength. For now,

thickness is used as a proxy for investigating increased element slenderness, but

future research in this area related to yield strength is required.

4.2.3 Mesh

Following the finite element analysis results presented in Section 3 of this

report, the two dimensional S4 shell element, which has six degrees of freedom

per node was chosen for the study. The S4 adopts bilinear interpolation for the

displacement and rotation fields, incorporates finite membrane strains, and shear

stiffness is yielded by “full” integration of the element. Also, informed by the

results in Section 3, the mesh density was chosen to have five S4 finite elements

across each unstiffened element (flange) and ten S4 finite elements across each

stiffened element (web). The selected mesh density is provided in Figure 4.4.

4.2.4 Material modeling

As mentioned before, increasing the material’s yield strength increases the

sections slenderness, cry ff / . For  the purpose of  this  initial study  the material 

model  is kept  fixed at  fy = 50 ksi. The material model used  is similar  to  that of 

66

Barth et al.  (2005).  It  is defined  for  the  finite element analysis as a multi‐linear 

stress‐strain response, consisting of an elastic region, a yield plateau, and a strain 

hardening region. The elastic region is defined by a typical modulus of elasticity, 

E = 29000 ksi., up to a yield stress  fy   = 50 ksi. The yield plateau  is defined by a 

very  small  slope of E’ ~ E/200,  in order  to avoid numerical  instabilities during 

analysis computations. A strain hardening modulus Est = 145 ksi. and starts at a 

strain  of  0.011 was  chosen.  Figure  4.2  shows  the  idealized  engineering  stress‐

strain curve used in analysis. The curve is converted to a true stress‐strain curve 

for the analysis. 

 

fu= 65

fy= 50

Engi

neer

ing S

tres

s (ks

i)

Engineering Strainyε stε

Slope, E =29000

Slope, Est=720Slope, Est=720

Slope, E’=145

=0.011

fu= 65

fy= 50

Engi

neer

ing S

tres

s (ks

i)

Engineering Strainyε stε

Slope, E =29000

Slope, Est=720Slope, Est=720

Slope, E’=145

=0.011

Figure 4-2 Idealized engineering stress-strain curve used for analysis.

67

4.2.5 Residual stresses

Residual stresses in hot-rolled steel are due to differential cooling (and

heating to a lesser extent) that occurs during manufacturing. These locked-in

stresses have a significant effect on the stability resistance of the column. A

variety of residual stress distributions for hot-rolled W-sections are found in

literature; Szalai  and  Papp  (2005) studied and compared the commonly used

distributions: Young’s parabolic distribution, the ECCS linear distribution, and

Galambos and Ketter’s constant linear distribution and proposed a new

distribution. For the purposes of this work the classic and commonly used

distribution of Galambos and Ketter (1959), as shown in Figure 4.3, is employed.

The residual stresses are defined for the finite element analysis in terms of initial

stresses along longitudinal direction of the column, and given as the average

value across the element at its center, which is a common practice see, e.g., Jung 

and White (2006).

68

---

--

+

yc f3.0=σ

⎟⎟⎠

⎞⎜⎜⎝

−+=

)2( fwff

ffct tdttb

tbσσ

----

---

--

+

yc f3.0=σ

⎟⎟⎠

⎞⎜⎜⎝

−+=

)2( fwff

ffct tdttb

tbσσ

----

Figure 4-3 Residual stress distribution used for analysis as given by Galambos and Ketter (1959)

4.2.6 Geometric imperfections

Nonlinearity in column response is also due to the presence of initial

geometrical imperfections, which have a significant effect on stability resistance.

The focus of this initial study is on stub columns, therefore global out-of-

plumbness and out-of-straightness imperfections are ignored and only local

imperfections are taken into consideration. Some guides, e.g. ASTM A6/A6M‐04b

(2003) show limits for manufacturing imperfections. However, it is common in

the technical literature, e.g. Kim and Lee (2002), to introduce an initial web out of

flatness of d/150 and an initial tilt in the compression flanges of bf /150. Similar

magnitudes were adopted here, though additional work in both the shape and

magnitude of imperfections is needed.

69

For the proposes of this study, the imperfections are defined for the finite

element analysis by linearly superposing a buckling eigen mode from a previous

buckling analysis. An elastic buckling analysis was performed on the W14x233

and the W36x330 stub column sections with their original dimensions. The first

buckling mode, which is a local mode, is then introduced to the model as an

initial geometric imperfection. The buckling mode introduced is scaled by a

factor that will represent the greater of: web out-of-flatness of d/150, or tilt in the

compression flange with a magnitude of bf /150. A typical local buckling mode,

and the imperfections used for the analysis are shown in Figure 4.4.

70

d

bf

bf /150

d /150

d /150

bf /150

(a)

(b)

(c)

d

bf

bf /150

d /150

d /150

bf /150

(a)

(b)

(c)

Figure 4-4 Typical local buckling mode and initial geometrical imperfections for the analysis (a) ABAQUS 3D view, (b) ABAQUS front view, and (c) CUFSM front view, with scaling factor.

4.3 Results

4.3.1 W14 sections with variable flange thickness

Models were created using the W14x233 sections dimensions, where all the

dimensions were fixed, except the flange thickness. The flange thickness was

reduced from the original thickness of 1.72” down to a thickness of 0.2”. The 0.2”

thickness is certainly not a realistic value, but is done here for the purposes of

comparing the design methods up to and through their extreme limits.

71

Figure 4.5 provides the load-displacement relationship for the W14 sections

as flange thickness is decreased. Figure 4.6 provides the normalized nominal

strengths, yn PP / , obtained by the different design methods of Table 4.1 versus

the flange local slenderness, crby ff / . Furthermore, Figure 4.7 provides similar

plots to those of Figure 4.6, but also includes the design curves obtained using

the cross-section local buckling fcrl as described in Table 4.2, i.e. the nominal

strength was calculated for all the sections using:

• AISC design procedure with fk =0.7 and wk =5.0.

• AISI design procedure with fk =0.7 and wk =5.0 (this is different than

the AISI code assigned values of fk =0.43 and wk =4.0, but is

completed here so that the comparison between the methods can be

as similar as possible).

• DSM design procedure with crf as an output from the finite strip

analysis.

• AISC design procedure with fk and wk values back-calculated from

the finite strip analysis sections local buckling fcrl.

• AISI design procedure with fk and wk values back-calculated from

the finite strip analysis sections local buckling fcrl.

72

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Displacement (in.)

Forc

e (k

ips)

Figure 4-5 Load-displacement relationship for the W14 sections with variable flange thickness. (Top curve represents the original W14x233 section)

0.8 1 1.2 1.4 1.6 1.8 2 2.20

0.2

0.4

0.6

0.8

1

(fy./fcrb)0.5

Pn/

Py

AISCAISIDSMABAQUS

Figure 4-6 Normalized nominal strengths obtained by the three original design methods versus the

flange local slenderness for the W14 sections with variable flange thickness.

73

0.8 1 1.2 1.4 1.6 1.8 2 2.20

0.2

0.4

0.6

0.8

1

(fy/fcrb)0.5

Pn/

Py

AISC (kf=0.7)

AISI (kf=0.7)

DSM (FSM)AISC (kf FSM)

AISI (kf FSM)

ABAQUS

Figure 4-7 Normalized nominal strengths obtained by all different design methods versus the flange

local slenderness for the W14 sections with variable flange thickness.

The figures indicate that the AISC method for handling slender unstiffened

elements (the flange) is unduly conservative. Even if the beneficial web-flange

interaction is included (as provided in Figure 4-7) the AISC expressions still

remain unduly conservative. The unified effective width method of AISI,

including ignoring web-flange interaction, shows the closest agreement to the

ABAQUS results at high slenderness. The DSM approach properly indicates the

long plateau of sections exhibiting the full squash load (Pn/Py ~ 1) but using the

current DSM equations (developed for cold-formed steel) appears to under-

predict the strength at high slenderness.

74

4.3.2 W14 sections with variable flange and web thicknesses at a fixed ratio

In this small study instead of varying the flange thickness of the W14x233

both the flange and web thickness were reduced using the same fixed ratio as the

initial section. Thus h/tw and bf/2tf were increased by decreasing tf and tw, but

tf/tw held constant at a ratio of 1.607, which is the ratio for the original W14x233

dimensions.

Figure 4.8 provides the load-displacement relationship for the W14 sections

while Figures 4.9 and 4.10 provide the normalized nominal strengths, yn PP / ,

obtained by the different design methods versus the flange local slenderness,

crby ff / , for the chosen W14 sections in a similar format of that presented in

Figures 4.6 and 4.7.

75

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Displacement (in.)

Forc

e (k

ips)

Figure 4-8 Load-displacement relationship for the W14 sections with variable flange and web thicknesses at a fixed ratio. (Top curve represents the original W14x233 section)

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.20

0.2

0.4

0.6

0.8

1

(fy./fcrb)0.5

Pn/

Py

AISCAISIDSMABAQUS

Figure 4-9 Normalized nominal strengths obtained by the three original design methods versus the flange local slenderness for the W14 sections with variable flange and

web thicknesses at a fixed ratio.

76

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.20

0.2

0.4

0.6

0.8

1

(fy./fcrb)0.5

Pn/

Py

AISC (kf=0.7)

AISI (kf=0.7)

DSM (FSM)AISC (kf FSM)

AISI (kf FSM)

ABAQUS

Figure 4-10 Normalized nominal strengths obtained by all different design methods versus the flange local slenderness for the W14 sections with variable flange and web thicknesses at a fixed ratio.

Similar to the first study the ABAQUS model predicts that AISC is unduly

conservative as slenderness increases. Both the effective width method of AISI

and the DSM method provide more accurate and consistent prediction. As

discussed in Progress Report #1 inclusion of web-flange interaction, with no

other change in methodology, results in even more conservative predictions for

AISC and AISI. It is also noted that when plotting the strengths versus the web

slenderness or the cross-section slenderness instead of the flange slenderness, the

same trends are found.

77

4.3.3 W36 sections with variable web thickness

Similar to the previous parameter studies on the W14 sections, similar

studies were completed using a W36x330 as the base section. For the first W36

study, the web slenderness was varied by fixing all of the cross-section

dimensions except the web thickness. The web thickness was reduced from the

original thickness of 1.02” down to a thickness of 0.1”. As before, the 0.1”

thickness is not intended to be a practical value, but is used here for the purposes

of exercising the design methods up to and through their limits.

Figure 4.11 provides the load-displacement relationship for the W36

sections used. Figures 4.12 shows the normalized nominal strengths, yn PP / ,

obtained by the different design methods versus the web local slenderness,

crhy ff / , for the chosen W36 sections in a similar format of that presented for

the W14 sections previously.

78

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Displacement (in.)

Forc

e (k

ips)

Figure 4-11 Load-displacement relationship for the W36 sections with variable web thickness. (Top curve represents the original W36x330 section)

1 2 3 4 5 6 7 80

0.2

0.4

0.6

0.8

1

(fy/fcrh)0.5

Pn/

Py

AISCAISIDSMABAQUS

Figure 4-12 Normalized nominal strengths obtained by the three original design methods versus the web local slenderness for the W36 sections with variable web thickness.

79

The ABAQUS analysis indicates that as the web thickness is decreased the

W36 section is still able to nearly reach its squash load. The AISC and AISI

methods generally agree with the predicted ABAQUS strength, while DSM does

not. In fact DSM predicts strong reductions in the cross-section strength which

are not realized. In this case, the presumption that the local buckling of the web

initiates a similar local buckling in the flange does not occur. Examination of the

local buckling mode shape shows that the local buckling is primarily one of web

local buckling with little flange deformation. DSM’s assumption, driven from

elastic stability analysis, that member local buckling and element local buckling

are one in the same does not happen in this section. The case where the web is

significantly more slender than the flange (tf/tw far from 1) requires further

investigation.

It is worth noting that this phenomenon (where DSM provides overly

conservative predictions) exists in cold-formed steel members (which are of

constant thickness) when one element is significantly wider than another. In

these cases it has been found that although DSM is conservative, such sections

also have significant serviceability problems. Such sections with highly varying

element slenderness typically benefit from the inclusion of a longitudinal

stiffener which provides a significant boost to the elastic buckling of the slender

element. Nonetheless, this phenomenon needs further study before DSM can be

fully realized in structural steel.

80

4.3.4 W36 sections with variable flange and web thicknesses at a fixed ratio

In this final small study instead of varying the web thickness of the

W36x330 both the flange and web thickness were reduced using the same fixed

ratio as the initial section. Thus h/tw and bf/2tf were increased by decreasing tf

and tw, but tf/tw held constant at a ratio of 1.814, which is the ratio for the original

W36x330 dimensions. Figure 4.13 provides the load-displacement relationship

and Figures 4.14 and 4.15 show the normalized nominal strengths, yn PP / ,

obtained by the different design methods versus the flange local slenderness,

crby ff / , and the web local slenderness, crhy ff / , for the chosen W36 sections

respectively.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Displacement (in.)

Forc

e (k

ips)

Figure 4-13 Load-displacement relationship for the W36 sections with variable flange and web thicknesses at a fixed ratio. (Top curve represents the original W36x330 section)

81

0.5 1 1.5 2 2.50

0.2

0.4

0.6

0.8

1

(fy/fcrb)0.5

Pn/

Py

AISC (kf=0.7)

AISI (kf=0.7)

DSM (FSM)AISC (kf FSM)

AISI (kf FSM)

ABAQUS

Figure 4-14 Normalized nominal strengths obtained by all different design methods versus the flange local slenderness for the W36 sections with variable flange and web thicknesses at a fixed ratio.

1 2 3 4 5 6 7 80

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(fy/fcrh)0.5

Pn/

Py

AISC (kw =5.0)

AISI (kw =5.0)

DSM (FSM)AISC (kw FSM)

AISI (kw FSM)

ABAQUS

Figure 4-15 Normalized nominal strengths obtained by all different design methods versus the web local slenderness for the W36 sections with variable flange and web thicknesses at a fixed ratio

82

As shown in Figure 4-14 and 4-15 AISC’s predicted stub column strength is

in poor agreement with the ABAQUS predictions. For the conventional W36x330

AISC and ABAQUS essentially predict the squash load, but as the section is

made more slender AISC first over-predicts (unconservative) and then under-

predicts the strength. AISI’s effective width methodology has good agreement

with the observed strength. DSM exhibits the same trend as observed in the

ABAQUS models, but provides an overly conservative prediction. Inclusion of

elastic web-flange interaction in either the AISC or AISI methodologies leads to

even more conservative predictions.

4.4 Ongoing / future work 

The work reported in this section represents only the initiation of the

nonlinear finite element studies anticipated for this projection. Additional planne

work includes:

• Further  investigate  the  results presented  in  this  section  and understand 

their relationships and their effects on the sections buckling stability. 

• Extend the work initiated herein on the W14 and W36 sections to include a 

wider range of W‐sections and other section types. 

• Expand  the  finite  element  parameter  study  initiated  herein,  to  include 

studying: 

83

‐ The  effect  of  more  section  geometric  parameters  and  columns 

lengths. 

‐ The effect of different material models; elastic regions, strength, and 

strain hardenings. 

‐ The effect of different  types,  shapes, and  scales of  initial geometric 

imperfections. 

‐ The effect of using different residual stress distributions. 

‐ Different boundary conditions and loading cases. 

• Propose  design  improvements  to  the  DSM  design  procedure  for  its 

application to structural steel. 

• Explore the possibility of modifications to a small group of standard cross 

sections that will be more appropriate for higher yield stress applications, 

taking advantage of the beneficial post‐buckling reserve. 

84

5 References  Ádány, S., Schafer, B.W.  (2007). “A  full modal decomposition of  thin‐walled, single‐branched open cross‐section members via the constrained finite strip method.” Elsevier, Journal of Constructional Steel Research (In Press 2007).  AISC  (2005).  “Specification  for  Structural  Steel  Buildings”, American  Institute  of Steel Construction, Chicago, IL. ANSI/ASIC 360‐05.  AISI  (2007).  “North  American  Specification  for  the  Design  of  Cold‐Formed  Steel Structures”, American Iron and Steel Institute, Washington, D.C., AISI‐S100.  ASTM (2003), “Standard Specification  for General Requirements  for Rolled Structural Steel Bars, Plates, Shapes, and Sheet Piling”, ASTM A6/A6M‐04b, American Society for Testing and Materials, West Conshohocken, PA.  Axhag, F.,  Johansson, B.  (1999). “Tension  flange  instability of  I‐beams”,  Journal of onstructional Steel Research 49 (1999) 69–81.  Barth, K.E. et al  (2005). “Evaluation of web  compactness  limits  for  singly and doubly symmetric steel I‐girders”, Journal of Constructional Steel Research 61 (2005) 1411–1434.  Dinis, P.B., Camotim, D. (2006). “On the use of shell finite element analysis to assess the local buckling and post‐buckling behavior of cold‐formed steel thin‐walled members”, III  European  Conference  on  Computational Mechanics  Solids,  Structures  and Coupled Problems in Engineering C.A. Mota Soares et.al. (eds.) Lisbon, Portugal, 5–8 June 2006.  Earls,  C.J.  (1999).  “On  the  inelastic  failure  of  high  strength  steel  I‐shaped  beams”, Journal of Constructional Steel Research 49 (1999) 1–24.  Earls,  C.J.  (2001).  “Constant  moment  behavior  of  high‐performance  steel  I‐shaped beams”, Journal of Constructional Steel Research 57 (2001) 711–728.  Galambos, T.V., Ketter, R.L. (1959). “Columns under combined bending and thrust”, Journal Engineering Mechanics Division, ASCE 1959; 85:1–30.  

85

Galambos, T.  (1998). “Guide  to Stability Design Criteria  for Metal Structures”.   5th ed.,  Wiley, New York, NY, 815‐822.  Jung, S., White, D.W. (2006). “Shear strength of horizontally curved steel I‐girders—finite element analysis studies”, Journal of Constructional Steel Research 62  (2006) 329–342.  Kim,  S.,  Lee, D.  (2002).  “Second‐order  distributed  plasticity  analysis  of  space  steel frames”, Engineering Structures 24 (2002) 735–744.  Salmon,  C.G.,  Johnson,  J.S.  (1996).  “Steel  structures:  design  and  behavior: emphasizing  load  and  resistance  factor  design” HarperCollins  College  Publishers, New York, NY.  Schafer,  B.W., Ádány,  S.  (2005).  “Understanding  and  classifying  local,  distortional and  global  buckling  in  open  thin‐walled  members.”  Proceedings  of  the  Structural Stability  Research  Council Annual  Stability  Conference, May,  2005. Montreal, Quebec, Canada. 27‐46.  Schafer,  B.W.,  Ádány,  S.  (2006).  “Buckling  analysis  of  cold‐formed  steel  members using CUFSM: conventional and constrained finite strip methods.” Proceedings of the Eighteenth International Specialty Conference on Cold‐Formed Steel Structures, Orlando, FL. 39‐54.  Schafer, B.W., Seif, M. (2007). “Cross‐section Stability of Structural Steel.” American Institute of Steel Construction, Progress Report No. 1. AISC Faculty Fellowship, 25 June 2007.  Schafer,  B.W.,  Seif, M.  (2008)  “Cross‐section  Stability  of  Structural  Steel.”  SSRC Annual Stability Conference, April 2008.  Szalai,  J., Papp, F.  (2005). “A new  residual  stress distribution  for hot‐rolled  I‐shaped sections”, Journal of Constructional Steel Research 61 (2005) 845–861.  Wang,  X.,  Rammerstorfer,  F.G.  (1996).  “Determination  of  Effective  Breadth  and Effective Width of Stiffened Plates by Finite Strip Analyses”, Thin‐Walled Structures Vol. 26, No. 4, pp. 261‐286, 1996.  Yoshida,  H., Maegawa,  K.  (1978).  “Local  and Member  Buckling  of  H‐Columns”, Journal of Structural Mechanics, (1978), 6(1), 1‐27.