artificial neural network applications on remotely sensed imagery kaushik das, qin ding, william...

22
Artificial Neural Network Applications on Remotely Sensed Imagery Kaushik Das, Qin Ding, William Perrizo North Dakota State University [email protected] , [email protected] , [email protected]

Upload: elisabeth-allison

Post on 11-Jan-2016

228 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Artificial Neural Network Applications on Remotely Sensed Imagery Kaushik Das, Qin Ding, William Perrizo North Dakota State University kdas@globespan.com,

Artificial Neural Network Applications on Remotely Sensed

Imagery

Kaushik Das, Qin Ding, William PerrizoNorth Dakota State University

[email protected], [email protected], [email protected]

Page 2: Artificial Neural Network Applications on Remotely Sensed Imagery Kaushik Das, Qin Ding, William Perrizo North Dakota State University kdas@globespan.com,

Remotely Sensed Image (RSI) data

• Satellite image / aerial photography– Landsat scenes covers 180 by 180 kilometers.

• One scene for every place on earth every 18 days• Nearly a petabyte of data.• Valuable for precision agriculture.

– A aerial photograph may cover a particular field (e.g., 800 by 800 meters).

• Non-satellite imagery– Soil moisture – Nitrate concentration– Yield maps

Page 3: Artificial Neural Network Applications on Remotely Sensed Imagery Kaushik Das, Qin Ding, William Perrizo North Dakota State University kdas@globespan.com,

Spatial Data

• Pixel – a point in a space• Band – feature attribute of the pixels• Value – we will assume all are one byte (0~255)• Images have different numbers of bands

– TM4/5: 7 bands (B, G, R, NIR, MIR, TIR, MIR2)– TM7: 8 bands (B, G, R, NIR, MIR, TIR, MIR2, PC)– TIFF: 3 bands (B, G, R)– Ground data: individual bands (Yield, Moisture, Nitrate

level, Temperature, elevation…)

Page 4: Artificial Neural Network Applications on Remotely Sensed Imagery Kaushik Das, Qin Ding, William Perrizo North Dakota State University kdas@globespan.com,

Spatial dataset example

TIFF image Yield Map

Spatial dataset can be viewed as collection of pixels, each having a value for each feature attribute

For example, the spatial dataset above has 320 rows and 320 columns of pixels (102,400 pixels) and 4 feature attributes (B,G,R,Y). The (B,G,R)

feature bands are in the TIFF image and the Y feature is color coded in the Yield Map.

Page 5: Artificial Neural Network Applications on Remotely Sensed Imagery Kaushik Das, Qin Ding, William Perrizo North Dakota State University kdas@globespan.com,

Spatial Data Formats

• Existing formats– BSQ (Band Sequential) – BIL (Band Interleaved by Line) – BIP (Band Interleaved by Pixel)

• New format– bSQ (bit Sequential)

Page 6: Artificial Neural Network Applications on Remotely Sensed Imagery Kaushik Das, Qin Ding, William Perrizo North Dakota State University kdas@globespan.com,

Spatial Data Formats (Cont.)BAND-1

254 127 (1111 1110) (0111 1111)

14 193 (0000 1110) (1100 0001)

BAND-237 240(0010 0101) (1111 0000)

200 19(1100 1000) (0001 0011)

BSQ format (2 files)

Band 1: 254 127 14 193 Band 2: 37 240 200 19

Page 7: Artificial Neural Network Applications on Remotely Sensed Imagery Kaushik Das, Qin Ding, William Perrizo North Dakota State University kdas@globespan.com,

Spatial Data Formats (Cont.)BAND-1

254 127 (1111 1110) (0111 1111)

14 193 (0000 1110) (1100 0001)

BAND-237 240(0010 0101) (1111 0000)

200 19(1100 1000) (0001 0011)

BSQ format (2 files)

Band 1: 254 127 14 193 Band 2: 37 240 200 19

BIL format (1 file)

254 127 37 240 14 193 200 19

Page 8: Artificial Neural Network Applications on Remotely Sensed Imagery Kaushik Das, Qin Ding, William Perrizo North Dakota State University kdas@globespan.com,

Spatial Data Formats (Cont.)BAND-1

254 127 (1111 1110) (0111 1111)

14 193 (0000 1110) (1100 0001)

BAND-237 240(0010 0101) (1111 0000)

200 19(1100 1000) (0001 0011)

BSQ format (2 files)

Band 1: 254 127 14 193 Band 2: 37 240 200 19

BIL format (1 file)

254 127 37 240 14 193 200 19

BIP format (1 file)

254 37 127 240 14 200 193 19

Page 9: Artificial Neural Network Applications on Remotely Sensed Imagery Kaushik Das, Qin Ding, William Perrizo North Dakota State University kdas@globespan.com,

Spatial Data Formats (Cont.)BAND-1

254 127 (1111 1110) (0111 1111)

14 193 (0000 1110) (1100 0001)

BAND-237 240(0010 0101) (1111 0000)

200 19(1100 1000) (0001 0011)

BSQ format (2 files)

Band 1: 254 127 14 193 Band 2: 37 240 200 19

BIL format (1 file)

254 127 37 240 14 193 200 19

BIP format (1 file)

254 37 127 240 14 200 193 19

bSQ format (16 files)B11 B12 B13 B14 B15 B16 B17 B18 B21 B22 B23 B24 B25 B26 B27 B28 1 1 1 1 1 1 1 0 0 0 1 0 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0 1 0 0 0 1 1 0 0 0 0 0 1 0 0 0 1 0 0 1 1

Page 10: Artificial Neural Network Applications on Remotely Sensed Imagery Kaushik Das, Qin Ding, William Perrizo North Dakota State University kdas@globespan.com,

bSQ Format

• Split each band into eight separate files, one for each bit position.

• Reasons for using bSQ format– Different bits contribute to the value differently.

– bSQ format facilitates the representation of a precision hierarchy (from 1 bit up to 8 bit precision).

– bSQ format facilitates the creation of an efficient data mining-ready data structure, Peano-Count-tree (Ptree).

Page 11: Artificial Neural Network Applications on Remotely Sensed Imagery Kaushik Das, Qin Ding, William Perrizo North Dakota State University kdas@globespan.com,

The “tabular” formats (inverted list)• BSQ and bSQ are “tabular” formats

– BSQ consist of a separate table for each feature band

– bSQ consist of a separate table for each bit of each band

• One can view it this way:– The data set is initially one table, R(K1,..,Kk, A1, A2, …, An) where

K1,..,Kk are structure attributes and each Ai is a feature attribute.• The structure attributes of a 2-D spatial dataset are the X and Y coordinates

of the pixels (rows).

• The feature attributes are the bands, B,G,R, NIR, …

• In BSQ we separate each feature into a separate file and suppress the structure attributes altogether (under the assumption that the pixels are always arranged in raster order.

• In bSQ we separate each bit of each feature into a separate file (same raster order assumption)

Page 12: Artificial Neural Network Applications on Remotely Sensed Imagery Kaushik Das, Qin Ding, William Perrizo North Dakota State University kdas@globespan.com,

Peano Count Tree (P-tree)

• P-tree represents spatial bSQ data bit-by-bit in a recursive quadrant-by-quadrant arrangement.

• An P-tree is a lossless representation of the original data.

• A P-tree is a compressed structure.

• A P-tree is “count pre-computed”.

Page 13: Artificial Neural Network Applications on Remotely Sensed Imagery Kaushik Das, Qin Ding, William Perrizo North Dakota State University kdas@globespan.com,

An example of Ptree

• Peano or Z-ordering• Pure (Pure-1/Pure-0) quadrant• Root Count

Level Fan-out QID (Quadrant ID)

1 1 1 1 1 1 0 01 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1

55

16 8 15 16

3 0 4 1 4 4 3 4

1 1 1 0 0 0 1 0 1 1 0 1

16 16

55

0 4 4 4 4

158

1 1 1 0

3

0 0 1 0

1

1 1

3

0 1

Page 14: Artificial Neural Network Applications on Remotely Sensed Imagery Kaushik Das, Qin Ding, William Perrizo North Dakota State University kdas@globespan.com,

55

16 8 15 16

3 0 4 1 4 4 3 4

1 1 1 0 0 0 1 0 1 1 0 1

Ptree features

• Peano or Z-ordering• Pure (Pure-1/Pure-0) quadrant• Root Count

Level Fan-out QID (Quadrant ID)

1 1 1 1 1 1 0 01 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1

0 1 2 3

111

( 7, 1 ) ( 111, 001 ) 10.10.11

2

3

2 . 2 . 3

001

Level-0

Level-3

Level-2

Level-1

Page 15: Artificial Neural Network Applications on Remotely Sensed Imagery Kaushik Das, Qin Ding, William Perrizo North Dakota State University kdas@globespan.com,

Basic, Value and Tuple Ptrees

Value Ptrees(i.e., P1, 001 = P11’ AND P12’ AND P13)

Tuple Ptrees(i.e., P001, 010, 111 = P1, 001 AND P2, 010 AND P3, 111)

AND

AND

Basic Ptrees(i.e., P11, P12, …, P18, P21, …, P28, …, P71, …, P78)

Page 16: Artificial Neural Network Applications on Remotely Sensed Imagery Kaushik Das, Qin Ding, William Perrizo North Dakota State University kdas@globespan.com,

Self-organizing Map (SOM) application

• SOM – a special class of Artificial Neural Networks

• Competitive learning – only one winner neuron per group

• SOM can gives an intuitive two-dimensional map of a spatial data set in P-tree format.

Page 17: Artificial Neural Network Applications on Remotely Sensed Imagery Kaushik Das, Qin Ding, William Perrizo North Dakota State University kdas@globespan.com,

Goal

• Use SOM to cluster yield attribute into high, medium and low yield regions.

• Create pointers from cluster points to the corresponding areas of an aerial photo.

• Derive association rules from the SOM map

Page 18: Artificial Neural Network Applications on Remotely Sensed Imagery Kaushik Das, Qin Ding, William Perrizo North Dakota State University kdas@globespan.com,

System Architecture

• Client server architecture

• Using CORBA as the backbone

Page 19: Artificial Neural Network Applications on Remotely Sensed Imagery Kaushik Das, Qin Ding, William Perrizo North Dakota State University kdas@globespan.com,

System Screen Layout

Page 20: Artificial Neural Network Applications on Remotely Sensed Imagery Kaushik Das, Qin Ding, William Perrizo North Dakota State University kdas@globespan.com,

High Yield

Medium Yield

Low Yield

Generated SOM from the image 29NW072894

Page 21: Artificial Neural Network Applications on Remotely Sensed Imagery Kaushik Das, Qin Ding, William Perrizo North Dakota State University kdas@globespan.com,

Advantages of using CORBA

• We can add more servers easily.• CORBA is a standard. More services are provided.

– Security

– Dynamic method invocation

– Multi-threaded service

• Makes code efficient and clean.• CORBA + XML constitute a rudimentary “single server

view of the network as discussed by Dr. Mochida.

Page 22: Artificial Neural Network Applications on Remotely Sensed Imagery Kaushik Das, Qin Ding, William Perrizo North Dakota State University kdas@globespan.com,

Conclusion

• Considered new data structures for data mining and a clustering application.

• Use wavelet for data preprocessing.

• Generate SOM and cluster the yield map into high, medium and low yield regions.