araripe basin

Upload: franz-andrei

Post on 04-Jun-2018

232 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/13/2019 Araripe Basin

    1/17

    Tectono-stratigraphic evolution of the Upper JurassiceNeocomian riftsuccession, Araripe Basin, Northeast Brazil

    Claiton Marlon dos SantosScherer a,*, Emanuel Ferraz Jardim de S b,Valria Centurion Crdoba b, Debora do Carmo Sousa b, Mayara Martins Aquino c,Ftima Maria Canelas Cardoso d

    a UFRGS, Instituto de Geocincias, P.O. Box 15001, CEP 91501-970 Porto Alegre, RS, Brazilb UFRN, Centro de Cincias Exatas e da Terra, Departamento de Geologia, Laboratrio de Geologia e Geofsica de Petrleo, Programa de Ps-Graduao em

    Geodinmica e Geofsica, Natal-RN, Brazilc Petrleo Brasileiro S.A., E&Pe EXP/IABS/PN, Rio de Janeiro, Brazild Universidade de Coimbra, Centro de Geocincias, Cincias da Terra FCTUC, Coimbra, Portugal

    a r t i c l e i n f o

    Article history:

    Received 21 May 2013

    Accepted 24 October 2013

    Keywords:

    Araripe Basin

    Rift Basin

    Continental sequence stratigraphy

    Continental depositional systems

    a b s t r a c t

    The rift succession of the Araripe Basin can be subdivided into four depositional sequences, bounded byregional unconformities, which record different palaeogeographic and palaeoenvironmental contexts.

    Sequence I, equivalent to the Brejo Santo Formation, is composed ofuvial sheetood and oodplainfacies association, while Sequence II, correspondent to the lower portion of the Misso Velha Formation,

    is characterised by braided uvial channel belt deposits. The uvial deposits of Sequences I and II showpalaeocurrents toward SE. The Sequence III, correspondent to the upper portion of Misso Velha For-

    mation, is composed ofuvial sheetood deposits, which are overlain by braided uvial channel depositsdisplaying a palaeocurrent pattern predominantly toward SW to NW. Sequence IV, equivalent to the

    Abaiara Formation, is composed ofuvioedeltaicelacustrine strata with polimodal paleocurrent pattern.The type of depositional systems, the palaeocurrent pattern and the comparison with general tectono-

    stratigraphic rift models led to the identication of different evolutionary stages of the Araripe Basin.Sequences I, II and III represent the record of a larger basin associated to an early rift stage. However, thedifference of the uvial palaeocurrent between sequences II and III marks a regional rearrangement of

    the drainage system related to tectonic activity that compartmentalised the large endorheic basin,dening more localised drainage basins separated by internal highs. Sequence IV is associated with the

    renewal of the landscape and implantation of half-graben systems. The high dispersion of palaeocurrentstrends indicate that sedimentary inux occurs from different sectors of the half-grabens.

    2013 Elsevier Ltd. All rights reserved.

    1. Introduction

    In recent years, numerous studies have addressed the tectonicestratigraphic evolution of the rift basin, focussing on the inuence of

    the tectonic on basingeometry and on accommodationand sedimentsupply ratio (A/S ratio) during the different stages of rifting (Prosser,1993;Bosence, 1998; Gawthorpe and Leeder, 2000; Morley, 2002;Kuchle and Scherer, 2010). However, there are few studies detailing

    the facies architecture and depositional dynamics associated with

    eachof the evolutionarystagesof rifting, especially withregard to theinitial stages of rifting, where depocenters are difcult to identifyand

    ll patterns are diverse and yet poorly understood (Kinabo et al.,2007;Morley, 2002;Kuchle et al., 2011).

    The sedimentarydepositsof the Araripe Basincover an arealargerthan 9000 km2, consisting of oneof more extensive interior basins ofthe Brazilian Northeast (Fig.1). As with the other interior basins, theorigins of AraripeBasin arelinkedto theriftingand openingprocesses

    of the South Atlantic (Guignone et al.,1986; Assine, 2007). Geometryand evolution of these basins are strongly conditioned by structuresof the Precambrian/Neopalaeozoic basement, whose reactivationcontrolled the arrangement of depocenters over time. The Mesozoic

    stratigraphic record of the Araripe Basin reects different stages ofsubsidence related to three main phases (Ponte and Ponte Filho,1996): (a) the Pre-Rift phase, characterised by regional subsi-dence produced by visco-elastic lithospheric stretching; b) the Rift

    * Corresponding author.

    E-mail addresses: [email protected] (C. Marlon dos Santos Scherer),

    [email protected] (E.F. Jardim de S), [email protected] (V.C. Crdoba),

    [email protected] (D.doC. Sousa), [email protected] (M.

    M. Aquino), [email protected](F.M. Canelas Cardoso).

    Contents lists available at ScienceDirect

    Journal of South American Earth Sciences

    j o u r n a l h o m e p a g e : w w w . e l s e v i e r . co m / l o c a t e / j s a m es

    0895-9811/$ e see front matter 2013 Elsevier Ltd. All rights reserved.

    http://dx.doi.org/10.1016/j.jsames.2013.10.007

    Journal of South American Earth Sciences 49 (2014) 106e122

    mailto:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]://www.sciencedirect.com/science/journal/08959811http://www.elsevier.com/locate/jsameshttp://dx.doi.org/10.1016/j.jsames.2013.10.007http://dx.doi.org/10.1016/j.jsames.2013.10.007http://dx.doi.org/10.1016/j.jsames.2013.10.007http://dx.doi.org/10.1016/j.jsames.2013.10.007http://dx.doi.org/10.1016/j.jsames.2013.10.007http://dx.doi.org/10.1016/j.jsames.2013.10.007http://www.elsevier.com/locate/jsameshttp://www.sciencedirect.com/science/journal/08959811http://crossmark.crossref.org/dialog/?doi=10.1016/j.jsames.2013.10.007&domain=pdfmailto:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]
  • 8/13/2019 Araripe Basin

    2/17

    phase, with accentuated mechanical subsidence, forming grabenand/or half-graben systems; and c) the Post-Riftphase, characterised

    by the predominance of thermal subsidence. The main objective ofthis paper is to detail the stratigraphic architecture of the sectioncorresponding to pre-riftand rift phases, aiming at understandingthe depositional geometry, the ll patterns and main controls on

    sedimentation and accumulation of different evolutionary stages ofrifting. Its specic goals include: (1) to identify and correlate un-conformities that permit the recognition of different depositionalsequences; (2) to analyze the facies architecture and the palae-

    ocurrent pattern of eachof the depositional sequences proposed;and(3) to reconstruct the tectono-sedimentary evolution of the rift suc-cession of the Araripe Basin. These results were obtained as part of aproject entitled Interior Basins of the Northeast (Bacias Interiores do

    Nordeste) (PETROBRAS/UFRN/PPGG),whose preliminary resultswerepresented in graduate MSc (Garcia, 2009; Aquino, 2009;Cardoso,2010; Costa, 2012) and at scientic meetings (Jardim de S et al.,2009,2010,2011;Cardoso et al., 2009,2010).

    To reach these objectives, 5 stratigraphic sections, each 20e180 m thick, were measured and analysed in detail (Fig. 1). High-resolution sedimentary logs were measured in order to dene the

    main sedimentary elements of the studied interval. In addition to

    detailed facies analysis of logged sections, architectural panels weremade to dene the two-dimensional (2D) geometries of the de-posits. Facies were dened mainly on the basis of grain-size and

    sedimentary structures. Palaeocurrent orientations were measuredfrom cross-stratied beds. Paleocurrent readings were corrected tothe horizontal surface based on the S0 depositional surface (Tucker,1996). Unconformities surfaces were identied within the main

    outcrops and correlated between sedimentary logs (the sections),allowing the individualisation of different depositional sequences.

    2. Regional stratigraphic framework

    The Araripe Basin, similar to other basins that occur in theinterior of Northeast Brazil, is associated with the Neocomian rift

    event that resulted in the separation of the South American andAfrican continents, specically, in the opening of the East Bra-

    zilian continental margin (Guignone et al., 1986; Assine, 2007).Geometry and evolution of these basins are strongly conditionedby structures of the Precambrian/Neopalaeozoic basement,whose reactivation controlled the arrangement of depocenters

    over time. As discussed by Ponte and Appi (1990), Chang et al.(1992), Matos (1992, 1999) and other authors, this eventincluded a range of onshore aborted rift basins, which extendfrom Recncavo-Tucano-Jatob grabens system to the Potiguar

    graben, all of which were controlled by a principal NW extension.Alternative models have been proposed by other authors (e.g.,Franolin et al., 1994), though the kinematics of the NW extensionis supported by recent studies (Cordoba et al., 2008; Aquino,

    2009;Cardoso, 2010;Jardim de S et al., 2010,2011).In the case of the Araripe Basin, the tectonic rift affected the

    Precambrian granite-gneiss and Paleozoic sedimentary base-ments. Studies byMatos (1992, 1999),Aquino (2009)andCardoso

    (2010) describe half-grabens controlled by normal faults in theNE direction that are commonly tilted to the SE and associatedwith strike slip faults that dene a conjugate pair (EeW sinistral

    and NE dextral), which also agrees with the NW distension.

    According to the studies by Ponte and Appi (1990), Assine (1990,1992)andPonte and Ponte Filho (1996), the Araripe Basin may besubdivided into sequences bound by regional unconformities that

    reect distinct tectonic stages in the basin. Assine (2007) integratedthese different proposals, identifying four large units limited byunconformities: (1) the Palaeozoic Sequence, represented by thealluvial sedimentation of the Mauriti Formation and interpreted as

    the residual deposits of a large intracratonic basin; (2) the Pre-RiftSupersequence (Neojurassic), corresponding to the Brejo Santo andMisso Velha formations; (3) the Rift Supersequence (Neocomian),equivalent to the Abaiara Formation; and (4) the Post-Rift Super-

    sequence. The latter may be subdivided into two higher-frequencysequences: (a) Post-Rift Sequence I (AptianeAlbian), corresponding

    Fig. 1.(A) Regional geological setting of the Araripe Basin. (B) Simplied geological map of the studied area showing the location of eight logged sections, which represent the study

    localities discussed in this paper.

    C. Marlon dos Santos Scherer et al. / Journal of South American Earth Sciences 49 (2014) 106e122 107

  • 8/13/2019 Araripe Basin

    3/17

    to the Barbalha and Santana formations; and (b) Post-Rift Sequence

    II, equivalent to the Araripina and Exu formations.The interval analysed in the present study includes the pre-rift

    and rift supersequences of the Araripe Basin, corresponding tothe Brejo Santo, Misso Velha and Abaiara formations, which are

    grouped in the Cariri Valley Group (Grupo Vale do Cariri) ( Ponte

    and Appi, 1990; Assine, 2007)(Table 1). The Brejo Santo Forma-tion is predominantly made up of red, or more rarely green mud-stones, rich in ostracod fossils. Sometimes, intercalated layers of

    ne grained sandstones are observed, mainly toward the top of theunit (Assine, 1990). The Brejo Santo Formation is interpreted asdeposits of the shallow, broad and ephemeral lakes (Assine, 1990).The Misso Velha Formation is compound by ne to very coarse-

    grained sandstones, sometimes containing fossil trunks, interca-lated with rare and discontinuous mudstones lenses. The MissoVelha Formation has been interpreted as braided uvial channels

    deposits with a regional palaeoow toward the SE (Assine, 1994).Finally, the Abaiara Formation is characterized by different litho-

    logical types with a predominance of ne to medium-grainedsandstones and mudstones. This unit has been interpreted as de-posits of uvial, deltaic and lacustrine depositional systems. Ac-cording to Assine (1994), the uvial and deltaic deposits of the

    Abaiara Formation show paleocurrents toward the SE.In the present study, the stratigraphic data are presented and

    interpreted according to the commonly accepted hypothesis, inwhich the Brejo Santo Formation was deposited during the Neo-

    jurassic (Dom Joo Stage) (Coimbra et al., 2002; Assine, 2007).Meanwhile, 100 miles north of Araripe Basin are described reddishmudstones (Lavras da Mangabeira Formation) that are intruded bybasic dikes aged of 185 Ma, as discussed byJardim de S et al. (2010,

    2011). The mudstones of the Lavras da Mangabeira Formationoverly paleozoic sandstones, dening a stratigraphic context verysimilar to Brejo Santo Formation. As a result, Jardim de S et al.(2010, 2011)raise the possibility that the lower part of the Brejo

    Santo Formation may be older than Neojurassic.

    3. Sequence stratigraphy of the JurassiceNeocomian

    succession

    The Upper JurassiceNeocomian section of Araripe Basin can besubdivided into four depositional sequences. These sequences are

    designated, from the base to the top, as Sequences I, II, III and IV(Fig. 2). The criteria used to identify unconformities in outcropsinclude: (1) an abrupt facies change, which may involve both a

    change in the depositional systems or modication of facies ar-chitecture within a specic depositional system; (2) an abruptchange in the texture and grain size across the unconformity; and

    Table 1

    Stratigraphic nomenclature table of the Araripe Basin (accordingAssine, 2007).

    Table 2

    Summary of facies description and interpretation.

    Facies Description Interpretation

    Gcm Sandy conglomerate; granule to pebble clasts; massive; intraformacional clasts of mudstones and sandstones;

    rare extrafromacional clasts of granite, gneiss, quartizite.

    Pseudoplastic debris ow

    Gt Sandy conglomerate; granule to pebble clasts; extraformacional clasts of granite and quartz;

    coarse to granular sandstone matrix, vaguely to well straties; 10e40 cm thick sets; trough cross-stratied sets

    3-D Gravel dunes

    Sm Fine to coarse-grained sandstones; moderated to well sorted; massive; 20e40 cm thick beds. Rapid deposition fromheavily sediment-laden

    ows during waning oods or

    intenseuidizationSt Fine to coarse-grained sandstones; moderated sorted; rare extraformacional granule and pebble clasts of granite and quartz;

    20 cm to 1m thick sets; trough cross-stratication. Sometimes soft sediment deformation.

    3-D Subaqueous sand

    dunes (lower ow regime)

    Sp Fine to coarse-grained sandstones; moderated sorted; rare extraformacional granule and pebble clasts of granite and quartz,

    dispersed or parallel to stratication; 10e50 cm thick sets; planar cross-stratication. Sometimes soft sediment deformation.

    2-D Subaqueous sand

    dunes (lower ow regime)

    Sl Fine to coarse-grained sandstones; moderated sorted; common extraformacional granule and pebble clasts of granite and

    quartz; cross-stratication dips

  • 8/13/2019 Araripe Basin

    4/17

    Fig. 2. (A) Stratigraphic cross-section based on log correlation, displaying the depositional sequences, their bounding surfaces and facies association (datum: regional ooding

    surface at the base of the Abaiara Formation). See Fig. 1for position of the logs. (B) Explanation of symbols used in the sedimentological logs of this paper.

    C. Marlon dos Santos Scherer et al. / Journal of South American Earth Sciences 49 (2014) 106e122 109

  • 8/13/2019 Araripe Basin

    5/17

    (3) changes in the palaeocurrent patterns. The lithofacies descrip-tion for each depositional sequence is shows in Table 1and is basedon the original table fromMiall (1977).

    3.1. Sequence I

    Sequence I corresponds entirely to the Brejo Santo Formation. This

    sequence displays a thickness of approximately 400 m (Ponte andAppi, 1990; Assine, 1992). The lower and the upper boundaries ofSequence I comprise regional scale unconformities with the Mauriti

    and Misso Velha formations, respectively (Fig. 2). Sequence I iscomposed of two distinct facies associations (Fig. 3): (1) FluvialSheetood Facies Association and (2) theFloodplain Facies Association.

    3.1.1. Fluvial Sheetood facies associationThis facies association is characterised by ne to medium-

    grained sandstones, arranged in 1e5 m thick tabular bodies, thatcan be traced laterally more than 80 m (maximum outcrop extent).

    Fining-upward trends are common, with the tops of the cycles

    grading to mudstones of the oodplain facies association. Thetabular bodies are bounded at the base by at or slightly erosionalsurfaces that may eventually be marked by

  • 8/13/2019 Araripe Basin

    6/17

    sediments and in the ow velocity. The massive sandstones are theresult of hyperconcentrated ows in which the concentration of

    sandy sediment in suspension inhibits the turbulence and separa-tionof the ow, which are necessary for the embryonation of dunes(Allen and Leeder,1980). The sediment is deposited en masse duringthe deceleration of the ow. In turn, the low-angle and horizontal

    stratied sanstones indicate more diluted ow conditions in which

    the sediments are predominantly transported by traction in high-

    ow regime (Allen and Leeder, 1980). The occurrence of ripple

    cross stratied sandstone in the upper portion of the tabular bodiesis the result of waning ow velocity associated with ow termi-nation or channel abandonment (Miall,1996). Intraformational lagsat the base of sheet sandstone bodies represent the reworking of

    deposits accumulated in the oodplain areas.

    Fig. 4. (A) Sedimentological log showing the basal and the top unconformities of the Sequence II. SeeFig. 2for explanation of symbols and position of the logs. See Table 1for facies

    code. (B) Low relief, basal unconformitie marked by abrupt contact between oodplain (Sequence I) and braided uvial channel (Sequence II) facies associations. Person: 1.7 m. (C)

    Sandy conglomerate with sandstones clasts (Lihofacies Gm) of the Sequence III covering braided uvial channel sandstones of Sequence II. Observe erosive nature of the contact.

    Hummer: 0.3 m.

    C. Marlon dos Santos Scherer et al. / Journal of South American Earth Sciences 49 (2014) 106e122 111

  • 8/13/2019 Araripe Basin

    7/17

    3.1.2. Distaloodplain facies associationThis facies association is characterized by up to 5 m thickness

    reddish mudstones intercalated occasionally with tabular sand-stones (Fig. 3). Mudstones are massive, with ostracod fossils,sometimes exhibiting layers of calcareous concretions. Sandstonesare ne to medium-grained, well-sorted and deposited in tabular

    layers, 10e30 cm thickness, with planar and non-erosive basalcontact. The sandstones commonly display ripple cross-lamination(Sr). Sometimes, horizontal lamination (Sh) can be observed.

    This facies association is interpreted asoodplain deposits, which

    may represent two distinct depositional contexts: (a) overbank

    ooding resulting from unconned ow originating from overtoppedchannels when they occur adjacent to lenticular sandbodies; or (ii)downslope, unconned sedimentation associated with terminal

    oodingstages (Hamptonand Horton, 2007; Spalletti and Piol, 2005).

    Tabularsandstonebeds composed of horizontallaminationand ripplescross-laminated are interpreted as the products of poorly developed

    traction currents during the waning stages ofood events (Hamptonand Horton, 2007). Mudstones, in turn, must have been deposited bythe gravitational settling of theparticles in suspension during thenalstages ofooding or in temporary lacustrine bodies that form on the

    alluvial plain. The levels characterised by carbonate nodules areinterpreted as calcareous palaeosols (Ray and Chakraborty, 2002).

    3.2. Sequence II

    Sequence II is equivalent to the lower section of the Misso

    Velha Formation, bounded at the top and the base by un-conformities (Figs. 2and 4). This sequence displays a thickness ofbetween 20 and 30 m and it is composed of two distinct facies

    Fig. 5. (A) Sedimentological log showing litofacies, facies association and facies succession of the sequence II. SeeFig. 2for explanation of symbols and position of the logs. See

    Table 1 for facies code. (B) Lithofacies Sp. Planar cross-bedded sandstones. Hummer: 0.3 m. (C) Lithofcies St. superimposed sets of trough cross-bedded sandstones. Hummer:

    0.3 m. (D) Mud intraclasts concentrated at the base of cross-bedded set (lithofacies St). Hummer: 0.3 m.

    C. Marlon dos Santos Scherer et al. / Journal of South American Earth Sciences 49 (2014) 106e122112

  • 8/13/2019 Araripe Basin

    8/17

    association (Figs. 4and5): (1) Braided Fluvial Channel Belt and (2)Overbank Facies Association.

    3.2.1. Braideduvial channel belt facies associationThis facies association consists of ne to very coarse-grained

    sandstones, moderately sorted, sometimes containing fossil

    trunks, arranged in sandstones bodies, 5e15 m thick, that extendlaterally for more than 300 m (maximum outcrop extent). Thesandstone bodies are bounded at the base by erosive, slightlyconcave surfaces, which in some cases are marked by concentra-

    tions of granules and pebbles. Internally, the sandstone bodiesexhibit a weakly developed ning upward pattern. The sandstonesexhibit planar (Sp) and trough (St) cross-bedding, arranged in 0.2e1 m thick sets (Figs. 4and5). Horizontal stratication (Sh) and low

    angle cross-stratication (Sl) sandstones are rare and normallyrestricted to isolated sets, 10e30 cm thick. Sometimes, it is possibleto identify compound cross-strata, 2 and 3 m thick, which inter-nally display sets of planar and trough cross-bedding bounded by

    inclined surfaces dipping in the same direction of the cross strata.The dipping of the bounding surfaces varies from 3 to 10, andthose with a lower angle (3 to 5) are only visible in sections

    parallel to the dipping direction, where a smooth downlap of these

    surfaces can be identied over the basal surface of the compoundcross-strata. Measurements of the direction of the dip of the cross-strata display a unimodal pattern with a mean vector toward the SE

    (Figs. 2, 4 and 5).

    The occurrence of sandstone bodies bounded at the base byerosive surfaces outlined by granules and pebbles lags and

    internally composed of sets of planar and trough cross-strata witha unimodal direction of the palaeocurrents indicate that thisfacies association represents uvial channel deposits. The com-pound cross-strata can be interpreted as macroforms migrating

    in-channel. The fact that the cross-strata exhibit the same dipdirection of the bounding surfaces allows for the conclusion thatthe compound cross-strata represent downstream accretionmacroforms with superimposed, small-scale bedforms (Miall,

    1996; Chakraborty, 1999; Jo and Chough, 2001). The sandstonebodies sheet geometry, prevailing coarse-grained nature of thedeposits, common presence of the downstream macroforms, theweak development of the ning upward succession and the low

    dispersion of the palaeocurrent data suggest low sinuosity,braided channel belt deposits (Scherer and Lavina, 2005; Miall,1996).

    3.2.2. Overbank facies associationThis facies association is rare and occurs intercalated with

    braided uvial channel-belt deposits, consisting mainly of red

    massive mudstone (Fm) (Fig. 5). Individual bodies are decimetres

    thick (

  • 8/13/2019 Araripe Basin

    9/17

    The ne-grained deposits are interpreted as overbank depositsaccumulated through gravitational settling of the suspended load

    withinooded areas surrounding braided channel belts (Miall,1996).

    3.3. Sequence III

    Sequence III, 20e30 m thick, corresponds lithostratigraphicallyto the upper portion of the Misso Velha Formation (Fambrini et al.,

    2011). Due to similarity of the facies association (both are uvialdeposits), it is difcult to identify the unconformity surface be-tween sequences II and III, dening a cryptic sequence boundary(terminology ofMiall and Arush, 2001). Among the main criteria

    used for this identication, the following can be highlighted: (1) anincrease in grain size through the unconformity, marked by theabrupt occurrence of sandy conglomerate deposits over medium tocoarse-grained sandstones; (2) the presence of sandstone clasts

    and reworked fossil trunks of the Sequence II in basal conglomerateof sequence III; (3) a change in the direction of the uvial palae-ocurrents through the unconformity (Fig. 2). The top of Sequence IIIis also marked by disconformity, marked by onlap of the uvial and

    deltaic deposits of Sequence IV (Abaiara Formation) (Figs. 2and6).Sequence III is composed of two distinct facies association (Fig. 7):

    (1) Fluvial Sheetood Facies Association and (2) Braided FluvialChannel Belt Facies Association.

    3.3.1. Fluvial sheetood facies associationThis facies association is composed of sandy conglomerate and

    medium to very coarse-grained sandstones, moderately sorted, ar-ranged in sheet-like sandstone bodies, 0.5 and 1.2 m thick. The

    conglomerates are clast-supported, massive and predominantlyconsist of granules and pebbles of quartz, granites, sandstones andmuddy intraclasts (Gm). The sandstones, in turn, are massive (Sm) or,less often, display low-angle cross-stratications (Sl). The sandstones

    commonly display granules or pebbles of granite or mud intraclasts,dispersed or concentrated along the stratication planes.

    The dominance of massive conglomerates together with

    massive or horizontal to low-angle stratied sandstones, displayedin sedimentary bodies with sheet geometry, suggests that these

    deposits result from high-energy, sheetood uvial ows (Nemecand Postma, 1993;Blair, 2000,2001). The succession of amalgam-

    ated sandstone and conglomerate beds may represent a series of

    ooding events that were deposited in wide shallow channels.Massive, clast supported conglomerate suggests deposition byhigh-density hyperconcentrated ows. Massive sandstone is

    interpreted as rapid deposition from heavily sediment-laden owduring waning oods hyperconcentrated ows. Low-angle cross-stratied sandstones are interpreted as plane bedforms producednear the upper to lower ow regime transition by unidirectional

    currents (Miall, 1996).

    3.3.2. Braideduvial channel belt facies associationThis facies association is made up of several sheet-like sandstone

    bodies, 2e7 m thick, bounded at the base by at to concave-uperosional surfaces, sometimes marked by massive, granule topebbled clast-supported conglomerate (Gcm), 10 to 20 cm thick.These deposits are succeeded by 0.2e0.4 m thick, trough (St) and

    planar (Sp) cross-stratied sandstones, and, rarely, by low-anglecross-stratied sandstones (Sl) (Fig. 7). Sometimes, it can beobserved compound cross-strata, 2 and 4 m thick, inwhich each set

    is boundedby inclined surfaces (5e8) thatdip inthe samedirection

    of the cross-strata. Measurements of the direction of the dip of thecross-strata indicate a paleocurrent toward the SW to NW ( Fig. 2).

    These sandstone bodies are interpreted as deposits of uvial

    channel, based on the presence of concave-up erosional lowerboundaries and dominance of unidirectionally oriented decimetre-scale planar and trough cross-strata. The erosional lower boundaryof the sandstone bodies may be interpreted as limits of the uvial

    channels, equivalent to the 5th-order surface ofMiall (1988,1996).The downcurrent-dipping inclined strata represent downstream ac-cretion of compound bars with superimposed, small-scale bedforms(DA architectural elementofMiall,1988,1996). The sheetgeometry of

    the sandstone bodies, dominantly coarse sand size of the deposits,absence of mudstone, locally developed downstream accretionmacrofoms and low dispersion of the paleocurrent data collectively

    suggests that this facies association represents braideduvial chan-nel belt deposits (Miall, 1996;Ray and Chakraborty, 2002).

    Fig. 7. Onlap of the prodelta to delta front deposits of the Sequence IV over braided uvial channel sandbodies of the Sequence III. See Fig. 2for position of the sedimentological

    panel.

    C. Marlon dos Santos Scherer et al. / Journal of South American Earth Sciences 49 (2014) 106e122114

  • 8/13/2019 Araripe Basin

    10/17

    Fig. 8. (A) Sedimentological log showing litofacies, facies association and facies succession of the outcrop 5 (sequence IV). See Fig. 2for explanation of symbols and position of the

    logs. See Table 2 for facies code. (B) Facies succession of the distributary channel and overbank facies association. (C) Heterolithic deposits of the overbank facies association

    characterized by intercalation of the massive sandstones (Sm) and massive mudstones with mud cracks (Fm). (D) and (E) Coarsening upward facies succession of the prodelta and

    delta front facies association. Person: 1.6 m.

    C. Marlon dos Santos Scherer et al. / Journal of South American Earth Sciences 49 (2014) 106e122 115

  • 8/13/2019 Araripe Basin

    11/17

    3.4. Sequence IV

    Sequence IV is approximately 400 m thick and correspondslithostratigraphically to the Abaiara Formation (Fig. 2). It is boun-ded at the base by an unconformity marked by onlap of deltaicdeposits over uvial braided channel belt facies association of

    Sequence III (upper section of the Misso Velha Formation) (Fig. 7).The upper contact of this sequence is marked by angular uncon-formity with the alluvial strata of the Barbalha Formation (Assine,1990) or the Rio da Batateira Formation (Ponte and Appi, 1990),

    which compose the base of the Post-Rift Supersequence (Assine,2007). Sequence IV is composed of four distinct facies association(Figs. 2, 7 and 8): (1) the Prodelta/Deltaic Front, (2) DistributaryFluvial Channels, (3) Overbank Deposits and (4) Meandering Fluvial

    Channel Facies Association.

    3.4.1. Prodelta/delta front facies associationThis facies association is characterized by repetition of 2e10 m

    meter-scale coarsening-upward cycles (Fig. 8). The base of the cy-cles is characterised by reddish to greenish color, massive (Fm) orlaminated (Fl) mudstones, frequently exhibiting ostracod fossils.

    These mudstones interlayer upward with ne to very ne sand-

    stones, 5 and 30 cm thick, which exhibit ripple cross-laminations(Sr) and, less commonly, low-angle cross stratications (Sl). Thetransition between mudstones and sandstones beds is marked by

    soft-sediment deformations structures, including simple load,pendulous features, pseudo-nodules and balls and pillow struc-tures. Some cycles can present at the top amalgamated layers ofneto medium sandstones with trough (St) and planar (Sp) cross-

    stratications. The sandstones may also show indication of soft-sediment deformation, mainly oversteepened cross-stratication,convoluted folds and plate and pillar structures. Measurements ofthe direction of the dip of the cross-strata show a preferential di-

    rection within each cycles, though with high dispersion if differentcycles are compared (Figs. 2and8).

    The lithology, coarsening-upward cycles organization and

    dominance of unidirectional current-generated structures suggestthat these facies association represents progradation of river-dominated delta, similar to those described by Bhattacharya(1991)and Giosan and Bhattacharya (2005). The ostracod fossilspresent in the ne-grained deposits indicate a lacustrine context

    (Coimbra et al., 2002). The thickness of the cycles represents theminimum depth of the water level, which, in this case, varied from2 to 10 m. The massive and laminated mudstones at the base of thecycles are interpreted as prodelta deposits. The lack of bioturbation

    in these deposits indicates that the sediment was rapidly buried,thus preventing the reworking of the substrate by organisms. Thevertical increase in the frequency and thickness of the sandstoneslayers indicate progradational tendency of the deltaic front. The

    pronounced intercalation of sandstones and mudstones and the

    dominance of the unidirectional current-generated structures inthe sandstones suggest that the sediments were supplied byintermittent unidirectional ows derived from uvial systems. The

    presence of different types of soft-sediment deformation in thecontacts between the sandstones and mudstones and within thesandstones layers must be linked to a high rate of sedimentation,

    which increases the water pressure in the pores, inducing the liq-uication of the sediment. The amalgamated sandstones that occurat the top of the coarsening-upward cycles must represent theproximal portions to the delta front, deposited by distributary

    mouth-bars (Bhattacharya, 2011).

    3.4.2. Distributaryuvial channel facies associationThis facies association is made up byning-upward successions,

    1.5e

    5 m thick, normally overlaying Prodelta/Deltaic Front Facies

    association (Fig. 8). The base of the cycles is marked by an erosivesurface, frequently capped by intraformational conglomerates rich

    in mudstone intraclasts. Internally, the cycles are characterised atthe base by medium to coarse-grained sandstones, moderatelysorted, with trough cross-stratications (St), planar cross-stratications (Sp) and low-angle cross-stratications (Sl), which

    sometimes give rise toward the top to ne to very ne-grainedsandstones with ripples cross-laminations (Sr).

    The presence ofning upward cycles, bound by erosive surfacescapped by intraclast lags suggests deposits ofuvial channels. The

    fact that this association invariably covers prodelta/deltaic frontdeposits indicates distributary uvial channels of the deltaic plain(Hampson et al., 1999). The trough and planar cross-straticationssandstones may be interpreted as deposits of 2D and 3D sub-

    aqueous dunes, respectively, which migrate over the bottom of thechannel in response to unidirectional tractional ows. The ning-upward successions suggest a progressive decrease of the owvelocity, culminating in the abandonment of the channel. The lack

    of lateral accretion surfaces suggests uvial channels with lowsinuosity.

    3.4.3. Overbank facies association

    This facies association commonly occurs intercalated with dis-tributary uvial channel or meandering uvial channels deposits. Itis characterised by red or greenish (rare) mudstones occasionally

    interlayered with tabular sandstones, where deposits commonlyexhibit a tabular geometry, ranging from 3 to 15 m thick (Fig. 8). Themudstones are massive (Fm) or laminated (Fl), sometimes dis-playing calcareous concretions. The nodules vary from 1 to 20 cm in

    diameter, exhibiting shapes that range from highly irregular tovertically elongated and tabular. The sandstones are ne tomedium-grained, well-sorted, arranged in tabular layers, withplanar and non-erosive basal contact, internally compound by

    ripples cross-laminations (Sr). Sometimes, very ne to coarse-grained, bimodal sandstones, with low-angle cross-stratications(Sl(e)), can be observed. Each lamina is inversely graded, 1 and

    3 mm thick.This facies association is interpreted as overbank deposits,

    which may have been accumulated both in the inter-distributarybays present in the deltaic plain or in the swampy regions of the

    uvial oodplain. The mudstones have been deposited due to the

    gravitational settling of particles in suspension, while the sand-stones with ripples cross-laminations represent the deposits ofcrevasse splays accumulated during river channel overbank ood-ing. The carbonate nodules horizons are interpreted as calcareous

    palaeosols (Ray and Chakraborty, 2002). The sandstones with low-angle cross-stratication, with inversely gradated laminae, areinterpreted as aeolian sand sheet deposits formed by the migrationand climbing of the aeolian ripples (Scherer and Lavina, 2005;

    Scherer et al., 2007). The presence of frequent carbonaceous

    palaeosols and aeolian deposits, indicates drier periods marked bya water table falling and subaerial exposure of the depositionalsurface.

    3.4.4. Meanderinguvial channel facies associationThis facies association is composed of sandstone bodies, 2e7 m

    thick, bounded at the base by erosive, concave upward surfaces,with reliefs varying from 1 to 3 m. Internally each sandstone bodyshows one large scale lateral accretion unit, characterized by sets of

    ne to medium-grained sandstones with trough cross-stratication

    (St) and/or ripples cross-lamination which are bounded by inclinedsurfaces (2e10) that dip approximately perpendicular to the di-rection of the cross-strata dip (Fig. 9)

    The presence of sandbodies with an erosive base and the

    predominance of unidirectional tractive structures allow to

    C. Marlon dos Santos Scherer et al. / Journal of South American Earth Sciences 49 (2014) 106e122116

  • 8/13/2019 Araripe Basin

    12/17

    interpret this facies association as uvial channel deposits. Theoccurrence of large-sized inclined strata indicates the presence of

    macroforms lling the uvial channels. The fact that the cross-strata show palaeocurrents that are approximately transversalto the direction of the dip of the bounding surfaces suggestslateral accretion macroforms (Miall, 1996). The dominance of

    lateral accretion macroform suggests that this facies associationrepresents high sinuosity uvial channel (Ghazi and Mountney,2010).

    4. Stratigraphic evolution

    The Neo-JurassiceNeocomian succession of the Araripe Basinconsists of four depositional sequences bound by unconformities

    (Fig. 2). Sequence I corresponds lithostratigraphically to the BrejoSanto Formation and can be interpreted as the distal portion of analuvial plain that developed in an arid to semi-arid climatic context.This sequence is composed of oodplain and uvial sheetood

    facies associations that ow toward the SSE (Figs. 2 and 11). Thisdepositional context suggests that the basin extends toward thenorth, where the proximal sub-environments of Sequence I wouldbe positioned. Therefore, the entire depositional system can

    represent a distributary uvial or terminal fans systems thatoccupied an area much larger than the one circumscribed within

    the current erosive limits of the Araripe Basin, as claimed by Kuchleet al. (2011).

    Sequence II, corresponding to the lower portion of the MissoVelha Formation, is characterized by multi-storey and multi-lateral,

    amalgamated, sheet sandstone bodies with rare preservation of

    ne-grained, overbank deposits, interpreted as the deposits ofbraided uvial channel-belt system, with palaeocurrents towardthe SE (Figs. 2 and 11). The disconformity that separates Sequences I

    and II is easily observed in outcropps, marked by grain-size increaseand by abrupt change in depositional style, from an ephemeral

    uvial system of Sequence I to a braided uvial channel-belt systemof Sequence II. The change in the depositional style reects change

    in the discharge regime of the uvial systems, which is probablyassociated with the more humid climatic conditions in Sequence II.Although there is a change in the depositional systems of sequencesI and II, both units have palaeocurrent to SE. This suggests that the

    source area and proximal deposits of the sequences I and II werenorthwest of the study area.

    Sequence III, corresponding to the upper interval of the Misso

    Velha Formation, is composed, at its base, of uvial sheetood

    Fig. 9. (A) Sedimentological log showing litofacies, facies association and facies succession of the outcrop 1 (sequence IV). The location of outcrop is show on theFig. 1.SeeFig. 2for

    explanation of symbols and position of the logs. See Table 1for facies code. (B) Outcrop panel showing lateral accretion surface in meandering

    uvial channel sandstone bodies.

    C. Marlon dos Santos Scherer et al. / Journal of South American Earth Sciences 49 (2014) 106e122 117

  • 8/13/2019 Araripe Basin

    13/17

    facies association that passes upward to braided uvial channel beltfacies association, the latter displaying facies architecture similar to

    that of the uvial deposits of Sequence II, though with character-istically distinct palaeocurrents (Fig. 11). The uvial strata ofSequence II exhibit palaeocurrents toward the SE, while the uvialdeposits of Sequence III display a palaeocurrent pattern predomi-

    nantly toward the SW and NW (Fig. 2). So, the unconformity be-tween Sequences II and III marks signicant rearrangement in thedepocenters of the basin. The presence of sandstones clasts andreworked coniferous trunks of the sequence II at the base of the

    Sequence III indicates uplift of the basin, exposing the sequence IIdeposits to erosion. This fact, combined with the change in the

    uvial palaeocurrent vectors, must be associated with tectonicmovements that changed the morphology of the basin, causing a

    change in the drainage system.Sequence IV, equivalent to the Abaiara Formation, is charac-

    terised by a thick succession deposited by deltaic and uvial sys-tems, that display high dispersion in the palaeocurrents (Figs. 2

    and 10), suggesting that the sedimentation occurred within arestricted basin with sedimentary supply from different anks ofthe basin (Fig. 11). The onlap of the deltaic deposits of Sequence IV

    over the uvial sandstones of Sequence III (Fig. 7) conrms the

    restructuring of the basin with consequent reduction of thedepositional area.

    5. Tectonic-stratigraphic context

    In recent years, different studies have discussed the tectonicestratigraphic evolution of rift basins, identifying different evolu-

    tionary stages (Morley, 2002). The rst stage is characterised byincipient extensional efforts that generate a basin that has abroadly synclinal geometry. The thickening toward the basincenter is achieved by expansion of section across numerous

    rotational and nonrotational normal faults. These faults are ofsimilar displacement and no dominant fault trend is apparent. This

    large basin was established before the development of the halfgraben system. Thus, this stage is characterized by a wide synclinal

    depression, larger than the subsequent rift trough, associated tothe low rate, continuous and uniformly distributed tectonic ac-tivity (Morley, 2002; Kinabo et al., 2007; Kuchle et al., 2011).

    Although different authors (e.g., Prosser, 1993; Bosence, 1998;Gawthorpe and Leeder, 2000) visualise the beginning of the rift in

    the form of smaller-sized half graben basins bounded by smallnormal faults, some actual and ancient examples corroborate thesynformal basin geometry to early rift stage (Morley, 2002;Kinaboet al., 2007;Kuchle et al., 2011). In turn, the second stage would be

    marked by the formation of half-grabens. The development ofhalf-grabens would occur through the nucleation of the mainborder fault by linkage of smaller faults. In the initial phase of theprocess, the mechanical subsidence is still reduced, as a result of

    the small slip faults (Gawthorpe and Leeder, 2000). Accordingly,the fault scarps are underdeveloped, reducing the occurrence ofconglomerate wedges (Prosser, 1993; Bosence, 1998; Gawthorpeand Leeder, 2000). When the fault linkage occurs, forming a

    continuous border fault along the half-graben, there is an increasein the subsidence favouring the development of large and deeplakes, as now occurs in the rift system of East Africa. As the rate ofaccommodation creation tends to be greater than the rate of

    sedimentary inux, the sedimentary succession displays retro-gradational stacking pattern (Prosser, 1993; Kuchle and Scherer,2010). Finally, there is the nal lling stage of the half-graben, in

    which the movement of the border fault is signicantly reduced.

    Therefore, there is a decrease in the ratio between the rate ofaccommodation creation and the rate of sedimentary inux,resulting in a progradational stacking pattern (Prosser, 1993;

    Kuchle and Scherer, 2010).The JurassiceNeocomian section of the Araripe Basin exhibits

    distinct stratigraphic signatures, which allow for the identica-tion of different evolutionary stages. Sequences I, II e III, equiv-

    alent to Brejo Santo and Misso Velha formation, showdepositional systems distribution and palaeocurrent patternindicating that this units occupied a depositional area muchlarger than the one circumscribed within the current erosive

    limits of the Araripe Basin. This suggests that sequences I, II andIII were deposited in a large sedimentary basin connected to theinitial stage of the Neocomian rifting (Kuchle et al., 2011). Pre-

    vious studies (e.g.Estrella, 1972;Garcia et al., 2005;Kuchle et al.,2011) have suggested that Brejo Santo and Misso Velha for-mations were accumulated on the northern ank of the onelarge endorheic basin, named of Afro-Brasilian Depression.However, the difference of the uvial palaeocurrent between

    sequences II and III marks a regional rearrangement of thedrainage system possibly related to tectonic activity. These tec-tonic movements may have compartmentalised the large endo-rheic basin, dening more localised drainage basins separated by

    internal highs, as observed in other basins of the BrazilianNortheast (Kuchle et al., 2011).

    Because the deposits of Sequences I, II and III are linked to theinitial rifting stages, it is inadvisable to use the term pre-rift to

    designate the tectonic stage in which this entire sedimentary

    section is inserted, as has been employed in previous studies(Ponte and Appi, 1990;Assine, 1990,1992,1994,2007;Ponte andPonte Filho, 1996). The term pre-rift is used to designate rocks

    that are completely unrelated to the rifting process, consisting ofthe sedimentary basement upon which the taphrogenic pro-cesses will act (Prosser, 1993;Bosence, 1998). Normally, the pre-

    rift strata are tens to hundreds of millions of years older than thedeposits accumulated during the rifting event (Bosence, 1998).The most appropriate term for this initial phase of accumulationwould be the Early Rift Stage (Morley, 2002) or the Initial Rift

    Tectonic Systems Tract (Kuchle and Scherer, 2010). Sequence IV,in turn, is characterised by a thick succession ofuvialedeltaicelacustrine deposits, indicative of a context with a high rate ofaccommodation generation. Beside, the high variation in the

    palaeocurrent direction and the fact that Sequence IV strata

    Fig. 10. Rose diagrams showing cross-bedding dip directions of the prodelta/delta

    front and distributary channel facies association of the Sequence IV. n

    105.

    C. Marlon dos Santos Scherer et al. / Journal of South American Earth Sciences 49 (2014) 106e122118

  • 8/13/2019 Araripe Basin

    14/17

    onlap deposits from Sequence III are consistent with the im-plantation of half-grabens (Bosence, 1998; Prosser, 1993; Galth-

    orpe and Leeder, 2000). According Prosser (1993) thesedimentary inux of the half-grabens occurs from different re-gions (e.g., exural margin, faulted margin and axial inux),resulting in a high dispersion of palaeocurrents trends when

    different sectors or stratigraphic intervals in the basin are

    analyzed, similar to what can be observed in the deposits ofSequence IV. The presence in outcrops of growth faults affecting

    deposits of Sequence IV corroborates the idea of intense exten-sional tectonics concomitant with sedimentation (Aquino, 2009).Thus, Sequence IV may be considered the record of the Half-Graben Stage (Morley, 2002) or of the Half Graben Develop to

    Rift Climax Tectonic SystemsTracts (Kuchle and Scherer, 2010).

    Fig. 11. Depositional models depicting the temporal evolution of the upper JurassiceNeocomian rift succession of the Araripe Basin, representing four distinct sequences accu-

    mulated during different rift tectonic stages. See text for discussion.

    C. Marlon dos Santos Scherer et al. / Journal of South American Earth Sciences 49 (2014) 106e122 119

  • 8/13/2019 Araripe Basin

    15/17

    6. Conclusions

    It was possible to individualise four depositional sequences in theJurassiceNeocomian section of the Araripe Basin. Sequence I, equiv-

    alent to the Brejo Santo Formation, is composed of deposits fromsheet oods and ofoodplains. Sequences II, correspondent to thelower portion of Misso Velha Formation, is characterised by braided

    uvial channels belt amalgamated sandbodies intercalated with rare

    and discontinuous

    oodplain deposits.Sequence III,correspondentto

    the upper portion of Misso Velha Formation, is composed ofuvialsheetood deposits, which are overlain by braided uvial channelbelt deposits. Sequence IV, equivalent to the Abaiara Formation, iscomposed ofuvialedeltaicelacustrine deposits.

    The sequences were accumulated during different rift tectonicstages. Sequences I and II were deposited over a large basin, similarto a syneclise, though linked to the initial stages of rifting. Thechange in the direction of the palaeocurrents of Sequence III (to-

    ward the SW or NW) in relation to that of the palaeocurrents of

    Fig. 11. (continued).

    C. Marlon dos Santos Scherer et al. / Journal of South American Earth Sciences 49 (2014) 106e122120

  • 8/13/2019 Araripe Basin

    16/17

    Sequences I and II (toward the SSE) is associated with tectonicmovements related to the beginning of the implantation of internal

    highs and grabens in an important structural reorganisation of thebasin. Sequence IV, in turn, was accumulated in well-dened half-graben systems with the development of lacustrine environment,including uvial and deltaic systems. The sedimentary inux of the

    half-grabens occurs from different regions (e.g., exural margin,faulted margin and axial inux), as attested by high dispersion ofpalaeocurrents trends of the Sequence IV.

    From the results of this work it is possible to visualize the evo-

    lution of the different stratigraphic stages of rifting. Corroboratingpropositions ofMorley (2002),Kinabo et al. (2007)and Kuchle et al.(2011),therststage of rifting (sequencesI andII) is characterized bythedevelopmentof a wide basin, unlikethe model ofProsser (1993),

    Bosence (1998),Gawthorpe and Leeder (2000)that suggest the ex-istence of small grabens isolated at thebeginning of rifting. This largebasin has a relativelylow rate of subsidence (low A/Sratio), anddoesnot record extensive lacustrine facies. The development of half-

    graben system occurs at a later stage. Firstly, there is the subdivi-sion of large basin into incipientgraben (Sequence III), evenwith lowrate of subsidence. After, from the linkage of fault segments occurs

    an increase in the subsidence (increase in A/S ratio) and full devel-

    opment of half graben systems, allowing the development of deepand extensive lakes (Sequence IV).

    Acknowledgements

    The authors acknowledges PETROBRAS for nancing theresearch project. CMSS acknowledge the Brazilian Research Council

    (CNPq) for research support. We are also grateful for theconstructive and thoughtful reviews by Reinhardt Fuck, GiorgioBasilici, Michael Holz and an anonymous referee.

    References

    Allen, J.R.L., Leeder, M.R., 1980. Criteria for instability of upperstage plane beds.Sedimentology 27, 209e212.

    Aquino, M.M., 2009. A Formao Abaiara e o Arcabouo Tectonoestratigrco daRegio de Abaiara-Brejo Santo, Bacia do Araripe, NE do Brasil. MSc. thesis.Centro de Cincias Exatas e da Terra, Universidade Federal do Rio Grande doNorte.

    Assine, M.L., 1990. Sedimentao e tectnica da Bacia do Araripe (Nordeste doBrasil). MSc. thesis. Universidade Estadual Paulista.

    Assine, M.L., 1992. Anlise estratigrca da bacia do Araripe, Nordeste do Brasil. Rev.Brasil. Geocin. 22 (3), 289e300.

    Assine, M.L., 1994. Paleocorrentes e paleogeograa na Bacia do Araripe, Nordeste doBrasil. Rev. Brasil. Geocin. 24 (4), 1e10.

    Assine, M.L., 2007. Bacia do Araripe. Bole. Geocin. Petrobras 15 (2), 371 e389.Bhattacharya, J.P., 1991. Regional to subregional facies architecture of river-

    dominated deltas in the Alberta sub-surface, Upper Cretaceous Dunvegan Fm.In: Miall, A.D., Tyler (Eds.), The 3-D Facies Architecture of Terrigenous ClasticSediments and its Implications for Hydrocarbon Discovery and Recovery, SEPMConcepts in Sedimentology and Paleontology, vol. 3, pp. 189e206.

    Bhattacharya, J.P., 2011. Deltas. In: James, N.P., Dalrymple, R.W. (Eds.), Facies Model

    4. Geological Society of Canada, pp. 233e

    264.Blair, T.C., 2000. Sedimentology and progressive tectonic unconformities of the

    sheetood-dominated Hell.s Gate alluvial fan, Death Valley, California. Sedi-ment. Geol. 132, 233e262.

    Blair, T.C., 2001. Outburst ood sedimentation on the proglacial Tuttle Canyon al-luvial fan, Owens Valley, California, U.S.A. J. Sediment. Res. 71, 657e679.

    Bosence, D.W.J., 1998. Stratigraphic and sedimentological models of rift basins. In:Purser, B.H., Bosence, D.W.J. (Eds.), Sedimentation and Tectonics of Rift Basins:Red Seae Gulf of Aden. Chapman & Hall, London, pp. 9e25.

    Cardoso, F.M.C., 2010. O grabn da Palestina: contribuio estratigraa e estruturado estgio rifte na Bacia do Araripe, Nordeste do Brasil. MSc. thesis. Centro deCincias Exatas e da Terra, Universidade Federal do Rio Grande do Norte.

    Cardoso, F.M.C., Jardim de S, E.F., Silva, F.C.A., Scherer, C.M.S., 2009. O Graben doSerrote das Cacimbas-Palestina (Sub-bacia Cariri, Bacia do Araripe, NE, Brasil).In: XXIII Simpsio de Geologia do Nordeste, Fortaleza, Resumos.

    Cardoso, F.M.C., Jardim de S, E.F., Scherer, C.M.S., Crdoba, V.C., Antunes, A.F., Silva,F.C.A., 2010. Tectono-stratigraphic relationships in the Palestina Graben, AraripeBasin, NE Brazil. II Central and North Atlantic Conjugate Margins Conference,

    Lisboa, Abstracts, vol. 1.

    Chakraborty, T.,1999. Reconstruction ofuvial bars from the Proterozoic MancheralQuartzite, Pranhita-Godavari, India. In: Smith, N.D., Rogers, J. (Eds.), FluvialSedimentology IV, IAS Spec. Pub, vol. 28, pp. 451e466.

    Chang, H.K., Kowsmann, R.O., Figueiredo, A.M.F., Bender, A.A., 1992. Tectonics andstratigraphy of the East Brazil Rift System: an overview. Tectonophysics 213,97e138.

    Costa, A.B.S., 2012. Diagnese e Provenincia dos Arenitos da TectonossequnciaRifte nas bacias do Rio do Peixe e do Araripe, NE do Brasil. MSc. thesis. Centro deCincias Exatas e da Terra, Universidade Federal do Rio Grande do Norte.

    Coimbra, J.C., Arai, M., Carreno, A.L., 2002. Biostratigraphy of Lower Cretaceous mi-

    crofossils from the Araripe basin, northeastern Brazil. Geobios 35 (6), 687e

    698.Cordoba, V.C., Jardim de S, E.F., Sousa, D.C., Antunes, A.F., Cruz, L.R., 2008. Bacia

    Pernambuco-Paraba. Bolet. Geocin. Petrobras 15, 391e403.Estrella, G.O., 1972. O estgio rift nas bacias marginais do leste brasileiro. In:

    .Congresso Brasileiro de Geologia, Belem, vol. 3. Anais, pp. 29e34.Fambrini, G.L., Lemos, D.R., Tesser, S., Arajo, J.T., Silva Filho, W.F., Souza, B.Y.C.,

    Neumann, V.H.M.L., 2011. Estratigraa, arquitetura deposicional e faciologia daFormao Misso Velha (Neojurssico-Eocretceo) na rea-tipo, Bacia do Ara-ripe, Nordeste do Brasil: exemplo de sedimentao de estgio de incio de rifte aclmax de rifte. Rev. Inst. Geocin. USP 11 (2), 55e58.

    Franolin, J.B.L., Cobbold, P.R., Szatmari, P., 1994. Faulting in the Early Cretaceous Riodo Peixe Basin (NE Brazil) and its signicance for the opening of the Atlantic.J. Struct. Geol. Amsterd. 16 (5), 647e661.

    Gawthorpe, R.l., Leeder, M.R., 2000. Tectono-sedimentary evolution of activeextensional basins. Basin Res. 12 (2), 195e218.

    Garcia, A.J.V., Rosa, A.A.S., Goldberg, K., 2005. Paleoenvironmental and paleoclimaticcontrol on early diagenetic processes and fossil record in Cretaceous conti-nental sandstones of Brazil. J. S. Am. Earth Sci. 19, 243e258.

    Garcia, H.R.C., 2009. Arquitetura deposicional e evoluo tectonoestratigrca dassequncias Pr-Rifte e Rifte, na poro central do Vale do Cariri, Bacia do Ara-ripe, NE do Brasil. MSc. thesis. Centro de Cincias Exatas e da Terra, Uni-versidade Federal do Rio Grande do Norte.

    Ghazi, S., Mountney, N.P., 2010. Facies and architectural element analysis of ameandering uvial succession: the Permian Warchha Sandstone, Salt Range,Pakistan. Sediment. Geol. 221, 99e126.

    Giosan, L., Bhattacharya, J.P., 2005. River deltas: concepts, models and examples. In:SEPM Special Publications, vol. 83.

    Guignone, J.I., Couto, E.A., Assine, M.L., 1986. Estratigraa e estrutura das bacias doAraripe, Iguatu e Rio do Peixe. Ana. Congr. Brasil. Geol. 34, 271e285.

    Hampson, G., Stollhofen, H., Flinth, S., 1999. A sequence stratigraphic model for theLower Coal Measures (Upper Carboniferous) of the Ruhr district, north-westGermany. Sedimentology 46, 1199e1231.

    Hampton, B.A., Horton, B.K., 2007. Sheetow uvial processes in a rapidly subsidingbasin, Altiplano plateau, Bolivia. Sedimentology, 1e27.

    Kinabo, B.D., Atekwana, E.A., Hogan, J.P., Modisi, M.P., Wheaton, D.D.,Kampunzu, A.B., 2007. Early structural development of the Okavango rift zone,NW Botswana. J. Afri. Earth Sci. 48, 125e136.

    Kuchle, J., Scherer, C.M.S., Born, C.C., Alvarenga, R.S., Adegas, F., 2011. A contributionto regional stratigraphic correlations of the Afro-Brazilian depression e TheDom Joo Stage (Brotas Group and equivalent units e Late Jurassic) in North-eastern Brazilian sedimentary basins. J. S. Am. Earth Sci. 31, 358e371.

    Kuchle, J., Scherer, C.M.S., 2010. Sismoestratigraa de bacias rifte: tcnicas, mtodose sua aplicao na Bacia do Recncavo. Bole. Geocin. Petrobras 18 (2), 33 e60.

    Jardim de S, E.F., Antunes, A.F., Cordoba, V.C., Vasconcelos, P.M.P., Scherer, C.M.S.,Silva, F.C.A., Souza, D.C., Cruz, L.R., Nascimento, M.A., Almeida, C.B.,Aquino, M.M., Cardoso, F.C., Medeiros, W.E., Lins, F.A.P.L., 2011. Structural,Stratigraphy and Geochronological Constraints of the Mesozoic Rifting inNortheast Brazil, Bearing to the Opening of the South Atlantic. Gondwana 14,Bzios, vol. 1, p. 224.

    Jardim de S, E.F., Antunes, A.F., Cordoba, V.C., Alvez da Silva, F.C., Souza, D.C.,Cruz, L.R., Almeida, C.B., Medeiros, W.E., 2010. Evoluo do rifte na MargemLeste-Setentrional Brasileira: contribuio dos projetos ANP/UFRN/PPGG. In: 45Congresso Brasileiro de Geologia, Belm, Resumos, p. 224 .

    Jardim de S, E.F., Sousa, D.C., Aquino, M.M., Scherer, C.M.S., Crdoba, V.C., 2009.A Tectonossequencia Rifte na Bacia do Araripe. In: XXIII Simpsio de Geologiado Nordeste, Fortaleza, Resumos, p. 152.

    Jo, H.R., Chough, S.K., 2001. Architectural analysis of uvial sequences in thenorthwestern part of Kyongsang Basin (Early Cretaceous), SE Korea. Sediment.Geol. 144, 307e334.

    Matos, R.M.D., 1992. The Northeast Brazilian rift system. Tectonics 11, 766e791.Matos, R.M.D., 1999. History of the Northeast Brazilian rift system: kinematic im-

    plications for the break-up between Brazil and West Africa. In: Cameron, N.R.,Bate, R.H., Clure, V.S. (Eds.), The Oil and Gas Habitats of the South Atlantic,Special Publications of Geological Society of London, pp. 55e73.

    Miall, A.D., 1977. A review of the braided river depositional environment. Earth-Sci.Rev. 13, 1e62.

    Miall, A.D., 1996. The Geology of Fluvial Deposits: Sedimentary Facies, Basin Anal-ysis and Petroleum Geology. Springer-Verlag, New York.

    Miall, A.D., 1988. Facies Architecture in clastic sedimentary basins. In:Kleinspehn, K.L., Paola, C. (Eds.), New Perspectives in Basin Analysis. Spriger-Verlag, Berlin, pp. 67e81.

    Miall, A.D., Arush, M., 2001. Crypitic sequence boundaries in braided uvial suc-cessions. Sedimentology 46, 971e985.

    Morley, C.K., 2002. Evolution of large normal faults: Evidence from sesmic reectiondata. Am. Assoc. Petrol. Geol. Bull. 86, 961e978.

    C. Marlon dos Santos Scherer et al. / Journal of South American Earth Sciences 49 (2014) 106e122 121

    http://refhub.elsevier.com/S0895-9811(13)00151-X/sref1http://refhub.elsevier.com/S0895-9811(13)00151-X/sref1http://refhub.elsevier.com/S0895-9811(13)00151-X/sref1http://refhub.elsevier.com/S0895-9811(13)00151-X/sref2http://refhub.elsevier.com/S0895-9811(13)00151-X/sref2http://refhub.elsevier.com/S0895-9811(13)00151-X/sref2http://refhub.elsevier.com/S0895-9811(13)00151-X/sref2http://refhub.elsevier.com/S0895-9811(13)00151-X/sref2http://refhub.elsevier.com/S0895-9811(13)00151-X/sref2http://refhub.elsevier.com/S0895-9811(13)00151-X/sref3http://refhub.elsevier.com/S0895-9811(13)00151-X/sref3http://refhub.elsevier.com/S0895-9811(13)00151-X/sref4http://refhub.elsevier.com/S0895-9811(13)00151-X/sref4http://refhub.elsevier.com/S0895-9811(13)00151-X/sref4http://refhub.elsevier.com/S0895-9811(13)00151-X/sref4http://refhub.elsevier.com/S0895-9811(13)00151-X/sref4http://refhub.elsevier.com/S0895-9811(13)00151-X/sref4http://refhub.elsevier.com/S0895-9811(13)00151-X/sref5http://refhub.elsevier.com/S0895-9811(13)00151-X/sref5http://refhub.elsevier.com/S0895-9811(13)00151-X/sref5http://refhub.elsevier.com/S0895-9811(13)00151-X/sref5http://refhub.elsevier.com/S0895-9811(13)00151-X/sref5http://refhub.elsevier.com/S0895-9811(13)00151-X/sref6http://refhub.elsevier.com/S0895-9811(13)00151-X/sref6http://refhub.elsevier.com/S0895-9811(13)00151-X/sref7http://refhub.elsevier.com/S0895-9811(13)00151-X/sref7http://refhub.elsevier.com/S0895-9811(13)00151-X/sref7http://refhub.elsevier.com/S0895-9811(13)00151-X/sref7http://refhub.elsevier.com/S0895-9811(13)00151-X/sref7http://refhub.elsevier.com/S0895-9811(13)00151-X/sref7http://refhub.elsevier.com/S0895-9811(13)00151-X/sref8http://refhub.elsevier.com/S0895-9811(13)00151-X/sref8http://refhub.elsevier.com/S0895-9811(13)00151-X/sref8http://refhub.elsevier.com/S0895-9811(13)00151-X/sref9http://refhub.elsevier.com/S0895-9811(13)00151-X/sref9http://refhub.elsevier.com/S0895-9811(13)00151-X/sref9http://refhub.elsevier.com/S0895-9811(13)00151-X/sref9http://refhub.elsevier.com/S0895-9811(13)00151-X/sref9http://refhub.elsevier.com/S0895-9811(13)00151-X/sref9http://refhub.elsevier.com/S0895-9811(13)00151-X/sref10http://refhub.elsevier.com/S0895-9811(13)00151-X/sref10http://refhub.elsevier.com/S0895-9811(13)00151-X/sref10http://refhub.elsevier.com/S0895-9811(13)00151-X/sref10http://refhub.elsevier.com/S0895-9811(13)00151-X/sref10http://refhub.elsevier.com/S0895-9811(13)00151-X/sref11http://refhub.elsevier.com/S0895-9811(13)00151-X/sref11http://refhub.elsevier.com/S0895-9811(13)00151-X/sref11http://refhub.elsevier.com/S0895-9811(13)00151-X/sref11http://refhub.elsevier.com/S0895-9811(13)00151-X/sref11http://refhub.elsevier.com/S0895-9811(13)00151-X/sref12http://refhub.elsevier.com/S0895-9811(13)00151-X/sref12http://refhub.elsevier.com/S0895-9811(13)00151-X/sref12http://refhub.elsevier.com/S0895-9811(13)00151-X/sref12http://refhub.elsevier.com/S0895-9811(13)00151-X/sref12http://refhub.elsevier.com/S0895-9811(13)00151-X/sref13http://refhub.elsevier.com/S0895-9811(13)00151-X/sref13http://refhub.elsevier.com/S0895-9811(13)00151-X/sref13http://refhub.elsevier.com/S0895-9811(13)00151-X/sref15http://refhub.elsevier.com/S0895-9811(13)00151-X/sref15http://refhub.elsevier.com/S0895-9811(13)00151-X/sref15http://refhub.elsevier.com/S0895-9811(13)00151-X/sref15http://refhub.elsevier.com/S0895-9811(13)00151-X/sref15http://refhub.elsevier.com/S0895-9811(13)00151-X/sref15http://refhub.elsevier.com/S0895-9811(13)00151-X/sref16http://refhub.elsevier.com/S0895-9811(13)00151-X/sref16http://refhub.elsevier.com/S0895-9811(13)00151-X/sref16http://refhub.elsevier.com/S0895-9811(13)00151-X/sref16http://refhub.elsevier.com/S0895-9811(13)00151-X/sref17http://refhub.elsevier.com/S0895-9811(13)00151-X/sref17http://refhub.elsevier.com/S0895-9811(13)00151-X/sref17http://refhub.elsevier.com/S0895-9811(13)00151-X/sref18http://refhub.elsevier.com/S0895-9811(13)00151-X/sref18http://refhub.elsevier.com/S0895-9811(13)00151-X/sref18http://refhub.elsevier.com/S0895-9811(13)00151-X/sref18http://refhub.elsevier.com/S0895-9811(13)00151-X/sref19http://refhub.elsevier.com/S0895-9811(13)00151-X/sref19http://refhub.elsevier.com/S0895-9811(13)00151-X/sref19http://refhub.elsevier.com/S0895-9811(13)00151-X/sref19http://refhub.elsevier.com/S0895-9811(13)00151-X/sref20http://refhub.elsevier.com/S0895-9811(13)00151-X/sref20http://refhub.elsevier.com/S0895-9811(13)00151-X/sref20http://refhub.elsevier.com/S0895-9811(13)00151-X/sref21http://refhub.elsevier.com/S0895-9811(13)00151-X/sref21http://refhub.elsevier.com/S0895-9811(13)00151-X/sref21http://refhub.elsevier.com/S0895-9811(13)00151-X/sref21http://refhub.elsevier.com/S0895-9811(13)00151-X/sref21http://refhub.elsevier.com/S0895-9811(13)00151-X/sref21http://refhub.elsevier.com/S0895-9811(13)00151-X/sref21http://refhub.elsevier.com/S0895-9811(13)00151-X/sref21http://refhub.elsevier.com/S0895-9811(13)00151-X/sref22http://refhub.elsevier.com/S0895-9811(13)00151-X/sref22http://refhub.elsevier.com/S0895-9811(13)00151-X/sref22http://refhub.elsevier.com/S0895-9811(13)00151-X/sref22http://refhub.elsevier.com/S0895-9811(13)00151-X/sref22http://refhub.elsevier.com/S0895-9811(13)00151-X/sref22http://refhub.elsevier.com/S0895-9811(13)00151-X/sref22http://refhub.elsevier.com/S0895-9811(13)00151-X/sref23http://refhub.elsevier.com/S0895-9811(13)00151-X/sref23http://refhub.elsevier.com/S0895-9811(13)00151-X/sref23http://refhub.elsevier.com/S0895-9811(13)00151-X/sref24http://refhub.elsevier.com/S0895-9811(13)00151-X/sref24http://refhub.elsevier.com/S0895-9811(13)00151-X/sref24http://refhub.elsevier.com/S0895-9811(13)00151-X/sref24http://refhub.elsevier.com/S0895-9811(13)00151-X/sref25http://refhub.elsevier.com/S0895-9811(13)00151-X/sref25http://refhub.elsevier.com/S0895-9811(13)00151-X/sref25http://refhub.elsevier.com/S0895-9811(13)00151-X/sref25http://refhub.elsevier.com/S0895-9811(13)00151-X/sref25http://refhub.elsevier.com/S0895-9811(13)00151-X/sref25http://refhub.elsevier.com/S0895-9811(13)00151-X/sref25http://refhub.elsevier.com/S0895-9811(13)00151-X/sref26http://refhub.elsevier.com/S0895-9811(13)00151-X/sref26http://refhub.elsevier.com/S0895-9811(13)00151-X/sref26http://refhub.elsevier.com/S0895-9811(13)00151-X/sref26http://refhub.elsevier.com/S0895-9811(13)00151-X/sref26http://refhub.elsevier.com/S0895-9811(13)00151-X/sref26http://refhub.elsevier.com/S0895-9811(13)00151-X/sref26http://refhub.elsevier.com/S0895-9811(13)00151-X/sref27http://refhub.elsevier.com/S0895-9811(13)00151-X/sref27http://refhub.elsevier.com/S0895-9811(13)00151-X/sref27http://refhub.elsevier.com/S0895-9811(13)00151-X/sref28http://refhub.elsevier.com/S0895-9811(13)00151-X/sref28http://refhub.elsevier.com/S0895-9811(13)00151-X/sref28http://refhub.elsevier.com/S0895-9811(13)00151-X/sref28http://refhub.elsevier.com/S0895-9811(13)00151-X/sref28http://refhub.elsevier.com/S0895-9811(13)00151-X/sref53http://refhub.elsevier.com/S0895-9811(13)00151-X/sref53http://refhub.elsevier.com/S0895-9811(13)00151-X/sref53http://refhub.elsevier.com/S0895-9811(13)00151-X/sref53http://refhub.elsevier.com/S0895-9811(13)00151-X/sref53http://refhub.elsevier.com/S0895-9811(13)00151-X/sref29http://refhub.elsevier.com/S0895-9811(13)00151-X/sref29http://refhub.elsevier.com/S0895-9811(13)00151-X/sref29http://refhub.elsevier.com/S0895-9811(13)00151-X/sref29http://refhub.elsevier.com/S0895-9811(13)00151-X/sref29http://refhub.elsevier.com/S0895-9811(13)00151-X/sref29http://refhub.elsevier.com/S0895-9811(13)00151-X/sref29http://refhub.elsevier.com/S0895-9811(13)00151-X/sref29http://refhub.elsevier.com/S0895-9811(13)00151-X/sref30http://refhub.elsevier.com/S0895-9811(13)00151-X/sref30http://refhub.elsevier.com/S0895-9811(13)00151-X/sref30http://refhub.elsevier.com/S0895-9811(13)00151-X/sref30http://refhub.elsevier.com/S0895-9811(13)00151-X/sref30http://refhub.elsevier.com/S0895-9811(13)00151-X/sref31http://refhub.elsevier.com/S0895-9811(13)00151-X/sref31http://refhub.elsevier.com/S0895-9811(13)00151-X/sref31http://refhub.elsevier.com/S0895-9811(13)00151-X/sref31http://refhub.elsevier.com/S0895-9811(13)00151-X/sref31http://refhub.elsevier.com/S0895-9811(13)00151-X/sref31http://refhub.elsevier.com/S0895-9811(13)00151-X/sref32http://refhub.elsevier.com/S0895-9811(13)00151-X/sref32http://refhub.elsevier.com/S0895-9811(13)00151-X/sref32http://refhub.elsevier.com/S0895-9811(13)00151-X/sref32http://refhub.elsevier.com/S0895-9811(13)00151-X/sref32http://refhub.elsevier.com/S0895-9811(13)00151-X/sref32http://refhub.elsevier.com/S0895-9811(13)00151-X/sref33http://refhub.elsevier.com/S0895-9811(13)00151-X/sref33http://refhub.elsevier.com/S0895-9811(13)00151-X/sref33http://refhub.elsevier.com/S0895-9811(13)00151-X/sref33http://refhub.elsevier.com/S0895-9811(13)00151-X/sref33http://refhub.elsevier.com/S0895-9811(13)00151-X/sref33http://refhub.elsevier.com/S0895-9811(13)00151-X/sref34http://refhub.elsevier.com/S0895-9811(13)00151-X/sref34http://refhub.elsevier.com/S0895-9811(13)00151-X/sref34http://refhub.elsevier.com/S0895-9811(13)00151-X/sref34http://refhub.elsevier.com/S0895-9811(13)00151-X/sref34http://refhub.elsevier.com/S0895-9811(13)00151-X/sref35http://refhub.elsevier.com/S0895-9811(13)00151-X/sref35http://refhub.elsevier.com/S0895-9811(13)00151-X/sref35http://refhub.elsevier.com/S0895-9811(13)00151-X/sref36http://refhub.elsevier.com/S0895-9811(13)00151-X/sref36http://refhub.elsevier.com/S0895-9811(13)00151-X/sref36http://refhub.elsevier.com/S0895-9811(13)00151-X/sref36http://refhub.elsevier.com/S0895-9811(13)00151-X/sref36http://refhub.elsevier.com/S0895-9811(13)00151-X/sref36http://refhub.elsevier.com/S0895-9811(13)00151-X/sref37http://refhub.elsevier.com/S0895-9811(13)00151-X/sref37http://refhub.elsevier.com/S0895-9811(13)00151-X/sref37http://refhub.elsevier.com/S0895-9811(13)00151-X/sref38http://refhub.elsevier.com/S0895-9811(13)00151-X/sref38http://refhub.elsevier.com/S0895-9811(13)00151-X/sref38http://refhub.elsevier.com/S0895-9811(13)00151-X/sref38http://refhub.elsevier.com/S0895-9811(13)00151-X/sref38http://refhub.elsevier.com/S0895-9811(13)00151-X/sref39http://refhub.elsevier.com/S0895-9811(13)00151-X/sref39http://refhub.elsevier.com/S0895-9811(13)00151-X/sref39http://refhub.elsevier.com/S0895-9811(13)00151-X/sref40http://refhub.elsevier.com/S0895-9811(13)00151-X/sref40http://refhub.elsevier.com/S0895-9811(13)00151-X/sref41http://refhub.elsevier.com/S0895-9811(13)00151-X/sref41http://refhub.elsevier.com/S0895-9811(13)00151-X/sref41http://refhub.elsevier.com/S0895-9811(13)00151-X/sref41http://refhub.elsevier.com/S0895-9811(13)00151-X/sref42http://refhub.elsevier.com/S0895-9811(13)00151-X/sref42http://refhub.elsevier.com/S0895-9811(13)00151-X/sref42http://refhub.elsevier.com/S0895-9811(13)00151-X/sref42http://refhub.elsevier.com/S0895-9811(13)00151-X/sref42http://refhub.elsevier.com/S0895-9811(13)00151-X/sref44http://refhub.elsevier.com/S0895-9811(13)00151-X/sref44http://refhub.elsevier.com/S0895-9811(13)00151-X/sref44http://refhub.elsevier.com/S0895-9811(13)00151-X/sref44http://refhub.elsevier.com/S0895-9811(13)00151-X/sref44http://refhub.elsevier.com/S0895-9811(13)00151-X/sref44http://refhub.elsevier.com/S0895-9811(13)00151-X/sref44http://refhub.elsevier.com/S0895-9811(13)00151-X/sref44http://refhub.elsevier.com/S0895-9811(13)00151-X/sref44http://refhub.elsevier.com/S0895-9811(13)00151-X/sref42http://refhub.elsevier.com/S0895-9811(13)00151-X/sref42http://refhub.elsevier.com/S0895-9811(13)00151-X/sref42http://refhub.elsevier.com/S0895-9811(13)00151-X/sref41http://refhub.elsevier.com/S0895-9811(13)00151-X/sref41http://refhub.elsevier.com/S0895-9811(13)00151-X/sref41http://refhub.elsevier.com/S0895-9811(13)00151-X/sref41http://refhub.elsevier.com/S0895-9811(13)00151-X/sref40http://refhub.elsevier.com/S0895-9811(13)00151-X/sref40http://refhub.elsevier.com/S0895-9811(13)00151-X/sref39http://refhub.elsevier.com/S0895-9811(13)00151-X/sref39http://refhub.elsevier.com/S0895-9811(13)00151-X/sref39http://refhub.elsevier.com/S0895-9811(13)00151-X/sref38http://refhub.elsevier.com/S0895-9811(13)00151-X/sref38http://refhub.elsevier.com/S0895-9811(13)00151-X/sref38http://refhub.elsevier.com/S0895-9811(13)00151-X/sref38http://refhub.elsevier.com/S0895-9811(13)00151-X/sref38http://refhub.elsevier.com/S0895-9811(13)00151-X/sref37http://refhub.elsevier.com/S0895-9811(13)00151-X/sref37http://refhub.elsevier.com/S0895-9811(13)00151-X/sref36http://refhub.elsevier.com/S0895-9811(13)00151-X/sref36http://refhub.elsevier.com/S0895-9811(13)00151-X/sref36http://refhub.elsevier.com/S0895-9811(13)00151-X/sref36http://refhub.elsevier.com/S0895-9811(13)00151-X/sref35http://refhub.elsevier.com/S0895-9811(13)00151-X/sref35http://refhub.elsevier.com/S0895-9811(13)00151-X/sref35http://refhub.elsevier.com/S0895-9811(13)00151-X/sref34http://refhub.elsevier.com/S0895-9811(13)00151-X/sref34http://refhub.elsevier.com/S0895-9811(13)00151-X/sref34http://refhub.elsevier.com/S0895-9811(13)00151-X/sref34http://refhub.elsevier.com/S0895-9811(13)00151-X/sref33http://refhub.elsevier.com/S0895-9811(13)00151-X/sref33http://refhub.elsevier.com/S0895-9811(13)00151-X/sref33http://refhub.elsevier.com/S0895-9811(13)00151-X/sref33http://refhub.elsevier.com/S0895-9811(13)00151-X/sref33http://refhub.elsevier.com/S0895-9811(13)00151-X/sref33http://refhub.elsevier.com/S0895-9811(13)00151-X/sref32http://refhub.elsevier.com/S0895-9811(13)00151-X/sref32http://refhub.elsevier.com/S0895-9811(13)00151-X/sref32http://refhub.elsevier.com/S0895-9811(13)00151-X/sref31http://refhub.elsevier.com/S0895-9811(13)00151-X/sref31http://refhub.elsevier.com/S0895-9811(13)00151-X/sref31http://refhub.elsevier.com/S0895-9811(13)00151-X/sref31http://refhub.elsevier.com/S0895-9811(13)00151-X/sref31http://refhub.elsevier.com/S0895-9811(13)00151-X/sref30http://refhub.elsevier.com/S0895-9811(13)00151-X/sref30http://refhub.elsevier.com/S0895-9811(13)00151-X/sref30http://refhub.elsevier.com/S0895-9811(13)00151-X/sref30http://refhub.elsevier.com/S0895-9811(13)00151-X/sref29http://refhub.elsevier.com/S0895-9811(13)00151-X/sref29http://refhub.elsevier.com/S0895-9811(13)00151-X/sref29http://refhub.elsevier.com/S0895-9811(13)00151-X/sref53http://refhub.elsevier.com/S0895-9811(13)00151-X/sref53http://refhub.elsevier.com/S0895-9811(13)00151-X/sref53http://refhub.elsevier.com/S0895-9811(13)00151-X/sref53http://refhub.elsevier.com/S0895-9811(13)00151-X/sref28http://refhub.elsevier.com/S0895-9811(13)00151-X/sref28http://refhub.elsevier.com/S0895-9811(13)00151-X/sref28http://refhub.elsevier.com/S0895-9811(13)00151-X/sref27http://refhub.elsevier.com/S0895-9811(13)00151-X/sref27http://refhub.elsevier.com/S0895-9811(13)00151-X/sref26http://refhub.elsevier.com/S0895-9811(13)00151-X/sref26http://refhub.elsevier.com/S0895-9811(13)00151-X/sref26http://refhub.elsevier.com/S0895-9811(13)00151-X/sref26http://refhub.elsevier.com/S0895-9811(13)00151-X/sref25http://refhub.elsevier.com/S0895-9811(13)00151-X/sref25http://refhub.elsevier.com/S0895-9811(13)00151-X/sref25http://refhub.elsevier.com/S0895-9811(13)00151-X/sref25http://refhub.elsevier.com/S0895-9811(13)00151-X/sref24http://refhub.elsevier.com/S0895-9811(13)00151-X/sref24http://refhub.elsevier.com/S0895-9811(13)00151-X/sref24http://refhub.elsevier.com/S0895-9811(13)00151-X/sref24http://refhub.elsevier.com/S0895-9811(13)00151-X/sref23http://refhub.elsevier.com/S0895-9811(13)00151-X/sref23http://refhub.elsevier.com/S0895-9811(13)00151-X/sref23http://refhub.elsevier.com/S0895-9811(13)00151-X/sref22http://refhub.elsevier.com/S0895-9811(13)00151-X/sref22http://refhub.elsevier.com/S0895-9811(13)00151-X/sref22http://refhub.elsevier.com/S0895-9811(13)00151-X/sref22http://refhub.elsevier.com/S0895-9811(13)00151-X/sref21http://refhub.elsevier.com/S0895-9811(13)00151-X/sref21http://refhub.elsevier.com/S0895-9811(13)00151-X/sref21http://refhub.elsevier.com/S0895-9811(13)00151-X/sref21http://refhub.elsevier.com/S0895-9811(13)00151-X/sref21http://refhub.elsevier.com/S0895-9811(13)00151-X/sref21http://refhub.elsevier.com/S0895-9811(13)00151-X/sref20http://refhub.elsevier.com/S0895-9811(13)00151-X/sref20http://refhub.elsevier.com/S0895-9811(13)00151-X/sref20http://refhub.elsevier.com/S0895-9811(13)00151-X/sref19http://refhub.elsevier.com/S0895-9811(13)00151-X/sref19http://refhub.elsevier.com/S0895-9811(13)00151-X/sref19http://refhub.elsevier.com/S0895-9811(13)00151-X/sref18http://refhub.elsevier.com/S0895-9811(13)00151-X/sref18http://refhub.elsevier.com/S0895-9811(13)00151-X/sref18http://refhub.elsevier.com/S0895-9811(13)00151-X/sref17http://refhub.elsevier.com/S0895-9811(13)00151-X/sref17http://refhub.elsevier.com/S0895-9811(13)00151-X/sref17http://refhub.elsevier.com/S0895-9811(13)00151-X/sref16http://refhub.elsevier.com/S0895-9811(13)00151-X/sref16http://refhub.elsevier.com/S0895-9811(13)00151-X/sref16http://refhub.elsevier.com/S0895-9811(13)00151-X/sref16http://refhub.elsevier.com/S0895-9811(13)00151-X/sref15http://refhub.elsevier.com/S0895-9811(13)00151-X/sref15http://refhub.elsevier.com/S0895-9811(13)00151-X/sref15http://refhub.elsevier.com/S0895-9811(13)00151-X/sref15http://refhub.elsevier.com/S0895-9811(13)00151-X/sref13http://refhub.elsevier.com/S0895-9811(13)00151-X/sref13http://refhub.elsevier.com/S0895-9811(13)00151-X/sref13http://refhub.elsevier.com/S0895-9811(13)00151-X/sref12http://refhub.elsevier.com/S0895-9811(13)00151-X/sref12http://refhub.elsevier.com/S0895-9811(13)00151-X/sref12http://refhub.elsevier.com/S0895-9811(13)00151-X/sref11http://refhub.elsevier.com/S0895-9811(13)00151-X/sref11http://refhub.elsevier.com/S0895-9811(13)00151-X/sref11http://refhub.elsevier.com/S0895-9811(13)00151-X/sref11http://refhub.elsevier.com/S0895-9811(13)00151-X/sref11http://refhub.elsevier.com/S0895-9811(13)00151-X/sref10http://refhub.elsevier.com/S0895-9811(13)00151-X/sref10http://refhub.elsevier.com/S0895-9811(13)00151-X/sref10http://refhub.elsevier.com/S0895-9811(13)00151-X/sref9http://refhub.elsevier.com/S0895-9811(13)00151-X/sref9http://refhub.elsevier.com/S0895-9811(13)00151-X/sref9http://refhub.elsevier.com/S0895-9811(13)00151-X/sref9http://refhub.elsevier.com/S0895-9811(13)00151-X/sref8http://refhub.elsevier.com/S0895-9811(13)00151-X/sref8http://refhub.elsevier.com/S0895-9811(13)00151-X/sref8http://refhub.elsevier.com/S0895-9811(13)00151-X/sref7http://refhub.elsevier.com/S0895-9811(13)00151-X/sref7http://refhub.elsevier.com/S0895-9811(13)00151-X/sref7http://refhub.elsevier.com/S0895-9811(13)00151-X/sref7http://refhub.elsevier.com/S0895-9811(13)00151-X/sref7http://refhub.elsevier.com/S0895-9811(13)00151-X/sref7http://refhub.elsevier.com/S0895-9811(13)00151-X/sref6http://refhub.elsevier.com/S0895-9811(13)00151-X/sref6http://refhub.elsevier.com/S0895-9811(13)00151-X/sref5http://refhub.elsevier.com/S0895-9811(13)00151-X/sref5http://refhub.elsevier.com/S0895-9811(13)00151-X/sref5http://refhub.elsevier.com/S0895-9811(13)00151-X/sref4http://refhub.elsevier.com/S0895-9811(13)00151-X/sref4http://refhub.elsevier.com/S0895-9811(13)00151-X/sref4http://refhub.elsevier.com/S0895-9811(13)00151-X/sref3http://refhub.elsevier.com/S0895-9811(13)00151-X/sref3http://refhub.elsevier.com/S0895-9811(13)00151-X/sref2http://refhub.elsevier.com/S0895-9811(13)00151-X/sref2http://refhub.elsevier.com/S0895-9811(13)00151-X/sref2http://refhub.elsevier.com/S0895-9811(13)00151-X/sref2http://refhub.elsevier.com/S0895-9811(13)00151-X/sref1http://refhub.elsevier.com/S0895-9811(13)00151-X/sref1http://refhub.elsevier.com/S0895-9811(13)00151-X/sref1
  • 8/13/2019 Araripe Basin

    17/17

    Nemec, W., Postma, G., 1993. Quaternary alluvial fans in southwestern Crete:sedimentation processes and geomorphic evolution. In: Marzo, M.,Puigdefabregas, C. (Eds.), Alluvial sedimentation. IAS Spec. Pub. 17, 235e276.

    Ponte, F.C., Ponte Filho, F.C.,1996. Estrutura geolgica e evoluo tectnica da Baciado Araripe. DNPM, Recife, p. 68.

    Ponte, F.C.,Appi, C.J.,1990.Proposta de revisoda coluna litoestratigrcadaBaciadoAraripe.In: 36 Congresso Brasileiro de Geologia, Natal, Anais, vol.1,pp. 211e226.

    Prosser, S., 1993. Rift-related linked depositional systems and their seismicexpression. In: Williams, G.D., Dobb, A. (Eds.), Tectonics and Seismic SequenceStratigraphy, Geological Society Special Publication, vol. 71, pp. 117e144.

    Ray, S., Chakraborty, T., 2002. Lower Gondwana uvial succession of the Penche

    Kanhan valley, India: stratigraphic architecture and depositional controls.Sediment. Geol. 151, 243e271.

    Scherer,C.M.S.,Lavina,L.E.C., DiasFilho, D.C.,Oliveira, F.M., Bongiolo,D.E., Silva, E.,2007.Stratigraphy and facies architecture of the uvialeaeolianelacustrine Sergi For-mation (Upper Jurassic), Recncavo Basin, Brazil. Sediment. Geol. 194, 169e193.

    Scherer, C.M.S., Lavina, E.L.C., 2005. Sedimentary cycles and facies architecture ofaeolianeuvial strata of the Upper Jurassic Guar Formation, Southern Brazil.Sedimentology 52, 1323e1341.

    Spalletti,L.A., Piol, F.F., 2005.Fromalluvial fan to playa:an Upper JurassicEphemeralFluvial System, Neuqun Basin, Argentina. Gondwana Res. 8, 362e382.

    Tucker, M.E., 1996. Sedimentary Rocks in the Field. John Wiley and Sons, Chin-chester, England.

    Tunbridge, I.B., 1984. Facies models for a sandy ephemeral stream and clay playacomplex; the Middle Devonian Trentishoe Formation of North Devon, UK.Sedimentology 31, 697e716.

    C. Marlon dos Santos Scherer et al. / Journal of South American Earth Sciences 49 (2014) 106e122122

    http://refhub.elsevier.com/S0895-9811(13)00151-X/sref45http://refhub.elsevier.com/S0895-9811(13)00151-X/sref45http://refhub.elsevier.com/S0895-9811(13)00151-X/sref45http://refhub.elsevier.com/S0895-9811(13)00151-X/sref45http://refhub.elsevier.com/S0895-9811(13)00151-X/sref45http://refhub.elsevier.com/S0895-9811(13)00151-X/sref46http://refhub.elsevier.com/S0895-9811(13)00151-X/sref46http://refhub.elsevier.com/S0895-9811(13)00151-X/sref47http://refhub.elsevier.com/S0895-9811(13)00151-X/sref47http://refhub.elsevier.com/S0895-9811(13)00151-X/sref47http://refhub.elsevier.com/S0895-9811(13)00151-X/sref47http://refhub.elsevier.com/S0895-9811(13)00151-X/sref47http://refhub.elsevier.com/S0895-9811(13)00151-X/sref48http://refhub.elsevier.com/S0895-9811(13)00151-X/sref48http://refhub.elsevier.com/S0895-9811(13)00151-X/sref48http://refhub.elsevier.com/S0895-9811(13)00151-X/sref48http://refhub.elsevier.com/S0895-9811(13)00151-X/sref49http://refhub.elsevier.com/S0895-9811(13)00151-X/sref49http://refhub.elsevier.com/S0895-9811(13)00151-X/sref49http://refhub.elsevier.com/S0895-9811(13)00151-X/sref49http://refhub.elsevier.com/S0895-9811(13)00151-X/sref49http://refhub.elsevier.com/S0895-9811(13)00151-X/sref49http://refhub.elsevier.com/S0895-9811(13)00151-X/sref49http://refhub.elsevier.com/S0895-9811(13)00151-X/sref50http://refhub.elsevier.com/S0895-9811(13)00151-X/sref50http://refhub.elsevier.com/S0895-9811(13)00151-X/sref50http://refhub.elsevier.com/S0895-9811(13)00151-X/sref50http://refhub.elsevier.com/S0895-9811(13)00151-X/sref50http://refhub.elsevier.com/S0895-9811(13)00151-X/sref50http://refhub.elsevier.com/S0895-9811(13)00151-X/sref50http://refhub.elsevier.com/S0895-9811(13)00151-X/sref50http://refhub.elsevier.com/S0895-9811(13)00151-X/sref50http://refhub.elsevier.com/S0895-9811(13)00151-X/sref51http://refhub.elsevier.com/S0895-9811(13)00151-X/sref51http://refhub.elsevier.com/S0895-9811(13)00151-X/sref51http://refhub.elsevier.com/S0895-9811(13)00151-X/sref51http://refhub.elsevier.com/S0895-9811(13)00151-X/sref51http://refhub.elsevier.com/S0895-9811(13)00151-X/sref51http://refhub.elsevier.com/S0895-9811(13)00151-X/sref58http://refhub.elsevier.com/S0895-9811(13)00151-X/sref58http://refhub.elsevier.com/S0895-9811(13)00151-X/sref58http://refhub.elsevier.com/S0895-9811(13)00151-X/sref54http://refhub.elsevier.com/S0895-9811(13)00151-X/sref54http://refhub.elsevier.com/S0895-9811(13)00151-X/sref55http://refhub.elsevier.com/S0895-9811(13)00151-X/sref55http://refhub.elsevier.com/S0895-9811(13)00151-X/sref55http://refhub.elsevier.com/S0895-9811(13)00151-X/sref55http://refhub.elsevier.com/S0895-9811(13)00151-X/sref55http://refhub.elsevier.com/S0895-9811(13)00151-X/sref55http://refhub.elsevier.com/S0895-9811(13)00151-X/sref55http://refhub.elsevier.com/S0895-9811(13)00151-X/sref55http://refhub.elsevier.com/S0895-9811(13)00151-X/sref54http://refhub.elsevier.com/S0895-9811(13)00151-X/sref54http://refhub.elsevier.com/S0895-9811(13)00151-X/sref58http://refhub.elsevier.com/S0895-9811(13)00151-X/sref58http://refhub.elsevier.com/S0895-9811(13)00151-X/sref58http://refhub.elsevier.com/S0895-9811(13)00151-X/sref51http://refhub.elsevier.com/S0895-9811(13)00151-X/sref51http://refhub.elsevier.com/S0895-9811(13)00151-X/sref51http://refhub.elsevier.com/S0895-9811(13)00151-X/sref51http://refhub.elsevier.com/S0895-9811(13)00151-X/sref51http://refhub.elsevier.com/S0895-9811(13)00151-X/sref50http://refhub.elsevier.com/S0895-9811(13)00151-X/sref50http://refhub.elsevier.com/S0895-9811(13)00151-X/sref50http://refhub.elsevier.com/S0895-9811(13)00151-X/sref50http://refhub.elsevier.com/S0895-9811(13)00151-X/sref50http://refhub.elsevier.com/S0895-9811(13)00151-X/sref50http://refhub.elsevier.com/S0895-9811(13)00151-X/sref49http://refhub.elsevier.com/S0895-9811(13)00151-X/sref49http://refhub.elsevier.com/S0895-9811(13)00151-X/sref49http://refhub.elsevier.com/S0895-9811(13)00151-X/sref49http://refhub.elsevier.com/S0895-9811(13)00151-X/sref48http://refhub.elsevier.com/S0895-9811(13)00151-X/sref48http://refhub.elsevier.com/S0895-9811(13)00151-X/sref48http://refhub.elsevier.com/S0895-9811(13)00151-X/sref48http://refhub.elsevier.com/S0895-9811(13)00151-X/sref47http://refhub.elsevier.com/S0895-9811(13)00151-X/sref47http://refhub.elsevier.com/S0895-9811(13)00151-X/sref47http://refhub.elsevier.com/S0895-9811(13)00151-X/sref46http://refhub.elsevier.com/S0895-9811(13)00151-X/sref46http://refhub.elsevier.com/S0895-9811(13)00151-X/sref45http://refhub.elsevier.com/S0895-9811(13)00151-X/sref45http://refhub.elsevier.com/S0895-9811(13)00151-X/sref45http://refhub.elsevier.com/S0895-9811(13)00151-X/sref45