assimilation of cloud/precipitation data at regional scales · assimilation of cloud/precipitation...

27
Assimilation of cloud/precipitation data at regional scales Thomas Auligné National Center for Atmospheric Research [email protected] Acknowledgments to: Steven Cavallo, David Dowell, Aimé Fournier, Hans Huang, Zhiquan Liu, Yann Michel, Thomas Nehrkorn, Chris Snyder, Jenny Sun, Ryan Torn, Hongli Wang Research funded by the National Science Foundation and the Air Force Weather Agency

Upload: others

Post on 25-May-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Assimilation of cloud/precipitation data at regional scales · Assimilation of cloud/precipitation data at regional scales Thomas Auligné National Center for Atmospheric Research

Assimilation of cloud/precipitation data at regional scales

Thomas AulignéNational Center for Atmospheric Research

[email protected]

Acknowledgments to: Steven Cavallo, David Dowell, Aimé Fournier, Hans Huang, ZhiquanLiu, Yann Michel, Thomas Nehrkorn, Chris Snyder, Jenny Sun, Ryan Torn, Hongli Wang

Research funded by the National Science Foundation and the Air Force Weather Agency

Page 2: Assimilation of cloud/precipitation data at regional scales · Assimilation of cloud/precipitation data at regional scales Thomas Auligné National Center for Atmospheric Research

Introduction

• The Model• Weather Research and Forecasting (WRF) community model. • Advanced Research WRF (ARW) non‐hydrostatic dynamical core

• The Data Assimilation (DA)• Data Assimilation Research Testbed (DART): EnKF• WRF Data Assimilation (WRFDA): 3DVar, FGAT, 4DVar• Gridpoint Statistical Interpolation (GSI): 3DVar, 4DVar under development

• The Operational Applications• Air Force Weather Agency (AFWA) • NOAA (“Rapid Refresh”)

Page 3: Assimilation of cloud/precipitation data at regional scales · Assimilation of cloud/precipitation data at regional scales Thomas Auligné National Center for Atmospheric Research

Introduction

AFWA Coupled Analysis and Prediction System (ACAPS)

SCOPE: Develop an analysis and prediction system of 3D cloud properties combined with the dynamical variables.

World‐WideMergedCloud Analysis

Page 4: Assimilation of cloud/precipitation data at regional scales · Assimilation of cloud/precipitation data at regional scales Thomas Auligné National Center for Atmospheric Research

CTRL Initialization by NCEP ETA analysisGFS Initialization by NCEP GFS analysisWRFDA WRF 3DVAR radar radial velocityWSM CTRL with different microphysics

FSS of 5mm hourly precip.WRF run over IHOP domain

• Radar data assimilation improves the precipitation forecast up to 8 hours

• Forecast is more sensitive WRT initial conditions than physics (microphysics ismost sensitive among all physics tested)

Radial velocity 2002061200 UTC

WRFDA 3DVAR and radar radial velocityIHOP one‐week retrospective study

(Jenny Sun)

Page 5: Assimilation of cloud/precipitation data at regional scales · Assimilation of cloud/precipitation data at regional scales Thomas Auligné National Center for Atmospheric Research

Hourly precipitation at 0600 UTC 13 JuneGFS

3DVAR

OBS

4DVAR

Page 6: Assimilation of cloud/precipitation data at regional scales · Assimilation of cloud/precipitation data at regional scales Thomas Auligné National Center for Atmospheric Research

Column‐Integrated cloud water Column‐Integrated rain water Radar Reflectivity

Simulated Ch2 Tbs Simulated Ch17 Tbs

Towards Cloudy Radiance Assimilation

Model = “truth” for SSMI/S radiance simulation

Only liquid hydrometeors considered

Simulated SSMIS radiances (ch 1~6, 8~18) at each grid-point using CRTM

(Zhiquan Liu)

Simulated SSMIS radiances

Page 7: Assimilation of cloud/precipitation data at regional scales · Assimilation of cloud/precipitation data at regional scales Thomas Auligné National Center for Atmospheric Research

Assimilation of simulated SSMIS radiances in WRF 3DVAR

• Use total water Qt=Qwv+Qclw +Qrain as a control variable (instead of individual hydrometeors)

• Use a warm‐rain microphysics scheme’s TL&AD for partitioning Qt increment into Qwv, Qclw & Qrain. (Xiao et al., 2007)

• CRTM as cloudy radiance observation operator

• Minimization starts from a cloud‐free background, this scenario can be realistic for less accurate cloud/precip. forecast in the real world

• Perfect background for other variables (T,Q etc.)• Perfect observations (no noise added to the simulated Tbs) 

• 2 outer‐loops

Towards Cloudy Radiance Assimilation

Page 8: Assimilation of cloud/precipitation data at regional scales · Assimilation of cloud/precipitation data at regional scales Thomas Auligné National Center for Atmospheric Research

Column-Integrated cloud water Column-Integrated rain water SSMIS Channel 17

Towards Cloudy Radiance Assimilation

Analysis

Truth

Simulated SSMIS radiances

Page 9: Assimilation of cloud/precipitation data at regional scales · Assimilation of cloud/precipitation data at regional scales Thomas Auligné National Center for Atmospheric Research

Pixel

Nk1

Nk2 Nk3

No

Cloud Top Pressure (hPa)

MODIS Level2 AIRS MMR

Cld = N oRνo + N k Rν

•k

k=1

n

∑with

[ ]nkN k ,0,10 ∈∀≤≤

∑=

=+n

k

kNN1

1∑ ⎟⎟⎠

⎞⎜⎜⎝

⎛ −=

ν ν

νν

2

21)(

RRRNJ

ObsCld

Cloud fractions Nk are ajusted variationally to fit observations:

Infrared Cloudy Radiances

Page 10: Assimilation of cloud/precipitation data at regional scales · Assimilation of cloud/precipitation data at regional scales Thomas Auligné National Center for Atmospheric Research

RνObs − Rν

CldRνObs − Rν

o

Towards Cloudy Radiance Assimilation

Pixel

Nk1

Nk2 Nk3

No

IR Cloudy Radiances(linear obsoperator)

Page 11: Assimilation of cloud/precipitation data at regional scales · Assimilation of cloud/precipitation data at regional scales Thomas Auligné National Center for Atmospheric Research

11

Towards Cloudy Radiance Assimilation

Simulated mismatch in resolution:

‐ Perfect observations (high resolution)‐ Perfect Background (lower resolution)

Representativeness Error

Innovations

Background

Page 12: Assimilation of cloud/precipitation data at regional scales · Assimilation of cloud/precipitation data at regional scales Thomas Auligné National Center for Atmospheric Research

12

Towards Cloudy Radiance Assimilation

New interpolation scheme:

1. Automatic detection of sharp gradients 2. New “proximity” for interpolation

Representativeness Error

Innovations

Background

New Innovations

Page 13: Assimilation of cloud/precipitation data at regional scales · Assimilation of cloud/precipitation data at regional scales Thomas Auligné National Center for Atmospheric Research

By sorting and comparing |wi| for obs. yo & background  yb we can isolate a multi‐scale subset i (right) from which equivalent representations yo* and yb*

of yo and yb can be reconstructed…

Wavelet analysis of simulated representativeness error

(Aimé Fournier)

Biorthogonal wavelet transform can isolate observation‐background differences scale‐by‐scale while preserving physical‐space localization

Page 14: Assimilation of cloud/precipitation data at regional scales · Assimilation of cloud/precipitation data at regional scales Thomas Auligné National Center for Atmospheric Research

The raw yo− yb (left) includes errors due to yo and yb coming from completely different representations, that (hypothetically) have been reconciled by the foregoing wavelet-coefficient selection procedure.

Wavelet analysis of representativeness (cont.)Reduction in representativeness error within observation‐background differences

Page 15: Assimilation of cloud/precipitation data at regional scales · Assimilation of cloud/precipitation data at regional scales Thomas Auligné National Center for Atmospheric Research

(David Dowell)

WRF ensemble

Page 16: Assimilation of cloud/precipitation data at regional scales · Assimilation of cloud/precipitation data at regional scales Thomas Auligné National Center for Atmospheric Research

•The normalization with Σ2 = diag B (left) yields a model with fewer artifacts (right) than does Σ = I (center) (as found by D&B earlier).• In these plots x is unbalanced temperature anomaly in a 30-member ensemble computed by Dowell with horizontal resolution N = 450×350.

Wavelet representation of Background Error Covariance Matrix

Background covariance can be efficiently modeled by assuming diagonality of the wavelet‐coefficient covariance matrix (Fisher & Andersson, Deckmyn & Berre).

(Aimé Fournier)

Page 17: Assimilation of cloud/precipitation data at regional scales · Assimilation of cloud/precipitation data at regional scales Thomas Auligné National Center for Atmospheric Research

Diagnostic Verification Methods

1. Object-based

2. Field Deformation

3. Neighborhood (fuzzy)

4. Scale Decomposition

5. Variograms

(Chris Davis - http://www.ral.ucar.edu/projects/icp)

Page 18: Assimilation of cloud/precipitation data at regional scales · Assimilation of cloud/precipitation data at regional scales Thomas Auligné National Center for Atmospheric Research

Method of Object‐based Diagnostic Evaluation (MODE)

Restore original field where h(x,y) =1

f(x,y)

Page 19: Assimilation of cloud/precipitation data at regional scales · Assimilation of cloud/precipitation data at regional scales Thomas Auligné National Center for Atmospheric Research

0

5

10

15

20

25

30

0 5 10 15 20 25 30

Observed LIfetime (h)

Predicted LIfetime (h)

Attributes of Rain Systems

ICP Workshop, August 24‐25, 2009 19

0

5

10

15

20

0 5 10 15 20

Observed Speed (m

/s)

Predicted Speed (m/s)

System Speed System Lifetime

No obvious bias Limited skill

Small high bias in predicted lifetime

Page 20: Assimilation of cloud/precipitation data at regional scales · Assimilation of cloud/precipitation data at regional scales Thomas Auligné National Center for Atmospheric Research

Status

• Think global, start local…(convective‐scale, hurricane DA experiments)

• Research in 4DVar, EnKF, Hybrid

• Simulated & real satellite radiances

• Inhomogeneous Background error modeling

• Verification of cloud forecasts

Page 21: Assimilation of cloud/precipitation data at regional scales · Assimilation of cloud/precipitation data at regional scales Thomas Auligné National Center for Atmospheric Research

Recommendations

• Will traditional DA methods work for clouds?(e.g. non‐linear, non‐Gaussian)

• Focus on model error (e.g.microphysics, RTM)

• info on model deficiencies

• new DA techniques• Leverage Ensemble / Variational experience 

• Modular codes • increase flexibility • facilitate collaborations 

Page 22: Assimilation of cloud/precipitation data at regional scales · Assimilation of cloud/precipitation data at regional scales Thomas Auligné National Center for Atmospheric Research

Thanks! Questions?

Page 23: Assimilation of cloud/precipitation data at regional scales · Assimilation of cloud/precipitation data at regional scales Thomas Auligné National Center for Atmospheric Research

1DVar Retrieval of Hydrometeors1. Control variables: T, Q, Cloud liquid water, rain, cloud ice2. Start from a mean cloud/rain profile background3. Random noise to the simulated obs and T, Q background profiles

Signal for cloud-ice is weaker than for cloud-water/rain

Need a better preconditioning?

Cloud liquid waterRain

Fail to retrievecloud ice for most cases

Towards Cloudy Radiance AssimilationSimulated SSMIS radiances in 1DVAR

Page 24: Assimilation of cloud/precipitation data at regional scales · Assimilation of cloud/precipitation data at regional scales Thomas Auligné National Center for Atmospheric Research

Wavelet background-covariance (cont.)

The wavelet B model (right) represents heterogeneity, unlike homogeneous recursive filters (left)

The filter length can be chosen appropriately for the field smoothness e.g., velocity being smoother than humidity

Page 25: Assimilation of cloud/precipitation data at regional scales · Assimilation of cloud/precipitation data at regional scales Thomas Auligné National Center for Atmospheric Research

Displacement data assimilation

Page 26: Assimilation of cloud/precipitation data at regional scales · Assimilation of cloud/precipitation data at regional scales Thomas Auligné National Center for Atmospheric Research

Displacement data assimilation

Page 27: Assimilation of cloud/precipitation data at regional scales · Assimilation of cloud/precipitation data at regional scales Thomas Auligné National Center for Atmospheric Research

Displacement data assimilation