ars.els-cdn.com · web view(22/78, v/v) with a flow rate of 0.2 ml/min; column temperature, 25 c....

46
Supplementary material for Rapid degradation of tetracycline hydrochloride by heterogeneous photocatalysis coupling persulfate oxidation with MIL-53(Fe) under visible light irradiation Ying Zhang a, b , Jiabin Zhou a, * , Junhui Chen c , Xiaoqiong Feng c , Weiquan Cai d a School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China b School of Resources and Environmental Engineering, Wuhan University of

Upload: others

Post on 03-Aug-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ars.els-cdn.com · Web view(22/78, v/v) with a flow rate of 0.2 mL/min; column temperature, 25 C. TC-HCl and the intermediates were estimated in the positive ion mode using ESI under

Supplementary material for

Rapid degradation of tetracycline hydrochloride by heterogeneous

photocatalysis coupling persulfate oxidation with MIL-53(Fe) under

visible light irradiation

Ying Zhang a, b, Jiabin Zhou a, *, Junhui Chen c, Xiaoqiong Feng c, Weiquan Cai d

a School of Chemistry and Chemical Engineering, Southwest Petroleum University,

Chengdu 610500, China

b School of Resources and Environmental Engineering, Wuhan University of

Technology, Wuhan 430070, China

c Sichuan Academy of Environmental Sciences, Chengdu 610041, China

d School of Chemistry and Chemical Engineering, Guangzhou University, 230 Wai

Huan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006,

China

*Corresponding author. Tel: +86-28-83037306

E-mail: [email protected] (J. Zhou)

Page 2: ars.els-cdn.com · Web view(22/78, v/v) with a flow rate of 0.2 mL/min; column temperature, 25 C. TC-HCl and the intermediates were estimated in the positive ion mode using ESI under
Page 3: ars.els-cdn.com · Web view(22/78, v/v) with a flow rate of 0.2 mL/min; column temperature, 25 C. TC-HCl and the intermediates were estimated in the positive ion mode using ESI under

Analysis of TC and intermediates

The mobile phase was acetonitrile/methanol/10 mM oxalic acid (16:8:76, v/v)

with a flow rate of 1.0 mL/min; column temperature, 25 °C. The injection volume of

samples was 20 μL. The intermediate products of degradation of TC-HCl were

identified by UHPLC-MS (Thermo Vanquish UHPLC-LTQ XL, USA) with a Thermo

hypersil gold vanquish C18 (2.1 × 100 mm, 1.9 μm). The mobile phase was

acetonitrile/0.1% formic acid (22/78, v/v) with a flow rate of 0.2 mL/min; column

temperature, 25 °C. TC-HCl and the intermediates were estimated in the positive ion

mode using ESI under the following conditions: m/z range, 20-800; DL temperature,

250 °C; heat block temperature, 400 °C; nebulizing gas flow rate, 3 L/min; drying gas

flow rate, 15 L/min. Signals in Q1 Scan and product ion scan (PIS) were detected to

obtain their m/z values.

Page 4: ars.els-cdn.com · Web view(22/78, v/v) with a flow rate of 0.2 mL/min; column temperature, 25 C. TC-HCl and the intermediates were estimated in the positive ion mode using ESI under

Table S1 The specific Surface area, pore volume and pore size of the MIL-53(Fe)

using different synthetic methods.

Fe-MILs SBET (m2/g)Pore volume

(cm3/g)Pore size (nm) reference

MIL-53 367.99 0.24 2.81 This work

MIL-53 21.42 0.04 4.60 [31]

MIL-53 89.69 0.12 3.01 [25]

MIL-53 88.64 0.12 3.03 [26]

MIL-53 184.00 - - [3]

MIL-53 19.10 0.05 - [45]

Page 5: ars.els-cdn.com · Web view(22/78, v/v) with a flow rate of 0.2 mL/min; column temperature, 25 C. TC-HCl and the intermediates were estimated in the positive ion mode using ESI under

Table S2 Atomic percentage content of TC in the HOMO and LUMO orbital.

Atom HOMO LUMO Atom HOMO LUMO Atom HOMO LUMO

1(O) 0.18% 0.74% 20(C) 0.06% 0.30% 39(H) 0.70% 0.26%

2(O) 0.02% 0.01% 21(C) 0.02% 0.05% 40(C) 14.42% 5.83%

3(H) 0.00% 0.01% 22(C) 0.01% 0.36% 41(C) 10.62% 5.48%

4(O) 0.00% 0.11% 23(C) 0.03% 0.13% 42(C) 1.59% 20.43%

5(O) 0.49% 0.63% 24(H) 0.00% 0.06% 43(C) 4.73% 4.97%

6(H) 0.15% 0.16% 25(C) 0.10% 0.33% 44(C) 3.02% 11.50%

7(O) 14.32% 2.12% 26(H) 0.03% 0.19% 45(C) 0.33% 1.80%

8(H) 0.96% 0.38% 27(C) 0.19% 0.17% 46(C) 0.00% 0.02%

9(O) 0.30% 13.58% 28(H) 0.02% 0.03% 47(H) 0.00% 0.02%

10(O) 2.52% 4.34% 29(H) 0.04% 0.08% 48(H) 0.00% 0.02%

11(H) 0.16% 0.46% 30(C) 0.70% 0.66% 49(H) 0.00% 0.00%

12(O) 0.11% 0.75% 31(H) 0.44% 0.21% 50(C) 0.00% 0.01%

13(H) 0.03% 0.12% 32(C) 0.63% 0.82% 51(H) 0.00% 0.01%

14(N) 0.01% 0.01% 33(C) 6.79% 6.18% 52(H) 0.00% 0.00%

15(H) 0.00% 0.00% 34(C) 19.06% 2.19% 53(H) 0.00% 0.00%

16(H) 0.00% 0.01% 35(H) 1.65% 0.16% 54(C) 0.28% 0.13%

17(N) 0.00% 0.03% 36(C) 4.77% 8.49% 55(H) 0.13% 0.03%

18(H) 0.00% 0.00% 37(H) 0.31% 1.11% 56(H) 0.02% 0.02%

19(C) 0.23% 1.17% 38(C) 9.69% 3.22% 57(H) 0.15% 0.06%

Page 6: ars.els-cdn.com · Web view(22/78, v/v) with a flow rate of 0.2 mL/min; column temperature, 25 C. TC-HCl and the intermediates were estimated in the positive ion mode using ESI under

Table S3 Calculated atomic charge distributions of TC.

Atom Mulliken Hirshfeld ADCH Atom Mulliken Hirshfeld ADCH

1(O) -0.3009 -0.2628 -0.3126 29(H) 0.2476 0.0347 0.08022(O) -0.3597 -0.3110 -0.3984 30(C) -0.0003 -0.0174 -0.07713(H) 0.3959 0.1646 0.2848 31(H) 0.2137 0.0444 0.11674(O) -0.4275 -0.1412 -0.2563 32(C) 0.2152 0.0849 0.12245(O) -0.4862 -0.2278 -0.4413 33(C) -0.0325 0.0026 -0.03606(H) 0.3520 0.1660 0.3387 34(C) -0.1841 -0.0552 -0.14237(O) -0.4505 -0.2043 -0.3894 35(H) 0.1807 0.0487 0.13478(H) 0.3821 0.1301 0.3368 36(C) -0.1368 -0.0170 -0.09309(O) -0.5924 -0.2181 -0.3607 37(H) 0.1737 0.0603 0.156410(O) -0.4569 -0.1682 -0.3966 38(C) -0.2644 -0.0576 -0.142711(H) 0.3874 0.1374 0.3834 39(H) 0.1708 0.0551 0.144912(O) -0.4866 -0.1976 -0.3593 40(C) 0.2541 0.0928 0.122413(H) 0.3673 0.1635 0.3317 41(C) -0.0536 -0.0472 -0.069014(N) -0.5819 -0.1149 -0.3600 42(C) 0.3219 0.1444 0.171615(H) 0.3274 0.1534 0.3026 43(C) -0.0841 -0.0570 -0.066916(H) 0.2888 0.1504 0.2781 44(C) 0.1669 0.1019 0.128217(N) -0.0827 0.0827 -0.0156 45(C) 0.3757 0.0667 0.110418(H) 0.3247 0.1660 0.2592 46(C) -0.3328 0.0024 -0.211419(C) 0.1507 0.1438 0.1488 47(H) 0.2086 0.0598 0.112820(C) -0.0500 -0.0568 -0.0500 48(H) 0.2019 0.0588 0.115721(C) 0.2750 0.1813 0.2458 49(H) 0.2069 0.0772 0.194622(C) 0.1815 0.1204 0.1017 50(C) -0.3204 0.0159 -0.203223(C) -0.1201 0.0540 -0.0410 51(H) 0.2028 0.0778 0.162724(H) 0.2650 0.0752 0.1518 52(H) 0.2056 0.0718 0.137025(C) -0.3588 -0.0137 -0.0857 53(H) 0.2041 0.0809 0.176226(H) 0.2411 0.0518 0.1175 54(C) -0.5487 -0.0866 -0.267027(C) -0.5519 -0.0426 -0.1518 55(H) 0.1749 0.0422 0.109428(H) 0.2188 0.0487 0.1277 56(H) 0.1858 0.0403 0.1085

Page 7: ars.els-cdn.com · Web view(22/78, v/v) with a flow rate of 0.2 mL/min; column temperature, 25 C. TC-HCl and the intermediates were estimated in the positive ion mode using ESI under

Table S4 Calculated atomic charge of CFF for TC.

Atom Mulliken Hirshfeld ADCH Atom Mulliken Hirshfeld ADCH

1(O) -0.3009 -0.2628 -0.3126 29(H) 0.2476 0.0347 0.08022(O) -0.3597 -0.3110 -0.3984 30(C) -0.0003 -0.0174 -0.07713(H) 0.3959 0.1646 0.2848 31(H) 0.2137 0.0444 0.11674(O) -0.4275 -0.1412 -0.2563 32(C) 0.2152 0.0849 0.12245(O) -0.4862 -0.2278 -0.4413 33(C) -0.0325 0.0026 -0.03606(H) 0.3520 0.1660 0.3387 34(C) -0.1841 -0.0552 -0.14237(O) -0.4505 -0.2043 -0.3894 35(H) 0.1807 0.0487 0.13478(H) 0.3821 0.1301 0.3368 36(C) -0.1368 -0.0170 -0.09309(O) -0.5924 -0.2181 -0.3607 37(H) 0.1737 0.0603 0.156410(O) -0.4569 -0.1682 -0.3966 38(C) -0.2644 -0.0576 -0.142711(H) 0.3874 0.1374 0.3834 39(H) 0.1708 0.0551 0.144912(O) -0.4866 -0.1976 -0.3593 40(C) 0.2541 0.0928 0.122413(H) 0.3673 0.1635 0.3317 41(C) -0.0536 -0.0472 -0.069014(N) -0.5819 -0.1149 -0.3600 42(C) 0.3219 0.1444 0.171615(H) 0.3274 0.1534 0.3026 43(C) -0.0841 -0.0570 -0.066916(H) 0.2888 0.1504 0.2781 44(C) 0.1669 0.1019 0.128217(N) -0.0827 0.0827 -0.0156 45(C) 0.3757 0.0667 0.110418(H) 0.3247 0.1660 0.2592 46(C) -0.3328 0.0024 -0.211419(C) 0.1507 0.1438 0.1488 47(H) 0.2086 0.0598 0.112820(C) -0.0500 -0.0568 -0.0500 48(H) 0.2019 0.0588 0.115721(C) 0.2750 0.1813 0.2458 49(H) 0.2069 0.0772 0.194622(C) 0.1815 0.1204 0.1017 50(C) -0.3204 0.0159 -0.203223(C) -0.1201 0.0540 -0.0410 51(H) 0.2028 0.0778 0.162724(H) 0.2650 0.0752 0.1518 52(H) 0.2056 0.0718 0.137025(C) -0.3588 -0.0137 -0.0857 53(H) 0.2041 0.0809 0.176226(H) 0.2411 0.0518 0.1175 54(C) -0.5487 -0.0866 -0.267027(C) -0.5519 -0.0426 -0.1518 55(H) 0.1749 0.0422 0.109428(H) 0.2188 0.0487 0.1277 56(H) 0.1858 0.0403 0.1085

N: The electron density of the system in its original state.N+1: The electron density of the system in an electron ionized state.N-1: The electron density of the system in an electron bounded state.f-: CFF value in electrophilic reaction.f+: CFF value in nucleophilic reaction.

Page 8: ars.els-cdn.com · Web view(22/78, v/v) with a flow rate of 0.2 mL/min; column temperature, 25 C. TC-HCl and the intermediates were estimated in the positive ion mode using ESI under

Fig. S1 TG-DSC image of MIL-53 (Fe).

0 200 400 600 800-2

0

2

4

6

8

TG

DSC

Temperature (oC)

DSC

(mW

/mg)

Wei

ght l

oss

(%)

20

40

60

80

100

Page 9: ars.els-cdn.com · Web view(22/78, v/v) with a flow rate of 0.2 mL/min; column temperature, 25 C. TC-HCl and the intermediates were estimated in the positive ion mode using ESI under

Fig. S2 N2 adsorption/desorption isotherms of MIL-53 (Fe). The inset shows the pore-

size distribution of the sample.

0 5 10 15 20

0.00

0.05

0.10

0.15

dV/d

D (c

m3 g-1

)

Pore Diameter (nm)0.0 0.2 0.4 0.6 0.8 1.0

80

100

120

140

160

Ads

orbe

d Vo

lum

e (c

m3 g-1

)

Relative Pressure (P/P0)

Page 10: ars.els-cdn.com · Web view(22/78, v/v) with a flow rate of 0.2 mL/min; column temperature, 25 C. TC-HCl and the intermediates were estimated in the positive ion mode using ESI under

Fig. S3 (a) The variation of adsorption capacity with adsorption time for TC-HCl on

MIL-53(Fe); Adsorption kinetics of TC-HCl on MIL-53(Fe): (b) pseudo-first-order

kinetics; (c) second-order kinetics for adsorption of TC-HCl on MIL-53(Fe).

(initial concentration = 300 mg/L; adsorbents: 0.2 g/L)

Page 11: ars.els-cdn.com · Web view(22/78, v/v) with a flow rate of 0.2 mL/min; column temperature, 25 C. TC-HCl and the intermediates were estimated in the positive ion mode using ESI under

Fig. S4 Recycling test on the degradation rate of TC by MIL-53 (Fe).0 100

0.0

0.2

0.4

0.6

0.8

1.04 th3 rd1 st

(C0-C

)/C0

Time (min)

2 nd

0 100

0 100

0 100

0 100

5 th

Page 12: ars.els-cdn.com · Web view(22/78, v/v) with a flow rate of 0.2 mL/min; column temperature, 25 C. TC-HCl and the intermediates were estimated in the positive ion mode using ESI under

Fig. S5 Structure and atomic numbering of TC

(The red color atom is O, the gray color atom is C, the blue color

atom is N and the white color atom is H.)

Page 13: ars.els-cdn.com · Web view(22/78, v/v) with a flow rate of 0.2 mL/min; column temperature, 25 C. TC-HCl and the intermediates were estimated in the positive ion mode using ESI under

Fig. S6 (a) HOMO and (b) LUMO of TC.

Page 14: ars.els-cdn.com · Web view(22/78, v/v) with a flow rate of 0.2 mL/min; column temperature, 25 C. TC-HCl and the intermediates were estimated in the positive ion mode using ESI under

Fig. S7 Electron density map of TC

Page 15: ars.els-cdn.com · Web view(22/78, v/v) with a flow rate of 0.2 mL/min; column temperature, 25 C. TC-HCl and the intermediates were estimated in the positive ion mode using ESI under

Fig. S8 Analysis of Q1 intermediate of TC with m/z=445: (a) MS spectra; (b)

MS/MS spectra

Page 16: ars.els-cdn.com · Web view(22/78, v/v) with a flow rate of 0.2 mL/min; column temperature, 25 C. TC-HCl and the intermediates were estimated in the positive ion mode using ESI under
Page 17: ars.els-cdn.com · Web view(22/78, v/v) with a flow rate of 0.2 mL/min; column temperature, 25 C. TC-HCl and the intermediates were estimated in the positive ion mode using ESI under
Page 18: ars.els-cdn.com · Web view(22/78, v/v) with a flow rate of 0.2 mL/min; column temperature, 25 C. TC-HCl and the intermediates were estimated in the positive ion mode using ESI under
Page 19: ars.els-cdn.com · Web view(22/78, v/v) with a flow rate of 0.2 mL/min; column temperature, 25 C. TC-HCl and the intermediates were estimated in the positive ion mode using ESI under

Fig. S9 Analysis of Q2 intermediate of TC with m/z=461: (a-d) MS spectra; (e)

MS/MS spectra of Q2a.

Page 20: ars.els-cdn.com · Web view(22/78, v/v) with a flow rate of 0.2 mL/min; column temperature, 25 C. TC-HCl and the intermediates were estimated in the positive ion mode using ESI under

Fig. S10 Analysis of Q3 intermediate of TC with m/z=431: (a) MS spectra; (b)

MS/MS spectra

Page 21: ars.els-cdn.com · Web view(22/78, v/v) with a flow rate of 0.2 mL/min; column temperature, 25 C. TC-HCl and the intermediates were estimated in the positive ion mode using ESI under

Fig. S11 Analysis of Q4 intermediate of TC with m/z=427: (a) MS spectra; (b)

MS/MS spectra

Page 22: ars.els-cdn.com · Web view(22/78, v/v) with a flow rate of 0.2 mL/min; column temperature, 25 C. TC-HCl and the intermediates were estimated in the positive ion mode using ESI under
Page 23: ars.els-cdn.com · Web view(22/78, v/v) with a flow rate of 0.2 mL/min; column temperature, 25 C. TC-HCl and the intermediates were estimated in the positive ion mode using ESI under

Fig. S12 Analysis of Q5 intermediate of TC with m/z=459: (a) and (b) MS spectra; (c)

MS/MS spectra of Q5a.

Page 24: ars.els-cdn.com · Web view(22/78, v/v) with a flow rate of 0.2 mL/min; column temperature, 25 C. TC-HCl and the intermediates were estimated in the positive ion mode using ESI under

Fig. S13 Analysis of Q6 intermediate of TC with m/z=417: (a) MS spectra; (b)

MS/MS spectra

Page 25: ars.els-cdn.com · Web view(22/78, v/v) with a flow rate of 0.2 mL/min; column temperature, 25 C. TC-HCl and the intermediates were estimated in the positive ion mode using ESI under

Fig. S14 Analysis of Q7 intermediate of TC with m/z=477: (a) MS spectra; (b)

MS/MS spectra

Page 26: ars.els-cdn.com · Web view(22/78, v/v) with a flow rate of 0.2 mL/min; column temperature, 25 C. TC-HCl and the intermediates were estimated in the positive ion mode using ESI under
Page 27: ars.els-cdn.com · Web view(22/78, v/v) with a flow rate of 0.2 mL/min; column temperature, 25 C. TC-HCl and the intermediates were estimated in the positive ion mode using ESI under

Fig. S11 Analysis of Q8 intermediate of TC with m/z=448: (a) MS spectra; (b)

MS/MS spectra

Page 28: ars.els-cdn.com · Web view(22/78, v/v) with a flow rate of 0.2 mL/min; column temperature, 25 C. TC-HCl and the intermediates were estimated in the positive ion mode using ESI under

Fig. S15 Analysis of Q9 intermediate of TC with m/z=432: (a) MS spectra; (b)

MS/MS spectra

Page 29: ars.els-cdn.com · Web view(22/78, v/v) with a flow rate of 0.2 mL/min; column temperature, 25 C. TC-HCl and the intermediates were estimated in the positive ion mode using ESI under

Fig. S16 Analysis of Q10 intermediate of TC with m/z=509: (a) MS spectra; (b)

MS/MS spectra

Page 30: ars.els-cdn.com · Web view(22/78, v/v) with a flow rate of 0.2 mL/min; column temperature, 25 C. TC-HCl and the intermediates were estimated in the positive ion mode using ESI under

Fig. S17 Analysis of Q11 intermediate of TC with m/z=480: (a) MS spectra; (b)

MS/MS spectra

Page 31: ars.els-cdn.com · Web view(22/78, v/v) with a flow rate of 0.2 mL/min; column temperature, 25 C. TC-HCl and the intermediates were estimated in the positive ion mode using ESI under
Page 32: ars.els-cdn.com · Web view(22/78, v/v) with a flow rate of 0.2 mL/min; column temperature, 25 C. TC-HCl and the intermediates were estimated in the positive ion mode using ESI under

Fig. S18 Analysis of Q12 intermediate of TC with m/z=496: (a) MS spectra; (b)

MS/MS spectra

Page 33: ars.els-cdn.com · Web view(22/78, v/v) with a flow rate of 0.2 mL/min; column temperature, 25 C. TC-HCl and the intermediates were estimated in the positive ion mode using ESI under

Fig. S19 Analysis of Q13 intermediate of TC with m/z=525: (a) MS spectra; (b)

MS/MS spectra