assessing the impact of anthropogenic discharges on endocrine disruption … · 2016. 11. 14. ·...

30
Assessing the Impact of Anthropogenic Discharges on Endocrine Disruption in the Potomac River Watershed Erik Rosenfeldt, Ph.D., P.E.

Upload: others

Post on 26-Jan-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • Assessing the Impact of AnthropogenicDischarges on Endocrine Disruption in thePotomac River WatershedErik Rosenfeldt, Ph.D., P.E.

  • 2

    Project Driver: Intersex fish in Potomac Watersheds

    Chesapeake Bay News Aug 09 2012Intersex fish widespread in Potomac River basin

    Intersex Fish Now in Three Pennsylvania River BasinsReleased: 6/30/2014 7:00:00 AMhttp://www.usgs.gov/newsroom

  • 3

    Potomac Observations of EDC Activity

    Associations of Land‐use with Intersex (Spawning Study 2007)

    Site HumanDensity1 WWTP2 WWTP

    Flow3%

    Ag4 AFO5 Animal

    Numbers6 Intersex7

    GauleyRiver 0.06 0 0 0.5 0 464

    11.3%0.02 (0.07)

    South BranchPetersburg 0.07 3 0.95 16.4

    296 (296) 1,450,120

    74.3%0.97 (0.95)

    South BranchMoorefield 0.07 4 1.43 15.2

    497 (496) 7,384,685

    54.5%0.50 (0.50)

    South BranchSpringfield 0.08 5 1.93 15.2

    565 (562) 8,719,093

    82.2%1.02 (0.76)

    ShenandoahNorth Fork 0.28 50 1.59 32.7

    1,174(960) 11,757,596

    90.0%1.16 (0.78)

    ShenandoahMainstem 0.43 101 25.66 32.6

    3,655 (2,539) 33,928,442

    93.0%1.64 (0.93)

    ShenandoahSouth Fork 0.56 19 20.84 35.9

    2,029(1,176) 14,788,173

    100.0%1.83 (0.65)

    ConococheagueCreek (lower) 0.69 13 8.31 50.3

    10 (1) 1,819,225

    87.5%1.03 (0.78)

  • 4

    Impacts of Point and Non-point SourcesComparing Land Use and Observed Intersex Activity

    Land Use in the Potomac Watershed

    Modified from Blazer et al., 2011

  • 5

    Xenoestrogen:  a type of xenohormone that imitates estrogen; steroidal estrogens

    Alkylphenol:

    Bisphenol A

    a family of organic compounds obtained by the alkylation of phenols

    estradiol (E2), estrone (E1), 

    estriol (E3)

    Substances in our environment, food, and consumer products that interfere with hormone biosynthesis, metabolism, or action resulting in a deviation from normal homeostatic control or reproduction.

    Introduction – Endocrine-disrupting chemicals (EDCs):

  • 6

    Project Team – A unique collaboration

    Sudhir Murthy, Ph.D., P.E., BCEEDC Water

    Sujay Kaushal,Ph.D., U. of Maryland

    Luke Iwanowicz,Ph.D., USGS

    Diana Aga, Ph.D.U. of Buffalo

    Erik Rosenfeldt, Ph.D., P.E.Hazen and Sawyer

    Shuiwang Duan, Ph.D., U. of Maryland

    Katia M. N. Oviedo, PhD candidate, U. of Buffalo

  • 7

    Evaluate the upstream and downstream impacts from nutrient control, agriculture management, stormwatermanagement and wastewater treatment strategies

    Project Objective 1

    Wastewater treatment (WWTP)

    Combined sewer overflow (CSO)

    Agriculture management

    NO agriculture management

    Stormwater management (Urban)  

    NO stormwater management 

    Upstream site

    Downstream site

  • 8

    Evaluate Impacts of EDC in receiving waters attributed to point versus non-point sources

    Point sources(WWTP, CSO)

    Non-Point sources

    (Agricultural, urban runoff)

    ??

    Project Objective 2

    Potomac River  EDCs and Activity

  • 9

    Analytical Detection• Hormones

    andmetabolites

    Advanced NOM Characterization• Fluorometry

    Methods – Chemical and WQ Endpoints

    Estrogen

    EstrogenReceptor

    ActivatedReceptor

    §-galactosidaseenzyme

    Nucleus

    Cytoplasm

    hER

    PGKpromoter

    ERE

    Lac-Z2

    1

    3

    46

    5

    ONPG

    colorless

    ONPG

    YellowMedium

    Bioactivity: Yeast Estrogen Assay

    Nitrate Isotopes• Source Tracking

  • 10

    Phase 1 Sampling

    Locations include: “Paired” Watershed Samples

    With and Without BMPs

    Agriculture Urban CSO Blue Plains WWTP Additional WWTP

    Sampling Frequency is bimonthly for 1 year + 1 rain event

  • Fencing installation began in 2006 (visible erosion).

    In autumn 2007 with fencing in place, the riparian area is reverting back to its natural state.

    Decreases in TP concentrations

    Agricultural BMPs

    • Fencing• Spring to replace in-stream

    cattle watering • Stream crossings• plantings of cool season

    grasses..

    Result: • streambank stability

    improved. • Phosphorus concentrations

    declined

  • 12

    Constructed Wetlands Stormwater Runoff Control Pond

    Tributary Stream Restoration

    Urban BMPs (Sligo Creek)

  • Results: Effect of Best Management Practices (BMPs) on Agricultural and Urban Runoff Inputs

    05

    10152025

    Mar May Jul Sep Nov

    DOC (m

    g L‐1)

    0

    5

    10

    TDN (m

    g L‐1)

    0

    100

    200

    SRP (µg L‐1)

    0

    1

    2

    3

    Estron

    e (ng L‐1)

    0

    0.5

    1

    1.5

    ↓69% 

    0

    2

    4

    6↓16% 

    0

    50

    100

    150↓ 62% 

    02468

    10

    ↓59% 

    0246810

    Mar May Jul Sep Nov

    0

    1

    2

    0

    20

    40

    60

    80

    0

    1

    2

    3

    0

    0.5

    1

    1.5

    ↓ 44% 

    0

    0.5

    1

    1.5↓ 4% 

    0

    10

    20

    30

    40↓64% 

    01234567

    ↓27% 

    0100200300400500

    Agr_NoBMPAgr_BMP

    SC (µ

    S cm

    ‐1)

    0

    100

    200

    300

    400

    500

    Agr_NoBMPAgr_BMP

    ↓4% 

    0

    200

    400

    600

    800

    Urb_NoBMPUrb_BMP

    0

    100

    200

    300

    400

    500

    Urb_NoBMPUrb_BMP

    ↓ 6% 

  • 14

    YES Comparison - BMPs

    00.5

    11.5

    22.5

    EE

    Q (n

    g/L)

    Agriculture Sites

    BMP No BMP

    0

    0.5

    1

    1.5

    2

    2.5

    March May July SeptemberSeptember(storm)

    EE

    Q (n

    g/L)

    Urban Sites

    BMP No BMP

    0

    0.5

    1

    1.5

    2

    2.5

    March May July September September(storm)

    EE

    Q (n

    g/L)

    CSO Site

    Upstream CSO Effluent Downstream

    7.8 ng/L

    50 – 90% Reductions

    75 – 98% Reductions

  • 15

    Results: CSO Impact on Water Quality

    0246810

    DOC (m

    g L‐1)

    01234567

    TDN (m

    g L‐1)

    050100150200250

    SRP (µg L‐1)

    01234567

    Estron

    e (ng L‐1)

    0

    1

    2

    3

    0

    2

    4

    0

    50

    100

    150

    012345

    0

    300

    600

    900 Series4CSO_effCSO_up

    SC (µ

    S cm

    ‐‐1)

    0

    1

    2

    3 CSO_effCSO_upCSO_down

  • 16

    Results: Effect of Point Source Effluent

    02468101214

    Mar May Jul Sep Nov

    DOC (m

    g L‐1)

    0

    1

    2

    3

    TDN (m

    g L‐1)

    0

    50

    100

    SRP (µg L‐1)

    0

    0.5

    1

    Estron

    e (ng L‐1)

    0

    0.5

    1

    0

    1

    2

    0

    20

    40

    60

    80

    0246810

    0246810

    Mar May Jul Sep Nov

    0

    1

    2

    3

    0

    40

    80

    120

    0

    2

    4

    6

    0

    1

    2

    0

    1

    2

    3

    0

    20

    40

    60

    80

    01234567

    0

    300

    600

    900

    BP_effBP_upBP_down

    EC (µ

    S cm

    ‐1)

    0

    200

    400

    600

    800

    BP_effBP_upBP_down

    0

    300

    600

    900

    WP2_effWP2_upWP2_down

    0

    200

    400

    600

    800

    WP2_effWP2_upWP2_down

  • 17

    2nd

    Nitrification/Denitrification

    Effluent

    Wastewater treatment plants

  • 18

    Blue Plains Impact

    051015202530

    DOC (m

    g L‐1 )

    BP_2ndBP_nitriBP_eff

    0

    20

    40

    TDN (m

    g L‐1 )

    BP_2ndBP_nitriBP_eff

    0

    50

    100

    SRP (µg L‐1 )

    BP_2ndBP_nitriBP_eff

    0

    100

    200 BP_2ndBP_nitriBP_eff

    Estron

    e (ng L‐1)

    0

    50

    100

    ↓99.6%

    0

    10

    20

    30

    ↓91%

    0

    50

    100

    ↑125%

    0

    5

    10

    15

    20

    ↓52%

    BD0.6 0.8 0.90.4

    BD 0.2 0.00.50.1 0.5

    0.6

    7.0

    0123456789

    10

    EE

    Q (n

    g/L)

    Upstream Plant Effluent Downstream

    Above Range

    Estrogenic Activity

    Water Quality

  • 19

    Correlations between EDCs and WQ

  • 20

    Correlations between EDCs and WQ

  • 21

    Source Tracking via Nutrient Isotopes

    Blue PlainsUrban

    WP2

    Agri.

    CSO

    Potomac R.

  • 22

    Overlaying EDCs on Nutrient Fingerprints

  • 23

    Overlaying EDCs on Organic Matter Fingerprints

  • 24

    Conclusions

    Low level estrogenic activity found throughout the PotomacEstrone was the most common EDC detected• Effectively removed by wastewater treatmentCSOs showed limited observed impact, except after the heavy rain eventNonpoint urban and agricultural sources served as continual sources• BMPs were capable of significantly reducing estrogenic activityLimited correlations between typical water quality parameters and EDCs/EDC activity• Advanced metrics showing promise

  • 25

    EEQ/POCIS

    0 10 20 30M

    ass

    (pes

    ticid

    es; n

    g/P

    OC

    IS)

    -500

    0

    500

    1000

    1500

    2000

    2500

    3000

    3500r2=0.48

    EEQ/POCIS

    0 10 20 30

    Mas

    s (s

    tero

    id h

    orm

    one;

    ng/

    PO

    CIS

    )

    -40

    -20

    0

    20

    40

    60

    80

    100

    120

    140r2=0.93

    Pesticide

    Steroid hormones

    Baby Steps Towards Co-management of Pollutants?

    Square root total density AFOs (#/1000 acres)

    0.0 0.5 1.0 1.5 2.0 2.5

    Log

    mea

    n co

    ncen

    tratio

    n E2

    Eq (n

    g/L)

    -1.0

    -0.8

    -0.6

    -0.4

    -0.2

    0.0

    0.2

    0.4

    Agriculture

    Permitted flow WWTP effluent (MGD)

    0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8Lo

    g m

    ean

    conc

    entra

    tion

    E2Eq

    (ng/

    L)-1.0

    -0.8

    -0.6

    -0.4

    -0.2

    0.0

    0.2

    0.4

    WWTP Effluent

    Shenandoah Drainage, 2009

    Ciparis et al. (2012) Effects of watershed densities of animal feeding operations on nutrient concentrations and estrogenic activity in agricultural streams. Science of the Total Environment, 414: 268-276

  • 26

    Next Steps: Justin will discuss in greater detail

  • 27

    Sample Collection, Processing, and Analysis

    Analytical Chemistry

    Biological Activity Assays

    Triple Bottom Line Analysis

    Program Management

    Data Analysis

    Prioritization Framework

    Technical Advisor

    Amit Pramanik, Ph.D.Theresa Connor, P.E.

    WERF

    Shuiwang Duan, Ph.D.Lab Technical StaffUniversity of Maryland

    Sujay Kaushal, Ph.D.University of Maryland P.I.

    M.S. Student, TBAVirginia Tech 

    Tom Grizzard, Ph.D., P.E.Virginia Tech  co-P.I.

    Diana Aga, Ph.D.University of Buffalo

    Analytical and Bioanalytical Support

    Luke Iwanowicz, Ph.D.USGS

    Engineering and Management Support

    Sudhir Murthy, Ph.D., P.E.DC Water

    Erik Rosenfeldt, Ph.D., P.E.Hazen and Sawyer

    Core Team Member Project Responsibilities

    Another exciting collaboration

  • 28

    EPA STAR Timeline

    Year 1 (July 2016 – June 2017)Identify and track spatial and temporal variations in “hot spots”

    Year 2 (July 2017 – June 2018)Focused study on impact and outcomes of reclamation, reuse, harvesting, and management strategies on sources of pollutants

    Year 3 (July 2018 – June 2019)Quantitative assessment of costs, benefits, and impact of advanced reclamation, reuse, harvesting, and management practices on human and ecological health in the Potomac

  • 29

    Distilling it down a bit further

    Non-Point SourceAgriculture

    UrbanPoint

    Source BackgroundEDCsNutrientsPathogens?

    Land Use in the Potomac Watershed

    OWML – Site of May 23rd “unofficial” Project Kickoff Meeting

  • 30

    Questions?

    [email protected]