asas#sn:&big&science&with&small&telescopes&tholoien/files/csgf-poster-holoien-2016.pdf ·...

1
ASASSN: Big Science with Small Telescopes Thomas W.S. Holoien (Ohio State) and the ASASSN Team ASASSN is supported by NSF grant AST1515927, the Center for Cosmology and AstroParLcle Physics (CCAPP) at OSU, the Mt. Cuba Astronomical FoundaLon, and the Robert MarLn Ayers Sciences Fund. TWSH is supported by the DOE ComputaLonal Science Graduate Fellowship, grant number DEFG0297ER25308. Contact: [email protected] Presented at the 2016 DOE CSGF Annual Program Review in Arlington, VA, July 2016 IntroducLon About ASASSN Even in the modern era, only human eyes can scan the enLre opLcal sky for the violent, variable, and transient events that shape our universe. The "AllSky Automated Survey for Supernovae" (ASASSN or "Assassin") is changing this by monitoring the extragalacLc sky to a limiLng magnitude of 17 every 23 days using mulLple telescopes, hosted by Las Cumbres Observatory Global Telescope Network, in the northern and southern hemispheres. Our automated pipeline schedules observaLons, processes data, and scans images for new potenLal discoveries without human interacLon, requiring sophisLcated algorithms to avoid false posiLve detecLons. The primary goal of ASASSN is to discover bright, nearby supernovae, and in three years of operaLon we have discovered over 300 supernovae, including 179 in 2015 alone, accounLng for more than 60% of supernovae brighter than 17th magnitude. ASASSN is finding nearby supernovae that would not be found by any other professional or amateur survey, and the nearby nature of ASASSN discoveries allows for detailed followup across a wide wavelength coverage. Here we present updated details on the ASASSN survey and its dataprocessing pipeline as well as analyses of the supernova discoveries made during its first three years of operaLon. Discovery StaLsLcs The primary science goal of ASASSN is a complete and unbiased census of bright, nearby supernovae, a task that has never been acempted by any previous project. Our early results with supernovae have been extremely encouraging, but ASASSN has also discovered many other types of bright transients. In just over two years of operaLon, ASASSN has found: 650+ new cataclysmic variable (CV) stars, 40+ Mdwarf flares with ΔV≥4, including the largestmagnitude flare ever discovered, 18 blazar flares, 3 Ldal disrupLon events (TDEs), and 355 Supernovae (265 Type Ia, 74 Type II, 11 Type Ib/Ic, 1 SLSNI, 4 Untyped) Figures 4 and 5 below compare ASASSN supernova discoveries to those of other professional and amateur surveys since the ASASSN “Cassius” unit came online in May 2014. ASASSN is discovers more than half of all bright supernovae, and the ASASSN sample appears to be less biased in terms of host galaxy magnitude and distance from the host galaxy nucleus than other searches. ASASSN also finds most of the remaining bright supernovae, but is not the first to report them. Figure 4: Histogram showing the number of bright (V ≤ 17.0) supernovae discovered per month in 2014 and 2015. Color indicates whether they were discovered by ASASSN (red), discovered by others but recovered in ASASSN data (green), or neither discovered nor recovered by ASASSN (blue). ASASSN has consistently discovered more than half of bright supernovae since Cassius came online in May of 2014. Figure 5: The distribuLon of bright SNe as a funcLon of absolute host galaxy magnitude and the offset of the SN from the center of the host, colorcoded by whether they were discovered by ASAS SN (red), other professional surveys (blue), or amateur astronomers (black). The horizontal and verLcal lines indicate the corresponding median values. The median offset for ASASSN supernovae is less than half that of either of the other two samples (4.9 arcseconds vs. 12.2 or 15.0). Notable Discoveries Below we highlight some of the most notable discoveries made by ASASSN in the last year. ASASSN15oi (Holoien et al. 2016) This is the third Ldal disrupLon event discovered by ASASSN, and the thirdnearest TDE candidate ever found. It was more luminous and faded more rapidly than most TDEs, but its spectra are a good match to heliumrich TDEs in literature. With 3 TDEs compared to 265 type Ia supernova discoveries, ASASSN is finding TDEs at a significantly higher rate than other surveys. Figure 6: MulLband light curves (lep) and spectral Lme sequence (right) of ASASSN15oi. The strong blue conLnuum and broad helium emission features are characterisLc of a Ldal disrupLon event, though it fades more rapidly than other ASASSN TDEs. References & Websites Works cited: Dong et al. 2016, Science, 351, 257 GodoyRivera et al. 2016, arXiv: 1605.00645 Holoien et al. 2016, arXiv: 1602.01088 For more informaLon, please see our websites: ASASSN Homepage ASASSN Supernovae TWSH Homepage ASASSN Data Pipeline With roughly 60 GB of raw data taken per night and thousands of possible transient sources in every image, the ASASSN pipeline requires automaLon and sophisLcated source detecLon algorithms to run with as licle human interacLon as possible. The basics of the ASASSN data processing pipeline and image subtracLon are summarized in the Figures below: ASASSN15lh (Dong et al. 2015, GodoyRivera et al. 2016) This is the most luminous supernova ever discovered, and it exhibited a second peak in its UV light curve roughly 150 days aper explosion. Figure 7: UV and opLcal light curves of ASASSN15lh. The unusual UV rebrightening is not associated with any spectral evoluLon. Figure 1: Sky map showing the number of Lmes each ASASSN field was observed between July 16, 2015 and July 15, 2016. Every field was observed over 40 Lmes, and most fields were observed over 100 Lmes, during this yearlong span. ASASSN currently consists of two units, one in each hemisphere, hosted by the Las Cumbres Observatory Global Telescope Network (LCOGT). Our northern hemisphere unit, “Brutus,” is deployed at the LCOGT Haleakala staLon, and our Southern hemisphere unit, “Cassius,” is deployed at the LCOGT Cerro Tololo staLon. Both units are composed of four 14cm telescopes on a common mount, with each camera having a roughly 20 square degree field of view. Together, these telescopes allow us to survey approximately 20,000 square degrees each night down to roughly 17 th magnitude in Vband, giving us full sky coverage every 23 nights, weather permisng. UlLmately, we hope to add an addiLonal unit in each hemisphere, allowing nightly fullsky observaLon. A map of our recent sky coverage is shown below. Figure 3: DemonstraLon of image subtracLon with recent discovery ASASSN16fp. The new observaLon (topright) is subtracted from the reference image (top lep), leaving a clean detecLon in the subtracted image (bocom). The red circle highlights the supernova. Reference Image New ObservaLon SubtracLon Figure 2: Flowchart outlining the ASASSN pipeline. ObservaLons are scheduled to maximize the discovery rate of transients, and data are downloaded reduced throughout the night in realLme. PotenLal transient sources are flagged for human scanning, and confirmed discoveries are publicly announced through Astronomer’s Telegrams and the ASASSN transients website.

Upload: dangnguyet

Post on 03-May-2019

214 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ASAS#SN:&Big&Science&with&Small&Telescopes&tholoien/files/CSGF-Poster-Holoien-2016.pdf · ASAS#SN:&Big&Science&with&Small&Telescopes& & Thomas&W.#S.&Holoien&(Ohio&State)&and&the&ASAS#SN&Team&

ASAS-­‐SN:  Big  Science  with  Small  Telescopes    

Thomas  W.-­‐S.  Holoien  (Ohio  State)  and  the  ASAS-­‐SN  Team    

ASAS-­‐SN  is  supported  by  NSF  grant  AST-­‐1515927,  the  Center  for  Cosmology  and  AstroParLcle  Physics  (CCAPP)  at  OSU,  the  Mt.  Cuba  Astronomical  FoundaLon,  and  the  Robert  MarLn  Ayers  Sciences  Fund.  

TW-­‐SH  is  supported  by  the  DOE  ComputaLonal  Science  Graduate  Fellowship,  grant  number  DE-­‐FG02-­‐97ER25308.  Contact:  [email protected]­‐state.edu  

Presented  at  the  2016  DOE  CSGF  Annual  Program  Review  in  Arlington,  VA,  July  2016  

IntroducLon  

About  ASAS-­‐SN  

Even   in   the   modern   era,   only   human   eyes   can   scan   the  enLre   opLcal   sky   for   the   violent,   variable,   and   transient  events   that   shape   our   universe.   The   "All-­‐Sky   Automated  Survey   for   Supernovae"   (ASAS-­‐SN   or   "Assassin")   is  changing   this   by   monitoring   the   extra-­‐galacLc   sky   to   a  limiLng   magnitude   of   17   every   2-­‐3   days   using   mulLple  telescopes,   hosted   by   Las   Cumbres   Observatory   Global  Telescope   Network,   in   the   northern   and   southern  hemispheres.   Our   automated   pipeline   schedules  observaLons,   processes   data,   and   scans   images   for   new  potenLal  discoveries  without  human  interacLon,  requiring  sophisLcated  algorithms  to  avoid  false  posiLve  detecLons.  The  primary  goal  of  ASAS-­‐SN   is   to  discover  bright,  nearby  supernovae,   and   in   three   years   of   operaLon   we   have  discovered   over   300   supernovae,   including   179   in   2015  alone,   accounLng   for   more   than   60%   of   supernovae  brighter   than   17th  magnitude.   ASAS-­‐SN   is   finding   nearby  supernovae   that   would   not   be   found   by   any   other  professional  or  amateur  survey,  and   the  nearby  nature  of  ASAS-­‐SN  discoveries  allows  for  detailed  follow-­‐up  across  a  wide   wavelength   coverage.   Here   we   present   updated  details   on   the   ASAS-­‐SN   survey   and   its   data-­‐processing  pipeline   as   well   as   analyses   of   the   supernova   discoveries  made  during  its  first  three  years  of  operaLon.  

Discovery  StaLsLcs    The  primary  science  goal  of  ASAS-­‐SN  is  a  complete  and  unbiased  census  of  bright,  nearby  supernovae,  a  task  that  has  never  

been  acempted  by  any  previous  project.  Our  early  results  with  supernovae  have  been  extremely  encouraging,  but  ASAS-­‐SN  has  also  discovered  many  other  types  of  bright  transients.  In  just  over  two  years  of  operaLon,  ASAS-­‐SN  has  found:    

•  650+  new  cataclysmic  variable  (CV)  stars,  •  40+  M-­‐dwarf  flares  with  ΔV≥4,  including  the  largest-­‐magnitude  flare  ever  discovered,  •  18  blazar  flares,  •  3  Ldal  disrupLon  events  (TDEs),  and  •  355  Supernovae  (265  Type  Ia,  74  Type  II,  11  Type  Ib/Ic,  1  SLSN-­‐I,  4  Untyped)  

 

Figures  4  and  5  below  compare  ASAS-­‐SN  supernova  discoveries  to  those  of  other  professional  and  amateur  surveys  since  the  ASAS-­‐SN  “Cassius”  unit  came  online  in  May  2014.  ASAS-­‐SN  is  discovers  more  than  half  of  all  bright  supernovae,  and  the  ASAS-­‐SN  sample  appears   to  be   less  biased   in   terms  of  host  galaxy  magnitude  and  distance   from  the  host  galaxy  nucleus  than  other  searches.  ASAS-­‐SN  also  finds  most  of  the  remaining  bright  supernovae,  but  is  not  the  first  to  report  them.  

Figure   4:   Histogram   showing   the   number   of   bright   (V   ≤   17.0)  supernovae   discovered   per   month   in   2014   and   2015.   Color  indicates   whether   they   were   discovered   by   ASAS-­‐SN   (red),  discovered  by  others  but  recovered   in  ASAS-­‐SN  data   (green),  or  neither   discovered   nor   recovered   by   ASAS-­‐SN   (blue).   ASAS-­‐SN  has  consistently  discovered  more  than  half  of  bright  supernovae  since  Cassius  came  online  in  May  of  2014.  

Figure  5:  The  distribuLon  of  bright  SNe  as  a   funcLon  of  absolute  host  galaxy  magnitude  and  the  offset  of  the  SN  from  the  center  of  the  host,  color-­‐coded  by  whether  they  were  discovered  by  ASAS-­‐SN   (red),   other   professional   surveys   (blue),   or   amateur  astronomers  (black).  The  horizontal  and  verLcal  lines  indicate  the  corresponding   median   values.   The   median   offset   for   ASAS-­‐SN  supernovae   is   less   than   half   that   of   either   of   the   other   two  samples  (4.9  arcseconds  vs.  12.2  or  15.0).  

Notable  Discoveries  Below  we  highlight  some  of  the  most  notable  discoveries  made  by  ASAS-­‐SN  in  the  last  year.    

ASASSN-­‐15oi  (Holoien  et  al.  2016)  This   is   the   third   Ldal   disrupLon   event   discovered   by  ASAS-­‐SN,   and   the   third-­‐nearest   TDE   candidate   ever  found.   It   was   more   luminous   and   faded   more   rapidly  than   most   TDEs,   but   its   spectra   are   a   good   match   to  helium-­‐rich  TDEs   in   literature.  With  3  TDEs  compared  to  265   type   Ia   supernova   discoveries,   ASAS-­‐SN   is   finding  TDEs  at  a  significantly  higher  rate  than  other  surveys.  

Figure   6:  MulL-­‐band   light   curves   (lep)   and   spectral   Lme   sequence  (right)   of   ASASSN-­‐15oi.   The   strong   blue   conLnuum   and   broad  helium   emission   features   are   characterisLc   of   a   Ldal   disrupLon  event,  though  it  fades  more  rapidly  than  other  ASAS-­‐SN  TDEs.  

References  &  Websites  Works  cited:  •  Dong  et  al.  2016,  Science,  351,  257  •  Godoy-­‐Rivera  et  al.  2016,  arXiv:  1605.00645  •  Holoien  et  al.  2016,  arXiv:  1602.01088    For  more  informaLon,  please  see  our  websites:  

ASAS-­‐SN  Homepage   ASAS-­‐SN  Supernovae   TW-­‐SH  Homepage  

ASAS-­‐SN  Data  Pipeline  With  roughly  60  GB  of  raw  data  taken  per  night  and  thousands  of  possible  transient  sources  in  every  image,  the  ASAS-­‐SN  pipeline   requires   automaLon   and   sophisLcated   source   detecLon   algorithms   to   run   with   as   licle   human   interacLon   as  possible.  The  basics  of  the  ASAS-­‐SN  data  processing  pipeline  and  image  subtracLon  are  summarized  in  the  Figures  below:  

ASASSN-­‐15lh  (Dong  et  al.  2015,  Godoy-­‐Rivera  et  al.  2016)  This   is   the   most   luminous   supernova   ever   discovered,  and   it   exhibited   a   second   peak   in   its   UV   light   curve  roughly  150  days  aper  explosion.  

Figure   7:   UV   and   opLcal   light   curves   of   ASASSN-­‐15lh.   The   unusual  UV  re-­‐brightening  is  not  associated  with  any  spectral  evoluLon.  

Figure   1:   Sky   map   showing   the   number   of   Lmes   each   ASAS-­‐SN  field  was  observed  between  July  16,  2015  and  July  15,  2016.  Every  field  was  observed  over  40  Lmes,  and  most  fields  were  observed  over  100  Lmes,  during  this  year-­‐long  span.  

ASAS-­‐SN   currently   consists   of   two   units,   one   in   each  hemisphere,   hosted   by   the   Las   Cumbres   Observatory  Global   Telescope   Network   (LCOGT).   Our   northern  hemisphere   unit,   “Brutus,”   is   deployed   at   the   LCOGT  Haleakala   staLon,   and   our   Southern   hemisphere   unit,    “Cassius,”    is  deployed  at  the  LCOGT  Cerro  Tololo  staLon.  Both  units    are  composed  of  four  14-­‐cm  telescopes  on  a  common  mount,  with  each   camera  having  a   roughly  20  square  degree  field  of   view.   Together,   these   telescopes  allow  us  to  survey  approximately  20,000  square  degrees  each   night   down   to   roughly   17th   magnitude   in   V-­‐band,  giving   us   full   sky   coverage   every   2-­‐3   nights,   weather  permisng.  UlLmately,  we  hope  to  add  an  addiLonal  unit  in  each  hemisphere,  allowing  nightly  full-­‐sky  observaLon.    A  map  of  our  recent  sky  coverage  is  shown  below.  

Figure  3:  DemonstraLon  of  image  subtracLon  with  recent  discovery  ASASSN-­‐16fp.   The   new   observaLon   (top-­‐right)   is   subtracted   from  the   reference   image   (top   lep),   leaving   a   clean   detecLon   in   the  subtracted  image  (bocom).  The  red  circle  highlights  the  supernova.  

Reference  Image   New  ObservaLon  

SubtracLon  Figure   2:   Flowchart   outlining   the   ASAS-­‐SN   pipeline.   ObservaLons   are  scheduled   to  maximize   the  discovery   rate  of   transients,   and  data   are  downloaded   reduced   throughout   the   night   in   real-­‐Lme.   PotenLal  transient   sources   are   flagged   for   human   scanning,   and   confirmed  discoveries   are   publicly   announced   through   Astronomer’s   Telegrams  and  the  ASAS-­‐SN  transients  website.