asip ldpc design for 802.11ad and...

20
© IMEC 2014 ASIP LDPC DESIGN FOR 802.11AD AND 802.11AC MENG LI CSI DEPARTMENT 3/NOV/2014 GDR-ISIS @ TELECOM BRETAGNE BREST FRANCE

Upload: others

Post on 30-Apr-2020

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ASIP LDPC DESIGN FOR 802.11AD AND 802departements.imt-atlantique.fr/data/elec/SITES/PublicElec/MengLi_A… · LLR quan. 5 bits 5 bits 5 bits 4 bits Parallelism 42*16 42*2 42*8 42*8

© IMEC 2014

ASIP LDPC DESIGN FOR 802.11AD AND 802.11AC

MENG LI

CSI DEPARTMENT

3/NOV/2014

GDR-ISIS @ TELECOM BRETAGNE BREST FRANCE

Page 2: ASIP LDPC DESIGN FOR 802.11AD AND 802departements.imt-atlantique.fr/data/elec/SITES/PublicElec/MengLi_A… · LLR quan. 5 bits 5 bits 5 bits 4 bits Parallelism 42*16 42*2 42*8 42*8

© IMEC 2014

OUTLINES

2

1. Introduction of IMEC and CSI department

2. ASIP design flow

3. Template of the high speed LDPC decoding

processor

4. Instantiation for the 802.11ad and 802.11ac

standard

Page 3: ASIP LDPC DESIGN FOR 802.11AD AND 802departements.imt-atlantique.fr/data/elec/SITES/PublicElec/MengLi_A… · LLR quan. 5 bits 5 bits 5 bits 4 bits Parallelism 42*16 42*2 42*8 42*8

© IMEC 2014

BRIEF INTRODUCTION OF IMEC

3

in 2013:

2086 people

383 residents

289 PhD students

71 nationalities

Page 4: ASIP LDPC DESIGN FOR 802.11AD AND 802departements.imt-atlantique.fr/data/elec/SITES/PublicElec/MengLi_A… · LLR quan. 5 bits 5 bits 5 bits 4 bits Parallelism 42*16 42*2 42*8 42*8

© IMEC 2014 IMEC 2013 CONFIDENTIAL

DIGITAL BB LOW POWER ARCHITECTURES

DEMONSTRATION

AND TEST

RF AND ANALOG IC AND MODULE DESIGN

SYSTEM AND ALGORITHMS

Strong expertise and track record in high-speed and low-power

architectures and circuits for multi-Gbps communication

Page 5: ASIP LDPC DESIGN FOR 802.11AD AND 802departements.imt-atlantique.fr/data/elec/SITES/PublicElec/MengLi_A… · LLR quan. 5 bits 5 bits 5 bits 4 bits Parallelism 42*16 42*2 42*8 42*8

© IMEC 2014

Flexibility

ASICs

DSP

Ene

rgy e

ffic

iency

Low duty cycle and/or

simple function

~ power efficient DSP

DIGITAL CASE: IMEC BASEBAND CORES PROGRAMMABILITY WITH HIGH ENERGY EFFICIENCY

5 to 1

0X

hig

her

energ

y e

ffic

iency

BOADRE

S

BLO

X BLO

X BLO

X

High duty cycle and/or

complex function

~ specialized data

(co)-processor

Page 6: ASIP LDPC DESIGN FOR 802.11AD AND 802departements.imt-atlantique.fr/data/elec/SITES/PublicElec/MengLi_A… · LLR quan. 5 bits 5 bits 5 bits 4 bits Parallelism 42*16 42*2 42*8 42*8

© IMEC 2014

FULL MODELING IN TARGET

COMMERCIAL TOOL FLOW Typical users: ASIC/SoC design teams

Page 7: ASIP LDPC DESIGN FOR 802.11AD AND 802departements.imt-atlantique.fr/data/elec/SITES/PublicElec/MengLi_A… · LLR quan. 5 bits 5 bits 5 bits 4 bits Parallelism 42*16 42*2 42*8 42*8

© IMEC 2014

HIGH SPEED LDPC ASIP: TEMPLATE

BARRELROT

ADD/SUB

BARRELROT

ADD/SUB

BARRELROT

ADD/SUB

BARRELROT

ADD/SUB

BARRELROT

ADD/SUB

BARRELROT

ADD/SUB

BARRELROT

ADD/SUB

BARRELROT

ADD/SUB

MINSIGN

OUTPUT

Syndrome detection

Configurable memory

Compiled firmware, for

given set of modes,

compaction can be done

through synthesis tool

8 parallel slices

Cross-slice

operations

Page 8: ASIP LDPC DESIGN FOR 802.11AD AND 802departements.imt-atlantique.fr/data/elec/SITES/PublicElec/MengLi_A… · LLR quan. 5 bits 5 bits 5 bits 4 bits Parallelism 42*16 42*2 42*8 42*8

© IMEC 2014

INSTRUCTION SET AND MAPPING

8

Page 9: ASIP LDPC DESIGN FOR 802.11AD AND 802departements.imt-atlantique.fr/data/elec/SITES/PublicElec/MengLi_A… · LLR quan. 5 bits 5 bits 5 bits 4 bits Parallelism 42*16 42*2 42*8 42*8

© IMEC 2014

HIGH SPEED LDPC ASIP: TEMPLATE

ad ac

Available instances

• Horizontal layered decoding

• Check node processing using

normalized/offset min-sum

• Flexible quantization scheme

• Multiple slices implementation

• Offset permutation (only rotation during

read of data)

• Early stop & Max iteration configuration

• Target Toolsuite based

• Assembly programmable

BARRELROT

ADD/SUB

BARRELROT

ADD/SUB

BARRELROT

ADD/SUB

BARRELROT

ADD/SUB

BARRELROT

ADD/SUB

BARRELROT

ADD/SUB

BARRELROT

ADD/SUB

BARRELROT

ADD/SUB

MINSIGN

OUTPUT

Syndrome detection

Configurable memory

Page 10: ASIP LDPC DESIGN FOR 802.11AD AND 802departements.imt-atlantique.fr/data/elec/SITES/PublicElec/MengLi_A… · LLR quan. 5 bits 5 bits 5 bits 4 bits Parallelism 42*16 42*2 42*8 42*8

© IMEC 2014

INSTANTIATION AND IMPLEMENTATION

CLAUDE DESSET, MENG LI - CSI 10

High throughput

instances

Template/ processor

802.11ad

8 slices

802.11ac

8 slices

Nu

mb

er

of

slic

es

Qu

an

tizati

on

LL

R

Ch

ec

k n

od

e

alg

ori

thm

Ma

x ite

rati

on

nu

mb

er

Ea

rly s

top

flexibility

802.11ac

4 slices

Page 11: ASIP LDPC DESIGN FOR 802.11AD AND 802departements.imt-atlantique.fr/data/elec/SITES/PublicElec/MengLi_A… · LLR quan. 5 bits 5 bits 5 bits 4 bits Parallelism 42*16 42*2 42*8 42*8

© IMEC 2014

802.11AD REQUIREMENTS

11

2 4 6 8 10 12 1410

-6

10-5

10-4

10-3

10-2

10-1

100

Eb/N

0 (dB)

BE

R/P

ER

R3/4 QPSK (MCS8) BER Performance with maximum iteration number 5

BER floating offset min-sum

BER Q5 offset min-sum

BER Q4 offset min-sum

PER floating offset min-sum

PER Q5 offset min-sum

PER Q4 offset min-sum

SC Multi indoor channel

Decoder input

rate

Up to 8.316 Gbps (MCS 22-24)

Modes MCS 0-24

Block size 672bits

Coding rates 1/2,5/8,3/4,13/16

Quantization Min 4 bits

Page 12: ASIP LDPC DESIGN FOR 802.11AD AND 802departements.imt-atlantique.fr/data/elec/SITES/PublicElec/MengLi_A… · LLR quan. 5 bits 5 bits 5 bits 4 bits Parallelism 42*16 42*2 42*8 42*8

© IMEC 2014

802.11AD RESULTS – FACT SHEET

12

Feature Value

Algorithm Normalized/Offset Min-sum, layered

decoding

Quantization APP: 7/6-bits & UPD: 5/4-bits

Parallelization Check-node FUs: 42

Bit-node FUs: 42x8 (half layer in parallel)

Functional support 1/2,5/8,3/4,13/16 (all 802.11ad modes)

Technology 28HPM – physical synthesis

Clock [MHz] 440

Quantization 4 bits

Average #cycles/layer 4

Throughput [Gbps for 1 iter for 1 core] 25.8 (R=13/16)

Latency [ns] 0.126us @5iteration

Area [sqmm] 0.269(4bits) [core-level]

Power [mW] 35.21mW @ QPSK R13/16 [core-level];

Energy Efficiency [pJ/bit/it] 3.7-4.7 [core-level]; 4.5-5.5 [wrapper-level]

• Parallel layer decoding

• Early stop

• Back-rotation

• Demapper

ad

2 cores + 3 iterations

HW/SW early stop

Stimuli @0.1dB

Page 13: ASIP LDPC DESIGN FOR 802.11AD AND 802departements.imt-atlantique.fr/data/elec/SITES/PublicElec/MengLi_A… · LLR quan. 5 bits 5 bits 5 bits 4 bits Parallelism 42*16 42*2 42*8 42*8

© IMEC 2014

SOA COMPARISON

13

[1] 2011, ‘LDPC decoder architecture for high-data rate personal-area networks’, Weiner, M., ect. from UC Berkeley

[2] 2013, ‘A parallelized layered QC-LDPC decoder for IEEE 802.11ad’, Alexios B., ect. from EPFL

[3] 2013, ‘AN AREA AND ENERGY EFFICIENT HALF-ROW-PARALLELED LAYER LDPC DECODER FOR THE 802.11AD

STANDARD’, Meng L. from IMEC

Berkeley[1] EPFL[2] Imec’s[3] Imec’s

Decoding algo. Two phases layered layered layered

LLR quan. 5 bits 5 bits 5 bits 4 bits

Parallelism 42*16 42*2 42*8 42*8

Pipeline scheme frame level X half layer half layer

Early stop YES NO NO YES

Number of cores Single Single Single Multi-cores

ASIC vs. ASIP ASIC ASIC ASIC ASIP

Tech node[nm] 65 40 40G 28HPM

Working freq. [MHz] 150 850 500 440

Throughput [Gbps] 3.08 3.12 5.6 8.3

Area [mm^2] 1.3 0.18 0.16 0.269

Energy eff.[pJ/bit/iter] 6.18 N/A 3.53 4.5-5.5

Page 14: ASIP LDPC DESIGN FOR 802.11AD AND 802departements.imt-atlantique.fr/data/elec/SITES/PublicElec/MengLi_A… · LLR quan. 5 bits 5 bits 5 bits 4 bits Parallelism 42*16 42*2 42*8 42*8

© IMEC 2014

802.11AC REQUIREMENTS

14

Decoder input rate Up to 6.93 Gbps (8 spatial streams, 160 MHz, 256-

QAM)

Modes MCS 0-9

Block size 648, 1296 or 1944bits

Coding rates 4 coding rates

Quantization Min 5 bits

Page 15: ASIP LDPC DESIGN FOR 802.11AD AND 802departements.imt-atlantique.fr/data/elec/SITES/PublicElec/MengLi_A… · LLR quan. 5 bits 5 bits 5 bits 4 bits Parallelism 42*16 42*2 42*8 42*8

© IMEC 2014

MAPPING TO 802.11AC

15

8 slices solution 4 slices solution

4 slices solution is more efficient than for low coding

rates

Average #cycles/iter: 74 Average #cycles/iter: 114

Page 16: ASIP LDPC DESIGN FOR 802.11AD AND 802departements.imt-atlantique.fr/data/elec/SITES/PublicElec/MengLi_A… · LLR quan. 5 bits 5 bits 5 bits 4 bits Parallelism 42*16 42*2 42*8 42*8

© IMEC 2014

802.11AC RESULTS – FACT SHEET

16

Feature Value

Algorithm Normalized/Offset Min-sum, layered decoding

Quantization APP: 7-bits & UPD: 5-bits

Parallelization Check-node FUs: Z=81/54/27

Bit-node FUs: Zx8 or Zx4 orZx2

Technology 28HPM– physical synthesis

Clock [MHz] 500MHz

Instances 8 slices 4 slices

Average #cycles/layer 7 10

Area [sqmm] 0.447 0.383

Throughput [Gbps for1iter 1 core] @In 37.4(R5/6)~13.1(R1/2) 23.7(R5/6)~8.4(R1/2)

Latency [ns] 580ns @10iterations 940ns @10iterations

Energy Efficiency [pJ/bit/it] 6.95 7.10

Functional support all 802.11ac modes (1/2,2/3,3/4,5/6)

Functional completeness

Parallel layer decoding

Back-rotation

Demapper

(R5/6,Z81)

ac

Page 17: ASIP LDPC DESIGN FOR 802.11AD AND 802departements.imt-atlantique.fr/data/elec/SITES/PublicElec/MengLi_A… · LLR quan. 5 bits 5 bits 5 bits 4 bits Parallelism 42*16 42*2 42*8 42*8

© IMEC 2014

SOA COMPARISON

17

[1] 2010, ‘A 15.8 pJ/bit/iter quasi-cyclic LDPC decoder for IEEE 802.11n in 90 nm CMOS’, Roth. C., etc. from ETH Zurich

[2] 2011, ‘A 115mW 1Gbps QC-LDPC decoder ASIC for WiMAX in 65nm CMOS’, Xiao P., etc. from UC Waseda

[3] 2011, ‘Multi-layer parallel decoding algorithm and VLSI architecture for quasi-cyclic LDPC codes’, Yang S., ect. from UC Rice

Zurich[1] Waseda[2] Rice[3] Imec’s

Decoding algo. layered layered Multi-layered layered

LLR quan. 5 bits 5 bits 5 bits 5 bits

Parallelism Z Z*2 Z*4 Z*4

Pipeline scheme NO NO 1/12 layer 1/6 layer

Early stop NO NO NO NO

ASIC vs. ASIP ASIC ASIC ASIC ASIP

Tech node[nm] 90 65 45 28HPM

Size Z & rate Z=81&R=5/6 Z=48&R=? Z=81 &

R=5/6

Z=81 & R=5/6

Working freq. [MHz] 346 110 815 500

Throughput [Mbps] 680 1056 3000 @ 15it 2370@10it

Area [mm^2] 1.77* 3.36* 0.81 0.383

Energy eff.[pJ/bit/iter] 15.8* 10.9* N/A 7.1 * tape out results

Page 18: ASIP LDPC DESIGN FOR 802.11AD AND 802departements.imt-atlantique.fr/data/elec/SITES/PublicElec/MengLi_A… · LLR quan. 5 bits 5 bits 5 bits 4 bits Parallelism 42*16 42*2 42*8 42*8

© IMEC 2014

802.11AC REQUIREMENTS

18

8 slices solution 4 slices solution

Multi-layer decoding

4 slices solution

Page 19: ASIP LDPC DESIGN FOR 802.11AD AND 802departements.imt-atlantique.fr/data/elec/SITES/PublicElec/MengLi_A… · LLR quan. 5 bits 5 bits 5 bits 4 bits Parallelism 42*16 42*2 42*8 42*8

© IMEC 2014

Heading for ultra-high

throughput FEC

Page 20: ASIP LDPC DESIGN FOR 802.11AD AND 802departements.imt-atlantique.fr/data/elec/SITES/PublicElec/MengLi_A… · LLR quan. 5 bits 5 bits 5 bits 4 bits Parallelism 42*16 42*2 42*8 42*8

© IMEC 2014