ars.els-cdn.com · web viewa metal-free orr/oer bifunctional electrocatalyst derived from...

44
Designed synthesis of three-dimensional callistemon-like networks structural multifunctional electrocatalyst: graphitic- carbon-encapsulated Co Nanoparticles/N-doped carbon nanotubes@carbon nanofibers for Zn-air batteries application Xiuyun Yao, Jiajia Li, Yajing Zhu, Ling Li*, Wenming Zhang* National-Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China 1

Upload: others

Post on 08-Oct-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ars.els-cdn.com · Web viewA metal-free ORR/OER bifunctional electrocatalyst derived from metal-organic frameworks for rechargeable Zn-air batteries. Carbon 2017; 111; 641-650. Carbon

Designed synthesis of three-dimensional callistemon-like networks

structural multifunctional electrocatalyst: graphitic-carbon-

encapsulated Co Nanoparticles/N-doped carbon nanotubes@carbon

nanofibers for Zn-air batteries application

Xiuyun Yao, Jiajia Li, Yajing Zhu, Ling Li*, Wenming Zhang*

National-Local Joint Engineering Laboratory of New Energy Photoelectric Devices,

College of Physics Science and Technology, Hebei University, Baoding 071002,

China

1

Page 2: ars.els-cdn.com · Web viewA metal-free ORR/OER bifunctional electrocatalyst derived from metal-organic frameworks for rechargeable Zn-air batteries. Carbon 2017; 111; 641-650. Carbon

Figures Captions:

Fig. S1. (a) ZIF-8@PAN fibers. (b) NC@CNF, (c) ZIF 67@PAN fibers. (d)

CoNC@CNF electrocatalysts.

Fig. S2. H2-TPR profiles of CoNC/NCNTs@CNF catalyst.

Fig. S3. Pore size distribution for NC@CNF, CoNC@CNF and CoNC/CNTs@CNF

electrocatalysts.

Fig. S4. LSV curves of CoNC/CNTs@CNF at different rotation rates in O2-saturated

0.1 M KOH.

Fig. S5. Rotating ring-disk electrode (RRDE) voltammograms for

CoNC/CNTs@CNF in O2-saturated 0.1 M KOH at 1600 rpm.

Fig. S6. Typical SEM images of CoNC/NCNTs@CNF before (a) and after (b)

stability test.

Fig. S7. (a-c) CVs measured in 1 M KOH at scan rates from 20 to 80 mV s -1 for

NC@CNF, CoNC@CNF and CoNC/CNTs@CNF.

Fig. S8. (a-c) CVs measured in 1 M KOH at scan rates from 20 to 80 mV s -1 for

NC@CNF, CoNC@CNF and CoNC/CNTs@CNF.

Fig. S9. The particle size distribution of CoNC/CNTs@CNF calculated by the TEM.

Tables Captions:

Table S1. Performance of important non-precious metal based electrocatalysts for

ORR, OER, HER in alkaline environment. η is the over potentials to deliver a -10 mA

cm-2 current density for OER, HER. All of the catalytic electrodes for OER, HER in 1

M KOH, and 0.1M KOH for ORR. 0.1M represents 0.1M KOH solution.

Table S2. BET surface area, total pore volume, micropore volume and adsorption

2

Page 3: ars.els-cdn.com · Web viewA metal-free ORR/OER bifunctional electrocatalyst derived from metal-organic frameworks for rechargeable Zn-air batteries. Carbon 2017; 111; 641-650. Carbon

average pore width of NC@CNF, CoNC@CNF and CoNC/CNTs@CNF.

3

Page 4: ars.els-cdn.com · Web viewA metal-free ORR/OER bifunctional electrocatalyst derived from metal-organic frameworks for rechargeable Zn-air batteries. Carbon 2017; 111; 641-650. Carbon

Fig. S1. (a) ZIF-8@PAN fibers. (b) NC@CNF, (c) ZIF 67@PAN fibers. (d)

CoNC@CNF electrocatalysts.

4

Page 5: ars.els-cdn.com · Web viewA metal-free ORR/OER bifunctional electrocatalyst derived from metal-organic frameworks for rechargeable Zn-air batteries. Carbon 2017; 111; 641-650. Carbon

Fig. S2. H2-TPR profiles of CoNC/NCNTs@CNF catalyst.

5

Page 6: ars.els-cdn.com · Web viewA metal-free ORR/OER bifunctional electrocatalyst derived from metal-organic frameworks for rechargeable Zn-air batteries. Carbon 2017; 111; 641-650. Carbon

Fig. S3. Pore size distribution for NC@CNF, CoNC@CNF and CoNC/CNTs@CNF

electrocatalysts.

6

Page 7: ars.els-cdn.com · Web viewA metal-free ORR/OER bifunctional electrocatalyst derived from metal-organic frameworks for rechargeable Zn-air batteries. Carbon 2017; 111; 641-650. Carbon

Fig. S4. LSV curves of CoNC/CNTs@CNF at different rotation rates in O2-saturated

0.1 M KOH

7

Page 8: ars.els-cdn.com · Web viewA metal-free ORR/OER bifunctional electrocatalyst derived from metal-organic frameworks for rechargeable Zn-air batteries. Carbon 2017; 111; 641-650. Carbon

Fig. S5. Rotating ring-disk electrode (RRDE) voltammograms for

CoNC/CNTs@CNF in O2-saturated 0.1 M KOH at 1600 rpm.

8

Page 9: ars.els-cdn.com · Web viewA metal-free ORR/OER bifunctional electrocatalyst derived from metal-organic frameworks for rechargeable Zn-air batteries. Carbon 2017; 111; 641-650. Carbon

Fig. S6. Typical SEM images of CoNC/NCNTs@CNF before (a) and after (b)

stability test.

9

Page 10: ars.els-cdn.com · Web viewA metal-free ORR/OER bifunctional electrocatalyst derived from metal-organic frameworks for rechargeable Zn-air batteries. Carbon 2017; 111; 641-650. Carbon

Fig. S7. (a-c) CVs measured in 1 M KOH at scan rates from 20 to 80 mV s -1 for

NC@CNF, CoNC@CNF and CoNC/CNTs@CNF.

10

Page 11: ars.els-cdn.com · Web viewA metal-free ORR/OER bifunctional electrocatalyst derived from metal-organic frameworks for rechargeable Zn-air batteries. Carbon 2017; 111; 641-650. Carbon

Fig. S8. (a-c) CVs measured in 1 M KOH at scan rates from 20 to 80 mV s -1 for

NC@CNF, CoNC@CNF and CoNC/CNTs@CNF.

11

Page 12: ars.els-cdn.com · Web viewA metal-free ORR/OER bifunctional electrocatalyst derived from metal-organic frameworks for rechargeable Zn-air batteries. Carbon 2017; 111; 641-650. Carbon

Fig. S9. The particle size distribution of CoNC/CNTs@CNF calculated by the TEM.

12

Page 13: ars.els-cdn.com · Web viewA metal-free ORR/OER bifunctional electrocatalyst derived from metal-organic frameworks for rechargeable Zn-air batteries. Carbon 2017; 111; 641-650. Carbon

Table S1. Performance of important non-precious metal based electrocatalysts for

ORR, OER, HER in alkaline environment. η is the over potentials to deliver a -10 mA

cm-2 current density for OER, HER. All of the catalytic electrodes for OER, HER in 1

M KOH, and 0.1M KOH for ORR. 0.1M represents 0.1M KOH solution.

Catalysts

ORR OER HER

Reference

Diffusion-

limiting

current

density

(mA cm-2)

Tafel

slope

(mV

dec-1)

η

(mV)

Tafel

slope

(mV

dec-1)

η

(mV)

Tafel

slope

(mV

dec-1)

CoNC/NCNTs@CNF -5.6 92 390 82 190 117 This work

NC@CNF -3.5 248 580 167 373 203 This work

CoNC @CNF -4.5 160 490 104 235 173 This work

Pt/C -5.6 112 - - 40 106 This work

RuO2 - - 320 73 - - This work

NC@GC -4.4 - 340 - - - S1

Co@N-PCFs -5.09 - - - - - S2

CoSAs@CNTs - 99 410 85 - - S3

CNF@Zn/CoNC -5.8 43.3470

(0.1M)

124

(0.1M)- - S4

Co@NC-3/1 -4.7 - 370 90 - - S5

NC@Co-NGC

DSNC-5 51

410

(0.1M)

91

(0.1M)- - S6

13

Page 14: ars.els-cdn.com · Web viewA metal-free ORR/OER bifunctional electrocatalyst derived from metal-organic frameworks for rechargeable Zn-air batteries. Carbon 2017; 111; 641-650. Carbon

Co–Nx/C NRA -5 74300

(6M)

62.3

(6M)- - S7

Mo–N/C@MoS2 -5 -390

(0.1M)

72

(0.1M)117 64.3 S8

NiMo3S4 - - - - 257 98 S9

(CoSx/N, S-CNT)700 -4.8 67.9 574 88.1 - - S10

3D-CNTA -4.2 - 360 89 185 135 S11

Co-N,B-CSs -5.66 64470

(0.1M)- - - S12

FeNx/C-700-20 - 93770

(0.1M)219 - - S13

CuCo@NC -5.5 80 - -163

(0.1M)- S14

Fe0.3Co0.7/NC cages -6 79 - - - - S15

CoZn-NC-800 -5.36 126480

(0.1M)

94

(0.1M)- - S16

Co@N-Carbon - - 400 61 - - S17

MCO@NCNTs -6 96510

(0.1M)- - - S18

CoP hollow

polyhedron- - 400 57 159 59 S19

Ni2P - - 290 - 220 - S20

β-Ni(OH)2 - - 444 111 - - S21

Co3O4@Co/NCNT -5.2 61 380 58.7 - - S22

14

Page 15: ars.els-cdn.com · Web viewA metal-free ORR/OER bifunctional electrocatalyst derived from metal-organic frameworks for rechargeable Zn-air batteries. Carbon 2017; 111; 641-650. Carbon

NGO/Ni7S6 - -380

(0.1M)

45.4

(0.1

M)

370 145.5 S23

FeCo-N/C -5 52370

(0.1M)

74

(0.1M)- - S24

PO-Ni/Ni-N-CNFs - - 420 113.10 262 97.42 S25

BNPC-1100 4.73 -320

(6M)117 - - S26

NiCo2S4/N-CNT -3 - 370 - - - S27

APBCCF-H -5.8 - 410 99 240 42 S28

Co@Co3O4/NC-2 -4 - 435 - - - S29

Co-N-MoO2 -5.39 60 - -258

(0.1M)

126.8

(0.1M)S30

D-Co@CNG -4.6 83 360 - 205 95 S31

FeNx-embedded PNC -6 -395

(0.1M)

80

(0.1M)- - S32

CoFe LDH-F - - 270 47 255 95 S33

MNG-CoFe -5.5 - 390 - 240 - S34

15

Page 16: ars.els-cdn.com · Web viewA metal-free ORR/OER bifunctional electrocatalyst derived from metal-organic frameworks for rechargeable Zn-air batteries. Carbon 2017; 111; 641-650. Carbon

Table S2. BET surface area, total pore volume, micropore volume and adsorption

average pore width of NC@CNF, CoNC@CNF and CoNC/CNTs@CNF.

Catalysts

BET surface

area

(m2 g-1)

Pore volume (cm3 g-1) Adsorption

average pore

width (nm)

total pore

volume

micropore

volume

NC@CNF 140 0.08 0.05 2.34

CoNC@CNF 103 0.11 0.01 4.06

CoNC/CNTs@CNF 261 0.19 0.07 2.95

16

Page 17: ars.els-cdn.com · Web viewA metal-free ORR/OER bifunctional electrocatalyst derived from metal-organic frameworks for rechargeable Zn-air batteries. Carbon 2017; 111; 641-650. Carbon

Table S3. Comparison of the metal loadings, mass activity and estimated turn-over

frequency (TOF) of our catalyst with those reported previously.

Catalysts

Metal

loading

(wt.%)a

Mass activity (A g-1)TOF × 10-3

(s-1)

Referenceη = 300

mV (OER)

η =25 mV

(HER)

V =700

m

V(ORR

η = 300

mV

(OER)

η =25

mV

(HER)

V =700

mV

(ORR)

CoNC/CNTs@CNF 6.93 4.02 0.003 0.011 8.86 6.54 24.30 This work

CoNC@CNF 5.26 0.97 0.002 0.006 2.82 5.17 16.84 This work

RuO2 0.76 8.12 - - 2.80 - - This work

Pt/C 0.2 - 0.013 0.011 - 33.02 27.22 This work

Fe-N-C-950 0.32 - - 6.6 - - 1.71 S35

Fe-N-C - - - 3.2 - - 0.4 S36

FePhenMOF-

ArNH3

0.5 - - 7.78 - - 2.4 S37

(Fe,Fe)1 + N2/H2 2.4 - - 1.23 - - 0.06 S38

0.5Fe-950 1.2 - - 3.42 - - 0.33 S39

Co(OH)X -NCNT 17 - - - 2.3 - - S40

S,S′-CNT1000 °C 148 - - 5.87 - - S41

PtNi/C - - - - 3.6 - - S42

HI-CoP/CNT - - - - - 0.175 - S43

17

Page 18: ars.els-cdn.com · Web viewA metal-free ORR/OER bifunctional electrocatalyst derived from metal-organic frameworks for rechargeable Zn-air batteries. Carbon 2017; 111; 641-650. Carbon

N-doped Ni3S2 - - - - - 2.4 - S44

PPy@NiCo HNTAs - - - - - 0.625 - S45

Co/G NSs - 583.3 - - 0.089 - - S46

SSUCo-900 - - - - 0.034 - - S47

Co3O4@CoOSC - 234.0 - - 0.0487 - - S48

Y2Ru2O7-δ - - - - 67.7 - - S49

18

Page 19: ars.els-cdn.com · Web viewA metal-free ORR/OER bifunctional electrocatalyst derived from metal-organic frameworks for rechargeable Zn-air batteries. Carbon 2017; 111; 641-650. Carbon

Table S4. Co dispersion in different catalysts prepared by different methods.

Catalysts

H2 pulse adsorption TEM XRD

Dispers

ion

(%)a

Crystallite

Size (nm)

a

Co

particle

size

(nm)b

Dispe

rsion

(%)b

Diffrac

tion

Peak

2The

ta (°)

FW

HM

(nm

)

Cryst

allite

size

(nm)c

Disper

sion

(%)c

CoNC/

[email protected] 22.41 26.70 8.49

(111)44.3

6

0.33

6

25.55 3.76

(200)51.7

4

0.29

5

29.95 3.21

(220)75.9

0

0.26

8

37.62 2.55

CoNC@CNF 2.08 43.46 - -

(111)44.0

1

0.33

1

25.91 3.71

(200)51.2

6

0.22

3

39.54 2.43

a Calculated from H2 pulse adsorption

b Calculated in HRTEM analysis.

c Determined from the XRD patterns.

19

Page 20: ars.els-cdn.com · Web viewA metal-free ORR/OER bifunctional electrocatalyst derived from metal-organic frameworks for rechargeable Zn-air batteries. Carbon 2017; 111; 641-650. Carbon

References

[1] Wang Z, Lu Y, Yan Y, Larissa T, Zhang X, Wuu D, Zhang H, Yang Y. Wang X,

Core-shell carbon materials derived from metal-organic frameworks as an

efficient oxygen bifunctional electrocatalyst. Nano Energy 2016; 30; 368-378.

[2] Bai Q, Shen F, Li S, Liu J, Dong L, Wang Z, Lan Y. Cobalt@Nitrogen-doped

porous carbon fiber derived from the electrospun fiber of bimetal-organic

framework for highly active oxygen reduction. Small Methods 2018; 12;

1800049.

[3] Dilpazir S, He H, Li Z, Wang M, Lu P, Liu R, Xie Z, Gao D, Zhang G. Cobalt

single atoms immobilized N-doped carbon nanotubes for enhanced bifunctional

catalysis toward oxygen reduction and oxygen evolution reactions. ACS. Appl.

Mater 2018; 1; 3283-3291.

[4] Zhao Y, Lai Q, Zhu J, Zhong J, Tang Z, Luo Y, Liang Y. Controllable construction

of core-shell polymer@zeolitic imidazolate frameworks fiber derived

heteroatom-doped carbon nanofiber network for efficient oxygen

electrocatalysis. Small 2018; 14; 1704207.

[5] Li Y, Jia B, Fan Y, Zhu K, Li G, Su C. Bimetallic zeolitic imidazolite framework

derived carbon nanotubes embedded with Co nanoparticles for efficient

bifunctional oxygen electrocatalyst. Adv. Energy. Mater 2018; 8; 1702048.

[6] Liu S, Wang Z, Zhou S, Yu F, Yu M, Chiang C, Zhou W, Zhao J, Qiu J. Metal-

organic-framework-derived hybrid carbon nanocages as a bifunctional

electrocatalyst for oxygen reduction and evolution. Adv. Mater 2017; 29;

20

Page 21: ars.els-cdn.com · Web viewA metal-free ORR/OER bifunctional electrocatalyst derived from metal-organic frameworks for rechargeable Zn-air batteries. Carbon 2017; 111; 641-650. Carbon

1700874.

[7] Amiinu I, Liu X, Pu Z, Li Q, Li Q, Zhang J, Tang H, Zhang H, Mu S. From 3D

ZIF nanocrystals to Co-NX/C nanorod array electrocatalysts for ORR, OER, and

Zn-air Batteries. Adv. Funct. Mater 2018; 28; 1704638.

[8] Amiinu I, Pu Z, Liu X, Owusu K, Monestel H, Boakye F, Zhang H, Mu S.

Multifunctional Mo-N/C@MoS2 electrocatalysts for HER, OER, ORR, and Zn-

air batteries. Adv. Funct. Mater 2017; 27; 1702300.

[9] Jiang J, Gao M, Sheng W, Yan Y. Hollow chevrel-phase NiMo3S4 for hydrogen

evolution in alkaline electrolytes. Angew. Chem. Int. Edit 2016; 128; 15466.

[10] Hu C, Yi Z, She W, Wang J, Xiao J, Wang S. Urchin-like non-precious-metal

bifunctional oxygen electrocatalysts: boosting the catalytic activity via the in-situ

growth of heteroatom (N, S)-doped carbon nanotube on mesoporous cobalt

sulfide/carbon spheres. J. Colloid. Interf. Sci 2018; 524; 465-474.

[11] Wang S, Qin J, Meng T, Cao M. Metal-organic framework-induced construction

of actiniae-like carbon nanotube assembly as advanced multifunctional

electrocatalysts for overall water splitting and Zn-air batteries. Nano Energy

2017; 39; 626-638.

[12] Guo Y, Yuan P, Zhang J, Hu Y, Amiinu I, Wang X, Zhou J, Xia H, Song Z, Xu Q,

Mu S. Carbon nanosheets containing discrete Co-Nx-By-C active sites for

efficient oxygen electrocatalysis and rechargeable Zn-air batteries. ACS Nano

2018; 12; 1894-1901.

[13] Han S, Hu X, Wang J, Fang X, Zhu Y. Novel route to Fe-based cathode as an

21

Page 22: ars.els-cdn.com · Web viewA metal-free ORR/OER bifunctional electrocatalyst derived from metal-organic frameworks for rechargeable Zn-air batteries. Carbon 2017; 111; 641-650. Carbon

efficient bifunctional catalysts for rechargeable Zn-air battery. Adv. Energy.

Mater 2018; 8; 1800955.

[14] Kuang M, Wang Q, Han P, Zheng G. Cu, Co-embedded N-enriched mesoporous

carbon for efficient oxygen reduction and hydrogen evolution reactions. Adv.

Energy Mater 2017; 7; 1700193.

[15] Guan B, Lu Y, Wang Y, Wu M, Lou X. Porous iron-cobalt alloy/nitrogen-doped

carbon cages synthesized via pyrolysis of complex metal-organic framework

hybrids for oxygen reduction. Adv. Funct. Mater 2018; 28; 1706738.

[16] Chen B, He X, Yin F, Wang H, Liu D, Shi R, Chen J, Yin H. MO-Co@N-doped

carbon (M = Zn or Co): vital roles of inactive Zn and highly efficient activity

toward oxygen reduction/evolution reactions for rechargeable Zn-air battery.

Adv. Funct. Mater 2017; 27; 1700795.

[17] Cong J, Xu H, Lu M, Wu Y, Li Y, He P, Gao J, Yao J, Xu S. Two-dimensional

Co@N-carbon nanocomposites facilely derived from metal-organic framework

nanosheets for efficient bifunctional electrocatalysis. Chem-Asian. J 2018; 13;

1485-1491.

[18] Zhao T, Gadipelli S, He G, Ward M, Do D, Zhang P, Guo Z. Tunable bifunctional

activity of MnXCo3-xO4 nanocrystals decorated on carbon nanotubes for oxygen

electrocatalysis. ChemSusChem 2018; 11; 1295-1304.

[19] Liu M, Li J. Cobalt phosphide hollow polyhedron as efficient bifunctional

electrocatalysts for the evolution reaction of hydrogen and oxygen. ACS. Appl.

Mater. Inter 2016; 8; 2158-2165.

22

Page 23: ars.els-cdn.com · Web viewA metal-free ORR/OER bifunctional electrocatalyst derived from metal-organic frameworks for rechargeable Zn-air batteries. Carbon 2017; 111; 641-650. Carbon

[20] Stern L, Feng L, Song F, Hu X. Ni2P as a janus catalyst for water splitting: the

oxygen evolution activity of Ni2P nanoparticles. Energ. Environ. Sci 2015; 8;

2347-2351.

[21] Shi H, Zhao G. Water oxidation on spinel NiCo2O4 nanoneedles anode:

microstructures, specific surface character, and the enhanced electrocatalytic

performance. J. Phys. Chem. C 2014; 118; 25939-25946.

[22] Sikdar N, Konkena B, Masa J, Schuhmann W, Maji T. Co3O4@Co/NCNT

nanostructure derived from a dicyanamide-based metal-organic framework as an

efficient bi-functional electrocatalyst for oxygen reduction and evolution

reactions. Chem-Eur J 2017; 23; 18049-18056.

[23] Jayaramulu K, Masa J, Tomanec O, Peeters D, Ranc V, Schneemann A, Zboril R,

Schuhmann W, Fischer R. Nanoporous nitrogen-doped graphene oxide/nickel

sulfide composite sheets derived from a metal-organic framework as an efficient

electrocatalyst for hydrogen and oxygen evolution. Adv. Funct. Mater 2017; 27;

1700451.

[24] Shui H, Jin T, Hu J, Liu H. In situ incorporation strategy for bimetallic FeCo-

doped carbon as highly efficient bifunctional oxygen electrocatalysts.

ChemElectroChem 2018; 5; 1401-1406.

[25] Wu Z, Ji W, Hu B, Liang H, Xu X, Yu Z, Li B, Yu S. Partially oxidized Ni

nanoparticles supported on Ni-N co-doped carbon nanofibers as bifunctional

electrocatalysts for overall water splitting. Nano Energy 2018; 51; 286-293.

[26] Qian Y, Hu Z, Ge X, Yang S, Peng Y, Kang Z, Liu Z, Lee J, Zhao D. A metal-free

23

Page 24: ars.els-cdn.com · Web viewA metal-free ORR/OER bifunctional electrocatalyst derived from metal-organic frameworks for rechargeable Zn-air batteries. Carbon 2017; 111; 641-650. Carbon

ORR/OER bifunctional electrocatalyst derived from metal-organic frameworks

for rechargeable Zn-air batteries. Carbon 2017; 111; 641-650.

[27] Han X, Wu X, Zhong C, Deng Y, Zhao N, Hu W. NiCo2S4 nanocrystals anchored

on nitrogen-doped carbon nanotubes as a highly efficient bifunctional

electrocatalyst for rechargeable zinc-air batteries. Nano Energy 2017; 31; 541-

550.

[28] Hua B, Li M, Sun Y, Zhang Y, Yan N, Chen J, Thundat T, Li J, Luo J. A coupling

for success: controlled growth of Co/CoOX nanoshoots on perovskite

mesoporous nanofibres as high-performance trifunctional electrocatalysts in

alkaline condition. Nano Energy 2017; 32; 247-254.

[29] Xiao J, Chen C, Xi J, Xu Y, Xiao F, Wang S, Yang S. Core-shell Co@Co3O4

nanoparticle-embedded bamboo-like nitrogen-doped carbon nanotubes

(BNCNTs) as a highly active electrocatalyst for the oxygen reduction reaction.

Nanoscale 2015; 7; 7056-7064.

[30] Yang L, Yu J, Wei Z, Li G, Cao L, Zhou W, Chen S. Co-N-doped MoO2

nanowires as efficient electrocatalysts for the oxygen reduction reaction and

hydrogen evolution reaction. Nano Energy 2017; 41; 772-779.

[31] Huang Y, Liu Q, Lv J, Babu D, Wang W, Wu M, Yuan D, Wang Y. Co-

Intercalation of multiple active units into graphene by pyrolysis of hydrogen-

bonded precursors for zinc-air batteries and water splitting. J. Mater. Chem. A

2017; 5; 20882-20891.

[32] Ma L, Chen S, Pei Z, Huang Y, Liang G, Mo F, Yang Q, Su J, Gao Y, Zapien J,

24

Page 25: ars.els-cdn.com · Web viewA metal-free ORR/OER bifunctional electrocatalyst derived from metal-organic frameworks for rechargeable Zn-air batteries. Carbon 2017; 111; 641-650. Carbon

Zhi C. ACS Nano 2018; 12; 1949-1958.

[33] Liu P, Yang S, Zhang B, Yang H. Defect-rich ultrathin cobalt-iron layered double

hydroxide for electrochemical overall water splitting. ACS. Appl. Mater. Inter

2016; 8; 34474-34481.

[34] Niu W, Yang Y. Amorphous MOF introduced N-doped graphene: an efficient and

versatile electrocatalyst for zinc-air battery and water splitting. ACS. Appl.

Energ. Mater 2018; 1; 2440-2445.

[35] Xiao M, Zhu J, Ma L, Jin Z, Ge J, Deng X, Hou Y, He Q, Li J, Jia Q, Mukerjee S,

Yang R, Jiang Z, Su D, Liu C, Xing W. Microporous framework induced

synthesis of single-atom dispersed Fe-N-C acidic ORR catalyst and its in situ

reduced Fe-N4 active site identification revealed by X-ray absorption

spectroscopy. ACS Catal 2018; 8; 2824-2832.

[36] Yasuda S, Uchibori Y, Wakeshima M, Hinatsu Y, Ogawa H, Yano M, Asaoka H.

Enhancement of Fe-N-C carbon catalyst activity for the oxygen reduction

reaction: effective increment of active sites by a short and repeated heating

process. RSC. Adv 2018; 8; 37600-37605.

[37] Li J, Ghoshal S, Liang W, Sougrati M, Jaouen F, Halevi B, McKinney B, McCool

G, Ma C, Yuan X, Ma Z, Mukerjee S, Jia Q. Energ. Environ. Sci 2016; 9; 2418-

2432.

[38] Kramm U, Herrmann-Geppert I, Behrends J, Lips K, Fiechter S, Bogdanoff P. On

an easy way To prepare metal-nitrogen doped carbon with exclusive presence of

MeN4-type sites active for the ORR. J. Am. Chem. Soc 2016; 138; 635-640.

25

Page 26: ars.els-cdn.com · Web viewA metal-free ORR/OER bifunctional electrocatalyst derived from metal-organic frameworks for rechargeable Zn-air batteries. Carbon 2017; 111; 641-650. Carbon

[39] Zitolo A, Goellner V, Armel V, Sougrati M, Mineva T, Stievano L, Fonda E, F.

Jaouen. Identification of catalytic sites for oxygen reduction in iron- and

nitrogen-doped graphene materials. Nat. Mater 2015; 14; 937-942.

[40] Kim J, Lim J, Lee G, Choi S, Maiti U, Lee W, Lee H, Kim S. Subnanometer

cobalt-hydroxide-anchored N-doped carbon nanotube forest for bifunctional

oxygen catalyst. ACS. Appl. Mater. Inter 2016; 8; 1571-1577.

[41] El-Sawy A, Mosa I, Su D, Guild C, Khalid S, Joesten R, Rusling J, Suib S.

Controlling the active sites of sulfur-doped carbon nanotube-graphene nanolobes

for highly efficient oxygen evolution and reduction catalysis. Adv. Energy. Mater

2016; 6; 1501966.

[42] Zhang G, Wöllner S. Hollowed structured PtNi bifunctional electrocatalyst with

record low total overpotential for oxygen reduction and oxygen evolution

reactions. Appl. Catal. B 2018; 222; 26-34.

[43] Adam A, Suliman M, Siddiqui M, Yamani Z, Merzougui B, Qamar M.

Interconnected hollow cobalt phosphide grown on carbon nanotubes for

hydrogen evolution reaction. ACS. Appl. Mater. Inter 2018; 10; 29407-29416.

[44] Kou T, Smart T, Yao B, Chen I, Thota D, Ping Y, Li Y. Theoretical and

experimental insight into the effect of nitrogen doping on hydrogen evolution

activity of Ni3S2 in alkaline medium. Adv. Energy. Mater 2018; 8; 1703538.

[45] Ye S, Li G. Polypyrrole@NiCo hybrid nanotube arrays as high performance

electrocatalyst for hydrogen evolution reaction in alkaline solution. Front. Chem.

Sci. Eng 2018; 12; 473-480.

26

Page 27: ars.els-cdn.com · Web viewA metal-free ORR/OER bifunctional electrocatalyst derived from metal-organic frameworks for rechargeable Zn-air batteries. Carbon 2017; 111; 641-650. Carbon

[46] Mehmood R, Tariq N, Zaheer M, Bibi F, Iqbal Z. One-Pot synthesis of graphene-

cobalt hydroxide composite nanosheets (Co/G NSs) for electrocatalytic water

oxidation. Sci. Rep-UK 2018; 8; 13772.

[47] Zhang G, Wang P, Lu W, Wang C, Li Y, Ding C, Gu J, Zheng X, Cao F. Co

nanoparticles/Co, N, S tri-doped graphene templated from in-situ-formed Co, S

Co-doped g-C3N4 as an active bifunctional electrocatalyst for overall water

splitting. ACS. Appl. Mater. Inter 2017; 9; 28566-28576.

[48] Tung C, Hsu Y, Shen Y, Zheng Y, Chan T, Sheu H, Cheng Y, Chen H. Reversible

adapting layer produces robust single-crystal electrocatalyst for oxygen

evolution. Nat. Commun 2015; 6; 8106.

[49] Kim J, Shih P, Qin, Al-Bardan Z, Sun C, Yang H. A porous pyrochlore

Y2[Ru1.6Y0.4]O7-δ electrocatalyst for enhanced performance towards the oxygen

evolution reaction in acidic media. Angew. Chem. Int. Edit 2018; 130; 14073-

14077.

27