asteroids, kbos and other debris in planetary...

16
ASTEROIDS, KBOS AND OTHER DEBRIS IN PLANETARY SYSTEMS RENU MALHOTRA UNIVERSITY OF ARIZONA 1. Locating debris in exo-planetary systems 2. Chaotic diffusion of resonant Kuiper Belt objects @KITP: Planet Formation Conference, March 15-19, 2004

Upload: others

Post on 27-Jan-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

  • ASTEROIDS, KBOS AND OTHER DEBRIS

    IN PLANETARY SYSTEMS

    RENU MALHOTRA

    UNIVERSITY OF ARIZONA

    1. Locating debris in exo-planetary systems

    2. Chaotic diffusion of resonant Kuiper Belt objects

    @KITP: Planet Formation Conference, March 15-19, 2004

  • – 2 –

  • – 3 –

    Orbital stability criteria

    1 Planet System

    • Hill stability: |∆a|/ap > 2.4(mp/m?) 13 ' 3RH

    • Resonance overlap: |∆a|/ap > 1.5(mp/m?) 27

    • Eccentric planet: r 3 (q − 3RH, Q + 3RH)

    2 Planet System

    • Direct numerical integration of test particles• Patchwork of 1-planet criteria• Secular stability analysis

    – Laplace-Lagrange secular theory for planets: linear modes

    ∗ e.g., g5, g6 for Sun-Jupiter-Saturn system– Locate secular resonances of test particles

    – Nonlinear saturation of test particle eccentricity

    ∗ resonance Hamiltonian, phase space pictures∗ Initially circular orbits are unstable near g0 ≈ gj∗ maximum eccentricity excitation, emax ∝ |E(j)|,∗ depends strongly on a, weakly on m1/m2.

  • – 4 –

    Secular Resonance Hamiltonian

    toy model: planet in eccentric, precessing orbit

    Hsec = −mpap

    {A0(α) + A(α)e

    2 + B(α)e4 − C(α)eep cos($p −$)}. (1)

    in canonical variables, −$ and J = √a(1−√1− e2),

    Hsec = −mpam

    A0(α)− g0J + βJ2 + ε√

    2J cos($ −$p), (2)

    where

    g0 =2A(α)

    a12 am

    mp, β =A(α)− 4B(α)

    aammp, ε =

    C(α)

    a14 am

    mpep. (3)

    For initially circular test particle orbits, the maximum perturbation occurs at

    g0 = gp + 3(βε2/2)1/3,

    and the maximum amplitude is given by

    Jmax = 2∣∣∣2εβ

    ∣∣∣23

    or emax ≈ 2∣∣∣ 2CA− 4Bep

    ∣∣∣13

    . (4)

  • – 5 –

    -4 -2 0 2 4

    -4

    -2

    0

    2

    4

    -4 -2 0 2 4

    -4

    -2

    0

    2

    4

    -4 -2 0 2 4

    -4

    -2

    0

    2

    4

    -4 -2 0 2 4

    -4

    -2

    0

    2

    4

    -4 -2 0 2 4

    -4

    -2

    0

    2

    4

    -4 -2 0 2 4

    -4

    -2

    0

    2

    4

    -4 -2 0 2 4

    -4

    -2

    0

    2

    4

    -4 -2 0 2 4

    -4

    -2

    0

    2

    4

    -4 -2 0 2 4

    -4

    -2

    0

    2

    4

    -4 -2 0 2 4

    -4

    -2

    0

    2

    4

    -4 -2 0 2 4

    -4

    -2

    0

    2

    4

  • –6

    –47 Ursae Majoris system

    a(AU)

    0 5 100

    0.2

    0.4

    0.6

    0.8

    1

  • –7

    –47 Ursae Majoris system

    a(AU)

    0 5 100

    0.2

    0.4

    0.6

    0.8

    1

  • –8

    –upsilon Andromedae system

    a(AU)

    0 5 100

    0.2

    0.4

    0.6

    0.8

    1

  • –9

    –upsilon Andromedae system

    a(AU)

    0 5 100

    0.2

    0.4

    0.6

    0.8

    1

  • –10

    –Solar system (Sun+Jupiter+Saturn)

    inner SS

    0 1 2 3 4 50

    0.2

    0.4

    0.6

    0.8

    1

    a(AU)

    outer SS

    0 10 20 300

    0.2

    0.4

    0.6

    0.8

    1

    a(AU)

  • –11

    –Solar system (Sun+Jupiter+Saturn)

    inner SS

    0 1 2 3 4 50

    0.2

    0.4

    0.6

    0.8

    1

    a(AU)

    outer SS

    0 10 20 300

    0.2

    0.4

    0.6

    0.8

    1

    a(AU)

  • –12

    –Solar system (Jupiter+Saturn only, vs. 4 outer planets)

    inner SS

    0 1 2 3 4 50

    0.2

    0.4

    0.6

    0.8

    1

    a(AU)

    outer SS

    0 10 20 300

    0.2

    0.4

    0.6

    0.8

    1

    a(AU)

  • – 13 –

    Possible debris locations in:

    • 47 Ursae Majoris (two jovian-mass planets)– 0.3-0.6 AU

    – 1.0-1.5 AU

    – outside 7.5 AU

    • υ Andromedae (three jovian-mass planets)– between 0.06 and 0.3 AU

    – outside 8 AU

    • Sun–Jupiter–Saturn system– inward of 0.5 AU

    – between 0.8 and 1.6 AU

    – between 2.0 and 4.3 AU

    – outside 18 AU

  • –14

    Orbital Distribution of Kuiper Belt objects

    30 35 40 45 500

    0.1

    0.2

    0.3

    0.4

    semimajor axis [AU]

    2:13:24:35:4 5:37:5

    +

    Planet Migration and Resonance Sweeping of the Kuiper Belt

    3:22:1

    5:3

    0

    50

    100

    150

  • – 15 –

  • – 16 –

    Conclusion: Assuming equal initial populations of Plutinos and Twotinos, 4 Gyr

    of dynamical diffusion reduces the ratio of Twotinos:Plutinos to < 0.2.

    Table 1. Fate of Resonance Escapees

    Plutinos Twotinos

    Avg. lifetime 150 My 270 Myr

    lifetime > 1 Gy 5% 29–36%

    Reach inner SS ∼ 25% ∼ 20%