art%3a10.1007%2fbf00173913

Upload: leonardo-sakamoto

Post on 02-Mar-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/26/2019 art%3A10.1007%2FBF00173913

    1/8

    Ap pl M icrobiol Biotech nol (1994) 42:508-515 Springer-Ve rlag 1994

    O R I G I N A L P A P E R

    J . A . d e H o l l a n d e r

    otent ia l m etabol ic l im i tat ions in lys ine prod uct ion by o r y nebac t e r i um

    g l u t am i c um s rev eale d by m etabol ic network analys is

    Rece ived: 11 Ap ril 1994 / Ac cepted: 10 May 1994

    bstract

    A n a l y s i s o f t h e m e t a b o l i c n e t w o r k o f ly s in e -

    p r o d u c i n g

    Corynebacterium glutamicum

    s h o w e d t h a t

    l y s i n e y i e l d s a r e l i m i t e d b y t h e e x c e s s e n e rg y p ro d u c -

    t i o n i n l y s i n e b i o s y n t h e s i s . Th e m o s t p ro b a b l e m a x i -

    m u m y i e l d is 0. 47 m o l / m o l o n g l u c os e , w h e n p h o s p h o e -

    nolpyruvate

    c a rb o x y l a s e fu n c t i o n s i n a n a n a p l e ro t i c

    r e a c t i o n . W h e n t h is f u n c t i o n i s fu l f i ll e d b y t h e g l y o x y -

    l a t e p a t h w a y , a m a x i m u m y i e l d o f 0 . 38 m o l / m o l i s o b -

    t a i n e d .

    ntroduction

    Corynebacterium glutamicum

    a n d c l o s e l y r e l a t e d

    Brevi

    bacterium

    s p e c i e s a r e t h e m o s t i m p o r t a n t o r g a n i s m s

    u s e d fo r th e i n d u s t r i a l f e rm e n t a t i v e p ro d u c t i o n o f l y -

    s i n e . A l t h o u g h w i l d - t y p e s t r a i n s d o n o t e x c re t e l y s i n e a t

    a l l , c l a s s i c a l m u t a t i o n p ro g ra m s h a v e r e s u l t e d i n s t r a i n s

    p ro d u c i n g a h ig h t i t e r , m a i n l y a s t h e r e s u l t o f a r e l ie f o f

    f e e d - b a c k i n h i b it i o n o f t h e k e y e n z y m e a s p a r t a t e k i -

    n a s e . Th e y i e l d s o n g l u c o s e a s t h e c a rb o n s o u rc e a r e

    v e ry s u b s t a n t i a l: v a l u e s o f 4 0 % ( t o o l / to o l ) o r e v e n h i g h -

    e r c a n b e fo u n d i n t h e l i t e r a t u r e (To s a k a e t a l . 1 9 8 3 ;

    N a k a y a m a 1 9 8 5 ) . G e n e t i c e n g i n e e r i n g t e c h n i q u e s c a n

    b e u s e d t o e n h a n c e t h e a c t i v i t y o f p o t e n t i a l l y r a t e - li m i t -

    i n g e n z y m e s . S u c h a n a p p r o a c h w a s s h o w n t o b e s u c -

    c e s s fu l w h e n a p p l i e d o n l o w -y i e l d s t r ai n s (C re m e r e t a l.

    1 99 1 ). H o w e v e r , i n d ic a t i o n s fo r t h e a p p l i c a t i o n o f t h e s e

    t e c h n i q u e s t o t h e p ro d u c t i o n o f h ig h e r -y i e l d i n g i n d u s -

    t r i a l s t ra ins a re ha rd to f ind in the case o f ly s ine fe r -

    m e n t a t i o n . T h e v e r y h ig h c o n v e r s i o n y i e l d o f t h o s e

    s t r a in s i m p l i e s a s u b s t a n t i a l i m p a c t o f l y s in e p ro d u c t i o n

    o n t h e m e t a b o l i c p a t t e r n o f t h e p r o d u c i n g c e ll , n o t o n l y

    o n t h e l y s i n e -b i o s y n t h e s i s p a t h w a y i t s e l f , b u t a l s o o n

    t h e p a t h w a y s o f t h e a u x i l i a ry m e t a b o l i s m . Th i s c o u l d

    v e ry w e l l b e a r e a s o n fo r t h e l i m i t e d s u c c e s s o f d i r e c t e d

    i m p r o v e m e n t o f p a t h w a y e n z y m e s : t h e r e a l b o t t l e n e c k

    J. A. de H ollander

    Gist-brocades, PO Box i, 2600 MA Delft, The N etherlands.

    FAX: +31-15-792490

    m i g h t r e s i d e e l s e w h e r e i n t h e m e t a b o l i s m . M e t a b o l i c

    n e t w o rk a n a l y s i s p ro v i d e s a t o o l f o r t h e i n v e s t i g a t i o n o f

    p o t e n t i a l m e t a b o l i c b o t t l e n e c k s i n c l u di n g t h o s e o u t s i d e

    t h e b i o s y n t h e si s p a t h w a y o f t h e p r o d u c t ( S t e p h a n o p o u -

    l o s a n d S i n s k e y 1 9 93 ). I n a d d i t i o n , n e t w o rk a n a l y s is c a n

    b e e m p l o y e d t o d e c r e a s e t h e d e g r e e o f f r e e d o m o f a

    f e r m e n t a t i o n s y s t e m a n d t o d e r i v e p r e d ic t i v e fe r m e n t a -

    t i o n m o d e l s ( d e H o l l a n d e r 1 9 9 1 a , b ) . N e t w o r k a n a l y s i s

    w a s u s e d b y V a l l i n o a n d S t e p h a n o p o u l o s (1 9 93 ) to l o -

    c a t e c r i t i c a l b r a n c h p o i n t s ( r i g i d n o d e s ) i n t h e m e t a -

    b o l i s m o f l y s i n e -p ro d u c i n g C. glutamicum. In th i s a r t i -

    c l e b o t t l e n e c k s i n t h e Corynebacterium m e t a b o l i s m a r e

    i d e n t i f ie d , r e s u l t i n g f ro m t h e i m p o s s i b i l it y o f n e g a t i v e

    f l u x e s t h ro u g h s o m e i r r e v e r s i b l e p a t h w a y s .

    Metabol ic network analysis

    T h e m e t a b o l i s m o f l y s in e - p r o d u ci n g C o r y n e b a c t e r i u m

    Th e m a j o r c h a ra c t e r i st i c s o f l y s i n e - r e l a t e d m e t a b o l i s m

    in

    C. glutarnicum

    a n d r e l a t e d o rg a n i s m s s u c h a s

    Brevi

    bacterium

    s p e c i e s a r e f a i r l y w e l l k n o w n (K i n o s h i t a

    1 98 5 ; N a k a y a m a 1 9 8 5) . N e v e r t h e l e s s , a n u m b e r o f i m -

    p o r t a n t a s p e c t s r e m a i n u n c e r t a i n . T h e m o s t i m p o r t a n t

    u n c e r t a i n t i e s a r e r e l a t e d t o m e t a b o l i s m a u x i l i a ry t o t h e

    l y si n e p a t h w a y , s u c h a s t h e g e n e r a t i o n o f N A D P H , t h e

    b i o e n e r g e t i c s o f t h e b a c t e r i u m a n d t h e t y p e o f a n a p le -

    ro t i c r e a c t i o n t h a t i s u s e d . Th e fo l l o w i n g s h o r t o v e rv i e w

    o f l y s i n e m e t a b o l i s m w i l l s t r e s s t h e s e a s p e c t s . F i g u re 1

    p re s e n t s a s i m p l i fi e d , s c h e m a t i c o v e rv i e w o f t h e c e l l u l a r

    m e t a b o l i s m o f Corynebacterium w i t h e m p h a s i s o n t h e

    m a j o r m e t a b o l i c b r a n c h p o i n t s . T h e f i g u r e f o r m s t h e

    b a s i s o f t h e m e t a b o l i c f l u x a n a l y s is i n t h e n e x t p a r a -

    g ra p h .

    F ro m c o n t i n u o u s -c u l t u r e s t u d i e s (S h v i n k a e t a l .

    1980 ; Micha l sk i e t a l . 1984 ; Hi rao e t a l . 1989 ; Kiss and

    S t e p h a n o p o u l o s 1 9 9 2 ; O h a n d S e rn e t z 1 9 9 3 ) i t c a n b e

    c o n c l u d e d t h a t l y s i n e p ro d u c t i o n i s c l o s e l y a s s o c i a t e d

    w i t h b a c t e r i a l g ro w t h , i . e . th e s p e c i fi c l y s in e p ro d u c t i o n

    ra t e t e n d s t o b e d i m i n i s h e d a t v e ry lo w g ro w t h r a t e s. A

  • 7/26/2019 art%3A10.1007%2FBF00173913

    2/8

    509

    G L U O S E

    T P

    B I O M A S S ~ J ~ p

    M [ H M P

    j - co2

    N M H ~

    ATP V

    P E P

    ~ - ~ T P

    C 2

    C 2

    ~

    I C I T

    = A o g '. . . . . 1 ) - -

    S y s/ S ~ C A

    ATP-~

    L Y S I N E e

    Fig. 1 Metabo l ic pa thway s in lys ine -produc ing Cory nebac te r ium

    glu tamicum. EM E m b d e n -Me y e rh o f , HMP h e x o s e m o n o p h o s -

    pha te ,

    G6P

    glucose 6 -phospha te ,

    PEP phosphoenolpyruvate,

    PYR

    pyruva te ,

    OAA

    oxa loace ta te ,

    ICIT

    isocitrate ,

    SUC

    succi-

    hate ,

    SUCA

    s u c c in y l -C o A

    d i s c u s s i o n o f t h e o r e t i c a l l y p o s s i b l e l y s i n e y i e l d s i s

    t h e r e f o r e r a t h e r u s e l e s s w h e n l y s i n e p r o d u c t i o n i s n o t

    c o n s i d e r e d w i t h i n t h e c o n t e x t o f t h e o v e r a l l b a c t e r i a l

    m e t a b o l i s m . T h i s a d d s q u i t e a f e w u n c e r t a i n t i e s t o t h e

    q u e s t i o n o f t h e o v e r a l l s t o i c h i o m e t r y o f l y s i n e p r o d u c -

    t i o n .

    A r e c e n t s t u d y ( S o n n t a g e t al . 1 9 9 3) c o n f i r m e d t h a t

    t w o v a r i a n t s o f t h e l y s in e - p r o d u c in g d i a m i n o p i m e l a t e

    p a t h w a y e x i s t i n

    Corynebacterium

    w h i c h m a y b e a c t i v e

    s i m u l t a n e o u s l y , d e p e n d i n g o n t h e c o n d i t i o n s . E n e r g e t i -

    c a l l y t h e r e i s a s m a l l d i f f e r e n c e b e t w e e n t h e p a t h w a y s ,

    w h i c h i s p a r t l y d e p e n d e n t o n t h e m e a n s o f a m m o n i a

    a s s i m i l a t i o n , f o r w h i c h t w o p a t h w a y s c a n b e p r e s e n t i n

    Corynebacterium ( N e i s h t a d t - A b r a m o v i c h e t a l . 1 9 9 0 ,

    E r t a n 1 9 9 2) . B y a n a l o g y w i t h o t h e r o r g a n i s m s i t c a n b e

    a s s u m e d t h a t t h e e n e r g y - r e q u i r i n g g l u t a m a t e s y n t h a s e

    r e a c t i o n i s p r e f e r r e d a t l o w o r l i m i t i n g a m m o n i a c o n -

    c e n t r a t i o n s , w h i l e a t h i g h e r a m m o n i a c o n c e n t r a t i o n s

    t h e g l u t a m a t e d e h y d r o g e n a s e r e a c t i o n i s a c t i v e . F o r

    c o n d i t i o n s o f l y si n e p r o d u c t i o n i t i s n o t u n r e a s o n a b l e t o

    a s s u m e t h a t t h e l a t t e r r e a c t i o n p r e d o m i n a t e s .

    A p o i n t o f c o n t r o v e r s y i s t h e q u e s t i o n o f w h i c h ( a n a -

    p l e r o t i c ) r e a c t i o n i s r e s p o n s i b l e f o r t h e f o r m a t i o n o f o x -

    a l o a c e t a t e . T h e g l y o x y l a t e p a t h w a y i s s o m e t i m e s p r o -

    p o s e d t o f u l f il l t h i s r o l e i n l y s i n e b i o s y n t h e s i s ( S h v i n k a

    e t a l. 1 9 8 0 ); h o w e v e r , w h e n g l u c o s e is th e m a i n c a r b o n

    s o u r c e t h e a c t i v i t y o f t h e c r i t i c a l e n z y m e i s o c i t r a t e l y a s e

    i s o f t e n l o w ( V a l l i n o a n d S t e p h a n o p o u l o s 1 9 9 3 ) a n d i n

    s o m e s p e c i e s t h e e n z y m e i s i n d u c e d o n l y i n t h e p r e s -

    e n c e o f a c e t a t e ( R u k l i s h a e t a l. 1 9 78 ) . T h e m o s t p r o b a -

    b l e a l t e r n a t i v e i s t h e phosphoenolpyruvate ( P - p y r u -

    v a t e ) c a r b o x y l a s e r e a c t i o n , w h i c h i s f o u n d t o b e p r e s e n t

    i n h i g h a c t i v i t y i n Corynebacterium. P - p y r u v a t e c a r -

    b o x y l a s e h a s b e e n t h e t a r g e t i n a d i r e c t e d s t r a i n - i m -

    p r o v e m e n t s t u d y ( S a n o e t a l . 1 9 8 7 ) . I t s r o l e i s n o t u n e -

    q u i v o ca l ly p r o v e n , h o w e v e r , b e c a u s e d e l e t io n m u t a n t s

    m i s s i n g a n y a c t i v i t y s t i l l p r o d u c e d l y s i n e a t t h e s a m e

    y i e l d ( P e t e r s - W e n d i s c h e t a l. 1 99 3 ). A n u m b e r o f o t h e r

    a l t e rn a t i v e s c a n b e t h o u g h t o f , s u c h a s t h e r e a c t i o n s c a -

    t a l y z e d b y p y r u v a t e c a r b o x y l a s e , P - p y r u v a t e c a r b o x y -

    k i n a s e , o r m a l i c e n z y m e . I n t h e i r o v e r a l l s t o i c h i o m e t r y

    t h e y a r e s i m i l a r t o t h e P - p y r u v a t e c a r b o x y l a s e r e a c t io n ,

    a n d n o n e o f t h e m w i l l b e i n c l u d e d i n t h e p r e s e n t d i s cu s -

    s ion .

    N A D P H i s u s e d i n s e v e r a l r e a c t i o n s o f l y s i n e b i o -

    s y n t h e s i s . T h e c e l l h a s o n l y a l i m i t e d n u m b e r o f p o s s i -

    b i l i t i e s t o g e n e r a t e r e d u c t i o n e q u i v a l e n t s i n t h e f o r m o f

    N A D P H . A n o b v i o u s p o s s ib i li ty is t h e h e x o s e m o n o -

    p h o s p h a t e ( H M P ) p a t h w a y , s h o w n i n F ig . 1 a s a b r a n c h

    o f a s p l i t p a t h w a y f o r g l u c o s e c a t a b o l i s m , t h e a l t e r n a -

    t iv e f o r t h e E m b d e n - M e y e r h o f p a t h w a y . O n l y

    1/6

    o f t h e

    r e d u c t i o n p o t e n t i a l o f g l u c o s e i s t r a n s f o r m e d i n t o

    N A D P H v i a t h is r o u te , h o w e v e r . M o r e e f f ic i en t w o u l d

    b e t h e o p e r a t i o n o f th e c y c li c f o r m o f t h e H M P p a t h -

    w a y , w h i c h g i v es 1 0 0 y i e ld o f r e d u c t i o n e q u i v a l e n t s i n

    t h e f o r m o f N A D P H . F o r c y cl ic o p e r a t i o n o f t h e H M P

    p a t h w a y t h e g l u c o n e o g e n i c e n z y m e f r u c t o se - l, 6 -b i s -

    p h o s p h a t a s e i s r e q u i r e d . A c t i v i t y o f t h i s e n z y m e i s i n -

    c o m p a t i b l e w i t h t h e s i m u l t a n e o u s o p e r a t i o n o f t h e

    E m b d e n - M e y e r h o f p a t h w a y , a n d i s n o r m a l l y r e p r e s s e d

    u n d e r c o n d i t io n s o f g r o w t h o n g l u co s e . A n o t h e r p o s si -

    b l e m e t h o d o f N A D P H g e n e r a t i o n is t h e r e a c ti o n c a ta -

    l y z e d b y t h e e n z y m e i s o c i t r a t e d e h y d r o g e n a s e , w h i c h i s

    u s u a l l y c o n s i d e r e d t o b e N A D P - d e p e n d e n t i n Coryne-

    bacterium.

    T h e t w o m o s t i m p o r t a n t c e l lu l a r t r a n s p o r t p r o c e s s e s

    i n l y s i n e f o r m a t i o n , g l u c o s e u p t a k e a n d l y s i n e e x c r e -

    t i o n , a r e b o t h e n e r g y - d r i v e n . F o r g l u c o s e u p t a k e t h e

    p h o s p h o t r a n s f e r a s e s y s t e m i s e m p l o y e d ( M o r i a n d

    S h i i o 1 9 8 7 ; M a l i n a n d B o u r d 1 9 8 7 ) , w h i c h u t i l i z e s t h e

    h i g h - e n e rg y p h o s p h a t e g r o u p f r o m P - p y r u v a t e . A l -

    t h o u g h m e t a b o l i c e n e r g y i s u s e d f o r g l u c o s e t r a n s p o r t ,

    t h e r e a c t i o n i s e n e r g y - e f f ic i e n t b e c a u s e g l u c o s e i s d e li v -

    e r e d i n p h o s p h o r y l a t e d f o r m . T h e r e a c t i o n i s t h e r e f o r e

    e n e r g e t i c a l l y e q u i v a l e n t t o p h o s p h o r y l a t i o n o f g l u c o s e

    t o g l u c o s e 6 - p h o s p h a t e b y A T P , a s s h o w n i n F ig . 1 . I n

    h i g h - p r o d u c i n g s t r a in s o f Corynebacterium l y s ine i s ex -

    c r e te d th r o u g h a O H - s y m p o r t s y s te m ( B ro ~ r an d

    K r i m e r 1 99 1; K r i m e r 1 9 9 4 ), w h i c h i m p l i e s t h a t , a ss o -

    c i a t e d w i t h l y s i n e e x c r e t i o n , m e t a b o l i c e n e r g y ( A T P

  • 7/26/2019 art%3A10.1007%2FBF00173913

    3/8

    510

    a b l e 1 Reactions of the metabolism of Corynebac ter ium g lu -

    t a m i c u m as displayed in Fig. 1. Reactions are formulated in a sim-

    plified manner, excluding the oxidized counterparts of the reduc-

    tance carriers (NAD, NADP and FAD), and the de-energized

    counterpart of ATP (ADP). A number of (alternative) reactions

    are commented on in the text E M Embden-Meyerhof, H M P

    hexose monophosphate, T C A tricarboxylic acid, Oaa oxaloace-

    tate, P r y pyruvate, Suc succinate, Glc glucose. P P r v p h o s p h o e n o l -

    pyruvate, iC i t isocitrate)

    Lysine biosyntheis

    Lysine excretion

    Glucose uptake

    EM pathway

    Cyclic HMP pathway

    HMP pathway

    Pyruvate kinase

    TCA pathway

    n a p l e r o t i c r e a c t io n

    O x i d a t iv e p h o s p h o r y l a t i o n

    B i o m a s s f o r m a t i o n

    Oaa + Pry + 2NH3 + Suc-CoA + ATP + 4 NADPH ~ Lys + Suc + CO2

    Oaa + Pry + 2 NH3 + Suc-CoA + 3 ATP + 4NADPH --, Lys + Suc + CO2

    Oaa + Pry + 2NH3 + ATP + 4NADPH --, Lys + CO2

    Oaa + Pry + 2NH3 + 2 ATP + 4 NADPH ~ Lys + CO2

    Lys + al ATP ~ Lysc

    Glc + ATP --, Glc6P

    Glc6P ~ 2 PPrv + ATP + 2 NADH

    Glc6P --, 6 COz + 12 NADPH

    Glc6P --, % PPrv + CO2 + ATP + 2NA DPH + % NADH

    PPrv -~ Prv+ ATP

    Prv + Oaa --* iCit + CO2 + NADH

    iCit --, Suc-CoA + 2 CO2 + 2 NADH

    iCit --, Suc-CoA + 2 CO2 + NADH + NADPH

    Suc-CoA ~ Suc + ATP

    Suc --, Oaa + NADH + FADH

    PPrv + CO2 ---, Oaa

    2 Prv ~ Oaa + 2 CO2 + 4N ADH + FADH

    NADH + 02 ~ P/O ATP + H20

    FADH + 02 --' 9/3 P/O ATP + H20

    o-Glc + cnxNH3 + 6ax ATP ~ 6X + 6(o--1)CO2 + (12 o-- 3yx )NADH

    l a a

    lb

    lc

    ld

    2

    3

    4a

    4b

    5

    6

    7

    8a

    8b

    9

    10

    11a

    11b

    12

    13

    14

    a Reaction equations wi th the same number but with different letters represent metabolic alternatives, of which only one can be

    active

    equivalents) is used for the restoration of the mem-

    brane potential.

    Although some energy is used in the biosynthesis of

    lysine and its excretion, the overall balance within the

    context of the cellular metabolism is positive if one in-

    cludes the AT P generated during oxidation of NADH ,

    which is produced in the reactions leading to formation

    of the precursors of the lysine pathway. This energy-

    generating property of lysine biosynthesis might pro-

    vide an explanation for the apparent association of ly-

    sine for mation with cell growth, because biosynthesis of

    new cell material is the normal process in which ATP is

    utilized. The efficiency of energy genera tion (oxidative

    phosphorylation) and efficiency of growth are therefore

    an important factors that determine, to a large extent,

    the maximum possible conversion yields, as will be il-

    lustrated later.

    A stoichiometric model for bacterial growth and

    lysine production

    The lysine fermentation system is considered, in simpli-

    fied form, to be a reaction producing biomass and ly-

    sine from glucose and ammonia. Elemental mass bal-

    ance considerations pr ovide restrictions for the flows of

    reactants. The de gree o f free dom of the system is deter-

    mined by the numbe r of reactants minus the number of

    mass balance equations (Roels 1983). The reactions

    constituting the cellular metabolism form a network.

    Network relationships provide further restrictions for

    the metabolism, which reduce the degree of freedom of

    the system. In a previous publication (de Hollander

    1991a) it was concluded that the best way to explore

    these restrictions is by expressing the network as a ma-

    trix equation and by employing basic linear algebra

    methods, as has also been done by a number of other

    authors. Following the methodology described earlier,

    the macroscopic flows of the system are divided into

    primary flows and secondar y flows, the latter following

    from the former through elemental mass balance rela-

    tionships. For the lysine fermentation system the flows

    of glucose, biomass and lysine are defined as primary

    flows; flows of oxygen, carbon dioxide and ammonia

    follow from the carbon, nitrogen and degree of reduc-

    tance balance. Metabolic net work restrictions, based on

    a pseudo-steady-state assumption for all intermediates,

    can be used to derive a balance equation for the prima-

    ry external flows. The network expression is obtained

    by filling the rows of a matrix Z with the stoichiometric

    coefficients of the reactions displayed in Fig. 1. In prin-

    ciple only equations for reactions between metabolic

    branch points are included. In most cases these equa-

    tions are lumped equations, involving a few or many

    individual enzymatic steps. For a number of reactions

    alternative expressions are formulated, because of the

    uncertainties discussed earlier. Stoichiometric coeffi-

    cients related to the cellular energy metabolism are not

    known exactly; these coefficients (as well as a few oth-

    ers) are included as parameters.

    The reaction equations are summarized in Table 1.

    A num ber of reactions represent alternatives for the

    metabolism; they have been given the same number

    with a letter for discrimination.

    For lysine biosynthesis four possible equations are

    consider ed. The reacti on in Eq. la in Table 1 is the

  • 7/26/2019 art%3A10.1007%2FBF00173913

    4/8

    511

    o v e ra l l e q u a t i o n fo r t h e s u c c i n y l a s e v a r i a n t o f t h e d i a m -

    i n o p i m e l a t e p a t h wa y , i n c l u d i n g t h e a m m o n i a a s s i m i l a -

    t i o n r e a c t i o n . F o r t h e d e h y d ro g e n a s e v a r i a n t s , s u c c i n y l -

    C o A a n d s u c c i n a t e m u s t b e o m i t t e d ( E q . l c , d ) . W h e n

    a m m o n i a a s s im i l a ti o n o c c u r s v i a t h e e n e r g y - r e q u i r i n g

    g l u t a m i n e s y n t h a s e r e a c ti o n , t h r e e o r t w o A T P i n s t e a d

    o f o n e m u s t b e i n c l u d e d f o r t h e s u c c in y l a se a n d t h e d e -

    h y d ro g e n a s e v a r i a n t s r e s p e c t i v e l y (E q . 1 , d ) . Ac c o rd i n g

    t o t h e m e c h a n i s m p r o p o s e d b y B r o ~ r a n d K r ~im e r

    ( 1 9 9 4 ) t w o p r o t o n s m u s t b e t r a n s l o c a t e d f o r e v e r y l y -

    s i n e m o l e c u l e t h a t i s e x c re t e d . A s t h e e f f i c i e n c y o f e le c -

    t r o n - t r a n s p o r t- d r i v e n p r o t o n t r a n s l o c a ti o n i s n o t

    k n o w n , a p a r a m e t e r a~ i s i n c l u d e d i n e q . 2 t o r e p re s e n t

    t h e e n e r g y c o s t s . A s a d e f a u l t v a l u e a ~ = l w a s a d -

    o p t e d .

    T h e E m b d e n - M e y e r h o f p a t h w a y a n d t h e c y cl ic f o r m

    o f t h e H M P p a t h w a y a r e c o n s i d e r e d t o b e m u t u a l l y e x -

    c l us iv e . T h e l i n e ar H M P p a t h w a y i s c o n s i d e r e d t o c o v e r

    t h e s e q u e n c e f r o m g l u c o s e 6 - p h o s p h a t e t o p h o s p h o e -

    nolpyruvate.

    B e c a u s e f o u r b r a n c h i n g p o i n t s a r e i d e n ti f -

    i e d i n t h e t r i c a rb o x y l i c a c i d p a t h w a y ( s e e F i g . 1 ), t h e

    p a t h w a y i s e x p r e s s e d b y f o u r e q u a t i o n s .

    A c o m p l e t e b u t b r a n c h e d r e s p i r a t o r y c h a in w i t h

    m u l t i p l e o x i d a s e s wa s d e s c r i b e d fo r Brevibacterium fla-

    ru m

    (S h v i n k a e t a l . 1 97 9) . B e c a u s e o f th i s b r a n c h i n g ,

    w i t h s o m e b r a n c h e s b y p a s s i n g p r o t o n t r a n s l o c a t i o n

    c e n t e r s , t h e o v e ra l l P / O r a t i o o f t h e o rg a n i s m i s u n c e r -

    t a i n , b u t w i l l b e l e s s t h e n t h e m a x i m u m v a l u e fo r a

    c o m p l e t e (m i t o c h o n d r i a l - t y p e ) r e s p i r a t o ry c h a i n , as i s

    a l so a p p a r e n t f r o m a r e l a ti v e l y l o w H + / O r a t io f o u n d

    fo r

    Brevibacterium lactofermentum

    (Ka wa h a ra e t a l .

    1 98 8) . T h e P / O r a t io f o r N A D H o x i d a t io n i s t h e r e f o r e

    i n c l u d e d as a p a r a m e t e r . T h e P / O r a t io f o r F A D H o x i-

    d a t i o n w a s a s s u m e d t o b e 2/3 o f t h e P / O r a t i o fo r t h e

    c o m p l e t e r e s p i r a t o r y c h a in .

    B i o m a s s (X) i n e q . 1 4 o f T a b l e 1 i s e x p re s s e d i n C -

    m o l u n i t s , t h e a m o u n t c o n t a i n i n g 1 m o l c a rb o n . T h e

    n u m b e r o f e n e r g y e q u i v a l e n t s r e q u i r e d f o r t h e s y n th e -

    s i s o f 1 m o l C b i o m a s s i s a x , a p a ra m e t e r r e l a t e d t o t h e

    m o r e o f t e n u s e d y i e l d o n A T P : ax=Mx/YATp, w h e r e

    M x i s t h e we i g h t o f a C -m o l b i o m a s s . T h e c o e f f i c i e n t o -

    f o r t h e c a r b o n s o u r c e i n t h i s e q u a t i o n r e s u l t s f r o m t h e

    f a c t t h a t c a r b o n d i o x i d e i s p r o d u c e d i n a n u m b e r o f

    a n a b o l i c r e a c t i o n s ( n o t t o b e c o n f u s e d w i t h c a t a b o l i c

    C O 2 p r o d u c t i o n ) . T h e n u m e r i c a l v a l u e f o r g r o w t h o n

    g l u c o s e i s a b o u t 1 . 1 (B a b e l a n d M t i l l e r 1 9 8 5 ; Go m m e rs

    e t a l . 1 9 8 8 ) . B i o m a s s fo rm a t i o n f ro m g l u c o s e n o rm a l l y

    r e s u l t s i n a s m a l l s u rp l u s o f r e d u c t i o n e q u i v a l e n t s , d e -

    p e n d i n g o n o - a n d t h e d e g r e e o f re d u c t i o n o f b io m a s s

    (rx).

    I n t o t a l , 1 4 m e t a b o l i c r e a c t i o n s h a v e b e e n f o r m u -

    l a t e d , i n v o l v i n g 12 k e y i n t e rm e d i a t e s a n d 3 m a c ro s c o p i c

    s u b s t a n c e s (g l u c o s e , l y s i n e a n d b i o m a s s ) , e x c l u d i n g t h e

    m a c r o s c o p i c s u b s t a n c e s d e f i n e d a s s e c o n d a r y f l o w s .

    T h e m e t a b o l i c n e t w o r k e q u a t i o n i s f o r m u l a t e d a s :

    Z T R m = R 1 )

    wh e re t h e m u l t i p l e o f t h e t r a n s p o s e d (1 4 x 1 5 ) st o i -

    c h i o m e t ry m a t r i x Z a n d t h e (1 4 1) v e c t o r R m wi t h m e -

    t a b o l i c r e a c t i o n r a t e s fo rm s a (1 5 x 1 ) v e c t o r R w i t h

    f l o ws o f e x t e rn a l s u b s t a n c e s a n d i n t e rm e d i a t e s . A s a

    c o n s e q u e n c e o f th e p s e u d o s t e a d y s t a te h y p o t h e s i s ( c e l-

    l u la r c o n c e n t r a t i o n s o f i n t e rm e d i a t e s a r e a p p r o x i m a t e l y

    c o n s t a n t ) , t h e v e c t o r R c o n t a i n s a n u m b e r o f z e ro s ,

    w h i c h a l l o w s t h e e v a l u a t i o n o f a m e t a b o l i c b a l a n c e

    e q u a t i o n f o r t h e e x t e r n a l f l o w s. T h e m e t h o d u s e d f o r

    t h i s b a l a n c e e v a l u a t i o n i s r e l a t e d b u t n o t i d e n t i c a l t o a

    p r e v i o u s l y d e s c r i b e d m e t h o d ( d e H o l l a n d e r 1 9 9 1 a ) a n d

    m e t h o d s p u b l i s h e d b y o t h e r s ( P a p o u t s a k i s a n d M e y e r

    1 9 8 5 ; T s a i a n d L e e 1 9 8 8 ) . T h e l a t t e r a u t h o r s d i d n o t

    e v a l u a t e a m e t a b o l i c b a l a n c e e q u a t i o n , h o w e v e r . H e r e

    t h e p ro c e d u re i s d e s c r i b e d b r i e f l y i n g e n e ra l t e rm s . L e t

    t h e d i m e n s i o n s o f t h e m e t a b o l i c s y s t e m b e a s f o l lo w s : m

    re a c t i o n e q u a t i o n s w i t h n b i o c h e m i c a l s p e c i e s ; t h e n u m -

    b e r o f c o n s e r v e d s p e c i es ( m e t a b o l i c k e y i n t e r m e d i a t e s )

    i s k , wh ich leave s l = n - k n o n - c o n s e r v e d s p e c i e s o r m a -

    c ro s c o p i c s u b s t a n c e s . T h e n t h e fo l l o wi n g p a r t i t i o n i n g o f

    t h e n e t wo rk e q u a t i o n (E q . 1 ) i s p o s s i b l e :

    Zl l Z12

    l + n - m ) x l l + n - m ) x m - l )

    Z21 Z22

    (m - l) l (m - l) (m - l)

    R m l

    I x 1

    Rm2

    m - l ) x i

    : :

    2 )

    w h i c h c a n b e w o r k e d o u t t o :

    Z R m l = R 1 , w ith Z - - Z l l - Z 1 2 Z ~ l Z 2 1 3 )

    C a r e s h o u l d b e t a k e n t h a t, b y a p p r o p r i a t e a r r a n g e-

    m e n t o f ro ws a n d c o l u m n s , m a t r i x Z 2 2 i s n o n - s i n g u l a r ,

    o t h e rw i s e t h e e v a l u a t i o n o f E q . 3 w i ll fa i l. W h e n n > m

    ( i. e. t h e m e t a b o l i c s y s t e m i s o v e r -d e t e r m i n e d ) , t h e v e c -

    t o r R 1 s t i l l c o n t a i n s a t l e a s t o n e z e ro e l e m e n t , s o t h e

    m a t r i x e q u a t i o n c a n a g a i n b e p a r t i t i o n e d :

    Z l t m l = t e l 4 )

    wh e re Z 1 is a l l s u b m a t r i x r e l a t e d t o e x t e rn a l f l o ws

    o n l y , a n d R e 1 i s t h e v e c t o r w i t h p r i m a ry e x t e rn a l f l o ws .

    T h e v e c t o r w i t h m e t a b o l i c r e a c t i o n r a t e s t m l c a n b e

    e l i m i n a t e d f ro m t h i s e q u a t i o n , r e s u l t i n g i n a b a l a n c e

    e q u a t i o n f o r t h e p r i m a r y e x t e r n a l f l ow s :

    Z 3 R ~ I = 0 , w i th Z 3 = Z 2 Z ~ - 1 ( 5)

    F o r t h e c a s e o f t h e ly s in e f e r m e n t a t i o n ( t h r e e p r i m a -

    ry e x t e rn a l f l o ws ) , E q . 5 c a n a l s o b e wr i t t e n a s :

    Z i R s b g 2 R x - l -. ~ 3 N p = O ,

    o r Rs=l /YxsRx+l /YpsRp

    (6)

    wh i c h i s t h e f a m i l i a r l i n e a r e q u a t i o n r e l a t i n g t h e c a r -

    b o n s o u r c e c o n s u m p t i o n r a t e ( R s) w i th t h e r a t e o f b i o -

    m a s s f o r m a t i o n ( R x) a n d t h e r a t e o f p r o d u c t f o r m a t i o n

    (Rp) .

    T h e y i e ld p a r a m e t e r s f o l l o w f r o m t h e b a l a n c e

    e q u a t i o n c o e f f i c i e n t s

    as:

    Y x s = - g l / g 2 a n d Y p s = - g l / Z 3 .

    T h e p a r a m e t e r Yps i s t h e d i f f e r e n t i a l c a rb o n u t i li z a t i o n

    e f f i c i e n c y o f l y s in e p ro d u c t i o n ( t h e n e t l y s i n e y i e l d ). I t

    s h o u l d b e n o t e d , h o w e v e r , t h a t th i s p a r a m e t e r d o e s n o t

    i n d i c a t e t h e m a x i m u m p o s s i b l e c o n v e r s i o n e f f i c i e n c y ,

    w h i c h c a n b e r e a c h e d w h e n n o b i o m a s s f o r m a t i o n t a k e s

  • 7/26/2019 art%3A10.1007%2FBF00173913

    5/8

    512

    Table 2 Differential a nd maximum overall lysine yields for a numb er of variants of C glutamicum metabolism

    An aplero tic reaction N AD PH generation Limiting Yps

    pathway (mol/mol)

    Linear Cyclic ICD H a

    H M P H M P

    Y ~

    (mol/mol)

    Phosphoenolpyruvate carboxylase

    Glyoxylate pathway

    + - - EM 0.778 0.333

    + - + EM 0.777 0.468

    + + - TC A 0.774 0.727

    + - - EM 0.712 0.353

    + - + EM 0.706 0.382

    + + - TC A 0.709 0.412

    a Isocitrate dehyd rogenase

    p l a c e . I t w a s a r g u e d t h a t t h e m e t a b o l i c r e a c t i o n s i n -

    v o l v e d i n l y si n e p r o d u c t i o n a r e i n t e r l i n k e d w i t h t h e

    g e n e r a l m e t a b o l i s m a n d l y s in e p r o d u c t i o n c a n n o t t o t a l -

    l y b e u n c o u p l e d f r o m b i o m a s s f o r m a t i o n , u n l e s s a n -

    o t h e r w a y o f h y d r o l y z i n g o f A T P is in t r o d u c e d . C a l c u -

    l a t e d v a l u e s f o r Y p s a r e i n c l u d e d i n T a b l e 2 .

    C a l c u l a t i o n o f in t e r m e d i a r y r e a c t i o n r a t e s a n d

    m a x i m u m l y s in e y ie l d s

    T h e m e t a b o l i c n e t w o r k e q u a t i o n ( E q . 1 ) c a n b e s o l v e d

    f o r t h e i n t e r n a l r e a c t i o n r a t e s v e c t o r w h e n v a l u e s f o r

    t h e p r i m a r y e x t e r n a l f l ow s a r e k n o w n . A s t h e s y s t e m i s

    o v e r - d e t e r m i n e d b y o n e e q u a t i o n , f l o w s f o r g lu c o s e

    a n d l y s i n e a r e s u f f i c ie n t to d o t h is . T h e s y s t e m w a s

    s o l v e d f o r a ra n g e o f v a lu e s f o r t h e a p p a r e n t ( o v e r a ll )

    l y s i n e y i e l d c o e f f i c i e n t Y p s, w h i c h i s t h e f l u x r a t i o

    R p /

    R s. F o r t h e b i o e n e r g e t i c p a r a m e t e r s a s e t o f r e a s o n a b l e

    v a l u e s w a s a s s u m e d : t h e e f f i c i e n c y o f o x i d a t i v e p h o s -

    p h o r y l a t i o n ( P / O r a t i o ) i s 1 . 5 , t h e b i o e n e r g e t i c g r o w t h

    y i e l d Y A T P = 1 0 g / m o 1 A T P , a n d t h e e n e r g y c o s t s o f l y -

    s i ne e x c r e t i o n a l = 1 m o l A T P / m o l l y si n e . T h e s e v a l u e s

    r e s u l t i n a b i o m a s s y i e l d o n g l u c o s e o f 0 .5 0 g / m o l w h e n

    n o l y s i n e p r o d u c t i o n t a k e s p l a c e , w h i c h c o r r e s p o n d s t o

    v a l u e s n o r m a l l y f o u n d f o r h e t e r o t r o p h i c f u l l y r e s p i r a to -

    r y m i c r o o r g a n i s m . M e t a b o l i c f l u x e s as a f u n c t i o n o f

    ~ p s

    w e r e c a l c u l a t e d f o r v a r i o u s s e t s o f a l t e r n a t i v e r e a c t i o n s

    t a k e n f r o m T a b l e 1 . T h e b a s ic s e t o f e q u a t i o n s i n c l u d es

    t h e a l te r n a t i v e s i n d i c a t e d w i t h t h e l e tt e r a a d d e d t o

    t h e i r r e a c t i o n n u m b e r .

    F i g u r e 2 s h o w s t h e r e s u l t o f t h e m e t a b o l i c f l u x c a l c u -

    l a t i o n f o r a n u m b e r o f r e l e v a n t r e a c t i o n s f o r t h e b a s ic

    s e t o f e q u a t i o n s . F l u x e s a r e e x p r e s s e d i n m o l / h r e l a t i v e

    t o t h e g l u c o s e f l u x , a n d a r e a l l l i n e a r f u n c t i o n s o f Y p s.

    I t c a n b e s e e n th a t t h e f lu x t h r o u g h t h e H M P p a t h w a y

    i n c r e a s e s w i t h t h e l y s i n e y i e l d , r e s p o n d i n g t o t h e i n -

    c r e a s e d n e e d f o r r e d u c t i o n e q u i v a l e n t s i n t h e f o r m o f

    N A D P H , w h i le s i m u l ta n e o u s ly t h e f lu x th r o u g h t h e

    E m b d e n - M e y e r h o f p a t h w a y d e c r e as e s. T h i s c o r re l a t io n

    b e t w e e n t h e f lu x t h r o u g h t h e H M P p a t h w a y a n d l y si n e

    p r o d u c t i o n w a s s h o w n t o e x i s t e x p e r i m e n t a l l y b y Is h i n o

    e t a l. ( 1 9 9 1) , u s in g a 1 3 C - N M R s t u d y . A t r e l a t i v e l y h i g h

    v a l u e s o f

    ~ p s

    t h e s t o i c h i o m e t r i c m o d e l e v e n p r e d i c t s a

    X

    k ~

    1 ,5

    1 .0

    0 . 5

    0 . 0

    - 0 . 5

    - 1 . 0

    4

    0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7

    L y s i n e y i e l d M o l / M o l )

    F/g. 2 Me tabolic fluxes for a range of overall lysine yields, calcu-

    lated for the basic set of reactions from Table 1. Fluxes are ex-

    pressed in mo l/h, relative to the glucose flux. Th e dark area of the

    bar indicates the region of physiologically possible f luxes. 1

    Em bden-M eyerhof pathway, 2 hexose monophosphate pathway,

    3 citrate synthase, 4 succinyl-CoA synthase. Further details: see

    text

    r e v e rs i o n o f t h e f lu x t h ro u g h t h e E m b d e n - M e y e r h o f

    p a t h w a y ( i. e. g lu c o s e 6 - p h o s p h a t e is p r o d u c e d f r o m

    P - p y r u v a t e ) . T h i s i s a s i t u a t i o n w h e r e m o r e A T P i s

    g e n e r a t e d i n l y s i n e b i o s y n t h e s i s t h a n c a n b e u s e d i n

    b i o m a s s f o r m a t i o n . P h y s i o l o g i c a l l y s u c h a c o n d i t i o n i s

    i m p o s s i b l e , b e c a u s e t h e p h o s p h o f r u c t o k i n a s e r e a c t i o n

    i n t h e E m b d e n - M e y e r h o f p a t h w a y is i rr e ve r si b le . T h e

    p o i n t w h e r e t h e f l u x t h r o u g h t h i s p a t h w a y b e c o m e s

    z e r o r e p r e s e n t s , t h e r e f o r e , t h e m a x i m u m p o s s i b l e o v e r -

    a ll y i e l d fo r l y s in e f o r m a t i o n u n d e r t h e a s s u m p t i o n t h a t

    t h e b a s i c s e t o f m e t a b o l i c r e a c t i o n e q u a t i o n s i s v a l id .

    T h e m a x i m u m y i e ld ( 0. 33 m o l / m o l ) , m i g h t b e e v e n l o w -

    e r in p r a c ti c e , b e c a u s e i n t h e m o d e l n o N A D P H u t il iz a -

  • 7/26/2019 art%3A10.1007%2FBF00173913

    6/8

    1.5

    1.0

    2

    513

    1 . 0

    0 . 5

    X

    m

    ll

    ~

    0

    r~

    0 5 -

    0 . 0

    X

    0

    0 . 0

    - 0 . 5

    _ 1 . 0 1 1

    0 . 0 0 .1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7

    L y s i n e y i e l d M o l / / M o l )

    Fig. 3 Variation on Fig. 2: isocitrate dehydrogenase s NADP-de-

    pendent. 1 Embden-Meyerhofpathway,2 hexose monophosphate

    pathway, 3 citrate synthase, 4 succinyl-CoAsynthase. Further de-

    tails: see text

    - 0 . 5

    - 1 . 0

    0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7

    L y s i n e y i e ld M o l / M o l )

    Fig. 4 Variation on Fig. 2:glucose catabolism proceeds exclusive-

    ly through the linear and cyclicvariants of the hexose monophos-

    phate (HMP) pathway. 1 cyclic HMP pathway, 2 linear HMP

    pathway, 3 citrate synthase,4 succinyl-CoAsynthase. Further de-

    tails: see text

    tion in biomass formation was assumed and, further-

    more, it can be expected that metabolic problems will

    occur when the flux through the Embden-Meyerhof

    pathway is low but still not zero.

    The dotted lines in Fig. 2 represent the flux through

    the Embden- Meyerho f pathway calculated for two var-

    iants of the basic set: the dehydrogenase variant of the

    lysine biosynthesis pathway, which causes the line to

    pass through zero at a lower value of

    Y ps,

    and the case

    where ammonia is assimilated via the glutamine syn-

    thase reaction, which shifts the limiting situation to a

    higher Y ps value. Both variations on the basic set have

    quantitatively irrelevant effects, and they will not be

    discussed further.

    The effect of cofactor preference of isocitrate dehy-

    drogenase is shown in Fig. 3, which shows int ernal

    fluxes assuming that isocitrate dehydrogenase exclu-

    sively uses NAD P as cofactor. The general characteris-

    tics remain the same, the critical yield being shifted to a

    higher value. It can be seen that at low lysine yields

    there is a surplus of NADPH formation, causing a re-

    version of the HMP pathway, which is of course physi-

    ologically impossible. It is also interesting to note the

    reversion of the succinyl-CoA synthase reaction

    at Y ps

    values just below the maximum. Physiologically this

    presents no problem because the reaction is reversible.

    Finally, in Fig. 4 the hypothetica l occurrence of a cyclic

    HMP pathway together with its linear variant is shown.

    Only at high lysine yields is the NADPH requirement

    large enough to cause a positive flux through the HMP

    cycle. In this case the lysine yield will be limited by the

    flux through the (irreversible) citrate synthase reaction,

    which is calculated to become negative at very high

    overall lysine yields.

    Maximum possible overall yields for various meta-

    bolic set-ups can be calculated by fixing the flux

    through the critical reaction step (Embden-Meyerhof

    pathway or citrate synthase) on a zero value, which de-

    creases the degree of freedom of the system with one.

    The matrix Z3 in the metabolic balance equation

    (Eq. 5) then has the dimensions 2 x 3

    n-m

    = 2), which

    allows the calculation of the fluxes R~ and

    Rp

    for a giv-

    en value of Rs, resulting in fixed values for Y ps and

    Y xs. Table 2 shows the results for a number of meta-

    bolic variants. The table also contains values for the dif-

    ferential yields corrected for glucose utilization for

    growth (Yps

    in Eq. 6).

    The data in Table 2 are dependent on assumptions

    about the bioenergetic parameters, Y TPand the P/O

    ratio. It is therefore interesting to evaluate the effect of

    variation of these parameters on the maximum possible

    overall yield. This is done in Fig. 5 for the second meta-

    bolic variant of Table 2. As could be expected, the fig-

    ure shows that a low bioenergetic efficiency (either a

    low P/O ratio or a low YATP s beneficial for the maxi-

    mum possible overall lysine yield.

  • 7/26/2019 art%3A10.1007%2FBF00173913

    7/8

    514

    3 0 0

    2 2 5

    I 5 0

    0

    0 7 5

    0 0 0

    5 0

    7 5 1 0 0 1 2 5 1 5 0

    Y a t p

    Fig. 5 Contour lines for maximum possible overall lysine yields

    as function of the efficiencyof oxidative phosphorylation

    P/O

    ratio) and the efficiencyof gro~vth (YATe)

    iscussion

    The differential yield of lysine on glucose appears to be

    hardly influenced by the type of metabolism that is

    used (Table 2). On first sight this seems surprising:

    when the lysine biosynthesis reaction is considered in

    isolation from the cellular metabolism, a yield of 1.0 is

    calculated when oxaloacetate is formed through car-

    boxylation of P-pyruva te, in comparison with a theore-

    tical yield of 0.67 when the glyoxylate pathway is used

    for this purpose. However, this difference in yield be-

    comes much less when proper account is taken of the

    substrate used for NADPH generation and the ATP

    formed in the oxidation of excess NADH, using a meta-

    bolic network equation of the form of Eq. 1. The differ-

    ential yield of 0.78 mol/mol, calculated in case of the

    P-pyruvate carboxylase reaction, is higher than the val-

    ue of 0.69 mol/mol ment ioned in a study by Shvinka et

    al. (1980). The difference can be explained by the fact

    that these authors did not address the net energy pro-

    duction in lysine biosynthesis, resulting in a saving in

    the amount of glucose used for catabolic purposes.

    The maximum conversion yield of lysine production

    from glucose (when the lysine biosynthesis pathway

    genes are sufficiently expressed) is shown to be limited

    by over-production of energy, which causes the flux

    through the glucose catabolic pathway to become zero.

    This finding illustrates the value of metabolic flux anal-

    ysis, not only for the assessment of the requ ired in vivo

    activities of auxiliary pathways, but also as a tool to

    identify limitation by reaction sequences that can not

    run in a reverse direction. The estimated maximum

    yield for at least a number of the metabolic variants

    that were studied is lower than the highest yields for

    lysine formation as reported in the literature. Appar-

    ently, industrial strains use other pathways, or escape

    mechanisms have been introduced during the process

    of strain improvement (haphazardly or purposely). The

    maximum lysine yield is quite sensitive to the way the

    organism generates NADPH. When the hexose mono-

    phosphat e rou te is the only possibility, a low maximum

    yield of 0.33 mol/mol is calculated. Isocitrate dehydro-

    genase generally occurs in two forms, a NAD-depend-

    ent form and a NADP-dependent form. Normally it is

    assumed that the isocitrate dehydrogenase reaction

    uses NADP as a cofactor. However, if this were the

    case an over-production of NADPH would result at

    low lysine yields (Y ps

  • 7/26/2019 art%3A10.1007%2FBF00173913

    8/8

    515

    G o m m e r s P J F , V a n S c h i e B J , V a n D i j k e n J P , K u e n e n J G 1 9 88 )

    B i o c h e m i c a l l i m i ts t o m i c r o b i a l g r o w t h y i e l d s : a n a n a l y s is o f

    m i x e d s u b s t r a t e u t i l iz a t i o n . B i o t e c h n o l B i o e n g 3 2 : 8 6 - 9 4

    H i r a o T , N a k a n o T , A z u m T , S i g i m o t o M , N a k a n i s h i T 1 9 89 )

    L y s i n e p r o d u c t i o n i n c o n t i n u o u s c u l t u r e o f a n L - l y s i n e h y p e r -

    p r o d u c i n g m u t a n t o f

    Corynebacterium glutamicum.

    A p p l M i -

    c r o b i o l B i o t e c h n o l 3 2 : 2 6 9 -2 7 3

    H o l l a n d e r J A d e 1 9 9 1 a ) T h e u s e o f s t o ic h i o m e t r i c r e l a t i o n s f o r

    t h e d e s c r i p t i o n a n d a n a l y s i s o f m i c r o b i a l c u lt u r e s . A n t o n i e v a n

    L e e u w e n h o e k 6 0 : 2 5 7 - 27 3

    H o l l a n d e r J A d e 1 9 91 b ) A p p l i c a t i o n o f a m e t a b o l ic b al a n c in g

    t e c h n i q u e t o t h e a n a l y s i s o f m i c r o b i a l f e r m e n t a t i o n d a t a . A n -

    t o n i e v a n L e e u w e n h o e k 6 0 : 2 75 - 2 9 2

    I s h i n o S , S h i m o m u r a - n i s h i m u t a J , Y a m a g u c h i K , S h i r a h a t a K ,

    A r a k i K 1 9 91 ) ~ 3C n u c l e a r m a g n e t i c r e s o n a n c e s t u d i e s o f g lu -

    c o s e m e t a b o l i s m i n L - g l u t a m i c a c i d a n d L - l y s i n e f e r m e n t a t i o n

    b y Corynebacterium glutamicum. J G e n A p p l M i c r o b i o l

    37 : 157-165

    K a w a h a r a Y , T a n a k a T , I k e d a S , S o n e N 1 9 88 ) C o u p l i n g s it e s o f

    t h e r e s p i r a t o r y c h a i n o f Brevibacterium lactofermentum.A g r i c

    B i o l C h e m 5 2 : 1 9 7 9 - 1 9 8 3

    K i n o s h i t a S 1 9 85 ) G l u t a m i c a c id b a c t e r i a . In : D e m a i n A L a n d

    S o l o m o n N A e d s ) B i o l o g y o f in d u s t r i a l m i c r o o r g a n i s m s .

    B e n j a m i n / C u m m i n g s , L o n d o n , p p 1 1 5 - 1 4 2

    K i s s R D , S t e p h a n o p o u l o s G 1 9 92 ) M e t a b o l i c c h a r a c t e r i z a t i o n o f

    a L - l y s i n e - p r o d u c i n g s tr a i n b y c o n t i n u o u s c u l t u re . B i o t e c h n o l

    B i o e n g 3 9 : 5 6 5 - 5 7 4

    K r f i m e r R 1 9 94 ) S e c r e t i o n o f a m i n o a c i d s b y b a c t e r i a : p h y s i o l o g y

    a n d m e c h a n i sm . F E M S M i c r o b i o l R e v 1 3 : 7 5 -9 4

    L i n t o n J D 1 9 90 ) T h e r e l a ti o n s h i p b e t w e e n m e t a b o t i t e p r o d u c -

    t i o n a n d t h e g r o w t h e f f i c ie n c y o f t h e p r o d u c i n g o r g a n i s m .

    F E M S M i c r o b io l R e v 7 5 : 1 - 1 8

    M a l i n G M , B o u r d G I 1 9 91 ) P h o s p h o t r a n s f e r a s e - d e p e n d e n t g l u -

    c o s e t r a n s p o r t i n

    Corynebacterium glutamicum.

    J A p p l B a c t e -

    r i o l 7 1 : 5 1 7 - 5 2 3

    M i c h a l s k i H J , K r z y s t e k L , B l a s z c z y k R , J a m r o z T , W i e c z o r e k A

    1 9 84 ) T h e e f f e c t o f m e a n r e s i d e n c e t i m e a n d a e r a t i o n i n t e n s i -

    t y o n t h e L - l y s i n e p r o d u c t i o n i n a c o n t i n u o u s s y s t e m . P r o c e e d -

    i n g s o f th e T h i r d E u r o p e a n C o n g r e s s o n B i o t e c h n o l o g y v o l 2.

    V e r l a g C h e m i e , W e i n h e i m , p p 5 2 7 - 5 3 2

    M or i M, Sh i io I 1987)

    Phosphoenolpyruvate:

    s u g a r p h o s p h o -

    t r a n s f e r a s e s y s t e m s a n d s u g a r m e t a b o l i s m i n Brevibacterium

    flavum. A g r i c B i o l C h e m 5 1 : 2 6 7 1 - 2 6 7 8

    N a k a y a m a K 1 9 85 ) L y s i n e . I n : M o o - Y o u n g M e d ) C o m p r e h e n -

    s i ve b i o t e c h n o l o g y , v o l 1. P e r g a m o n , N e w Y o r k , p p 6 0 5 - 6 1 6

    N e i s h t a d t - A b r a m o v i c h S R , S i n e o k a y a I V , K r i ll o v a N M , S i ts e v a

    Z M , A s t a u r o v a O B 1 9 90 ) A m m o n i u m a s s i m i l a t i o n i n a l y -

    s i n e - p r o d u c i n g

    Brevibacterium

    s p e c i e s . B i o t e k h n o l o g i y a

    6 : 8 - 1 1

    O h N S , S e r n e t z M 1 9 93 ) T u r n o v e r c h a r a c t e r i st i c s i n c o n t in u o u s

    L - l y s i n e f e r m e n t a t i o n . A p p t M i c r o b i o l B i o t e c h n o l

    3 9 : 6 9 1 - 6 9 5

    P a p o u t s a k i s E T , M e y e r C L 1 9 85 ) E q u a t i o n s a n d c a l c u l a t io n s o f

    p r o d u c t y i e l d s a n d p r e f e r r e d p a t h w a y s f o r b u t a n e d i o l a n d

    m i x e d - a c i d fe r m e n t a t i o n s . B i o t e c h n o l B i o e n g 2 7 : 5 0 - 6 6

    P e t e r s -W e n d i s c h P G , E i k m a n n s B J , T h i e r b a ch G , B a c h m a n n B ,

    Sahm H 1993) Phosphoenolpyruvate c a r b o x y l a s e i n Coryne

    bacterium gIutamicum i s d i s p e n s a b l e fo r g r o w t h a n d l y s i n e

    p r o d u c t i o n . F e r n s M i c r o b i o l L e t t 1 1 2 : 2 6 9 - 2 7 4

    R o e l s J A 1 9 83 ) E n e r g e t i c a n d k i n e t i c s i n b i o t e c h n o l o g y . E l s e -

    v i e r, A m s t e r d a m

    R u k l i s h a M P , M a r a u s k a M F , V i e s t u r s U E 1 9 78 ) R e g u l a t i o n o f

    e n z y m e s o f g l u c o s e a n d a c e t i c a c i d m e t a b o l i s m b y l y s i n e p r o -

    d u c e r Brevibacterium flavum. M i c r o b i o l o g y E n g l T r a n s l M i -

    krob io log iya ) 47 : 992-996

    S a n o K , I t o K , M i w a K , N a k a m o r i S 1 9 87 ) A m p l i f i c a t i o n o f t h e

    p h o s p h o e n o l p y r u v a t e c a r b o x y l a s e ge n e o f Brevibacterium lac

    tofermentum t o i m p r o v e a m i n o a c i d p r o d u c t i o n . A g r i c B i o l

    C h e m 5 1 : 5 9 7 - 5 9 9

    S h v i n k a Y E , V i e s t u r U E , T o m a M K 1 97 9) A l t e r n a t i v e p a t h w a y s

    o f o x i d a t i o n i n t h e r e s p i r a t o r y c h a i n o f Brevibacterium lavum.

    M i c r o b i o l o g y E n g l T r a n s l M i k r o b i o l o g i y a ) 4 8 : 1 0 - 1 6

    S h v i n k a J , V i e s t u r s U , R u k l i s h a M 1 9 80 ) Y i e l d r e g u l a t i o n o f ly -

    s i n e b i o s y n t h e s i s i n Brevibacterium lavum. B i o t e c h n o l B i o e n g

    22 : 897-912

    S o n n t a g K , E g g e l i n g L , D e G r a a f A A , S a h m H 1 9 93 ) F l u x p a r t i -

    t i o n i n g i n t h e s p l i t p a t h w a y o f l y s i n e s y n t h es i s i n Corynebac

    terium glutamicum.

    Q u a n t i f i c a t i o n b y 1 3 C -N M R a n d 1 H - N M R

    spec t roscop y . Eu r J B io chem 213 : 1325-1331

    S t e p h a n o p o u l o s G , S i n s k e y A J 1 9 93 ) M e t a b o l i c e n g i n e e r i n g -

    m e t h o d o l o g i e s a n d f u t u r e p r o s p e c t s . T r e n d s B i o t e c h n o l

    1 1 : 3 9 2 - 3 9 6

    T s a i S P, L e e Y H 1 9 88 ). A p p l i c a t i o n o f m e t a b o l i c p a t h w a y s t o i-

    c h i o m e t r y t o s t a t i s t i c a l a n a l y s i s o f b i o r e a c t o r m e a s u r e m e n t

    d a t a . B i o t e c h n o l B i o e n g 3 2 : 7 1 3 - 7 1 5

    T o s a k a O , E n e i H , H i r o s e Y 1 9 83 ) T h e p r o d u c t i o n o f L - ly s i n e b y

    f e r m e n t a t i o n . T r e n d s B i o t e c h n o l 3 : 7 0 - 7 4

    Val l ino JJ S t e p h a n o p o u l o s G 1 9 93 ) M e t a b o l i c f l u x d i s t r i b u t i o n s

    in Corynebacterium glutamicum d u r i n g g r o w t h a n d l y s i n e

    o v e r p r o d u c t i o n . B i o t e c h n o l B i o e n g 4 1 : 6 3 3 - 6 46