art naikar cognitive work analysis 2006

25
Analysing activity in complex systems with cognitive work analysis: concepts, guidelines and case study for control task analysis N. NAI KAR*, A. MOYLAN and B. PEARCE Defence Science and Technology Organisation, PO Box 4331, Melbourne, VIC 3001, Australia (Rec eiv ed 12 Januar y 2004; in nal form 7 May 2004 ) Cognitive work analysis is gaining momentum as an approach for the analysis, design and evaluation of complex sociotechnical systems. This paper focuses on control task analysis (ConTA), the second phase of cognitive work analysis. The paper consolidates existing approaches to ConTA and extends the basic concepts, in particular, by asserting that activity in some work systems is better charac- terized by both work situations and work functions and by introducing a new formative representation for ConTA called the contextual activity template. In addition, the paper proposes a set of methodological guidelines for performing ConTA and presents a case study of a ConTA for a rst-of-a-kind military system called Airborne Early Warning and Control. As well as illustrating the conceptual extensions and methodological guidelines for ConTA by example, this case study hig hli ghts some of the diculties of con ducti ng ConTA for rst- of- a- kin d, complex systems during the early stages of development. Keywords: Cogniti ve work analy sis ; Contr ol tas k ana lys is; Dec isi on lad der ; Step ladder; Cognitive task analysis; Task analysis; System development 1. Introd uctio n Cognitive work analysis (Rasmussen et al . 1994, Vicente 1999) is gaining momentum as an approach for the analysis, design and evaluation of complex sociotechnical sys tems. Cog niti ve work ana lys is (CWA) has bee n use d for : des ign ing int erfa ces (Vicente 1992, Vicente et al  . 1995, Rasmussen 1998, Reising and Sanderson 1998, Din adi s and Vic ente 199 9, Bur ns 200 0, Bur ns et al  . 2000, Linegang and Lintern 2003); developing decision support systems (Gualtieri et al . 2001); designing teams (Gualtieri et al . 2000, Naikar et al . 2003); evaluating design proposals (Naikar and Sanderson 2001); analysing training needs (Naikar and Sanderson 1999, Naikar and Saunders 2003); and developing specications (Leveson 2000). Most of these studies were based on work domain analysis, the rst phase of CWA. Rel ati vel y lit tle attent ion has bee n giv en to con trol tas k ana lys is (Co nTA), the second phase of CWA. The most comprehensive accounts of ConTA are pro- vided by Rasmussen et al  . (1994), Vicente and Pawlak (1994) and Vicente (1999). Theor etica l Issues in Ergon omics Scie nce Vol. 7, No. 4, July–August 2006, 371–394 *Corresponding author. Email: [email protected] Theoretical Issues in Ergonomics Science ISSN 1463–922X print/ISSN 1464–536X online # 2006 Taylor & Francis http://www.tandf.co.uk/journals DOI: 10.1080/14639220500098821

Upload: rose-cavalcante

Post on 03-Apr-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Art NAIKAR Cognitive Work Analysis 2006

7/28/2019 Art NAIKAR Cognitive Work Analysis 2006

http://slidepdf.com/reader/full/art-naikar-cognitive-work-analysis-2006 1/24

Analysing activity in complex systems with cognitive work analysis:

concepts, guidelines and case study for control task analysis

N. NAIKAR*, A. MOYLAN and B. PEARCE

Defence Science and Technology Organisation,PO Box 4331, Melbourne, VIC 3001, Australia

(Received 12 January 2004; in final form 7 May 2004)

Cognitive work analysis is gaining momentum as an approach for the analysis,design and evaluation of complex sociotechnical systems. This paper focuses oncontrol task analysis (ConTA), the second phase of cognitive work analysis. Thepaper consolidates existing approaches to ConTA and extends the basic concepts,

in particular, by asserting that activity in some work systems is better charac-terized by both work situations and work functions and by introducing a newformative representation for ConTA called the contextual activity template. Inaddition, the paper proposes a set of methodological guidelines for performingConTA and presents a case study of a ConTA for a first-of-a-kind military systemcalled Airborne Early Warning and Control. As well as illustrating the conceptualextensions and methodological guidelines for ConTA by example, this case studyhighlights some of the difficulties of conducting ConTA for first-of-a-kind,complex systems during the early stages of development.

Keywords: Cognitive work analysis; Control task analysis; Decision ladder;Step ladder; Cognitive task analysis; Task analysis; System development

1. Introduction

Cognitive work analysis (Rasmussen et al . 1994, Vicente 1999) is gaining momentum

as an approach for the analysis, design and evaluation of complex sociotechnical

systems. Cognitive work analysis (CWA) has been used for: designing interfaces

(Vicente 1992, Vicente et al . 1995, Rasmussen 1998, Reising and Sanderson 1998,

Dinadis and Vicente 1999, Burns 2000, Burnset al 

. 2000, Linegang and Lintern

2003); developing decision support systems (Gualtieri et al . 2001); designing teams

(Gualtieri et al . 2000, Naikar et al . 2003); evaluating design proposals (Naikar and

Sanderson 2001); analysing training needs (Naikar and Sanderson 1999, Naikar and

Saunders 2003); and developing specifications (Leveson 2000). Most of these studies

were based on work domain analysis, the first phase of CWA.

Relatively little attention has been given to control task analysis (ConTA),

the second phase of CWA. The most comprehensive accounts of ConTA are pro-

vided by Rasmussen et al . (1994), Vicente and Pawlak (1994) and Vicente (1999).

Theoretical Issues in Ergonomics ScienceVol. 7, No. 4, July–August 2006, 371–394

*Corresponding author. Email: [email protected]

Theoretical Issues in Ergonomics ScienceISSN 1463–922X print/ISSN 1464–536X online # 2006 Taylor & Francis

http://www.tandf.co.uk/journalsDOI: 10.1080/14639220500098821

Page 2: Art NAIKAR Cognitive Work Analysis 2006

7/28/2019 Art NAIKAR Cognitive Work Analysis 2006

http://slidepdf.com/reader/full/art-naikar-cognitive-work-analysis-2006 2/24

However, Rasmussen and Vicente present somewhat different approaches to

ConTA. Moreover, they focus on theoretical concepts with only a comparatively

limited discussion of a methodology for ConTA. Other studies that involve ConTA

only focus on some of the elements of ConTA and they provide very little insight

into how the analyses were performed (Roth and Mumaw 1995, Roth et al . 1993,

Benda and Sanderson 1999, Potter et al . 2000, Sanderson and Naikar 2000, Hori

et al . 2001, Bisantz et al . 2003, Naikar and Pearce 2003, Naikar and Saunders 2003,

Naikar et al . 2003). The application of ConTA is, therefore, limited by the lack of a

coherent set of theoretical concepts and methodological guidelines.

For the analysis of complex, military systems, it has been necessary to

consolidate the different approaches to ConTA (Rasmussen et al . 1994, Vicente

1999) and to develop methodological guidelines for ConTA. Furthermore, it has

been necessary to extend the basic concepts for ConTA. Many of the military

systems had characteristics that were dissimilar to the process control and electronic

troubleshooting domains in which the concepts for ConTA were originally

developed. Table 1 summarizes some of the main characteristics of the domainsthat have been the basis of previous ConTA (Rasmussen et al . 1994, Vicente

1999) and the military domains that were studied (Naikar and Pearce 2003,

Naikar and Saunders 2003, Naikar et al . 2003). The characteristics that are listed

for each domain are not necessarily relevant to all of the studies conducted in those

domains. For example, the analysis of DURESS, a process control micro-world

simulation, was conducted before a real-time simulation existed (Vicente 1999)

and some of the military systems that were studied were existing, functioning systems

(Naikar and Saunders 2003). The main point is that the conceptual extensions and

methodological guidelines that were developed for ConTA may be relevant for

analysing other kinds of systems with similar characteristics to the military domain.The aim of this paper then is to contribute towards developing a coherent

approach to ConTA by: consolidating the approaches of Rasmussen and Vicente

to ConTA; describing the conceptual extensions and methodological guidelines that

were developed for ConTA; and presenting a case study of a ConTA for a first-of-a-

kind military system. Unless it is necessary for coherence, the work in earlier texts

(Rasmussen et al . 1994, Vicente and Pawlak 1994, Vicente 1999) is not duplicated.

The intention is to complement what has previously been written about ConTA.

2. Cognitive work analysis

CWA may be contrasted with normative and descriptive approaches to work or

task analysis (Vicente 1999). Normative techniques focus on prescribing how work

should  be done. Many of the traditional approaches to task analysis, particularly

those which focus on physical, observable behaviours, may be placed in this category

(e.g. Taylor 1911, Miller 1953, Card et al . 1983, Kirwan and Ainsworth 1992). These

techniques are best suited to highly stable and proceduralized work systems, like

assembly line operations, for which it is possible to anticipate the conditions

of work and, therefore, to pre-identify ideal task sequences and timelines for dealing

with those conditions. By providing detailed guidance to workers about the idealway(s) to perform tasks, normative techniques can optimise operators’ workload

and minimize human error.

372 N. Naikar et al.

Page 3: Art NAIKAR Cognitive Work Analysis 2006

7/28/2019 Art NAIKAR Cognitive Work Analysis 2006

http://slidepdf.com/reader/full/art-naikar-cognitive-work-analysis-2006 3/24

    T   a    b    l   e

    1 .    S   o   m   e   o    f   t    h   e    d    i    ff   e   r   e   n   c   e   s    b   e   t   w   e   e   n   t    h   e   p   r   o   c   e   s   s   c   o   n   t   r   o    l   a   n    d   e    l   e   c   t   r   o   n    i   c   t   r   o   u    b    l   e   s    h   o   o   t    i   n   g    d   o   m   a    i   n

   s   t    h   a   t   w   e   r   e   t    h   e    b   a   s    i   s   o    f   c   o   n   t   r   o    l

   t   a   s    k   a   n   a    l   y   s    i   s

   a   n    d   t    h   e   m    i    l    i   t   a   r   y    d   o   m   a    i   n   s   t    h   a   t   w   e   r   e   s   t   u    d    i   e    d .

    P   r   o   c   e   s   s   c   o   n   t   r   o    l    /   e    l   e   c   t   r   o   n    i   c   t   r   o   u    b    l   e   s    h

   o   o   t    i   n   g    d   o   m   a    i   n   s

    M    i    l    i   t   a   r   y    d   o   m   a    i   n   s

    N   a   t   u   r   e   o

    f   c   o   n   s   t   r   a    i   n   t   s

    H    i   g    h    d   e   g   r   e   e   o    f   c   a   u   s   a    l   c   o   n   s   t   r   a    i   n   t   s ,    i .   e .   t

    h   e    l   a   w   s   o    f   n   a   t   u   r   e .

    H    i   g    h    d   e   g   r   e   e   o    f    i   n   t   e   n   t    i   o   n   a    l   c   o   n   s   t   r   a    i   n   t   s ,    i .   e .   a   c   t   o   r   s    ’

    i   n   t   e   n   t    i   o   n   s ,   v   a    l   u   e   s ,   r   u    l   e   s   a   n    d   p   r   a   c   t    i   c   e   s .

    S   t   a   g   e    i   n

   t    h   e   s   y   s   t   e   m    l    i    f   e   c   y   c    l   e

    E   x    i   s   t    i   n   g ,    f   u   n   c   t    i   o   n    i   n   g   s   y   s   t   e   m   s   :    d   e   t   a    i    l   e    d

    i   n    f   o   r   m   a   t    i   o   n   a    b   o   u   t

   w   o   r    k   e   r   s    ’    b   e    h   a   v    i   o   u   r   a   n    d   p    h   y   s    i   c   a    l   a   r   t   e

    f   a   c   t   s    i   s   a   v   a    i    l   a    b    l   e .

    F    i   r   s   t  -   o    f  -

   a  -    k    i   n    d   s   y   s   t   e   m   s   a   t   t    h   e   c   o   n   c   e   p   t   s   t   a   g   e   o    f

    d   e   v   e    l   o

   p   m   e   n   t   :    d   e   t   a    i    l   e    d    i   n    f   o   r   m   a   t    i   o   n   a    b   o   u   t   w   o   r    k   e   r   s    ’

    b   e    h   a   v

    i   o   u   r   a   n    d   p    h   y   s    i   c   a    l   a   r   t   e    f   a   c   t   s    i   s   u   n

   a   v   a    i    l   a    b    l   e .

    S    i   z   e   o    f   t    h   e   p   r   o    b    l   e   m   s   p   a   c   e

    S   m   a    l    l   p

   r   o    b    l   e   m   s   s   p   a   c   e   s   :   c   a   n    b   e   m   a   n   a   g   e    d    b   y   a   s    i   n   g    l   e

   o   p   e   r   a

   t   o   r ,    f   o   r   e   x   a   m   p    l   e ,    D    U    R    E    S    S    (    V    i   c   e   n   t   e    1    9    9    9    )   a   n    d

   e    l   e   c   t   r

   o   n    i   c   t   r   o   u    b    l   e   s    h   o   o   t    i   n   g    (    R   a   s   m   u   s   s   e   n     e       t

      a        l .    1    9    9    4    ) .

    L   a   r   g   e   p   r   o    b    l   e   m   s   p   a   c   e   s   :   r   e   q   u    i   r   e   s   m   u    l   t    i   p    l   e

   o   p   e   r   a   t   o   r   s .

    A   n   a    l   y   s   t   s    ’   a   c   c   e   s   s   t   o

   t    h   e   w   o   r    k    d   o   m   a    i   n

    C   o  -    l   o   c   a

   t    i   o   n   o    f   a   n   a    l   y   s   t   s   w    i   t    h   w   o   r    k   e   r   s    i   s

   p   o   s   s    i    b    l   e   :

   o    b   s   e   r

   v   a   t    i   o   n   a    l   t   e   c    h   n    i   q   u   e   s   c   a   n    b   e   u   s   e    d

    f   o   r   c   o    l    l   e   c   t    i   n   g

    i   n    f   o   r   m   a   t    i   o   n   a    b   o   u   t   t    h   e   w   o   r    k    d   o   m   a    i   n .

    C   o  -    l   o   c   a   t    i   o   n   o    f   a   n   a    l   y   s   t   s   w    i   t    h   w   o   r    k   e   r   s    i   s

    i   m   p   o   s   s    i    b    l   e   :

   o    b   s   e   r   v   a   t    i   o   n   a    l   t   e   c    h   n    i   q   u   e   s   c   a   n   n   o   t    b   e   u   s   e    d    f   o   r   c   o    l    l   e   c   t    i   n   g

    i   n    f   o   r   m

   a   t    i   o   n   a    b   o   u   t   t    h   e   w   o   r    k    d   o   m   a    i   n ,

    f   o   r   e   x   a   m   p    l   e ,

    i   n   a   t   w   o  -   p   e   r   s   o   n   s   t   r    i    k   e   a    i   r   c   r   a    f   t .

Analysing activity in complex systems with cognitive work analysis 373

Page 4: Art NAIKAR Cognitive Work Analysis 2006

7/28/2019 Art NAIKAR Cognitive Work Analysis 2006

http://slidepdf.com/reader/full/art-naikar-cognitive-work-analysis-2006 4/24

Descriptive approaches to work analysis seek to understand how work is actually

done. Many of the techniques for cognitive task analysis, which focus on the cog-

nitive aspects of work, may be placed in this category (e.g. Zsambok and Klein 1994,

Seamster et al . 1997, Schraagen et al . 2000). These techniques were developed in

response to technological advances, such as automation, that shifted human work

from manual to cognitive tasks. Workers in these systems also have greater discre-

tion for decision-making and problem-solving and, therefore, typically do not—and

cannot—rely on normative prescriptions. By understanding the cognitive functions

of work and describing how they are actually accomplished in real work settings,

cognitive task analysis techniques seek to define how those cognitive functions can be

better supported.

CWA, on the other hand, provides a formative approach to work analysis that

focuses on how work can be done (Rasmussen et al . 1994, Vicente 1999). As well as

recognizing that many tasks are discretionary and that workers have a great variety

of options with respect to what to do and when and how, this approach also recog-

nizes that the main role of human workers in modern, complex sociotechnicalsystems is to deal with unanticipated events, situations which pose the greatest

threat to system safety. Therefore, rather than focusing on how work should be

done or how work is done under particular conditions or in particular situations,

CWA focuses on the constraints that shape work in the first place. Within these

constraints workers can form or generate a large variety of work patterns including

novel behaviours to deal with unanticipated events—that is why CWA is described

as a formative approach to work analysis. By focusing on constraints, rather than

on particular ways of working, CWA aims to support workers in adapting their

behaviour online and in real time within system constraints to maintain performance

and safety in a variety of situations including unanticipated events. As there areseveral kinds of constraints that can shape workers’ behaviour, several dimensions

of analysis are necessary.

Table 2 shows that CWA consists of several phases of analysis for identifying

the different kinds of constraints on workers’ behaviour. The phases of CWA are

presented slightly differently by Vicente (1999) and Rasmussen et al . (1994). This

paper focuses on the phases(s) of CWA for analysing activity in work systems.

These phases are shown in italics in table 2.

Vicente and Rasmussen present somewhat different approaches for analysing

activity using the CWA framework. For Vicente, the analysis of activity, or

ConTA, involves analysing the operating modes and control tasks of a work

system. For Rasmussen et al ., the analysis of activity is conducted in work

domain terms and in decision-making terms. Table 2 shows that in activity analysis

in work domain terms, the focus is on identifying work situations and work func-

tions;1 these are similar to Vicente’s operating modes. In activity analysis in decision-

making terms, the focus is on identifying decision-making functions; these are the

same as Vicente’s control tasks. The concept of operating modes is not discussed

extensively by Vicente (1999); in fact the discussion is limited to only a few sentences.

Rather, Vicente gives prominence to analysing activity as a set of control tasks.

In contrast, Rasmussen et al . emphasize the analysis of work situations and

work functions to the point of presenting it as a distinct sub-stage of activity

analysis—activity analysis in work domain terms.This paper consolidates the approaches of Vicente and Rasmussen to ConTA.

It mainly adopts Vicente’s terminology because it is the more recent formulation of 

374 N. Naikar et al.

Page 5: Art NAIKAR Cognitive Work Analysis 2006

7/28/2019 Art NAIKAR Cognitive Work Analysis 2006

http://slidepdf.com/reader/full/art-naikar-cognitive-work-analysis-2006 5/24

    T   a    b    l   e    2 .    T    h   e   p    h   a   s   e   s   o    f    C    W    A   a   s   t    h   e   y

   a   r   e   p   r   e   s   e   n   t   e    d    b   y    V    i   c   e   n   t   e    (    1    9    9    9

    )   a   n    d    R   a   s   m   u   s   s   e   n     e       t

      a        l .    (    1    9    9    4    )   a

   n    d   t    h   e   t   y   p   e   s   o    f   c   o   n   s   t   r   a    i   n   t   s   t    h   a   t

   a   r   e   t    h   e    f   o   c   u   s

   o    f   e   a   c    h   p

    h   a   s   e   o    f   a   n   a    l   y   s    i   s .

    V    i   c   e   n   t   e    (    1    9    9    9    )

    R   a   s   m   u   s   s   e   n     e       t

      a        l .    (    1    9    9    4    )

    T   y   p   e   s   o    f   c   o   n   s   t   r   a    i   n   t   s

    W   o   r    k    d   o

   m   a    i   n   a   n   a    l   y   s    i   s

    W   o   r    k

    d   o   m   a    i   n   a   n   a    l   y   s    i   s

    P   u   r   p   o   s   e   s ,   p   r    i   o   r    i   t    i   e   s

   a   n    d   v   a    l   u   e   s ,   g   e   n   e   r   a    l    f   u   n   c   t    i   o   n   s   a

   n    d   p    h   y   s    i   c   a    l

   r   e   s   o   u   r   c   e   s .

    C   o   n   t   r   o    l

   t   a   s    k   a   n   a    l   y   s    i   s

    A   c   t    i   v    i   t   y   a   n   a    l   y   s    i   s    i   n   w   o   r    k    d   o   m   a    i   n   t   e   r   m

   s

    O   p   e   r   a   t    i   n   g   m   o    d   e   s    (    V    i   c   e   n   t   e    1    9    9    9    ) .    W   o   r    k   s    i   t   u   a   t    i   o   n   s   o   r   w   o   r    k

    f   u   n   c   t    i   o   n   s    (    R   a   s   m   u   s   s   e   n     e       t

      a        l .    1    9    9    4    ) .

    A   c   t    i   v    i   t   y   a   n   a    l   y   s    i   s    i   n    d   e   c    i   s    i   o   n  -   m   a    k    i   n   g   t   e   r   m   s

    C   o   n   t   r   o    l   t   a   s    k   s    (    V    i   c   e   n   t   e    1    9    9    9    ) .    D   e   c    i   s    i   o   n  -   m   a    k    i   n   g    f   u   n

   c   t    i   o   n   s

    (    R   a   s   m   u   s   s   e   n     e       t      a

        l .    1    9    9    4    ) .

    S   t   r   a   t   e   g    i   e

   s   a   n   a    l   y   s    i   s

    A   c   t    i   v    i   t   y   a   n   a    l   y   s    i   s    i   n   t   e   r   m   s   o    f   m   e   n   t   a    l   s   t   r   a   t   e   g    i   e   s

    S   t   r   a   t   e   g    i   e   s    f   o   r   m   a    k    i   n   g    d   e   c    i   s    i   o   n   s   o   r   a   c    h    i   e   v    i   n   g   c   o   n   t   r   o    l   t   a   s    k   s .

    S   o   c    i   a    l   o   r   g   a   n    i   z   a   t    i   o   n   a   n    d

   c   o  -   o   p   e   r   a   t    i   o   n   a   n   a    l   y   s    i   s

    A   n   a    l   y

   s    i   s   o    f   t    h   e   w   o   r    k   o   r   g   a   n    i   z   a   t    i   o   n

    D    i   s   t   r    i    b   u   t    i   o   n   o    f   w   o

   r    k    i   n   c    l   u    d    i   n   g   a    l    l   o   c   a   t    i   o   n   o    f   w   o   r    k

   t   o    i   n    d    i   v    i    d   u   a    l   s   ;

   o   r   g   a   n    i   z   a   t    i   o   n   o    f    i   n    d    i   v    i    d   u   a    l   s    i   n   t   o   t   e   a   m   s   ;   a   n    d   c   o   m   m   u   n    i   c   a   t    i   o   n

   r   e   q   u    i   r   e   m   e   n   t   s .

    W   o   r    k   e   r   c   o   m   p   e   t   e   n   c    i   e   s   a   n   a    l   y   s    i   s

    A   n   a    l   y

   s    i   s   o    f   s   y   s   t   e   m   u   s   e   r   s

    H   u   m   a   n   c   a   p   a    b    i    l    i   t    i   e   s   a   n    d    l    i   m    i   t   a   t    i   o   n   s   a   n    d   c   o   m   p   e   t   e   n   c

    i   e   s   o    f   w   o   r    k   e   r   s

    (   e .   g .   s    k    i    l    l   s ,   a   t   t    i   t   u

    d   e   s    ) .

Analysing activity in complex systems with cognitive work analysis 375

Page 6: Art NAIKAR Cognitive Work Analysis 2006

7/28/2019 Art NAIKAR Cognitive Work Analysis 2006

http://slidepdf.com/reader/full/art-naikar-cognitive-work-analysis-2006 6/24

CWA and because it is more commonly used in the latest literature. Therefore, it

refers to the analysis of activity using the CWA framework as ConTA and uses the

term control tasks instead of decision-making functions. It departs from Vicente’s

terminology, however, by using work situations and work functions instead of oper-

ating modes. It appears that operating modes can be used either for work situations

or for work functions, so that for some work systems the operating modes may refer

to work situations whereas in other work systems the operating modes may refer to

work functions (Vicente 1999). However, as will be shown later in this paper, in some

work systems activity can be decomposed into both work situations and work

functions. Hence, it is necessary to maintain the distinction between the two.

Moreover, in these work systems it can be difficult to decompose activity into control

tasks without first decomposing activity into work situations and work functions.

The approach presented in this paper, therefore, reinstates the analysis of work

situations and work functions as a critical element of the analysis of activity in the

CWA framework.

3. Concepts for ConTA

ConTA focuses on what needs to be done in a work domain (Vicente 1999). It

complements work domain analysis, the first phase of CWA, by identifying the

activity that is necessary to achieve the purposes, priorities and values and functions

of a work domain with a set of physical resources. ConTA is not concerned with how

the activity is carried out or by whom; these aspects are the focus of strategies

analysis and social organization and co-operation analysis, respectively. In addition,

ConTA is not concerned with the skills and training that are necessary for carryingout the activity; this is the focus of worker competencies analysis.

Traditional approaches to work or task analysis typically decompose activity into

sequences of tasks or actions. In the consolidated approach to ConTA that is pre-

sented in this paper, activity is first decomposed into a set of recurring work situa-

tions to deal with and/or a set of work functions to perform. Activity is then further

decomposed into the control tasks that are required for each work situation and/or

work function. Whereas Rasmussen et al . (1994) decompose activity into either work

situations or work functions, this paper discusses a class of work systems where

activity is better characterized as a combination of work situations and work

functions. This paper also introduces the contextual activity template for modelling

activity in these systems. This template highlights the contextual relationships

between the various elements of ConTA and graphically illustrates all of the

combinations of work situations, work functions and control tasks that are possible.

3.1. Work situations and work functions

In most work systems, activity can be decomposed into a set of recurring work

situations or work functions. The decomposition of activity into work situations

is appropriate in systems where work is segmented according to time and space

(Rasmussen et al . 1994). To illustrate, activity in hospitals can be decomposed

into work situations because many of the activities arise out of a recurring scheduleof meetings held in specific locations. So, activity in hospitals can be decomposed

into: practitioner’s examination, planning for hospitalization, hospitalization,

376 N. Naikar et al.

Page 7: Art NAIKAR Cognitive Work Analysis 2006

7/28/2019 Art NAIKAR Cognitive Work Analysis 2006

http://slidepdf.com/reader/full/art-naikar-cognitive-work-analysis-2006 7/24

pre-operation and operation. In schools, the activity of teaching staff can be

decomposed into work situations such as: class time and recreation time.

In other work systems, activity may not be clearly delimited in time and space.

Instead, activity may be better characterized by its content independently of its

temporal or spatial characteristics (Rasmussen et al . 1994). In these work systems,

it is more appropriate to decompose activity into a set of recurring work functions or

problems to solve. For example, activity in a library system can be decomposed into

work functions such as: cataloguing material and assisting users to retrieve informa-

tion. In a research laboratory, activity can be decomposed into work functions such

as: writing papers, conducting experiments and reading relevant literature.

While Rasmussen et al . (1994) suggest decomposing activity into either work

situations or work functions, in some work systems activity is better characterized

as a combination of work situations and work functions. These are systems in which

activity within a work situation or set of work situations can be further delineated in

terms of its functional content. For example, in a military strike aircraft, activity can

be decomposed into a set of recurring work situations including: ingress to target,target area and egress from target. Then, activity within a work situation, for

example in the target area, can be further decomposed into a set of recurring

work functions including: evaluate tactical situation, deliver weapons to target and

avoid and escape threats. These work functions may also occur in some of the other

work situations but usually not in all of them. Without the further delineation of 

activity into work functions it can be difficult to analyse the control tasks for each

work situation.

Figure 1 shows a contextual activity template,2 for representing activity in work

systems that are characterized by both work situations and work functions. In this

template, the work situations are shown along the horizontal axis and the workfunctions are shown along the vertical axis. The circles indicate the work functions

and the boxes around each circle indicate all of the work situations in which a work

function can occur (as opposed to must occur). The bars within each box indicate

those work situations in which a work function will typically occur. This template,

therefore, shows the context, defined by work situations, in which particular work

functions can occur.

The contextual activity template also illustrates the various combinations

of work situations and work functions that are possible. For example, in Work

Situation 2, Work Function A can occur on its own, with Work Function C, with

Work Function D or with both Work Functions C and D. In Work Situation 3,

Work Function A can also occur in combinations including Work Function B.

The work situations and work functions can, therefore, be combined in various

ways to form the total response of actors. The various combinations of work

situations and work functions will impose qualitatively different sets of cognitive

demands on workers.

3.2. Control tasks

Further to decomposing activity into work situations and/or work functions, the

consolidated approach to ConTA decomposes activity into the set of control tasks

for each work situation and/or work function. The decision ladder provides a usefultemplate for identifying control tasks. Figure 2 shows a generic decision ladder with

annotations that were developed by reviewing a range of papers by Rasmussen

Analysing activity in complex systems with cognitive work analysis 377

Page 8: Art NAIKAR Cognitive Work Analysis 2006

7/28/2019 Art NAIKAR Cognitive Work Analysis 2006

http://slidepdf.com/reader/full/art-naikar-cognitive-work-analysis-2006 8/24

and Vicente (e.g. Rasmussen 1976, 1980, Rasmussen et al . 1994, Vicente and Pawlak

1994, Vicente 1999).

The decision ladder is comprised of links between boxes and ovals (Vicente 1999).

The boxes represent information-processing activities whereas the ovals represent the

states of knowledge that are the results or outputs of these activities. So, for example,

the information processing activity labelled as identify state results in knowledge

about the current system state. The arrows in the centre of the decision ladder

indicate shortcuts from one part of the decision ladder to another. Shunts connect

an information-processing activity to a state of knowledge. For example, observing

information or data in the environment can lead directly to knowledge of the task

or procedure to execute. Leaps connect two states of knowledge indicating that

the states of knowledge can be directly associated with one another. For example,

knowledge about the current system state can lead directly to knowledge about

the task or procedure to execute. Only some examples of shunts and leaps areshown in figure 2. Rasmussen (1976) and Vicente (1999) describe a variety of 

other shortcuts.

Work

Function

A

Work

Function

B

Work

Function

C

Work

Function

D

Work

Situation

1

Work

Situation

2

Work

Situation

3

Work

Situation

4

Work

Situation

5

Figure 1. The contextual activity template for representing activity in work systems thatare characterized by both work situations and work functions.

378 N. Naikar et al.

Page 9: Art NAIKAR Cognitive Work Analysis 2006

7/28/2019 Art NAIKAR Cognitive Work Analysis 2006

http://slidepdf.com/reader/full/art-naikar-cognitive-work-analysis-2006 9/24

The annotations to the decision ladder reveal that the left side of the template is

used for representing control tasks related to identifying the system state. Here, the

actual state of the environment or system must be identified through the processes of 

information gathering and diagnosis. The top part of the decision ladder is used for

representing control tasks related to goal evaluation. Here, the implications of the

actual state with reference to the current goals must be evaluated in order to deter-

mine a target state. This process involves prediction, value judgement and choice.

The right side of the decision ladder is used for representing control tasks related to

planning and execution. Here, the proper sequence of control actions must be imple-

mented through the processes of identifying tasks and resources and scheduling

and carrying out action. Further detail about the different parts of the decision

ladder is provided in the next section.

Putting the various properties of the decision ladder together, the left side of the

decision ladder is used to represent the control tasks necessary for understanding the

current system state, whereas the right side of the decision ladder is used to represent

the control tasks necessary for achieving the target system state. On some occasions,

observing information or diagnosing the current system state signals the target

system state that is desirable or the tasks or procedures to execute; hence, someshortcuts are shown in the centre of the template. On other occasions, understanding

the current system state may not signal a target system state or the tasks or

GOALS

OPTIONS

SYSTEM

STATE

Evaluate

performance

Predict

consequences

TARGET

STATE

Identify state Define task

TASK

PROCEDURE

Formulate

procedure

Execute

INFORMATION

Observe

information/data

 Activation

 ALERT

Detect need for action

NEED FOR ACTION

PRESENT STATE OFTHE SYSTEM

Observe information/datapresent in the environment

DIRECTLY OBSERVABLEINFORMATION

DESIRED STATE WHICH WILLFULFIL SYSTEM GOALS

WHAT NEEDS TO BE DONE TO BRINGSYSTEM TO TARGET STATE

WHAT IS THE SEQUENCE OFSTEPS

Execute the steps

Plan the steps required to perform thetask

Plan what needs to be done to bringsystem to target state e.g. identify tasksand resources

Identify state of thesystem that explains theset of observations

Predict future states and responses of thepresent state of the system to hypotheticalacts with reference to goals and constraints

CHOSEN

GOAL

Compare options and choose

QUALITY MEASURE FOR PRIORITYSETTING AND CHOOSING AMONGPOSSIBLE TARGET STATES

Interpret the consequences of the chosengoal with respect to the target system state

QUALITYMEASURES

 AMBIGUITY ORUNCERTAINTY ABOUTTARGET STATE

Shunt

Leap

Figure 2. The decision ladder template with annotations that were developed by reviewinga range of papers by Rasmussen and Vicente.

Analysing activity in complex systems with cognitive work analysis 379

Page 10: Art NAIKAR Cognitive Work Analysis 2006

7/28/2019 Art NAIKAR Cognitive Work Analysis 2006

http://slidepdf.com/reader/full/art-naikar-cognitive-work-analysis-2006 10/24

procedures to execute. In this case, different options for the target state must be

evaluated against the current goals of the system and an option selected that best

satisfies the goals of the system; these control tasks are represented at the top of the

decision ladder.

The decision ladder departs from traditional models of information processing in

several respects (Rasmussen et al . 1994, Vicente 1999). First, the decision ladder need

not be followed in a linear sequence. Instead, shunts and leaps are possible from one

part of the decision ladder to another. Secondly, the decision ladder accommodates

various start and end points. That is, activity need not start in the activation box

of the decision ladder and end in the execution box. Instead, activity can begin, for

example, with an understanding of the target state to be achieved. Thirdly, the flow

of activity in the decision ladder need not be in the left-to-right sequence but can

occur from right-to-left. The decision ladder, therefore, provides a template for

representing the opportunistic form of cognitive activity that Rasmussen (1974)

found was the norm in expert behaviour in complex, dynamic environments.

Using the decision ladder, control tasks can be identified in the context of worksituations and/or work functions. If activity is decomposed into work situations,

control tasks can be identified for each work situation. If activity is decomposed

into work functions, control tasks can be identified for each work function. If 

activity is decomposed into both work situations and work functions, control

tasks can be identified for each work function but with different sub-sets of control

tasks more likely to be active in different work situations. Figure 3 builds on the

contextual activity template in figure 1 by showing a decision ladder for each work

function and illustrating that different sub-sets of control tasks are more likely to be

active in different work situations. Here, the contextual activity template highlights

the context, in terms of work situations and work functions, in which control taskscan occur. The work situations, work functions and control tasks can be combined in

various ways to form the total response of actors. The various combinations of work

situations, work functions and control tasks will impose qualitatively different sets of 

cognitive demands on workers.

In summary, the contextual activity template provides a representation for char-

acterizing activity in work systems that can be decomposed into both work situations

and work functions. It integrates the various elements of ConTA by highlighting the

contextual relationships between work situations, work functions and control tasks.

In addition, it provides a formative representation for ConTA by capturing all of the

combinations of work situations, work functions and control tasks that are possible.

This approach to analysing activity is distinct from traditional approaches to work

or task analysis that decompose activity into a relatively small and finite set of tasks

or task sequences.

4. Guidelines and case study for ConTA

Having described a set of concepts for ConTA, this paper now presents some meth-

odological guidelines for performing ConTA. To illustrate these concepts and guide-

lines by example, a case study is also presented of a ConTA for a first-of-a-kind,

military system called Airborne Early Warning and Control (AEW&C). Otherpapers have discussed how this ConTA was applied to develop a team design for

AEW&C that has been adopted by the Australian Government (Naikar and Pearce

380 N. Naikar et al.

Page 11: Art NAIKAR Cognitive Work Analysis 2006

7/28/2019 Art NAIKAR Cognitive Work Analysis 2006

http://slidepdf.com/reader/full/art-naikar-cognitive-work-analysis-2006 11/24

2003, Naikar et al . 2003). This study focuses on the process used to perform the

ConTA for AEW&C.

AEW&C is a complex, airborne system that is currently being developed by

Boeing for the Australian Government. When it is operational, AEW&C will be

crewed by a team of people in the cabin of the aircraft who will be responsible for

developing a tactical picture in an allocated area of operations and for co-ordinating

the activities of defence assets in that area. This role is similar to that of the Airborne

Warning and Control System (AWACS) of the US Air Force and the E2C system of 

the US Navy. However, AEW&C will have vastly different technology to AWACS

and E2C and, therefore, it may be described as a first-of-a-kind system (Naikar et al .

2003). The ConTA for AEW&C was conducted prior to and during the initial stages

of system development.

Performing a ConTA, following the consolidated approach presented in thispaper, consists of two main steps. The first step is to identify what needs to be

done in a work domain in terms of work situations and/or work functions.

WorkFunction

A

WorkFunction

B

WorkFunction

C

WorkFunction

D

WorkSituation

1

WorkSituation

2

WorkSituation

3

WorkSituation

4

WorkSituation

5

Figure 3. The contextual activity template showing the use of the decision ladder torepresent the control tasks for each work function and to illustrate the sub-sets of controltasks that are likely to be active in different work situations.

Analysing activity in complex systems with cognitive work analysis 381

Page 12: Art NAIKAR Cognitive Work Analysis 2006

7/28/2019 Art NAIKAR Cognitive Work Analysis 2006

http://slidepdf.com/reader/full/art-naikar-cognitive-work-analysis-2006 12/24

The second step is to identify what needs to be done in a work domain in terms of 

control tasks for each work situation and/or work function. The results of these

analyses can then be represented using the contextual activity template. The follow-

ing sections present a set of methodological guidelines that were developed for

performing each of these steps and illustrate how these guidelines were implemented

with the AEW&C case study.

4.1. Analysing work situations and work functions

4.1.1. Guidelines. The first step of the consolidated approach to ConTA is to iden-

tify work situations and/or work functions. To identify work situations and/or work

functions, analysts need to examine how work is segmented in the system of interest.

Is the work segmented according to a set of situations to participate in, a set of 

functions to perform or both? If the work is organized into various stages or phases

or around the places or areas where it occurs, so that activities are well defined in

time or location, the activity should be decomposed into work situations. If the workis organized around particular functions to perform or problems to solve, so that

activities are defined by their functional content, the activity should be decomposed

into work functions.

It is usually possible to determine how work is segmented in a system from the

professional terminology and phrases that are used in the work domain (Rasmussen

et al . 1994). Often the terminology of the work domain can be used directly as labels

for the work situations and work functions; that is why Rasmussen et al . (1994) call

this level of analysis activity analysis in work domain terms. The professional termi-

nology and phrases of a work domain can be studied using a number of techniques

including document analysis, observation of daily work activities, walkthroughs,talkthroughs, interviews and top-down analysis based on work domain analysis

(the first phase of CWA). Document analysis and top-down analysis are particularly

suitable for systems in the early stages of development, when the systems are

not yet functioning, whereas observation of daily work activities, walkthroughs,

talkthroughs and interviews are more suitable for established systems.

Irrespective of which of these techniques are used to study the professional

terminology and phrases of a work domain, table 3 shows a number of prompts

and generic keywords to assist analysts with identifying how work is segmented or

organized in a work system. So, for example, irrespective of whether analysts are

observing daily work activities or searching through documents, the prompts indi-

cate that analysts should look for evidence for locations in which the work occurs,

time periods through which the work progresses or functions that are performed.

The generic keywords indicate the different guises in which the organization of work

into location, time or function may be revealed in a work domain. For example,

workers or documents may refer to place names, stages or phases of work or differ-

ent roles and responsibilities. Remember, though, that the terminology that is used in

a work domain will typically be domain-specific. For example, fighter pilots may talk

about flight profiles or weapons delivery profiles. The key is to recognize that these

terms refer to various stages of flight or weapons delivery, indicating that activity can

be decomposed into work situations. The last row in table 3 describes some prompts

for examining whether activity in particular work situations is further organizedaround work functions to perform. The results of this step of ConTA can be used

to populate the contextual activity template shown in figure 1.

382 N. Naikar et al.

Page 13: Art NAIKAR Cognitive Work Analysis 2006

7/28/2019 Art NAIKAR Cognitive Work Analysis 2006

http://slidepdf.com/reader/full/art-naikar-cognitive-work-analysis-2006 13/24

    T   a    b    l   e    3 .    P

   r   o   m   p   t   s   a   n    d   g   e   n   e   r    i   c    k   e   y   w   o   r    d   s    f   o   r    i    d   e   n   t    i    f   y    i   n   g   w   o   r    k   s    i   t   u   a   t    i   o   n   s   a   n    d   w   o   r    k    f   u   n   c   t    i   o   n   s .

    P   r   o   m   p   t   s

    G   e   n   e   r    i   c    k   e   y   w   o   r    d   s

    W   o   r    k   s    i   t   u   a   t    i   o   n   s

    A   r   e   t    h   e   r   e    d    i    ff   e   r   e   n   t    l   o   c   a   t    i   o   n   s    i   n   w    h    i   c    h   w

   o   r    k   o   c   c   u   r   s    ?    I    f   s   o ,

   w    h   a   t   a   r   e   a    l    l   t    h   e    l   o   c   a   t    i   o   n   s    i   n   w    h    i   c    h   w   o   r    k   o   c   c   u   r   s    ?

    P    l   a   c   e   s ,   m   e   e   t    i   n   g    l   o   c   a   t    i   o   n   s ,   p   o   s    i   t    i   o   n   s ,   s    i   t   e

   s ,   s   t   a   t    i   o   n   s ,

    l   o   c   a   t    i   o   n   s ,   s   p   a   c   e   s ,   c    i   r   c   u   m   s   t   a   n   c   e   s

    A   r   e   t    h   e   r   e    d    i    ff   e   r   e   n   t   t    i   m   e   p   e   r    i   o    d   s   t    h   r   o   u   g    h

   w    h    i   c    h   t    h   e   w   o   r    k

   p   r   o   g   r   e   s   s   e   s    ?    I    f   s   o ,   w    h   a   t   a   r   e   a    l    l   t    h   e   t    i   m

   e   p   e   r    i   o    d   s   t    h   r   o   u   g    h

   w    h    i   c    h

   t    h   e   w   o   r    k   p   r   o   g   r   e   s   s   e   s    ?

    S   t   a   g   e   s ,   s   c    h   e    d   u    l   e   s ,   p    h   a   s   e   s ,   m   e   e   t    i   n   g   t    i   m   e   s

 ,   s   t   a   t   e   s ,   s   t   e   p   s ,

   t    i   m   e   s ,   p   e   r    i   o    d   s ,   s   e   g   m   e   n   t   s ,   o   r    d   e   r ,   s   e   q   u   e   n   c   e   s ,   c   o   n    d    i   t    i   o   n   s

    W   o   r    k    f   u

   n   c   t    i   o   n   s

    A   r   e   t    h   e   r   e    d    i   s   t    i   n   c   t    i   v   e    f   u   n   c   t    i   o   n   s   t   o   p   e   r    f   o   r

   m   o   r   p   r   o    b    l   e   m   s   t   o

   s   o    l   v   e    ?

    I    f   s   o ,   w    h   a   t   a   r   e   a    l    l   t    h   e    f   u   n   c   t    i   o   n   s   t   o   p   e   r    f   o   r   m   o   r

   p   r   o    b    l   e   m   s   t   o   s   o    l   v   e    ?

    P   r   o    b    l   e   m

   s ,   c   o   n   c   e   r   n   s ,   a   s   s    i   g   n   m   e   n   t   s ,   r   o    l   e   s ,

    j   o    b   s ,    d   u   t    i   e   s ,

   o   c   c   u   p

   a   t    i   o   n   s ,   r   e   s   p   o   n   s    i    b    i    l    i   t    i   e   s ,   t   a   s    k   s ,   a   c

   t    i   v    i   t    i   e   s ,

    i   n   c    i    d   e

   n   t   s ,   e   v   e   n   t   s ,   o   c   c   u   r   r   e   n   c   e   s ,   c   a   s   e   s

    C   o   m    b    i   n    i   n   g   w   o   r    k   s    i   t   u   a   t    i   o   n   s

   a   n    d   w

   o   r    k    f   u   n   c   t    i   o   n   s

    D   o   t    h   e    f   u   n   c   t    i   o   n   s   t   o   p   e   r    f   o   r   m   o   r   p   r   o    b    l   e   m

   s   t   o   s   o    l   v   e   o   c   c   u   r    i   n

   p   a   r   t    i   c

   u    l   a   r    l   o   c   a   t    i   o   n   s   o   r   t    i   m   e   p   e   r    i   o    d   s    ?    I    f   s   o ,    i   n   w    h   a   t

    l   o   c   a   t    i   o   n   s   o   r   t    i   m   e   p   e   r    i   o    d   s   c   a   n   t    h   e    f   u   n   c   t    i   o   n   s   p   o   s   s    i    b    l   y

   o   c   c   u   r    ?    I    f   s   o ,    i   n   w    h   a   t    l   o   c   a   t    i   o   n   s   o   r   t    i   m   e   p   e   r    i   o    d   s    d   o   t    h   e

    f   u   n   c   t    i   o   n   s   t   y   p    i   c   a    l    l   y   o   c   c   u   r    ?

Analysing activity in complex systems with cognitive work analysis 383

Page 14: Art NAIKAR Cognitive Work Analysis 2006

7/28/2019 Art NAIKAR Cognitive Work Analysis 2006

http://slidepdf.com/reader/full/art-naikar-cognitive-work-analysis-2006 14/24

4.1.2. AEW&C case study. Figure 4 shows the contextual activity template for

AEW&C. The AEW&C work situations, which are shown along the horizontal

axis, are the different phases of a mission. The AEW&C work functions are

shown in the circles. The boxes surrounding each work function indicate all of the

mission phases in which the work functions can occur. The bars within each box

indicate those mission phases in which the work functions typically occur. Extended

descriptions of the work functions, which are contained in a supporting document,

clarify what each work function involves in terms of the ‘problem to solve’. For

example, for manage asset disposition the ‘problem’ is to manage the number, types

and disposition (location, weapon status, fuel status, tasking) of assets to achieve

the aims of the mission under changing tactical and environmental conditions.

To develop the contextual activity template for AEW&C, the first step was to

determine whether AEW&C activity should be decomposed into work situations

and/or work functions. To do this, the prompts in table 3 were used to search

through existing documents, in particular the AEW&C Concept of Operations,

for references to work situations and work functions. The documents contained

diagrams of the flight profile or stages of flight for AEW&C which were identified

as work situations. In addition, the documents referred to some of the roles of theAEW&C crew and the functions of each role, which were identified as work func-

tions. The documents contained sufficient information to develop a preliminary set

ON GROUNDNOT IN AIRCRAFT

ON GROUNDNOT IN AIRCRAFT

ON GROUNDIN AIRCRAFT

ON GROUNDIN AIRCRAFT

ENROUTE TOSTATION

ON STATION ENROUTETO BASE

plan

mission

configure

equipment

fly

platform

developSA

developRASP

manageasset

disposition

control

assets

debrief &report

managecrew

manage

mission

progress

Figure 4. The contextual activity template for AEW&C showing work situations andwork functions.

384 N. Naikar et al.

Page 15: Art NAIKAR Cognitive Work Analysis 2006

7/28/2019 Art NAIKAR Cognitive Work Analysis 2006

http://slidepdf.com/reader/full/art-naikar-cognitive-work-analysis-2006 15/24

of work situations and work functions for AEW&C. Following that, the analysts

worked with eight individual subject matter experts to refine this preliminary

analysis, that is to review the work situations and work functions; to extend the

set of work situations and work functions; and to establish the relationships between

the work situations and work functions.

The subject matter experts included three military personnel, two operations

analysts and three defence scientists who had been involved in defining the

AEW&C system concept. To facilitate discussions with individual subject matter

experts, the prompts were modified into questions about the preliminary set of 

work situations and work functions for AEW&C. For example, with respect to

the work situations, the subject matter experts were asked ‘are these all the locations

in which work can occur’, ‘are there any other locations in which work can occur’

and ‘are these all the stages of a flight or mission’. With respect to the work func-

tions, the subject matter experts were asked ‘are these all the jobs to perform’ and

‘are there any other jobs to perform’. The AEW&C work domain analysis was also

used to facilitate a top-down discussion about work functions (Naikar et al . 2003).Specifically, the analysts explored what ‘jobs’ or work functions were necessary in

light of each of the purposes, priorities and values, general functions and physical

resources of AEW&C. Finally, with respect to the combinations of work situations

and work functions, the subject matter experts were asked ‘in which locations or

stages of a mission is it possible for these jobs to occur’ and ‘in which locations

or stages of a mission do these jobs typically occur’.

Identifying the AEW&C work functions required thinking about activity in

terms of functions or problems to solve instead of the tasks to execute.

However, focusing on tasks was more natural to the analysts and the subject

matter experts. For example, with respect to the work function manage asset dis- position, the tendency was to identify tasks such as monitoring assets, scheduling

assets and assigning tasks to assets. This type of information is more relevant to

the second step of ConTA which involves identifying control tasks. Therefore,

when tasks were identified, it was necessary to examine what the function of the

tasks was or the reason for which the tasks were being performed. This process

provided the information needed to develop a definition of the work function (see

above for a definition of the work function manage asset disposition).

The decomposition of activity into work situations and work functions can be

done at different levels of detail or granularity. Basically, the decomposition should

be continued to a level where it is possible to identify control tasks (Rasmussen et al .

1994) and/or to a level that is appropriate for the purpose of the analysis. For

AEW&C, it was useful to perform a trial by developing decision ladders for some

of the work functions during the early stages of the analysis to check whether the

level of granularity of the work functions was appropriate for identifying control

tasks and for designing the AEW&C team. The trial confirmed that the level of 

granularity of the work functions met these requirements.

4.2. Analysing control tasks

4.2.1. Guidelines. The second step of the consolidated approach to ConTA is to

identify the control tasks for each work situation and/or work function. This sectiondiscusses the various parts of the decision ladder template (figure 2). It describes the

parts of the decision ladder in terms that are useful to analysts for analysing and

Analysing activity in complex systems with cognitive work analysis 385

Page 16: Art NAIKAR Cognitive Work Analysis 2006

7/28/2019 Art NAIKAR Cognitive Work Analysis 2006

http://slidepdf.com/reader/full/art-naikar-cognitive-work-analysis-2006 16/24

recognizing control tasks in complex work domains and provides simple examples

for each part of the decision ladder from the domain of military air defence

(a comprehensive example of a decision ladder is provided in figure 5). For this

discussion, the parts of the decision ladder are labelled in terms of the states of 

knowledge (e.g. alert, information, system state). Finally, some prompts and generic

keywords are described for each part of the decision ladder to help analysts to

identify control tasks.

. Alert. This part of the decision ladder refers to events or occurrences that can

act as alerts to the need for action. For example, in military air defence, alerts

can be in the form of warning tones or lights or communication from other

crew members.

. Information. This part of the decision ladder refers to data, facts or informa-

tion that is available in the environment. The information is in a form that is

directly observable or that can be directly picked up from the environment,

rather than inferred or calculated. For example, in military air defence,information can include the fuel status of assets or the location of threats.

. System state. This part of the decision ladder refers to assessments of the

current condition, situation or circumstances of the system. The system state

is diagnosed from information that is available in the environment. For exam-

ple, system state may include assessments of the amount of time an asset can

remain on station given its fuel status or the enemy’s intentions. Predictions of 

the likely consequences of the current system state may lead to a new target

state (right side of the decision ladder) or to the identification of options for

the target state (top part of the decision ladder).

GOALS

OPTIONSCHOSEN

GOAL

SYSTEM

STATE

Evaluate

performance

Predict

consequences

TARGET

STATE

Identify state Define task

TASK

PROCEDURE

Formulate

procedure

Execute

INFORMATION

Observe

information/data

 Activation

 ALERTRequest/alert fromassets, controllers etc

Tasks and resources associated with:Ordering assetsChanging location/tasks of assetsRefuelling assetsDropping asset tasking etc

 Are we in control of the evolving tactical situation? That is,are the number, type, and disposition of assets currentlybeing employed adequate for the evolving tactical situation?How much longer do the assets have on the task until theyrun out of weapons or fuel (time on task remaining)? etc

Number of assets, types of assets, disposition of assets(location, weapon status, fuel status, tasking), loss of anasset, untargeted threats, number of threats (is it greater than number of friendlies), pattern of activity of threats etc

What do we need to maintain/achieve control of 

the evolving tactical situation. That is, whatnumber, type, and disposition of assets isrequired? etc

 Availability of air to air refuelling, availability of additional assets, ability of assets to counter threats, when are new assets required, time required toimplement change, resource costs (human, fuel, situational awareness etc),priority of tasks, interoperability, political factors etc

Timing and sequence of orderingnew assets, changing the locationof assets, refuelling assets,dropping asset tasking etc

Maintain control of the current tactical situationRespond effectively to the future tactical situation

Efficient (minimise) use of resources etc

Possible contingencies for how mission might unfold etc

Changes to number of assets, typesof assets, disposition of assets etc

Figure 5. The decision ladder for the AEW&C work function manage asset disposition.

386 N. Naikar et al.

Page 17: Art NAIKAR Cognitive Work Analysis 2006

7/28/2019 Art NAIKAR Cognitive Work Analysis 2006

http://slidepdf.com/reader/full/art-naikar-cognitive-work-analysis-2006 17/24

. Options. This part of the decision ladder refers to choices or alternatives for

the target state of the system. Options, therefore, reflects that there is some

uncertainty as to what the target state of the system should be. For example,

options for the target state may include refuelling an asset to extend its time on

station versus sending the asset home and obtaining a replacement.

. Goals. This part of the decision ladder refers to the goals of the system. Goals

serve as quality measures for evaluating different options for the target state.

Typically, there are several competing goals and the chosen goal (s) are the ones

that an actor chooses to maximize or preserve in a particular situation. The

option that is selected is, therefore, the one that best fulfils the chosen goal (s)

when evaluated against various performance criteria. Examples of  goals in

military air defence may be to minimize the use of fuel or to ensure the safety

of assets.

. Target state. This part of the decision ladder refers to the system’s desired

condition, situation or circumstances. The target state reflects the chosen

goal(s) and the option that best fulfils the chosen goal(s). For example, a target

state in military air defence may be to refuel an asset to extend its time on

station.

. Task. This part of the decision ladder refers to the tasks and resources that are

necessary for achieving the target state. For example, the tasks necessary to

refuel an asset include alerting the air-to-air refueller and directing the asset

to the air-to-air refueller, whereas the resources necessary to refuel an asset

include the availability of an air-to-air refueller.

. Procedure. This part of the decision ladder refers to the procedure or sequence

of steps that is necessary to achieve the target state. For example, the procedure

for refuelling an asset safely and effectively may be to alert the air-to-airrefueller before directing the asset to it.

To identify the control tasks for a work situation or work function, a number of 

prompts and generic keywords were developed relating to each part of the decision

ladder, which are shown in table 4. For example, for control tasks relating to alert,

the prompts indicate that analysts should look for events that can act as alerts in

different work situations or for different work functions. The generic keywords

indicate the different guises in which the control tasks may be revealed in a work

domain. Therefore, in the case of  alert, analysts may find that workers refer to

seeing, hearing or noticing something or to particular signals, alarms or warnings.

As mentioned before, the terminology that is used by workers or in documents will

usually be domain-specific, so the reference may be to an ‘abort call’ instead of to

a signal, alarm or warning.

If activity in the system of interest is characterized by both work situations and

work functions and control tasks are identified for each work function, further

exploration is necessary to determine which sub-sets of the control tasks for each

work function are more likely to be active in different work situations. Therefore,

analysts should identify which of the control tasks for each work function are more

likely to occur in particular work situations. The results of this step can then be used

to extend the contextual activity template, as shown in figure 3.

The prompts and keywords that were developed for identifying control tasks maybe used with a variety of data collection techniques including: document analysis,

observation of daily work activities, walkthroughs, talkthroughs, interviews and

Analysing activity in complex systems with cognitive work analysis 387

Page 18: Art NAIKAR Cognitive Work Analysis 2006

7/28/2019 Art NAIKAR Cognitive Work Analysis 2006

http://slidepdf.com/reader/full/art-naikar-cognitive-work-analysis-2006 18/24

    T   a    b    l   e

    4 .    P   r   o   m   p   t   s ,   g   e   n   e   r    i   c    k   e   y   w   o   r    d   s

   a   n    d   c   o    d   e   w   o   r    d   s    f   o   r    i    d   e   n   t    i    f   y    i   n   g

   c   o   n   t   r   o    l   t   a   s    k   s .

    P   r   o

   m   p   t   s

    G   e   n   e   r    i   c    k   e   y   w   o   r    d   s

    C   o

    d   e   w   o   r    d   s

    A    l   e   r   t

    W    h   a   t    k    i   n    d   s   o    f   e   v   e   n   t   s   c   a   n   a   c   t   a   s   a    l   e   r   t   s    ?

    S   e   e ,    h   e   a   r ,   n   o   t    i   c   e ,    d   e   t   e   c   t ,   s    i   g   n   a    l ,   a    l   a   r   m ,   w   a   r   n    i   n   g

    A    l   e   r   t

    I   n    f   o   r   m   a   t    i   o   n

    W    h   a   t    k    i   n    d   s   o    f    d   a   t   a   o   r

    f   a   c   t   s   a   r   e   a   v   a    i    l   a    b    l   e    ?

    W   a   t   c    h ,   m   o   n    i   t   o   r ,    l   o   o    k   o   u   t    f   o   r ,   s   e   a   r   c    h ,   g   a   t    h   e   r ,   c    h   e   c    k ,

   e   x   a   m    i   n   e ,    i   n   s   p   e   c   t ,    d   a   t   a ,    f   a   c   t   s ,    i   n    f   o   r   m   a   t    i   o   n

    O    b   s   e   r   v   e   ;    I   n    f   o   r   m   a   t    i   o   n

    S   y   s   t   e   m   s

   t   a   t   e

    W    h   a   t    k    i   n    d   s   o    f   a   s   s   e   s   s   m

   e   n   t   s   a    b   o   u   t   t    h   e   s   y   s   t   e   m    ’   s

   c   o   n    d    i   t    i   o   n   o   r   s    i   t   u   a   t    i   o

   n   a   r   e   p   o   s   s    i    b    l   e   w    i   t    h   t    h   e

    i   n    f   o   r   m   a   t    i   o   n    ?

    R   e

   c   o   g   n    i   z   e ,   e   s   t   a    b    l    i   s    h ,    d   e   t   e   r   m    i   n   e ,    i   n

    f   e   r ,    d    i   a   g   n   o   s   e ,

    i   n   t   e   r   p   r   e   t ,   e   s   t    i   m   a   t   e ,   c   a    l   c   u    l   a   t   e ,    fi   g   u   r   e   o   u   t ,   c   o   n    d    i   t    i   o   n ,

   s    i   t   u   a   t    i   o   n ,   c    i   r   c   u   m   s   t   a   n   c   e   s ,   s   t   a   t   u   s

    D    i   a   g   n   o   s

   e   ;    C   u   r   r   e   n   t   s   t   a   t   e

    O   p   t    i   o   n   s

    W    h   a   t    k    i   n    d   s   o    f   c    h   o    i   c   e   s

   o   r   a    l   t   e   r   n   a   t    i   v   e   s   a   r   e

   a   v   a    i    l   a    b    l   e    f   o   r   t    h   e   s   y   s   t   e   m    ’   s    d   e   s    i   r   e    d   o   r   t   a   r   g   e   t

   s   t   a   t   e    ?

    C    h

   o   o   s   e ,   s   e    l   e   c   t ,   c   o   n   s    i    d   e   r ,   p    i   c    k ,   a   s   s   e   s   s ,   a   p   p   r   a    i   s   e ,    j   u    d   g   e ,

   e   v   a    l   u   a   t   e ,    d   e   c    i    d   e ,   o   p   t    i   o   n   s ,   c    h   o    i   c   e

   s ,   a    l   t   e   r   n   a   t    i   v   e   s

    E   v   a    l   u   a   t   e   ;    O   p   t    i   o   n   s

    G   o   a    l   s

    W    h   a   t    k    i   n    d   s   o    f   a    i   m   s   o   r

   o    b    j   e   c   t    i   v   e   s   c   a   n    b   e

   r   e    l   e   v   a   n   t   o   r    i   n    fl   u   e   n   c   e

    d   e   c    i   s    i   o   n   s    ?

    A   c

    h    i   e   v   e ,    f   u    l    fi    l ,   s   a   t    i   s    f   y ,   a   c   c   o   m   p    l    i   s    h ,   g   o   a    l   s ,   a    i   m   s ,

   o    b    j   e   c   t    i   v   e   s

    G   o   a    l   s

    T   a   r   g   e   t   s   t   a   t   e

    W    h   a   t    k    i   n    d   s   o    f   t   a   r   g   e   t   s

   t   a   t   e   s   a   r   e   p   o   s   s    i    b    l   e    ?

    S   a   m   e   a   s    f   o   r   o   p   t    i   o   n   s   o   r   r   e    f   e   r   e   n   c   e   s   t   o   w    h   a   t   t   o    d   o   a    b   o   u   t

   t    h   e   c   u   r   r   e   n   t   s    i   t   u   a   t    i   o   n   o   r   w    h   a   t   c    h

   a   n   g   e   s   t   o   m   a    k   e   t   o

   t    h   e   c   u   r   r   e   n   t   s    i   t   u   a   t    i   o   n .

    T   a   r   g   e   t   s   t   a   t   e

    T   a   s    k

    W    h   a   t    k    i   n    d   s   o    f   t   a   s    k   s   a   r   e   n   e   c   e   s   s   a   r   y   a   n    d   w    h   a   t

    k    i   n    d   s   o    f   r   e   s   o   u   r   c   e   s   a   r   e   a   v   a    i    l   a    b    l   e    ?

    P    l   a   n ,    d   e   s    i   g   n   a   t   e ,   a    l    l   o   c   a   t   e ,    i    d   e   n   t    i    f   y ,

   t   a   s    k   s ,   r   e   s   o   u   r   c   e   s

    P    l   a   n   ;    T   a

   s    k

    P   r   o   c   e    d   u   r   e

    W    h   a   t    k    i   n    d   s   o    f   p   r   o   c   e    d   u

   r   e   s   o   r   s   e   q   u   e   n   c   e   s   o    f   s   t   e   p   s

   a   r   e   n   e   c   e   s   s   a   r   y    ?

    S   c    h   e    d   u    l   e ,   s   p   e   c    i    f   y ,    f   o   r   m   u    l   a   t   e ,   p   e   r    f   o

   r   m ,   c   a   r   r   y   o   u   t ,

   c   o   n    d   u   c   t ,   p   r   o   c   e    d   u   r   e   s ,   p   r   o   c   e   s   s   e   s ,

   t    i   m    i   n   g   s ,

    i   n   s   t   r   u   c   t    i   o   n   s ,   t   a   s    k   s ,   a   c   t    i   o   n   s

    P    l   a   n   ;    P   r   o   c   e    d   u   r   e

388 N. Naikar et al.

Page 19: Art NAIKAR Cognitive Work Analysis 2006

7/28/2019 Art NAIKAR Cognitive Work Analysis 2006

http://slidepdf.com/reader/full/art-naikar-cognitive-work-analysis-2006 19/24

top-down analysis based on work domain analysis and the first part of ConTA.

Slight adaptations of the prompts may be necessary for use with different data

collection techniques. For example, when conducting interviews, the prompts

should be modified into questions that are phrased in terms of the language of the

relevant work domain (e.g. Naikar and Saunders 2003).

Table 4 also shows a set of code words that were developed for annotating

documents, interview transcripts and other activity records when analysing control

tasks. Some of the code words relate to the information processes of a decision

ladder, whereas other code words relate to the states of knowledge. Both sets

of code words are useful because control tasks are sometimes more apparent

as information processes and sometimes more apparent as states of knowledge.

For example, sometimes an interviewee may refer to monitoring a situation

which would be classified as observe, whereas on other occasions an interviewee

may refer to particular kinds of information, for example the location of assets or

terrain, which would be classified as information. The interview transcripts, docu-

ments and other activity records may also contain references to shortcuts throughthe decision ladder, especially when interviewees are recounting specific scenarios

or incidents. For coding shortcuts, the records can be annotated with links between

code words, for example observe-target state, if an interviewee relates how the obser-

vation of some information immediately led him or her to the target state to be

achieved.

4.2.2. AEW&C case study. For AEW&C, control tasks were identified for

each of the AEW&C work functions. Figure 5 shows a decision ladder for

the AEW&C work function of  manage asset disposition. In developing decision

ladders for AEW&C, the aim was not to specify the actual sequence in whichan actor will move through the decision ladder but rather to identify the nature of 

the key decisions or control tasks relating to each work function. The actual

sequence depends very much on the particular situation or scenario and on the

skills and knowledge of actors. Nevertheless, a record was kept of movements

through the decision ladders if they were mentioned in interviews by domain experts.

Different sub-sets of the manage asset disposition decision ladder shown in

figure 5 are more likely to be active in different work situations. During the

early stages of a mission (enroute to station), the focus may be on monitoring

assets or the lower left side of the decision ladder. However, as the mission

progresses (on station), the focus may include assessing asset status (upper left

of the decision ladder), evaluating options for the number, type and disposition

of assets (top part of the decision ladder) and planning and implementing alter-

native asset configurations (right side of the decision ladder). Towards the end of 

the mission (enroute to base), the focus may revert to monitoring assets as con-

trol is handed over to a replacement AEW&C aircraft. As illustrated in the

contextual activity template in figure 3, the different parts of a decision ladder

may be shaded to indicate which sub-sets of control tasks are more likely to be

active in different work situations.

To develop the AEW&C decision ladders, the decision ladders were first

annotated with the control tasks that had been identified in the first step of 

ConTA (i.e. during the process of defining work functions for AEW&C using thework domain analysis—see previous section). Interviews were then conducted with

subject matter experts to identify further control tasks for each of the AEW&C work

Analysing activity in complex systems with cognitive work analysis 389

Page 20: Art NAIKAR Cognitive Work Analysis 2006

7/28/2019 Art NAIKAR Cognitive Work Analysis 2006

http://slidepdf.com/reader/full/art-naikar-cognitive-work-analysis-2006 20/24

functions. Specifically, seven military personnel who had considerable knowledge of 

the AEW&C system concept were interviewed. All of these personnel had opera-

tional experience on either the AWACS or E2C systems and/or the equivalent

ground-based (as opposed to airborne) operations in the Royal Australian Air

Force.

The structure of the interviews was modelled on the Critical Decision Method

(Klein et al . 1989) in that a series of sweeps was used to gradually move inter-

viewees from an operational description of a work function to the control tasks

that were necessary for performing a work function. However, unlike the Critical

Decision Method, the interviews were not based on particular scenarios or inci-

dents. In the first sweep, the interviewees were asked to imagine that they were one

of the crew on the new AEW&C system and that their job was to perform one of 

the work functions, for example manage asset disposition. They were asked to

describe briefly, in 1 or 2 min, what they thought this job would involve. In the

second sweep, the interviewees were asked to consider the job in a little bit more

detail by describing what they thought their main concerns would be in managingthe asset disposition. For instance, some of the concerns that were identified for

manage asset disposition included: picking up threats at a long range as soon as

possible; and positioning assets where they can be effective. In the third sweep,

a series of probes based on the prompts described in table 4 were used to identify

control tasks in relation to each of the concerns that the interviewees had

described. For example, in relation to the concern with picking up threats at a

long range as soon as possible, interviewees can be asked ‘What types of events can

alert you to a threat?’ or ‘What kinds of  options may be available to you for

dealing with a threat?’

The interviews were transcribed and at least two analysts coded each transcriptwith the code words shown in table 4. In coding the transcripts, each answer

given by the interviewees was examined for information relating to all parts of 

the decision ladder. For example, when asked about procedures, it was often found

that interviewees mentioned information that they needed to ascertain to execute

a particular procedure. Therefore, in their responses to a probe about procedures,

control tasks could be identified relating to both information and procedure. By

doing this, many more control tasks were identified than if one had only searched

for control tasks relating to that part of the decision ladder that was the subject of 

the probe question.

Overall, the interviews were satisfactory for identifying control tasks for

AEW&C. However, some of the interviews were difficult, presumably because of 

the relatively abstract nature of the problem and the ‘pressure’ of responding quickly

in what could have been perceived by some interviewees to be a question-and-answer

session. The Critical Decision Method typically involves interviews about memor-

able scenarios or incidents that interviewees have experienced. Accordingly, previous

work has found the Critical Decision Method to be a suitable technique for devel-

oping decision ladders for critical points in actual incidents (Naikar and Saunders

2003). However, because AEW&C is a first-of-a-kind system, it was important not

to ask interviewees about their experiences in older or existing systems but wanted to

explore how they could work in the new system.

A technique that may be more suitable for eliciting information about controltasks in new systems is table-top analysis (Kirwan and Ainsworth 1992, Naikar et al .

2003). This technique requires a group of experts with knowledge of the system

390 N. Naikar et al.

Page 21: Art NAIKAR Cognitive Work Analysis 2006

7/28/2019 Art NAIKAR Cognitive Work Analysis 2006

http://slidepdf.com/reader/full/art-naikar-cognitive-work-analysis-2006 21/24

under consideration; in the case of AEW&C the experts may include operations

personnel, military strategists and engineers. During table-top discussions, experts

can explore, in a problem-solving and explanatory way, the control tasks that are

necessary for the various work situations and/or work functions. The Critical

Decision Method format that was described for the AEW&C interviews could still

be used as a framework for facilitating discussions. In addition, the discussions could

be based around problem descriptions that represent the kinds of situations in which

the new system may be involved (Kirwan and Ainsworth 1992, Dekker and Woods

1999, Naikar et al . 2003). Preliminary investigations with table-top analysis indicate

that it may provide a more suitable format than interviews for identifying control

tasks for new systems.

5. General discussion

This paper has contributed to developing a coherent approach to ConTA. The paperhas discussed the different approaches to ConTA (Rasmussen et al . 1994, Vicente

1999) and presented a consolidated approach that reinstates the analysis of work

situations and work functions as a critical element of the analysis of activity in the

CWA framework. In addition, the paper has extended the basic concepts for ConTA

by discussing the special case of work systems for which activity is best characterized

as a combination of work situations and work functions and by presenting a new

formative representation, called the contextual activity template, for modelling

activity in these work systems. The paper has also presented a set of methodological

guidelines for performing ConTA.

The conceptual and methodological approach to ConTA presented in this paperwas developed through work with complex, military systems. This approach may be

useful for analysing other systems that share the characteristics of military domains

that are listed in table 1. Further research is necessary to determine whether this

approach can be extended to other kinds of systems.

Finally, the paper presented a case study of a ConTA for AEW&C. This case

study demonstrated the conceptual extensions and methodological guidelines for

ConTA by example. In addition, the case study highlighted some of the difficulties

of conducting ConTA for first-of-a-kind, complex systems during the early stages

of development.

The difficulty of analysing cognitive work in future systems has been described

as the ‘envisioned world problem’ by Dekker and Woods (1999). To tackle this

problem, Dekker and Woods studied how experts solved future incidents using

airspace maps depicting future airspace layouts, static representations of future

radar displays and future procedures. However, for systems at the very early

stages of development, like AEW&C, these artefacts may not be available and

may in fact be the desired design outputs of a work analysis. Waiting for further

design and development to occur incurs the risk that the system may be con-

strained by the technical solution. To resolve this problem, the authors are cur-

rently investigating the use of table-top analysis techniques to analyse cognitive

work in future systems based on a discussion of future incidents or problems,

independently of the underlying technology. Validation of the cognitive workrequirements should occur as soon as mock ups and prototypes of the future

system become available.

Analysing activity in complex systems with cognitive work analysis 391

Page 22: Art NAIKAR Cognitive Work Analysis 2006

7/28/2019 Art NAIKAR Cognitive Work Analysis 2006

http://slidepdf.com/reader/full/art-naikar-cognitive-work-analysis-2006 22/24

Notes

1. Rasmussen et al . (1994) describe work functions as problems to solve. A previous

paper (Naikar et al . 2003) used the term work problems instead of work

functions.

2. This type of analysis for a military system was previously referred to as temporal

co-ordination control task analysis (Sanderson and Naikar 2000). The contextual

activity template accommodates spatial as well as temporal constraints and it

illustrates the co-ordination of work situations and work functions as well as

control tasks.

Acknowledgements

We thank: the AEW&C System Program Office including the military experts whoparticipated in this research; the subject matter experts from the Defence Science and

Technology Organisation; Tracey Bryan for her assistance with the AEW&C cogni-

tive work analysis; and Russell Martin, Alyson Saunders and Robyn Hopcroft from

the Defence Science and Technology Organisation for their assistance with this

paper.

References

Benda, P.J. and Sanderson, P.M., 1999, Representation of changes to anesthesia workdomain and activity structures. Proceedings of the human factors and ergonomics society43rd annual meeting (Santa Monica, CA: HFES), pp. 563–567.

Bisantz, A.M., Roth , E., Brickman, B., Gosbee, L.L., Hettinger, L. and McKinney, J.,2003, Integrating cognitive analyses into a large scale system design process.International Journal of Human–Computer Studies, 58, pp. 177–206.

Burns, C.M., 2000, Putting it all together: Improving display integration in ecologicaldisplays. Human Factors, 42, pp. 226–241.

Burns, C.M., Bryant, D.J. and Chalmers, B.A., 2000, A work domain model to supportshipboard command and control. Proceedings of IEEE international conference onsystems, man, and cybernetics (Piscataway, NJ: IEEE), pp. 2228–2233.

Card, S.K., Moran, T.P. and Newell, A., 1983, The Psychology of Human–Computer

Interaction (Hillsdale, NJ: LEA).Dekker, S. and Woods, D., 1999, Extracting data from the future—assessment and certifica-

tion of envisioned systems. In Coping with Computers in the Cockpit, S. Dekker andE. Hollnagel (Eds), pp. 131–144 (Hants, UK: Ashgate).

Dinadis, N. and Vicente, K.J., 1999, Ecological interface design for a power plant feedwatersystem. IEEE Transactions of Nuclear Science, 43, pp. 266–277.

Gualtieri, J.W., Elm, W.C., Potter, S.S. and Roth , E., 2001, Analysis with apurpose: narrowing the gap with a pragmatic approach. Proceedings of the human factors and ergonomics society 45th annual meeting (Santa Monica, CA: HFES),pp. 444–448.

Gualtieri, J.W., Roth , E. and Eggleston, R.G., 2000, Utilizing the abstraction hierarchyfor role allocation and team structure design. Proceedings of HICS 2000—5th

international conference on human interaction with complex systems (Urbana-Champaign: IL: IEEE), pp. 219–223.Hori, S., Vicente, K.J., Shimizu, Y. and Takami, I., 2001, Putting cognitive work analysis

to work in industry practice: integration with ISO13407 on human-centred design.

392 N. Naikar et al.

Page 23: Art NAIKAR Cognitive Work Analysis 2006

7/28/2019 Art NAIKAR Cognitive Work Analysis 2006

http://slidepdf.com/reader/full/art-naikar-cognitive-work-analysis-2006 23/24

Proceedings of the human factors and ergonomics society 45th annual meeting (SantaMonica, CA: HFES), pp. 429–433.

Kirwan, B. and Ainsworth, L.K., 1992, A Guide to Task Analysis (London: Taylor &Francis).

Klein, G.A., Calderwood, R . a n d MacGregor, D., 1989, Critical decision methodof eliciting knowledge. IEEE Transactions on Systems, Man and Cybernetics, 19,pp. 462–472.

Leveson, N.G., 2000, Intent specifications: an approach to building human-centred specifica-tions. IEEE Transactions on Software Engineering, 26, pp. 15–35.

Linegang, M.P. and Lintern, G., 2003, Multifunction displays for optimal manning:towards functional integration and cross functional awareness. Proceedings of thehuman factors and ergonomics society 47th annual meeting (Santa Monica, CA:HFES), pp. 1923–1927.

Miller, R.B., 1953, Formal Analytical Structure for Manned Systems Analysis (Columbo,OH: Ohio State University Press).

Naikar, N. and Pearce, B., 2003, Analysing activity for future systems. Proceedings of thehuman factors and ergonomics society 47th annual meeting (Santa Monica, CA: HFES),pp. 1928–1932.

Naikar, N. and Sanderson, P.M., 1999, Work domain analysis for training-system definitionand acquisition. International Journal of Aviation Psychology, 9, pp. 271–290.

Naikar, N. and Sanderson, P.M., 2001, Evaluating design proposals for complex systemswith work domain analysis. Human Factors, 43, pp. 529–542.

Naikar, N. and Saunders, A., 2003, Crossing the boundaries of safe operation: an approachfor training technical skills in error management. Cognition, Technology and Work, 5,pp. 171–180.

Naikar, N., Pearce, B., Drumm, D. and Sanderson, P.M., 2003, Designing teams forfirst-of-a-kind, complex systems using the initial phases of cognitive work analysis:case study. Human Factors, 45, pp. 202–217.

Potter, S.S., Roth, E.M., Woods, D. and Elm, W.C., 2000, Bootstrapping multiple con-verging cognitive task analysis techniques for system design. In Cognitive task analysis,

J. Schraagen, S. Chipman and V. Shalin (Eds), pp. 317–340 (Mahwah, NJ: LEA).Rasmussen, J., 1974, The human as a systems component: bits and pieces of a model. Report

Riso-M-1722. Danish Atomic Energy Commission Research Establishment, Denmark.Rasmussen, J., 1976, Outlines of a hybrid model of the process plant operator. In Monitoring

Behavior and Supervisory Control , T.B. Sheridan and G. Johannsen (Eds), pp. 371–384(New York: Plenum Press).

Rasmussen, J., 1980, The human as a systems component. In Human interaction withcomputers, H.T. Smith and T.R.G. Green (Eds), pp. 67–96 (London: Academic Press).

Rasmussen, J., 1998, Ecological interface design for complex systems: an example: SEAD– UAV systems, Report AFRL-HE-WP-TR-1999-0011, Crew System InterfaceDivision, Human Effectiveness Directorate, Air Force Materiel Command, WrightPatterson Air Force Base, Dayton, OH.

Rasmussen, J., Pejtersen, A.M. and Goodstein, L.P., 1994, Cognitive systems engineering(New York: Wiley-Interscience).

Reising, D.V. and Sanderson, P.M., 1998, Designing displays under ecological interfacedesign: towards operationalizing semantic mapping. Proceedings of the human factors and ergonomics society 42nd annual meeting (Santa Monica, CA: HFES),pp. 372–376.

Roth , E. and Mumaw, R.J., 1995, Using cognitive task analysis to define human interfacerequirements for first-of-a-kind systems. Proceedings of the human factors and ergonomics society 39th annual meeting (Santa Monica, CA: HFES), pp. 520–524.

Roth , E., Mumaw, R.J. and Stubler, W.F., 1993, Human factors evaluation issues foradvanced control rooms: a research agenda. IEEE 5th conference on human factorsand power plants (New York: IEEE), pp. 254–265.

Sanderson, P.M. and Naikar, N., 2000, Temporal coordination control task analysisfor analysing human–system integration. Proceedings of the joint meeting of thehuman factors and ergonomics society and the international ergonomics association(Santa Monica, CA: HFES), pp. 206–209.

Analysing activity in complex systems with cognitive work analysis 393

Page 24: Art NAIKAR Cognitive Work Analysis 2006

7/28/2019 Art NAIKAR Cognitive Work Analysis 2006

http://slidepdf.com/reader/full/art-naikar-cognitive-work-analysis-2006 24/24

Schraagen, J.M., Chipman, S.F. and Shalin, V.L., 2000, Cognitive task analysis (Mahwah,NJ: LEA).

Seamster, T.L., Redding, R.E. and Kaempf, G., 1997, Applied cognitive task analysis inaviation (London: Ashgate).

Taylor, F.W., 1911, The Principles of Scientific Management (New York: Harper & Row).Vicente, K.J., 1992, Multilevel interfaces for power plant control rooms I: an integrative

review. Nuclear Safety, 33, pp. 381–397.Vicente, K.J., 1999, Cognitive Work Analysis: Toward Safe, Productive, and Healthy

Computer-based Work (Mahwah, NJ: LEA).Vicente, K.J. and Pawlak, S., 1994, Cognitive work analysis for the DURESS II system.

CEL 94-03, Cognitive Engineering Laboratory, University of Toronto, Toronto,Canada.

Vicente, K.J., Christoffersen, K. and Pereklita, A., 1995, Supporting operator problemsolving through ecological interface design. IEEE transactions on systems, man, and cybernetics, 25, pp. 529–545.

Zsambok, C.E. and Klein, G., 1994, Naturalistic Decision Making (Mahwah, NJ: LEA).

About the authors

Neelam Naikar is a Senior Research Scientist at the Defence Science and Technology

Organisation in Melbourne, Australia. She obtained a PhD in Psychology from the

University of Auckland, New Zealand in 1996 and a BSc in Psychology (Hons) from

the University of New South Wales, Australia in 1992. Her current research interests

include the use of cognitive work analysis in test and evaluation and the development

of theories and methods for cognitive work analysis and accimap analysis.

Anna Moylan is a Human Factors Scientist at the Defence Science and Technology

Organisation. She obtained a BA (Hons) in Psychology from Monash University,Australia in 2001. Her current research interests include the use of cognitive work

analysis in test and evaluation and the development of theories and methods for

cognitive work analysis.

Brett Peace is a Human Factors Scientist at the Defence Science and Technology

Organisation. He obtained a BSc (Hons) in Psychology in 1994 from Flinders

University of South Australia and completed a Grad Dip in Computing Studies

(Software Development) in 2001 at RMIT University. His current research interests

include the use of cognitive work analysis for team design and for identifying

strategies for decision making.

394 N. Naikar et al.