artigo why transition metal (di)oxides are the most attractive materials for batteries

Upload: antoniofamorim

Post on 02-Jun-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/10/2019 ARTIGO Why transition metal (di)oxides are the most attractive materials for batteries

    1/11

    f LI

    nffl

    ELSEVIER Solid State Ionics69 (1994) 201-211

    W h y t r a n s it io n me t a l d i ) o x i d e s a r e t h e m o s t a t tr a c t iv e m a t e r ia l s

    for bat ter ies

    T s u t o m u O h z u k u A t s u sh i U e d a

    Electrochemis try and Inorganic Chem is try Laboratory Department o f Appl ied Chem is try Facul ty of Engineer ing

    Osaka City Univers i ty Sugimoto 3-3-138 Sumiyoshi Osaka 558 Japan

    Abstract

    Recent developments of materials for rechargeable lithium batteries are highlighted. The reactions using advanced batteries

    consist of lithium ion insertion into and extraction from a solid matrix without the destruction of core structures, (called topo-

    tactic reaction) enable us to study systematically battery materials. By applying a hard-sphere model the optimum chemical

    composition and element in terms of volumetric capacity in Ah.cm -~ are indicated to be

    DMeO or

    LiMeOz (Me = transition

    metal elements). The calculated values, assuming one electron transfer per a transition metal ion, are in the range 1.15-1.5

    Ah.cm -3 for both nMeO2 and LiMeO2 using available structural data, which is alone merely attainable using transition metal

    dioxides. The approximate operating voltages for the reaction Li+ DMeO2~LiMeO2 are pictured against the number of d-

    electrons. The order of operating voltages of transition metal (di)oxides is approximately; 3d > 4d > 5d and d < d + ~ (n = 0 to

    6) distributed in the voltage between 0.5 and 4.5 V versus a lithium electrode. From these results, we discuss why transition

    metal (di)oxides are the most attractive materials for advanced lithium batteries. The specific problems in developing he inser-

    tion materials based on metal (di)oxides further are also discussed.

    1 Introduct ion

    Battery technology has been developed mainly by

    the experience-based or curiosity-based researches

    during the past 100 years. In the early stage of inves-

    tigations, almost every organic and inorganic mate-

    ria l had been examined in aqueous solutions and the

    possible candidate materials were selected. Many of

    them, however, did not survive due to the natural or

    artificial selection. Cathode materials which are still

    used and will not be ruined in batteries are:

    (1) manganese (di)oxide (MnO2) in primary

    batteries, such as zinc-carbon (Leclanch6L zinc

    chloride, and alkaline manganese dioxide cells;

    (2) nickel oxyhydroxide (NiOOH) in secondary

    alkaline batteries, i.e., nickel/cadmium or recent

    nickel/metal hydride cells, and

    (3) lead dioxide (PbO2) in lead acid batteries.

    These cells, especially manganese dioxide cells and

    lead acid batteries, have l ong long histories. Of these,

    nickel oxyhydroxide may be referred to as hydrogen-

    ated nickel dioxide although no one called it the re-

    duction product of hypothetical nickel dioxide in a

    proton-electr on reaction. These batteries are highly

    advanced and widely used all over the world. How-

    ever, innova tion in te rms o f high energy density bat-

    teries is almost hopeless in the current form because

    of the t hermodynamic limitation o f water ( 1.23 V of

    decomposition voltage at 25C).

    Recent demands towards the high energy density

    batteries stimulate the materials research for non-

    aqueous lithium batteries~ Since the late 1960's, many

    materials, such as metal chlorides, bromides, fluor-

    ides, oxides, sulfides, selenides, etc., have been ex-

    0167-2738/94/$07.00 @ 1994 Elsevier Science B.V. All rights reserved

    S S D I 0167-2738 ( 94 ) 00030-V

  • 8/10/2019 ARTIGO Why transition metal (di)oxides are the most attractive materials for batteries

    2/11

    202 T. Oh z u k u , A . U e d a / S o l id S ta t e lo n ic s 6 9 1 9 94 ) 2 0 1 -2 1 1

    a m i n e d i n n o n a q u e o u s l i t h i u m c e l l s [ 1 , 2 ] . S e v e r a l

    m a t e r ia l s h a v e b e e n p r o p o s e d a n d s o m e o f t h e m h a v e

    b e e n a l r e a d y d e m o n s t r a t e d . T h e s u c c e ss i n p r i m a r y

    l it h i u m b a tt er ie s , L i / ( C F ) ~ a n d L i / M n O 2 , a s p o w e r

    sources fo r e l ec t ron i c dev ices (ma in ly fu l l y au to -

    mat i c camera ) i n t he ea r ly 1980 ' s i s a m i l e s tone in

    t h e h i g h e n e r g y d e n s i t y l it h i u m b a t te r i es . A m b i e n t

    t empe ra tu re recha rgeab le l i t h ium ce ll s have a l so been

    i n v e s ti g a t ed b e c a u s e o f i n c r e a s e d e n e r g y d e n s i t y o v e r

    conven t iona l recha rgeab le ba t t e r i e s . The recha rge -

    a b l e l it h i u m b a t t e ri e s , s u c h a s L i / T i S 2 , L i / M o S 2 , L i /

    N b S e 3 , L i / M n O 2 , L i / v a n a d i u m o x i d e s , e t c . , h a v e

    b e e n a d v a n c e d a n d a l r e a d y d e m o n s t r a t e d i n p r o t o -

    type ce ll s. H igh-vo lume recha rgeab le l i t h ium ce l ls fo r

    c o n s u m e r u s e, h o w e v e r , h a v e n o t b e e n s u c c e e d e d y e t

    fo r a coup le o f reasons . Of t hese , V205, Nb2Os a nd

    MnO 2 a re used in l ow-vo lum e co in - type recha rgeab le

    l i t h ium ce ll s, i. e ., L iV2O s/Nb205 [3 ] a nd L i -A l /

    M n O 2 [ 4 ] , f o r t h e u s e o f m e m o r y b a c k -u p .

    M o r e r e c e n t l y , a n i n n o v a t i v e s e c o n d a r y s y s t e m

    ca l l ed t he l i t h ium-ion ( shu t t l ecock) ce l l o r rock ing

    cha i r cel l [ 5 ] has been deve loped and com mer c i a l -

    i z e d a s p o w e r s o u r c e s f o r h a n d y v i d e o c a m e r a s , w i r e -

    l ess t e l ephones and o the r e l ec t ron i c dev ices [ 6 ] . The

    ce ll cons i s ts o f L iCoO2 an d a ca rbon .

    As i t was desc r ibed b r i e f ly above , t ran s i t i on m e ta l

    (d i ) ox ides seem to be e ssen t i a l i n fab r i ca t i ng ba t t e r -

    i es i n c l u d in g th e c o n v e n t i o n a l a n d a d v a n c e d b a t t e r -

    i e s a l t hough the ma te r i a l s se l ec t i on has been do ne in -

    d e p e n d e n t l y t h r o u g h t h e e m p i r i c a l a p p r o a c h e s .

    S y s t e m a t i c a n d f u n d a m e n t a l s t ud i e s o n b a t t e r y m a -

    t e r i a ls wou ld be necessa ry t o a ssess t he p rev iou s de -

    c i s io n o n t h e s e l e c ti o n o f b a t te r y m a t e r i a ls a n d t o

    p r o m o t e t h e m a t e r i a ls r e s e a rc h e s f o r a d v a n c e d b a t -

    t e r ie s . In th i s pape r , we se t t l e som e fund am en ta l s on

    t h e e l e c t r o c h e m i s t r y o f b a t t e r y m a t e r i a l s a n d g i v e a

    r a t io n a l r e a s o n in g o n w h y t r a n s i t i o n m e t a l ( d i ) o x i d e s

    a re t he m os t a t t rac t i ve m a te r i a l s fo r ba t te r i e s .

    2 Key parametric factors in considering t he battery

    materials

    wh at a re t he key pa ram et r i c fac to rs i n se l ec ti ng ma-

    t e r i a ls even in a bas i c re sea rch .

    E n e r g y d e n s i t y is a c o m m o n m e a s u r e i n e v a l u a t i n g

    ba t t e ry sys t ems . Energy s to red in a ba t t e ry i s mea-

    su red by d i scha rg ing a ba t t e ry a t an a ppro pr i a t e cu r -

    r e n t . T h e e n e r g y i n W a t t - h o u r ( W h ) i s t h e p r o d u c t

    o f a v e r ag e o p e r a t in g v o l ta g e i n V o lt ( V ) a n d d i s-

    c h a r ge c a p a c i t y i n A m p e r e - h o u r ( A h ) . A c c o r d i n g ly ,

    h igher ope ra t i ng vo l t age and l a rge r capac i ty g ive

    h igher ene rgy dens i ty . The opera t i ng vo l t age i s t he

    de r iva t ive o f the G ibbs f ree ene rgy change fo r a ce l l

    r e a c t io n . T h e d i s c h ar g e c a p a c i t y f o ll o w s th e F a r a d a y

    l a w . T h e v o l t a g e ( i n t e n s i v e q u a n t i t y ) a n d c a p a c i t y

    ( e x t e n si v e q u a n t i t y ) a r e i n d e p e n d e n t a n d n o t i n t e r -

    c h a n g e ab l e . W h e n t h e w e i g h t a n d v o l u m e o f a b a t t e r y

    i s known , we can eas i l y ca l cu l a t e ene rgy dens i ty . The

    energy dens i ty , however , i s no t an abs t rac t fo rm in

    eva lua t ing ba t t e ry sys t em s [ 7 ] . Suppose two AA -s ize

    ce ll s hav in g the same ene rgy dens i ty . On e i s 1 V o f

    o p e r a t i n g v o lt a g e a n d 1 A h o f c a p a c it y , a n d a n o t h e r

    i s 4 V and 0 .25 Ah . When an e l ec t ron i c dev ice re -

    qu i res t he vo l t age above 3 .5 V , the fo r me r canno t de -

    l i ve r e l ec t r i c it y t o t h e dev ice un l ess t he fou r ce l ls a re

    conn ec t ed in se r i e s , wh i l e t he l a t t e r can be use d in a

    s ingl e ce ll . A r i sk i n conne c t ing a n um ber o f ce l ls i n

    s e ri e s is w e ll k n o w n a m o n g t h e b a t t e r y c o m m u n i t y

    peop le [8 ] . Converse ly , wh en a dev ice requ i res t he

    vo l t age j u s t above 0 .8 V , one -Vol t ce ll s hav ing 1 Ah

    of capac i ty a re supe r io r t o fou r -Vo l t ce ll s hav ing on ly

    0 .25 Ah , because t he h ighe r vo l t age above 0 .8 V i s

    use l ess , i. e ., t he ene rgy ma in ly co nsum es the gener -

    a t ed hea t . Such a cha ra c t e r i s t i c fea tu re ma kes i t im-

    poss ib l e t o des ign ba t t e r i e s fo r genera l pu rposes .

    For p rac t i ca l ba t t e r i e s t he ce ll d imens io ns a re spec -

    i f i ed , so t ha t space ra the r t han we igh t i s l im i t ed i n

    des ign ing ba t t e r ie s . In o the r words , t he vo lum et r i c

    c a p a c i ty i n A h . c m - 3 f o r t h e m a t e r i a ls is m o r e i m p o r -

    t a n t p a r a m e t r i c f a c t o r t h a n t h e g r a v i m e t r i c c a p a c it y

    in cons ide r ing the ba t t e ry ma te r i a l s . There fo re , we

    d i scuss t he fac to rs a f fec t i ng the vo lu me t r i c capac i ty

    o f ma te r i a l s an d the ope ra t i ng vo l tage sepa ra t e ly .

    Alm os t eve ry o rgan ic and ino rgan ic ma te r i a l shows

    m o r e o r le ss r e d o x ( r e d u c t i o n - o x i d a t i o n ) p r o p e r t i e s

    in appropr i a t e e l ect ro ly t es . How ever , ma te r i a l s show

    r e d o x p r o p e r t i e s i s o n l y a n e c es s a r y c o n d i t i o n i n a p-

    p ly ing the m a te r i a l s t o ba t t e r i e s . We hav e to cons id e r

    3 Volumetric capacity o f insert ion materia ls

    The e l ec t rochemica l reac t ions cons i s t i ng o f e l ec -

    t r o n s a n d f o r e ig n io n s i n s e r t io n i n t o / e x t r a c t i o n f r o m

    a s o l i d m a t r i x w i t h o u t t h e d e s t r u c t i o n o f th e c o r e

  • 8/10/2019 ARTIGO Why transition metal (di)oxides are the most attractive materials for batteries

    3/11

    T . Oh z u k u , A . Ue d a / S o l id S ta t e lo n ic s 6 9 1 9 94 ) 2 0 1 -2 1 1 203

    s t r u c t u r e o f a s o l i d m a t r i x a r e c a l l e d t o p o t a c t i c r e a c -

    t i o n s a n d t h e m a t e r i a l s i n w h i c h s u c h r e a c t i o n s p r o -

    ceed a r e gene ra l ly ca l l ed the in s e r t ion ma te r i a l s . S ince

    t h e c o r e s tr u c t u r e s r e t a i n d u r i n g t h e e l e c t r o c h e m i c a l

    r e a c t i o n s , t o p o t a c t i c r e a c t i o n s a r e b a s i c a l l y r e v e r s i -

    b l e a n d a p p l i c a b l e t o r e c h a r g e a b l e o r s e c o n d a r y b a t -

    t e r ie s , a n d a l s o a s y s t e m a t i c a n d b a s i c r e s e a r c h o n t h e

    b a t t e r y m a t e r i a l s b e c o m e p o s s i b l e b y c h a r a c t e r i z i n g

    t h e i n s e r t i o n m a t e r i a l s .

    T o c o n s t r u c t i n s e r t i o n m a t e r i a l s w e n e e d a n i o n s ,

    s u c h a s F - , C I - , O 2 - , S 2 - , SeE - e t c ., t o g e t h e r w i t h

    c a t i o n s t o f i x t h e a n i o n s a n d t o f o r m a r i g i d s o li d m a -

    t ri x . T h e c a t i o n s r e q u ir e e l e c t r o n a c c e p t o r a n d d o n o r

    c a p a b i l it y . A s o l i d m a t r i x m u s t b e a b l e to a c c o m m o -

    d a t e f o r e i g n c a t i o n s i n o r d e r t o c o m p e n s a t e t h e e x -

    c e s s c h a r g e w h e n e l e c t r o n s a r e i n j e c t e d i n t o o r e x -

    t r a c t e d f r o m a m a t r i x . I o n i c r a d i i o f a n i o n s a r e

    n o r m a l l y l a r g e r t h a n t h o s e o f c a t i o n s , s o t h a t t h e v o l -

    u m e o f i n s e rt i o n m a t e r ia l s is m a i n l y d e t e r m i n e d b y

    t h e s i ze o f a n i o n s a n d t h e i r p a c k i n g f o rm s . M o n o -

    v a l e n t a n i o n s h a r d l y g i v e i n s e r t i o n m a t e r i a l s b e c a u s e

    o f th e m o v e m e n t o f m o n o v a l e n t a n io n s a n d p o o r r e -

    d o x c a p a b i l i ty o f c a ti o n s, u s u a l ly d i v a l e n t / m o n o v a -

    l en t ca t ions [ 9 ].

    A h a r d - s p h e r e m o d e l [ 9 , 1 0 ] l e a d i n g t o a n o p t i-

    m u m c h e m i c a l c o m p o s i t i o n a n d t h e e l e m e n t s s ug -

    g e st s th a t t h e v o l u m e t r i c c a p a c i t ie s o f i n s e r t i o n m a -

    t e r i a l s a r e o p t i m i z e d w h e n t h e f o l l o w i n g

    e l e c t r o c h e m i c a l r e a c t i o n p r o c e e d s i n a t o p o t a c t i c

    m a n n e r ;

    [ ] M e O 2 + L i ~ L i M e O 2 ( 1 )

    oct) oct) ep) oct) oct) cp)

    i n w h i c h ( o c t ) i n d i c a t e s t h e o c t a h e d r a l s i t e s i n a

    c l o s e ( s t ) p a c k e d o x y g e n a r r a y d e n o t e d b y ( c p ) a n d

    [ ] r e p r e s e n t s t h e v a c a n t o c t a h e d r a l s i te s . I n l e a d i n g

    s u c h a b a s i c l i n e o n t h e m a t e r i a l s r e s e a r c h w e

    a s s u m e d :

    ( 1 ) t h e r e a c t i o n c o n s i s ts o f e l e c t r o n s i n j e c t i o n a n d

    f o r e i g n c a t i o n s i n s e r t i o n i n t o a s o l i d m a t r i x w i t h o u t

    t h e d e s t r u c t i o n o f a c o r e s t r u c t u r e ( t o p o t a c t i c

    r e a c t i o n ) ;

    ( 2 ) t h e f r a m e w o r k s t r u c t u re o f a s o l id m a t r i x c o n -

    s i st s o f t h e c l o s e ( s t ) p a c k i n g o f d i v a l e n t a n i o n s ;

    ( 3 ) t r a n s i t i o n m e t a l i o n s a r e l o c a t e d a t t h e o c t a -

    h e d r a l s i te s i n t h e c l o s e ( s t ) - p a c k e d a n i o n a r r a y , a n d

    ( 4 ) i n s e rt e d f o re i g n c a t i o n s ar e a c c o m m o d a t e d a t

    the oc tahe d ra l s i t es .

    P o s s i b l e d i v a l e n t a n i o n s a p p l i c a b l e t o t h e c o n -

    s t r u c t i o n o f a m a t r i x a r e 0 2 - ( i o n i c r a d i u s; 1 .4 0 A

    ( C N = 6 ) ) , S 2 - ( 1 .8 4 A ( C N = 6 ) ) , S e2 -

    1 . 9 8 A

    ( C N = 6 ) ) , a n d T e2 - ( 2 .2 1 A ( C N = 6 ) ) [ 11 ] a m o n g

    t h e c h e m i c a l e l e m e n t s , w h e r e C N i n d i c a t e s th e c o o r -

    d i n a t i o n n u m b e r . W h e n t h e d i v a l e n t a n i o n s a r e c lo s -

    e s t - p a c k e d , t h e s i z es o f c a t i o n s t o f i t a t t h e o c t a h e d r a l

    h o l e s a re c a l c u l a t e d t o b e 0 . 5 8 A , 0 . 7 6 A , 0 . 8 2 A a n d

    0 . 9 2 A f o r t h e c l o s e s t p a c k i n g

    o f O 2 - S 2 - S e 2 -

    a n d

    T e2 - , r e s p e c ti v e l y . T h e i o n i c r a d i i o f t h e t r a n s i t i o n

    m e t a l s ( M e 3 + a n d M e 4 + ) a r e i n t h e r a n g e b e t w e e n

    0 . 5 a n d 0 . 7 A , s o t h a t m a n y t r a n s i t i o n m e t a l i o n s c a n

    b e s i t u a t e d a t t h e o c t a h e d r a l s i t e s i n t h e c l o s e ( s t )

    p a c k i ng o f a n i o ns . H o w e v e r , m o n o v a l e n t c a t i on s t o

    b e i n s e rt e d i n to a n d / o r e x t r a c t e d fr o m a m a t r i x s e e m

    t o b e o n l y p r o t o n s ( i o n i c r a d iu s ; 0 .0 A ) a n d l i t h i u m

    i o n s ( 0 . 7 4 A ( C N = 6 ) ) , b e c a u s e s o d i u m io n s ( 1 .0 2

    A ( CN = 6 ) ), po tas s ium ions ( 1.38 A (C N = 6 ) ) , r u -

    b i d i u m i on s ( 1 .4 9 A ( C N = 6 ) ) , a n d c e si u m i on s

    ( 1 .70 A ( CN = 6 ) ) a r e too l a rge to be t r ans po r ted and

    a c c o m m o d a t e d i n a s o l i d m a t r i x b a s e d o n d i v a l e n t

    an ions .

    W e c a l c u la t e t h e m o l a r v o l u m e o f L iM e O 2 , L i -

    M e S2 , L i M e S e 2, a n d h y p o t h e t i c a l L i M e T e 2 in o r d e r

    t o e s t i m a t e t h e v o l u m e t r i c c a p a c i t i e s o f th e s e m a t e -

    r ia l s. I n c a l c u la t in g t h e m o l a r v o l u m e s w e a s s u m e t h a t

    l i t h i u m a n d t r a n s i t i o n m e t a l i o n s a r e l o c a t e d i n s u it -

    ab le s i zes a t t he oc tahe d ra l s i t e s in the c lo s es t pack ing

    o f th e s e a n i o n s . C o n s e q u e n t l y , t h e p r o b l e m i s re -

    d u c e d t o c a l cu l a te t h e v o l u m e o f t w o m o l e s o f a n i o n s

    be ing in the c lo s es t pack ing .

    H e x a g o n a l l y c lo s e s t -p a c k e d h a r d s p h e r e s h a v i n g a

    r a d i u s r A c a n b e a s s i g n e d t o b e a h e x a g o n a l l a tt i c e

    w i t h u n i t c el l p a r a m e t e r s a = 2 . r a n d c = 3 . 2 2 6 . r h a v -

    i n g a sp a c e g r o u p P 3 m l i n w h i c h h a r d s p h e r e s a r e

    loca ted a t 2 (d ) s i te s w i th a pos i t iona l pa ram ete r 0 .75 .

    T h e u n i t c e l l v o l u m e i s c a l c u l a t e d f r o m 1 1 . 3 1 3 . r 3. B y

    c a l c u l a t in g t h e u n i t c e l l v o l u m e a n d m u l t i p l y i n g th e

    A v o g a d r o s n u m b e r , w e h a v e t h e m o l a r v o l u m e s 1 8. 7

    c m 3 f o r L i M e O 2 , 4 2 . 4 c m 3 f o r L i M e S 2 , 5 2 . 9 c m 3 f o r

    L i M e S e 2 , a n d 7 3 .5 c m 3 f o r L i M e T e 2 . S i n c e o n e m o l e

    o f L iM e X 2 ( X = O 2 - , S 2 - , S e2 - a n d T e 2 - ) i s capa b le

    to s to r e 26 .8 A h o f e l ec t r i c i ty fo rm ing I - ]M eX 2 , the

    v o l u m e t r i c c a p a c i t ie s o f t h e s e m a t e r i a l s a r e o b t a i n e d

    t o b e 1 .4 3 A h . c m - 3 f o r L i M e O 2 , 0 . 6 3 A h . c m ~ 3 f o r

    L i M e S 2 , 0 .5 1 A h . c m - 3 f o r L i M e S e 2 , a n d 0 . 3 6

    A h . c m - 3 f o r

    L i M e T e 2 .

    T h e r e s u l t s w e r e o b t a i n e d u s -

    i n g a h e x a g o n a l l y c l o s e st p a c k i n g . A n o t h e r p a c k i n g i s

  • 8/10/2019 ARTIGO Why transition metal (di)oxides are the most attractive materials for batteries

    4/11

    2 0 4

    T. Ohzuku, A. Ueda I Solid State lonics 69 (1994) 201-211

    pos s ib le , s o -ca l led cub ic c lo s es t pack ing . T he r e s u l t s,

    h o w e v e r , a r e t h e s a m e , b e c a u s e t h e h a r d s p h e r e s i n

    t h e c u b i c c l o s es t p a c k i n g a r e s i m i l a r l y c h a r a c t e r i z e d

    by a hexagona l l a t t ice w i th un i t ce l l pa ram ete r s a = 2 . r

    a n d c=4 899 rhaving a s p a c e g r o u p R 3 i n w h i c h t h e

    hard s pheres a r e loca ted a t 3 ( a ) s i te s .

    A s d e s c r i b e d a b o v e , t h e v o l u m e t r i c c a p a c i t y w h i c h

    is o n e o f t h e m o s t i m p o r t a n t p a r a m e t r i c f a c t o r s is i n

    t h e o r d e r

    L i M e O 2 > > L i M e S 2 > L i M e S e 2 > L i M e T e 2 .

    W e m a y c o n c l u d e t h a t L i M e O 2 o r D M e O 2 i s t h e c a n -

    d i d a t e m a t e r i a l f o r b a t t e r y a p p l i c a t i o n s i f s u c h m a -

    t e r ia l s a r e a v a i l a b l e a n d e x h i b i t e l e c t r o c h e m i c a l re a c -

    t i v i t y in a p p r o p r i a t e e l e c t r o l y t e s c o n t a i n i n g l i t h i u m

    ions .

    T h i s i s b e t t e r i l l u s tr a t e d i n F i g . 1. T h e m o l a r v o l -

    u m e s o f M e O y a re c a l c u l a t e d f r o m t h e a v a i l a b l e

    s t r u c t u r a l d a ta . P a r t s o f st r u c t u r a l d a t a o n [ 2 M e O 2

    2 0

    ~ 1 . 5 - '

    ~

    5 d - m e ta l

    /- .0

    3.0

    U

    2.0

    1 .0

    0

    d O

    5.0

    d / d 2 d 3 d ~ d ~ d e d z

    N u m b e r o f d e l e c t r o n s

    F i g . 2 . A p p r o x i m a t e o p e r a t i n g v o l t a g e s o f t r a n s i t i o n m e t a l

    d i ) o x i d e s i n n o n a q u e o u s c e l ls . S o l id l i n e s a r e u s e d t o g u i d e t h e

    e y e s . U p p e r a n d l o w e r l i n e s i n d i c a te 3 d a n d 4 d t r a n s i t io n m e t a l

    d i ) o x i d e s , r e s p e c t i v e l y . R e l a t i o n b e t w e e n t h e o p e r a t i n g v o l t -

    a g e s a n d t h e n u m b e r o f d = e l ec tr o n s c a n c l e a r l y b e s e e n .

    d i ) o xi d e , a n d T i O 2 3 d / 3 d l ) < V O 2 3 d l / 3 d 2 )

    < [ C r O 2 3 d 2 / 3 d 3 ) ] < M n O 2 I ) 3 d 3 / 3 d 4 ) _- Co O2 3dS /3 d 6 ) >- N iO2

    3d6 /3dV) .

    O f th e s e , m a n g a n e s e d i ) o x i d e s h o w s tw o le v e ls o f

    o p e r a t i n g v o l ta g e s a t 3 a n d 4 V , d e n o t e d b y I ) a n d

    I I ) . Th e d o t t ed cu rve i n F ig . 2 i s t he expec t ing range

    fo r i ron d iox ide , whose reac t iv i t y i nc lud ing reve rsi -

    b i l it y o f a r e a c t io n h a s n o t b e e n c o n f i r m e d y e t. T h e

    curve fo r L iVO2 i s p i c tu red fo r t he ox ida t ion o f L iVO2

    to Li2/ aVO2 no t a t opo tac t i c reac t ion ) [22 ] .

    V 2 O s 3 d ) , N b 2 O s 4 d ) , M o O a 4 d ) , a n d

    Li [ Li l /aTis/3 ] 04 3d ) are a lso sho wn in F ig . 2 . These

    m a t e r i a l s to g e t h e r w i t h T iO 2 3 d ) h a v e n o c o n d u c -

    t i on e l ec t rons i n a so l id ma t r ix , so t ha t t hey show

    whi t e i n co lo r and in su l a t i ng e l ec tr i ca l p roper t i e s ex -

    cep t V205 . In su l a to rs seem to be use l ess i n ba t t e r ie s .

    H o w e v e r , t h e s e m a t e r i a l s c a n b e u s e d a s c a t h o d e m a -

    t e r i a ls i n non aqu eou s l i t h ium ba t t e r i e s . E l ec t rons i n -

    j ec t ed in to a so l id ma t r ix supp ly conduc t ion e l ec -

    t r o n s w i t h a n a i d o f l a t ti c e v i b r a t i o n t h e r m a l

    ene rgy) , so t ha t p a r t i a l l y reduced sam ples appea r b lue

    i n c o l o r a n d h i g h l y c o n d u c t i v e . T h e s e m a t e r i a l s h a v e

    t r a n s m i s s i o n l i n e s t h r o u g h o u t a m a t r i x i n t e r m s o f

    l i t h iu m - i o n t r a n s p o r t a t i o n . T h e s e t w o f a c t o r s m a k e

    the i n su l a t i ng ma te r i a l s u se i n recha rgeab le l i t h ium

    bat ter ies .

    In d iv id ing reac t ion 9 ) i n to fou r e lem en ta ry s t eps ,

    we s imp ly desc r ibe a so l id s t a t e redox reac t ion as Eq .

    11 ) . Ho wev er , t he o bse rva t ions desc r ibed a bove

    s t rong ly sugges t t ha t a t heo ry to f i l l a gap be tween

    e lec t rochem is t ry an d so l id s ta t e phys i cs is i nev i t ab ly

    necessa ry i n deve lop ing so l id s t a t e e l ec t rochem is t ry ,

    t h r o u g h w h i c h w e c a n c o u n t t h e p r o b l e m s a s t o t h e

    co l l ec t i ve e l ec t rons ve rsus l oca l i zed e l ec t rons t o -

    g e t h e r w i t h c o o p e r a t i v e J a h n - T e l l e r e f f e ct s a n d t h e

    o n e - p h a s e v e r s u s tw o - p h a s e , a n d w i t h w h i c h w e c a n

    p r e d i c t w h a t l e v el o f o p e r a t in g v o l ta g e a n d h o w m u c h

    revers ib l e capac i ty a re expec t ab l e fo r t he t a rge t ing

    m a t e r i a ls . T h e t r e a t m e n t d e s c r i b e d h e r e i s o v e rs i m -

    p l i f ied , bu t ou r s im p l i f i ca t i on i s adeq ua te fo r a f i r s t

    l o o k a t t h e o p e r a t i n g v o l ta g e s o f t h e i n s e r t i o n m a t e -

    r i al s b a s e d o n t r a n s i t i o n m e t a l d i ) o x i d e s . A s c a n b e

    seen in F ig . 2 , we can exp ec t ope ra t i ng vo l t ages f rom

    0 .5 V to 4 .5 V fo r i n se r t i on ma te r i a l s o f t rans i t i on

    m e t a l d i ) o x i d e s in n o n a q u e o u s l it h i u m b a t te r i e s.

  • 8/10/2019 ARTIGO Why transition metal (di)oxides are the most attractive materials for batteries

    8/11

    2 8 T . Ohz uk u , A . Ue da / So l i d S t a t e l on i c s 69 1994 ) 201 - 211

    5 . F a c t o r s a f f e c t i n g c a p a c i t y f a il u r e o f i n s e r t i o n

    m a t e r i a l s i n r e c h a r g e a b l e b a t t e r i e s

    R e c h a r g e a b l e c h a r a c t e r s o f i n s e r t i o n m a t e r i a l s a r e

    a p p l i c a b l e t o a f u n c t i o n o f e i t h e r p o s i t i v e o r n e g a t i v e

    e l e c t r o d e s f o r r e c h a r g e a b l e l i t h i u m b a t t e r i e s . H o w -

    e v e r , m a t e r i a l s s h o w r e c h a r g e a b l e c h a r a c t e r s i s o n e

    t h i n g , a n d m a t e r i a l s s h o w s u f f i c i e n t c a p a c i t y r e t e n -

    t i o n fo r e x t e n d e d c y c l es i s a n o t h e r th i n g . O n e c a n

    n o t t e ll c el l p e r f o r m a n c e i n a d v a n c e , e s p e c i a l ly c y c l e

    l if e , o u t o f t h e b a s i c r e s e a rc h r e s u l ts u n l e s s p r o t o t y p e

    c e l l s a r e f a b r i c a t e d a n d t e s t e d . I n t h i s s e c t i o n w e

    b r i e f l y d i s c u s s t h e f a c t o r s a f f e c t i n g t h e c y c l e l i f e o f

    t h e i n s e r ti o n m a t e r ia l s f ro m a f u n d a m e n t a l p o i n t o f

    v i e w .

    E l e c t r o c h e m i c a l c h a r g e a n d d i s c h a r g e i s u s u a l l y a c -

    c o m p a n i e d b y t h e c h a n g e in l a tt ic e d i m e n s i o n s o f a

    s o l id m a t r ix . W h e n r q M e O 2 is r e d u c e d i n n o n a q u e -

    o u s l i t h i u m c e l ls , e l e c tr o n s a r e i n j e c t e d f r o m t h e o u t -

    s i d e o f a s o l i d m a t r i x a n d l i t h i u m i o n s a r e i n s e r t e d

    i n t o a s o l i d m a t r i x v i a a s o l i d / l i q u i d i n t e r fa c e i n o r -

    d e r t o c o m p e n s a t e e x c e s s c h a r g e . T h e d e g r e e o f r e a c-

    t i o n d i s t r i b u t e s l o c a l ly i n a s o l i d m a t r i x f r o m t h e s u r -

    f a c e to t h e b u l k o f a m a t r i x . T h e l a t ti c e d i m e n s i o n s

    a r e u s u a l l y a f u n c t i o n o f t h e d e g r e e o f r e a c t i o n

    S.C

    4.0 --

    C

    ua

    I C

    :

    i

    I O 0 m A h g /

    , ~ , , ; o

    0 I n~1~.g I

    S C

    3 . (

    u J 2 , [

    ,c [ L i C o O

    2 0 0 0 S O

    O

    [ 1 5 , 1 6 , 1 8 - 2 0 , 3 6 ] , s o t h a t s tr e s s i s i n d u c e d b y s t r a i n

    d u e t o a d i m e n s i o n a l m i s m a t c h b e t w e e n r e g i o n s h a v -

    i n g d i f fe r e n t d e g r e e o f r e a c t i o n . S t r e ss m a y b e p r o -

    p o r t i o n a l t o t h e d i f f e r e n c e s i n b o t h l a t t i c e d i m e n -

    s i o n s a n d t h e t h i c k n e s s o f a g r a d i en t r e g i o n i n t e r m s

    o f t h e c o n c e n t r a t i o n s o f e l e c tr o n s a n d l i th i u m i o n s i n

    a u n i t c e l l le v e l . W h e n l o c a l s tr e ss e x c e e d c e r t a in e l a s -

    t i c l i m i t o f a m a t r i x , c r a c k a p p e a r s a n d g r o w s m e -

    c h a n i c a l l y i n a c t u a l p a r t i c le s i n o r d e r t o r e le a s e s t r e s s

    i n d u c e d b y t h e i n s e r t i o n r e a c t i o n . L a r g e r d i f f e r e n c e

    i n d i m e n s i o n b e t w e e n u n r e a c t e d a n d r e a c t e d m a -

    t r i x e s , i .e . , V q M e O 2 a n d L i M e O 2 , a n d s m a l l e r t h i c k -

    n e s s o f t h e g r a d i e n t r e g i o n i n d u c e h i g h e r s t re s s i n t h e

    r e g io n , w h o s e t h i ck n e s s d e p e n d s o n t h e c u r r en t a p -

    p l i e d a n d t h e t r a n s f e r r a t e o f l i t h i u m i o n s i n a s o l i d

    m a t r ix . T r a n s i t i o n m e t a l ( d i ) o x i d e c e r a m i cs a r e u s u -

    a l l y fr a g il e, s o t h a t c r a s h i n g t o f i n e p o w d e r i s q u i t e

    e a sy . T h e r e f or e , w h e n o n e o f th e l a t ti c e d i m e n s i o n s

    c h a n g e s m o r e t h a n 1 5% d u r i n g a n i n s e r t i o n o r e x t r a c-

    t i o n r e a c t i o n , i t i s a l m o s t i m p o s s i b l e t o s h o w t o p o -

    t a c t i c r e a c t i o n s a n d t h e i r r e c h a r g e a b l e p r o p e r t i e s .

    E m p i r i c a l a p p r o a c h s u g g e s t s t h a t m a x i m u m s t r a i n

    a l l o w e d i n t h e o b s e r v a b l e t o p o t a c t i c r e a c t io n s i s a b o u t

    1 2 /o a s c a n b e s e e n i n r - q R u O z / L i R u O 2 [ 2 0 ] a n d

    .a

    1 2 5

    m A h g - I

    ~

    150

    I m l . ~ g 1

    S.0

    4.0

    3.0

    ua

    2.0

    L0

    0

    200

    L

    1 5 0 m A h g - I

    I o 1

    i

    5O I~ 150

    0 I i n ~ ' g - I

    51

    40

    3.0

    Z.0

    1.0

    i O O m A h - g - /

    5 0 I 0 0

    C I I m A h 9 I

    150

    5.0 , i . S.O

    r ]

    3 . 0 - ~ 3 . 0

    z 1 2 5 m A t t . g - ~ ~ ~ Z

    izJ

    r

    J

    I L ' N ' I 1 1

    200 0 50 100 1S0 ZOQ

    Q m A h . 9 1

    t

    t

    1 5 0 m ~ h . g - I t

    511 IQO 150 ZOO

    0 I mAl ' l .C3t

    F i g . 3 . C h a r g e a n d d i s c h a r g e c u r v e s o f L i C o O 2 a n d L i N i O 2 a t a r at e o f 0 . 1 7 r n A . c m - 2 a t 3 0 C i n n o n a q u e o u s l i t h iu m c e ll s . E l ec t r o ly t e

    u s e d w a s 1 M L i C 1 0 4 d i s s o l v e d i n p r o p y l e n e c a r b o n a t e . T h e c e l l s w e r e d i s c h a r g e d a t c o n s t a n t c u r r e n t t o 2 . 5 V a f t e r t h e c o n s t a n t c a p a c i t y

    c h a r g e a t 1 0 0 1 2 5 o r 1 5 0 m A h . g - 1 b a s e d o n th e s a m p l e w e ig h t .

  • 8/10/2019 ARTIGO Why transition metal (di)oxides are the most attractive materials for batteries

    9/11

    T. Ohzuku, A . Ueda / Sol id State lonics 69 1994) 201-2 11 209

    L i M n 2 0 4 / L i 2 M n 2 0 4 [ 1 6 ] . H o w e v e r , r e c h a r g e a b l e

    c a p a c i t y f a d e s r a p i d l y d u r i n g c y c l e s .

    F i g . 3 s h o w s t h e c h a r g e a n d d i s c h a r g e c u r v e s o f

    L i C o O 2 a n d L i N i O 2 h a v i n g l a y e r e d s t r u c t u r e s . T h e

    s t r u c t u r e o f L i C o O 2 a n d a l s o L i N i O 2 h a s a s p a c e

    g r o u p R 3 m i n w h i c h t r a n s i t i o n m e t a l i o n s a n d l i t h -

    i u m i o n s a r e l o c a t e d a t o c t ah e d r a l 3 ( a ) a n d 3 ( b )

    s i te s , r e s pec t ive ly , in a c ub ic c lo s e -packe d oxygen a r -

    r a y . T h e u n i t c e l l d i m e n s i o n s o f L i C o O 2 a n d L i N i O 2

    are u s ua l ly des c r ibed in hexagona l s e t t ing , i . e . ,

    a = c a . 2 . 8 A a n d c = c a . 1 4 A . C h a n g e i n t h e c - ax is di -

    m e n s i o n s o f th e s e m a t e r i a l s d u r i n g c h a r g e a n d d i s -

    c h a r ge i s w i th i n 5 % d e p e n d i n g o n t h e d e p t h o f c h a rg e

    [ 18 ,1 9 ]. L a y e r e d m a t e r i a l s m a y b e e a s y t o r e l e a s e i n -

    t e r n a l s tr e s s i n d u c e d b y t h e i n s e r t i o n o r e x t r a c t i o n o f

    l i t h iu m i o n s c o m p a r e d w i t h t h e m a t e r i a l s h a v in g o n e -

    d i m e n s i o n a l t u n n e l s tr u c t u r e [ 3 6 - 3 8 ] o r t h re e - d i-

    m e n s i o n a l f r a m e w o r k s t r u c t u r e [ 1 6 ] . C a p a c i t y l o s s

    d u r i n g c y c l e s i s i n e v i t a b l e d u e t o t h e f r a c t u r e o f a n

    ac t ive s o l id ma t r ix U n les s s t r a in i s ze ro , s uch tha t th e

    l a t t i c e d i m e n s i o n s d o n o t c h a n g e d u r i n g c h a r g e a n d

    d i s c h ar g e . A c a r e f u l p r e p a r a t i o n o f t h e e l e c t r o d e s a n d

    a p p l i c a t i o n o f p re s s u r e o n t o t h e e l e c t r o d e s , c a l l e d a

    b o b b i n p r e s s u r e i n o u r l a b o r a t o r y , a r e n e c e s s a r y t o

    m i n i m i z e t h e c a p a c i t y lo s s a n d e x t e n d c y c l e l if e . S u c h

    a m e c h a n i c a l f a c t o r w il l b e r e d u c e d b y a p p l y i n g c e -

    r a m i c s t e c h n i q u e s i n c l u d i n g p o w d e r o r t h i n - l a y e r

    t e c h n o l o g y [ 3 9 - 4 1 ] i n m a t e r i a l s s c i e n c e in p r e p a r -

    i n g t h e i n s e r t i o n m a t e r i a l s a n d p r o c e s s i n g t h e

    e lec t rodes .

    Zero - s t r a in in s e r t ion ma te r i a l s a r e pe rhaps idea l f o r

    the long - l i f e r echa rgeab le ba t t e r i e s . F ig . 4 s how s the

    c h a r g e a n d d i s c h a r g e c u r v e s o f L i [ L i l /3 T i 5 /3 ] 0 4 t o -

    g e t h e r w i t h L i N i O 2 . T h e c r y s t a l s t r u c t u r e o f

    L i [ L i l / 3 T i s / 3 ] O 4 i s a c u b i c h a v i n g a s p a c e g r o u p

    F d 3 m [ 4 2 ] i n w h i c h l i t h i u m i o n s a r e l o c a t e d a t o c -

    t a h e d r a l 1 6 ( c ) s i te s w i t h o c c u p a n c y 1 / 2 o r a t te t r a -

    h e d r a l 8 ( a ) s it e s, l i th i u m i o n s a n d t e t r a v a l e n t t it a -

    n i u m i o n s a r e s t a t i s t i c a l l y d i s t r i b u t e d a t o c t a h e d r a l

    1 6 ( d ) s i te s b y t h e r a t i o L i / T i = 1 5 , a n d o x y g e n io n s

    a r e l o c a t e d a t 3 2 ( e ) s i te s w i t h a p o s i t i o n a l p a r a m e t e r

    0 .26_2 [ 12 ] . T he r eac t ion un dergo es w i th one -e lec -

    t r o n t r a n s f e r p e r a f o r m u l a u n i t , i . e .,

    L i [ L il /3 T i s/ 3 ] 0 4 + L i + e -

    16 c) 16 d) 32 e)

    L i , [ L i l / 3 T i s / 3 ] 0 4 ( 1 3 )

    16 ) 16 d) 32 e)

    5.0

    z..0

    > 3.0

    2.0

    tl

    1.0

    I

    ( a )

    I

    b )

    0 I I I

    5 0 1 0 0 1 5 0 2 0 0

    Q I m A h . g -

    Fig. 4. C harge and d ischarge curves of (a) LiNiO2 and (b)

    Li [ Lit/3Ti5/3 0 4 at a rate o f 0; 17 mA .em -2 at 30 C n nonaqu e-

    ous lithium cells. Li[Lim/3Tis/3]O4 s a zero-strain nsertion ma-

    terial, so that loss of reehargeablecapacity cannot be seen even

    after 50 cycles.The combinationof LiNiO2 and Li[Lil/3Tis/3]O4

    gives a lithium-ion (shuttlecock) battery showing about 2 V of

    opera ting voltage.

    T h e o r e t i c a l c a p a c i t y is c a l c u l a t e d t o b e 1 75 m A h . g - 1

    o r 0 . 61 A h . c m - 3 f o r L i [ L i l / 3 T i s / 3 ] O 4 . I t s h o u l d b e

    n o t e d t h a t t h e r e d u c t i o n p r o d u c t L i2 [ L i l /3 T i s / 3 ] 0 4

    h a s s t il l t e t r a v a l e n t t i t a n i u m i o n s t o b e a b l e t o a c c e p t

    e l e c t r o n s , b u t n o v a c a n t o e t a h e d r a l s i t e s . A c c o r d -

    i n g ly , t h e c a p a c i t y o f L i [ L i t / 3 T i s / 3 ] 0 4 i s l i m i t e d b y

    t h e n u m b e r o f a v a i l a b l e o c t a h e d r a l s it e s t o a c c o m -

    m o d a t e l i t h i u m i o n s , c a l l e d l i t h i u m - i o n s i t e - l i m i t e d

    capa c i ty [ 9 ] .

    T h e l a t ti c e d i m e n s i o n a = 8 . 3 6 5 ~ i s i n v a r ia b l e

    d u r i n g c h a r g e a n d d i s c h a r g e in t h e r a n g e b e t w e e n 1 .2

    V a n d 3 .5 V [ 2 2 ]. S i n c e t h e r e a c t i o n i s o f z e r o - s t ra i n

    i n s e r t i o n a n d e x t r a c t i o n o f c h a r g e d s p e c i e s, c a p a c i t y

    l o ss c a n n o t b e s e e n e v e n a f t e r 5 0 c y c l e s. T h e o p e r a t -

    ing vo l tage i s ju s t abov e 1 .5 V aga ins t a l i t h ium meta l .

    T h e c o m b i n a t i o n o f L i N i O 2 a n d L i [ L i~ /3 T i5 /3 ] O 4 i n

    F ig . 4 g i v e s a l i t h i u m - i o n ( s h u t t l e c o c k ) b a t t e r y h a v -

    i n g a b o u t 2 V o f o p e r a t i n g v o l t a g e , w h i c h d o e s n o t

    c o n t a i n m e t a l l i c l i t h i u m . L i N i O 2 c a n b e r e p l a c e d b y

    L i C o O 2 [ 4 3 ] , L i N i l / 2 C o l / 2 0 2 [ 1 8 , 4 4 ] , L i M n 2 0 4

    [ 1 6 ,4 0 ,4 1 ] , o r L i M n O 2 [ 2 3 ] , a n d L i [ L i l / 3 T i s / 3 ] O 4

    i s a l s o s u b s t i t u t e d b y N b 2 0 5 [ 4 5 ] , p e t r o l e u m c o k e ,

    o r n a t u r a l g r a p h i t e [ 8 , 4 6 ] . T o s e l e c t t h e i n s e r t i o n

    m a t e r ia l s , m a i n l y t r a n si t i o n m e t a l ( d i ) o x i d e s , o n e

    c a n d e s i g n t h e o p e r a t i n g v o l t a g e e f f e c t i v e ly a p p l i e d

    t o t h e e l e c t r o n i c d e v i c e s.

    T h e r e s u l t o f a z e r o - s t r a i n i n s e r t i o n m a t e r i a l i n d i -

  • 8/10/2019 ARTIGO Why transition metal (di)oxides are the most attractive materials for batteries

    10/11

    210

    T . Oh z u k u , A . Ue d a / S o l id S ta t e lo n ic s 6 9 1 9 9 4 ) 2 0 1 -2 1 1

    c a t es th e v a l i d i t y o f a r g u m e n t s d e s c r i b e d a b o v e a n d

    t h e p o s s i b i l i t y t o r e d u c e o r e r a s e m e c h a n i c a l f r a c t u re

    o f t h e i n s e r t i o n m a t e r i a ls .

    A i d f o r S c i e n t if i c R e s e a r c h f r o m t h e M i n i s t r y o f E d -

    u c a t i o n , S c i e n c e a n d C u l t u r e , J a p a n .

    6 . C o n c l u d i n g re m a r k s

    I n t h is p a p e r w e h a v e d e s c r i b e d w h y t r a n s i t io n

    m e t a l d i ) o x i d e s a r e t h e m o s t a t t r a c t iv e m a t e r i a l s f o r

    b a t t e r i e s i n t e r m s o f h i s t o r i c a l b a c k g r o u n d , v o l u m e t -

    r i c c a p a c it y , o p e r a t i n g v o l t a g e , a n d a v a i l a b i l i t y o f

    m a t e r i a l s . I n d i s c u s s i n g s e v e r a l a s p e c ts o f t h e i n s e r -

    t i o n m a t e r i a ls w e u s e d m o s t l y o u r o w n w o r k s . H o w -

    e v e r , t h r o u g h o u t o u r t h e o r e t i c a l a n d e x p e r i m e n t a l

    w o r k s w e o w e a l o t t o o t h e r w o r k e r s t h r o u g h l i te r a -

    t u r e o v e r g e n e r a t i o n a n d a l l a r e w o r t h a c r e d i t . A l -

    t h o u g h w e h a v e n o t s t a t e d c a p a c i t y f ai l u r e d u e t o

    e l e c t ro l y t e d e c o m p o s i t i o n , o x i d a t i o n a n d a l s o r e d u c -

    t i o n r e s i s t a n t a n d h i g h l y c o n d u c t i v e e l e c t ro l y t e s a r e

    i n e v i t a b l y n e c e s s a r y i n o r d e r t o d e v e l o p t h e a d -

    v a n c e d b a t t e r i e s . R e c e n t p r o g r e s s o n t h e m a t e r i a l s fo r

    a d v a n c e d b a t t e r i e s r e q u i r e s a s t a b l e e l e c t r o ly t e in t h e

    v o l t a g e r a n g e o f a t l e a s t 0 - 5 V a g a i n s t a m e t a l l i c l it h -

    i u m e l e c t r o d e . E l e c t r o l y t e i s n o t ~ n e c e s s a r i ly b a s e d o n

    o r g a n i c s o l v e n t s w h o s e h e a t o f c o m b u s t i o n i s a l w a y s

    e x o t h e r m i c . I n o r g a n i c s o l v e n t s o r l i t h i u m - i o n c o n -

    d u c t i v e s o l i d e l e c tr o ly t e s, h o p e f u l l y l i t h i u m - m e t a l -

    o x y g e n s y s t em , m a y b e a p o s s i b l e r e p l a c e m e n t f o r t h e

    p r e s e n t e l e c t ro l y t e , w i t h w h i c h w e m a y e x p e c t h i g h

    v o l t a g e w i n d o w 0 - 5 V v e r s u s L i ) a n d s a f e ty o p e r a -

    t i o n e v e n f o r th e h i g h - v o l u m e r e c h a r g e a b l e b a tt e r i es .

    C o o p e r a t i v e r e s e a rc h e s a m o n g e l e c t r o c h e m i s t s , o r -

    g a n i c a n d i n o r g a n i c c h e m i s t s , m a t e r i a l s c i en t i st s , a n d

    a p p l i e d p h y s i c i s t s a r e e x t r e m e l y i m p o r t a n t t o d e -

    v e l o p t h e b a t t e r y m a t e r i a l s . S u c h i n t e r d i s c i p l i n a r y

    r e s e a r c h e s w i l l p r o v i d e a n e w f i e l d i n m a t e r i a l s s c i -

    e n c e fo r a d v a n c e d b a t t e ri e s . T h e p r e s e n t a u t h o r s h o p e

    t h a t f u n d a m e n t a l a n d a p p l i e d r e s e a r c h e s w i l l g r o w

    t h r o u g h t h e s t u d i e s o u t l i n e d h e r e i n i n t h e n e a r f u t u re .

    A c k n o w l e d g e m e n t s

    O n e o f u s T . O ) w i s h e s t o t h a n k D r . T a k e ts u g u

    H i r a i , P r o fe s s o r E m e r i t u s f r o m O s a k a C i t y U n i v e r -

    s i t y , f o r h i s s u g g e s t io n s t h r o u g h o u t t h e r e s e a r c h . T h e

    p r e s e n t w o r k w a s p a r t i a l ly s u p p o r t e d b y a G r a n t - i n -

    R e f e r e n c e s

    [ 1 ] M.S. W hittingham, Prog. Solid State Chem. 12 1978) 41.

    [2] M.S . W hittingham and A.J. Jacobson, eds., Intercalation

    Chemistry Academic Press, New York, 1982).

    [ 3 ] IC Takata, A. Otsuka, T. M ori and N. Koshiba, Ext. Abstract

    of the 32nd Battery Symp . Kyoto, Japa n, Sept. 1991 ) p.

    45.

    [4] T. Nohma, Y. Yamamoto, I . Nakane and N. Furukawa, J.

    Power Sources 39 1992) 51.

    [5] B. Scrosati , J. Electrochem. Soc. 139 1992) 2776.

    [6l N. Nagaura a nd T . Ozawa, Prog. Battery Solar Cells 9

    1990) 20.

    [ 7 ] T. Ohzuku, Z. Takehara and S. Yoshizawa, Denki K agaku

    47 197 9) 685.

    [8] J.R. D ahn, A .K. Sleigh, H. Shi, B.M. W ay, W .J. W eydanz,

    J .N. Reimers, Q. Zhong and U . yon Sacken, in : Li thium

    Batteries, ed. G. Pisto ia Elsevier, Am sterdam, 1993) ch.

    1.

    [9] T. Ohzuku n:

    Lithium Batteries, ed. G. Pisto ia Elsevier,

    Am sterdam, 1 993 ) ch. 5.

    [ 10] T . Ohzuku, K. Sawai and T. Hira i , Denchi Gi jutsu Bat tery

    Techn ology) 3 1991 ) 14; originally presented a t the 250th

    Battery TechnologyCom mittee of Japan, February 13, 1990.

    [ 11 ] R.D. Shannon , Ac ta Cryst. A 32 1976) 750.

    [ 12 ] T. Ohzuk u, un published results.

    [ 13 ] T. Ohzuku, T . K oda ma and T. H irai , J. Pow er Sources 14

    1985) 153.

    [ 14 ] B. Zachau-Christiansen, K. W est and T. Jacobsen, M at. Res.

    Bull . 20 1985) 485.

    [ 15] T. Ohzuku, M. Kitagawa, K. Sawai a nd T. Hira i , J.

    Electrochem . SOc. 138 1991) 360.

    [ 16 ] T. Ohzuku, M. Kitagawa and T. Hira i , J. Electrochem. Soc.

    137 1990) 769.

    [ 17 ] N. Imanishi, K . Nakahara, Y . Takeda, O . Yamam oto an d

    M. Takano, Denki Kagaku 61 1993) 1451.

    [ 18 ] T. O hzuku and A. Ueda, J. Electrochem. So c., subm itted

    for publication.

    [ 19 ] T. Ohzuk u, A. Ued a and M. N agayama, J. Electrochem. Soc.

    140 1993) 1862.

    [ 20 ] T. Ohzuku, K. Saw ai and T. H irai , J. Electrochem. Soc. 137

    1990) 3004.

    [21 ] D.J. D aime r and P.G. D ickens, Acta Cryst. B 35 1979)

    2199.

    [ 22 ] A. Ueda, N. Yamam oto and T. Ohzuku, in: Ext. Abstract of

    the 34th Battery Syrup. Hiroshima, Japan, Nov. 199 3) p.

    33.

    [ 23 ] T. Ohzuku, A. Ue da and T. H irai , Chem. E xpress 7 1992)

    193.

    [24] D.E. Cox, R.J . Cava , D.B . Mcwhan and D.W. Murphy, J .

    Phys. Chem . Solids 43 1982) 657.

  • 8/10/2019 ARTIGO Why transition metal (di)oxides are the most attractive materials for batteries

    11/11

    T . Oh z u k u , A . Ue d a / S o l id S ta t e lo n ic s 6 9 1 9 9 4 ) 2 0 1 -2 1 1

    211

    [25] A.K. S leigh and W .R. M cKinn on , S o l id S tate Ion ics 45

    (1991) 67 .

    [26 ] D.B. Rogers, R.D . Sha nnon , A.W. Sleigh t and J .L. Gi l l son ,

    Inorg . Chem . 8 (1969) 841 .

    [ 27 ] J.C. H unte r, J. Solid State Che m. 39 ( 1981 ) 142.

    [28 ] T.A. Hewston and B.L. Chamberland, J. Phys. Chem . Solids

    48 (1987) 97.

    [29] J .C. Anderson a nd M . Schieber, J . Phys. Chem . Sol ids 25

    (1964) 961 .

    [ 30 ] ICM. Colbow, J .R. D ahn and R.R. H aering, J . Pow er Sources

    26 (1989) 397 .

    [31 ] ICJ. Vetter, J. Eleetroc hem . Soc. 110 (196 3) 597.

    [ 32 ] T . Ohzuku , K. Sawai and T. Hirai , J . Elect rochem. Soc. 132

    (1985) 2828.

    [3 3 ] R .G. P ar r an d W. Yan g , Den s i t y -F u n c t i o n a l Th eo ry o f

    Ato m s an d M o lecu l es (Ox fo rd Un iv er s i t y P ress, Ox fo rd ,

    1989).

    [3 4 ] W.R. Mck in n o n an d R .R . Haer in g , in : M o d ern Asp ect s o f

    Electrochemistry, Vol. 15, eds. R. W hite, J.O M Bockris and

    B.E. Conw ay (Plenu m, N ew York, 1983) ch . 4 .

    [3 5 ] E .U. Co n d o n an d G.H. S h or tl ey , Th e Th eo ry o f Ato m i c

    Spect ra (C ambridge U nivers i ty Press , Cam bridge, 1963 ) .

    [36] T. O hzuku , M . Ki tagawa and T. Hirai , J . Elect rochem. Soc.

    137 (1990) 40.

    [37 ] T . O hzuku , IC Sawai and T. H irai , Elect rochem. Soc. Softb .

    Proc. Series 91-3 (Pe nningto n, NJ , 1991 ) pp. 318-325.

    [38] M.M . Thackeray, M.H . Rossouw, A. de Kock , A.P . dela

    Horpe, R.J . Gummow, K. Pearce and D.C. Li les , J . Power

    Sources 43-44 (1993) 289 .

    [ 39 ] S.D. Jone s and J.R. Akridge, J. Pow er Sources 43-44 (1993 )

    505.

    [4 0 ] J .M. Taraseo n , D . Gu y o m ard an d G.L . Bak er J . P o wer

    Sources 43-44 (1993) 689 .

    [41 ] V. Manev , A . Mom chi lov , A. Nassalevska and A. Kozawa,

    J . Power Sources 43-44 (1993) 551 .

    [ 42 ] G. B lasse, Philips Re s. Repts. Suppl. 3 (1 964) 121.

    [43]K. Mizush ima, P .C. Jones , P .J . Wiseman and J .B.

    Goodenough, Mat. Res. Bull . 15 (1980) 783.

    [44] T. Ohzuku , A. Ueda, M . Nagayama, Y. Iwakosh i and H .

    Kom ori , Electroch im. Acta 38 (1993) 1159.

    [45] T. Ohzuku , K. Sawai and T . Hirai , J . Pow er Sources 19

    (1987) 287 .

    [46] T . Ohz uku, Y. Iwakoshi an d K. Sawai, J. Electrochem. SOc.

    140 (1993) 2490.