asymmetric synthesis of phosphorous stereocenters · 2020. 10. 8. · i-pr me iii) pcl 5 iv)...

36
Jake Ganley Department of Chemistry Princeton University Asymmetric Synthesis of Phosphorous Stereocenters Fundamentals and Applications Group Meeting May 20, 2020

Upload: others

Post on 30-Nov-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Asymmetric Synthesis of Phosphorous Stereocenters · 2020. 10. 8. · i-Pr Me iii) PCl 5 iv) (—)-menthol Ph P Me O O i-Pr Me Me P Ph O O i-Pr Me mixture of diastereomers crystallization

Jake GanleyDepartment of Chemistry

Princeton University

Asymmetric Synthesis of Phosphorous Stereocenters Fundamentals and Applications

Group MeetingMay 20, 2020

Page 2: Asymmetric Synthesis of Phosphorous Stereocenters · 2020. 10. 8. · i-Pr Me iii) PCl 5 iv) (—)-menthol Ph P Me O O i-Pr Me Me P Ph O O i-Pr Me mixture of diastereomers crystallization

Early Utility of Chiral Phosphorus Compounds

P P

OMe

OMe

DIPAMP

AcO

MeO CO2H

NHAcAcO

MeO CO2H

NHAcH

[Rh((R,R)-DiPAMP)COD]BF4H2+

95% ee

Ph3P Rh PPh3Cl

PPh3 MeP

(R)3*P Rh P*(R)3Cl

P*(R)3

William KnowlesPride of Taunton, MA

Wilkinson’s Catalyst Horner & Mislow’s Chiral Phosphines

Asymmetric Hydrogenation Catalyst?

CO2H H2+[RhCl(L*)3]BF4 CO2H

MeH

15% ee

“This modest result was of course of no preparative value…While groping in this area, another development appeared…that a fairly massive dose of L-DOPA was useful in treatinng Parkinson’s disease.”

—William Knowles, Nobel Lecture, Dec 8, 2001

Me

Knowles, W. S. Acc. Chem. Res. 1983, 16, 106—112.

Page 3: Asymmetric Synthesis of Phosphorous Stereocenters · 2020. 10. 8. · i-Pr Me iii) PCl 5 iv) (—)-menthol Ph P Me O O i-Pr Me Me P Ph O O i-Pr Me mixture of diastereomers crystallization

Ligands in Asymmetric Catalysis

P

PH

H

TangPhos

N

N P

P

tBu Me

tBuMe

QuinoxP

P

OP

O

OMe

OMe

P PRMe

MeR

MeO-BIBOP

P

O

OMe

PtBu

tBu

MeO-BOPMiniphos

MeMeMe

MeMe

Me

MeMe

Me

MeMeMe

MeMeMe

P PMe

TrichickenfootPhos

MeMe

Me

Me

MeMe

MeMeMe

P

P

R

R

RR

DuPhos

P

PtBu

tBu

H

H

DuanPhos

P P

OMe

OMe

DIPAMP

Page 4: Asymmetric Synthesis of Phosphorous Stereocenters · 2020. 10. 8. · i-Pr Me iii) PCl 5 iv) (—)-menthol Ph P Me O O i-Pr Me Me P Ph O O i-Pr Me mixture of diastereomers crystallization

OPOO

HN

Me

O

O

Me

Me

Me

N

N

N

N

H2N

Tenofovir Alafenamide

OOPOO

HN

Me

O

O

Me

MeHO F

N

Sofosbuvir

Me

NH

O

O

OOPOO

HN

Me

O

O

Et

EtHO OH

CN

NN

N

NH2

Remdesivir

Anti-Virals with Chiral Phosphorus

Nucleotide Triphosphate

OO

HO OH

CN

NN

N

NH2

Nucleobase

Sugar

PO

O

O

PO

O

O

PO

O

O

OHO

HO OH

CN

NN

N

NH2

OO

HO OH

CN

NN

N

NH2

PO

O

O

Nucleoside Nucleotide

Kinase

Slow

Pradere, U.; Garnier-Amblard, E. C.; Coats, S. J.; Amblard, F.; Schinazi, R. F. Chem Rev. 2014, 114, 9154—9218.

Page 5: Asymmetric Synthesis of Phosphorous Stereocenters · 2020. 10. 8. · i-Pr Me iii) PCl 5 iv) (—)-menthol Ph P Me O O i-Pr Me Me P Ph O O i-Pr Me mixture of diastereomers crystallization

Nucleotide Prodrugs

OO

HO OH

CN

NN

N

NH2

PO

O

O

Free Nucleotide

no or low cell penetration

OOPOO

HN

Me

O

O

Et

EtHO OH

CN

NN

N

NH2

ProTide efficient cell penetration

OP

ORHNOR

Nu

OP

OOO

NuOP

OOO

NuPO

OPO

OO

in vivo deprotection Kinase

OOPOO

HN

Me

O

O

Et

EtHO OH

CN

NN

N

NH2

Stereochemistry at Phosphorus Impacts:• Potency • Toxicity • Rate of Metabolism •

Pradere, U.; Garnier-Amblard, E. C.; Coats, S. J.; Amblard, F.; Schinazi, R. F. Chem Rev. 2014, 114, 9154—9218.

Page 6: Asymmetric Synthesis of Phosphorous Stereocenters · 2020. 10. 8. · i-Pr Me iii) PCl 5 iv) (—)-menthol Ph P Me O O i-Pr Me Me P Ph O O i-Pr Me mixture of diastereomers crystallization

Outline

1. Historical Background and Chemistry of Phosphorus

2. Chiral Auxiliaries

3. Facial Differentiation

4. Topos Differentiation

5. Enantiomer Differentiation

Page 7: Asymmetric Synthesis of Phosphorous Stereocenters · 2020. 10. 8. · i-Pr Me iii) PCl 5 iv) (—)-menthol Ph P Me O O i-Pr Me Me P Ph O O i-Pr Me mixture of diastereomers crystallization

Phosphorus Coordination Chemistry & Nomenclature

P

X

PP P P

X

X

λ5-σ5 λ5-σ4 λ3-σ3 λ3-σ2 λ5-σ3

PRR

Rphosphine

PORR

Rphosphinite

PORR

ORphosphonite

PORRO

ORphosphite

PNR2R

Rphosphine(amin)

PNR2R

ORphosphon-amidite

PNR2RO

ORphosphor-amidite

PNR2R

NR2phosphine(diamin)

PNR2RO

NR2phosphoro-diamidite

PNR2R2N NR2

phosphine(triamin)

PNR2R2N NR2

phosphoramide

PNR2R

NR2phosphonamide

PNR2RO

NR2phosphoro-diamidate

PNR2R

Rphosphinamide

PNR2R

NR2phosphon-amidate

PNR2RO

ORphosphor-amidate

PRR

Rphosphine

oxide

PORR

Rphosphinate

PORR

ORphosphonate

PORRO

ORphosphate

O

O

O

O

O

O

O O

O

O

Coordination Chemistry

Nomeclature

Page 8: Asymmetric Synthesis of Phosphorous Stereocenters · 2020. 10. 8. · i-Pr Me iii) PCl 5 iv) (—)-menthol Ph P Me O O i-Pr Me Me P Ph O O i-Pr Me mixture of diastereomers crystallization

Discovery of Chiral Phosphorus

PhPCl2

i) MeOH, Pyridineii) MeI

PhPMe

O

Oi-Pr

Me

iii) PCl5iv) (—)-menthol Ph

PMe

O

Oi-Pr

Me

MeP

Ph

O

Oi-Pr

Me

mixture of diastereomers

crystallization

PhP

Me

O

Oi-Pr

Me

BrMgMe

inversion of configuration Me

PPh

O

Me

(S)P (R)P

(S)P (R)

inversion of configuration

PMe Me

(R)

ΔG‡130 = 32.1 kcal/mol

Korpium, O.; Lewis, R. A.; Chickos, J.; Mislow, K. J. Am. Chem. Soc. 1968, 90, 4842—4846.Baechler, R. D.; Mislow, K. J. Am. Chem. Soc. 1969, 92, 3090—3093.

NRR

R N RR

R

NRR

R

Inversion barrier ~ 5 kcal/mol

PRR

R P RR

R

PRR

R

Inversion barrier not known

HSiCl3

Page 9: Asymmetric Synthesis of Phosphorous Stereocenters · 2020. 10. 8. · i-Pr Me iii) PCl 5 iv) (—)-menthol Ph P Me O O i-Pr Me Me P Ph O O i-Pr Me mixture of diastereomers crystallization

Walsh Correlation Diagram for Planar vs Pyramidal XH3

Gilheany, D. G. Chem Rev. 1994, 94, 1339—1374.

E

δE E ∝ 1/δE

Planar XH3 Pyramidal XH3

Page 10: Asymmetric Synthesis of Phosphorous Stereocenters · 2020. 10. 8. · i-Pr Me iii) PCl 5 iv) (—)-menthol Ph P Me O O i-Pr Me Me P Ph O O i-Pr Me mixture of diastereomers crystallization

δEN δEP

• Smaller HOMO-LUMO gap (δE) for phosphine results in greater stabilization energy (E) for pyramidal form

Walsh Correlation Diagram for Planar vs Pyramidal XH3

Gilheany, D. G. Chem Rev. 1994, 94, 1339—1374.

E

δE E ∝ 1/δE

Amine vs Phosphine Inversion

NRR

R PRR

R

~5-6 kcal/mol ~30-35 kcal/mol

Why is the inversion barrier so much higher for phosphine?

Page 11: Asymmetric Synthesis of Phosphorous Stereocenters · 2020. 10. 8. · i-Pr Me iii) PCl 5 iv) (—)-menthol Ph P Me O O i-Pr Me Me P Ph O O i-Pr Me mixture of diastereomers crystallization

Substituent Effects on Phosphine Inversion

PPh Me

PPh Me

ΔG‡130= 32.1 kcal/molΔG‡

130= 35.6 kcal/mol

PRR

R P RR

R

PRR

R

ΔG‡25= 16 kcal/mol

P MePh

MeMe

PPh

i-Pr

ΔG‡110= 19.4 kcal/mol

O

vs

Rauk, A.; Allen, L. C.; Mislow, K. Angew. Che. Int. Ed. 1970, 9, 400—414.Baechler, R. D.; Mislow, K. J. Am. Chem. Soc. 1971, 93, 773—774.

Egan, W.; Mislow, K. J. Am. Chem. Soc. 1971, 93, 1805—1806.

Conjugation/HyperconjugationFactors that favor rehydrization (π delocalization of lone pair)

flatten the pyramid and lower the barrier to inversion

Page 12: Asymmetric Synthesis of Phosphorous Stereocenters · 2020. 10. 8. · i-Pr Me iii) PCl 5 iv) (—)-menthol Ph P Me O O i-Pr Me Me P Ph O O i-Pr Me mixture of diastereomers crystallization

Outline

1. Historical Background and Chemistry of Phosphorus

2. Chiral Auxiliaries

3. Facial Differentiation

4. Topos Differentiation

5. Enantiomer Differentiation

Page 13: Asymmetric Synthesis of Phosphorous Stereocenters · 2020. 10. 8. · i-Pr Me iii) PCl 5 iv) (—)-menthol Ph P Me O O i-Pr Me Me P Ph O O i-Pr Me mixture of diastereomers crystallization

The Jugé-Stephan Method: Ephedrine-Borane Complexes

Jugé, S. Phosphorus, Sulfur, and Silicon 2008, 183, 233—248.

R1PNMe2

NMe2 MePh

OH

NHMe

R1P ON

Me

Ph

Me

BH3

+Δ, PhMe

then BH3•THF

95:5 d.r.

R1P ON

Me

Ph

Me

BH3Li R2 NHO

P

Ph NHMe

BH3R1

LiR2

NHOP

Ph NHMe

BH3R1

LiR2

NHOP

Ph NHMe

H3B R1

LiR2

PR2R1

NMe

PhMe

OH

BH3H2O

—LiOH

PR2R1

NMe

PhMe

OH

BH3MeOH/H+

inversionP R2R1

MeO

BH3 Li R3

inversionP

R2 R1R3

BH3P

R2 R1R3retention

DABCO

Ephedrine

• Methanolysis necessary due to innertness of P—N bond to organometallic carbon nucleophiles Limitation: bulky nucleophiles either don’t

work or require forcing conditions that result in degradation in stereochemical fidelity

Page 14: Asymmetric Synthesis of Phosphorous Stereocenters · 2020. 10. 8. · i-Pr Me iii) PCl 5 iv) (—)-menthol Ph P Me O O i-Pr Me Me P Ph O O i-Pr Me mixture of diastereomers crystallization

The BI Auxiliary: Second Generation Amino-Alcohol

Han, Z. S. et al. J. Am. Chem. Soc. 2013, 135, 2474—2477.

P

OP

O

t-Bu

t-Bu OMe

OMe

P

O

t-Bu OMe

Pt-Bu

t-BuP

O

t-Bu

R

MeO OMe

OP Me

OMeMeOMe

MeMe

Not accessible via the Jugé-Stephan method

• Cu-catalyzed propargylation • Rh-catalyzed hydrogenation •• Pd-catalyzed Suzuki coupling & Miyaura borylation •

Cl

OH

NH

MeTs

PCl

Cl

O

Cl

O

N

MeTs

PO

PhN-Me-imidazole

CH2Cl285% yield, >99:1 d.r.BI Auxiliary

Cl

O

NHMeTs

PO

PhR1

R1 M

THF

R2 M

THFPO

PhR1 R2

58 — 91% yield62 — 91% yield

90 — 99% ee

PCl2OMeMeO

i) BI Auxiliary, CH2Cl2/Pyridine

ii) H2O2

Cl

O

N

MeTs

PO

85% yield>99.5:0.5 d.r.

MeO

OMe

Cl

O

NHTsMe

PO

t-BuOMe

MeO

t-BuLi

THF—40 ºC

MeLi

THF, rt

OP Me

OMeMeOMe

MeMe

96% yield 63% yield98.3:1.7 e.r.

Page 15: Asymmetric Synthesis of Phosphorous Stereocenters · 2020. 10. 8. · i-Pr Me iii) PCl 5 iv) (—)-menthol Ph P Me O O i-Pr Me Me P Ph O O i-Pr Me mixture of diastereomers crystallization

The PSI Reagent: Chiral Phosphorothioate Synthesis

O Base

RO

OPO

OHS

O

Base

RO

Phosphorothioate• Improved cellular uptake

• Increased stability to nucleases

MeO

Me

SPHSSC6F5

SC6F5

Et3N •

(—)-limonene oxide

Me

SP

O

Me

HS

SC6F5

Phosphorus-Sulfur Incorporation (PSI Reagent, ψ)

O Base

RO

HOMe

SP

O

Me

HS

O

ORO

Base

Me

SP

O

Me

HS

O

ORO

Base

O Base

HO

RO

DBU, MeCN

T

G

T

C

AC

T

T

T C

AT

AA

C

TGG

5’

3’

OPO

OHS

OPO

OHS OP

O

OHOvs

Knouse, K. W.; deGruyter, J. N. et al. Science 2018, 361, 1234—1238.

Page 16: Asymmetric Synthesis of Phosphorous Stereocenters · 2020. 10. 8. · i-Pr Me iii) PCl 5 iv) (—)-menthol Ph P Me O O i-Pr Me Me P Ph O O i-Pr Me mixture of diastereomers crystallization

Outline

1. Historical Background and Chemistry of Phosphorus

2. Chiral Auxiliaries

3. Facial Differentiation

4. Topos Differentiation

5. Enantiomer Differentiation

Page 17: Asymmetric Synthesis of Phosphorous Stereocenters · 2020. 10. 8. · i-Pr Me iii) PCl 5 iv) (—)-menthol Ph P Me O O i-Pr Me Me P Ph O O i-Pr Me mixture of diastereomers crystallization

Reactions of Planar, Prochiral Phosphorus

Möller, T.; Sárosi, M. B.; Hey-Hawkins, E. Chem. Eur. J. 2012, 18, 16604—166607.

XR1

R2

Planar Carbon• Nu—/E+ addition• Hydrogenation• Group transfer• Cycloaddition• More…

X = CR2, O, NR

X PR1

R2 R3

• Nu—/E+ addition• Hydrogenation• Group transfer• Cycloaddition• Less…

PPh H

i-Pr(OC)5W

W(CO)5

PPh

Hi-Pr

H2, [RhL2*]PF6

L = chiraphos, DIPAMP, DIOPracemic

PH

i-Pr(OC)5W

W(CO)5

PH

i-PrH2, [RhL2]PF6

L = diphos

i-PrMei-Pr

Me 95:5 d.r.

PH

Me Me

P

Me Me

PO

MeMe O

OR*

H

H

Δ, [1,5]

S

OO OR*

then S8P

OO

OR*

P

OO

OR*

Endo Exo

i-Pr

MeR* = 87% yield, 98:2 d.r.

93:7 endo/exo

de Vaumas, R.;Marinetti, A.; Ricard, L.; Mathey, F. J. Am. Chem. Soc. 1992, 114, 261—266.

PNt-Bu

Ar

MeOH, —5 ºC

NMe2

i-Pr

Me PArHNt-Bu

OMe

55% ee

X = C, N

Planar Phosphorus

Ar = 2,4,6-(t-Bu)-Ph

Mikolajczyk, M. et al. Phosphorus and Sulfur 1988, 36, 267—270.

Page 18: Asymmetric Synthesis of Phosphorous Stereocenters · 2020. 10. 8. · i-Pr Me iii) PCl 5 iv) (—)-menthol Ph P Me O O i-Pr Me Me P Ph O O i-Pr Me mixture of diastereomers crystallization

Outline

1. Historical Background and Chemistry of Phosphorus

2. Chiral Auxiliaries

3. Facial Differentiation

4. Topos Differentiation

5. Enantiomer Differentiation

Page 19: Asymmetric Synthesis of Phosphorous Stereocenters · 2020. 10. 8. · i-Pr Me iii) PCl 5 iv) (—)-menthol Ph P Me O O i-Pr Me Me P Ph O O i-Pr Me mixture of diastereomers crystallization

Enantioselective Deprotonation

N N

BuLi

PhPMe

Me

S

s-BuLi (1.1 equiv)(—)-Sparteine (1.1 equiv)

Et2O, —78 ºC

Cu(OPiv)2

PhPMe

Ph PMe

P MePh

PhPMe

Me

BH3

or

O

PhPhOH

PhPh

(—)-Sparteine/BuLi Complex

Muci, A. R.; Campos, K. R.; Evans, D. A. J. Am. Chem. Soc. 1995, 117, 9075—9076. Gammon, J. J.; Canipa, S. J.; O’Brien, P.; Kelly, B.; Taylor, S. Chem. Comm. 2008, 3750—3752.

BH3

BH3 BH3

88% yield, 79% ee

72% yield, 98% ee79:21 (S,S):Meso

t-BuPMe

Me

i) n-BuLi (1.1 equiv)(—)-Sparteine (5 mol%)

PhMe, —78 ºC

ii) PhMe2SiCl

S

t-BuPMe

SSiMe2Ph

88% yield, 85:15 e.r.

• Ligated base more reactive than BuLi w/o ligand (54%. w/o Sparteine)

t-BuPMe

Me

S

t-BuPMe

SLi

BuLi•(—)-sp

BuLi

t-BuPMe

SLi

•(—)-sp

Catalytic Sparteine

Page 20: Asymmetric Synthesis of Phosphorous Stereocenters · 2020. 10. 8. · i-Pr Me iii) PCl 5 iv) (—)-menthol Ph P Me O O i-Pr Me Me P Ph O O i-Pr Me mixture of diastereomers crystallization

RPX

RPX

RPX

• CuAAC • [2+2+2] • • Hydroetherification •

• Arylation • Annulation • • Borylation • Amidation •

HO

HO

• Acylation • Allylic Alkylation • • Hydroetherification •

• Metathesis •

RPX

OH

OH

• Acylation •

Catalytic Desymmetrization

Harvey, J. S.; Gouverneur, V. Chem Comm. 2010, 46, 7477—7485. Chrzanowski, J.; Krasowska, D.; Drabowicz, J. Heteroatom Chem. 2018, 29, e21476.

Diesel, J.; Cramer, N. ACS Catal. 2019, 9, 9164—9177.

Alkyne

RPX

H

H

Arene Phenol

Alcohol Alkene

Page 21: Asymmetric Synthesis of Phosphorous Stereocenters · 2020. 10. 8. · i-Pr Me iii) PCl 5 iv) (—)-menthol Ph P Me O O i-Pr Me Me P Ph O O i-Pr Me mixture of diastereomers crystallization

Outline

1. Historical Background and Chemistry of Phosphorus

2. Chiral Auxiliaries

3. Facial Differentiation

4. Topos Differentiation

5. Enantiomer Differentiation

Page 22: Asymmetric Synthesis of Phosphorous Stereocenters · 2020. 10. 8. · i-Pr Me iii) PCl 5 iv) (—)-menthol Ph P Me O O i-Pr Me Me P Ph O O i-Pr Me mixture of diastereomers crystallization

Kinetic Resolution

Beaud, R.; Phipps, R. J.; Gaunt, M. J. J. Am. Chem. Soc. 2016, 138, 13183—13186.Dai, Q.; Li, W.; Li, Z.; Zhang, J. J. Am. Chem. Soc. 2019, 141, 20556—20564.

Liu, X.-T.; Zhang, Y.-Q.; Han, X.-Y.; Sun, S.-P.; Zhang, Q.-W. J. Am. Chem. Soc. 2019, 138, 16584—16589.

SubS

CatR

kS (fast)ProdS

SubR

CatR

kR (slow)ProdR

ΔG‡S

ΔG‡R

ΔΔG‡

SubS SubR

ProdS ProdR

PhPR

H

O

PhPR

OPh

PhPR

O

Br

racemic(2 equiv)

ArI

Ar

BF4

Ph

OAc

R

PhPR

O

R

Cu(OTf)2/PhPyBox

Pd2(dba)3/Xiaophos

Ni(COD)2/BDPP

KR of Secondary Phosphine Oxides

Page 23: Asymmetric Synthesis of Phosphorous Stereocenters · 2020. 10. 8. · i-Pr Me iii) PCl 5 iv) (—)-menthol Ph P Me O O i-Pr Me Me P Ph O O i-Pr Me mixture of diastereomers crystallization

Dynamic Kinetic Resolution

SubS

Cat*

kS (fast)ProdS

SubR

Cat*

kR (slow)ProdR

ΔΔG‡

krac

ProdS ProdR

SubSCat*

SubRCat*

ΔG‡S

ΔG‡R

SubS

Cat*

kS (fast)ProdS

SubR

Cat*

kR (slow)ProdR

Int

kSI

kRI

ProdS ProdR

SubSCat*

SubRCat*

Int

ΔΔG‡

ΔG‡S

ΔG‡R

Achiral Transition State

Achiral Intermediate

Page 24: Asymmetric Synthesis of Phosphorous Stereocenters · 2020. 10. 8. · i-Pr Me iii) PCl 5 iv) (—)-menthol Ph P Me O O i-Pr Me Me P Ph O O i-Pr Me mixture of diastereomers crystallization

Catalyzing Pyraidal Inversion

E = 41.2 kcal/molE =16.9 kcal/mol

Po-TolPh

MePo-Tol Ph

Me Po-TolPh

MePo-Tol Ph

Me

PhP

Me

94% ee to 0% ee88% recovery

PhP

Me

88% ee to 12% ee86% recovery

PMe

95% ee to 36% ee73% recovery

Me

PhP

MeAr

25 mol%

MeCN, rt, 30 minPh

PMe

Ar

N

Me

Me

Me

PF6

Me

Me Me

OMe

Reichl, K. D.; Ess, D. H.; Radosevich, A. T. J. Am. Chem. Soc. 2013, 135, 9354—9357.

Page 25: Asymmetric Synthesis of Phosphorous Stereocenters · 2020. 10. 8. · i-Pr Me iii) PCl 5 iv) (—)-menthol Ph P Me O O i-Pr Me Me P Ph O O i-Pr Me mixture of diastereomers crystallization

Configurational Stability of Chlorophosphines

Hubel, S.; Bertrand, C.; Darcel, C.; Bauduin, C.; Jugé, S. Inorg. Chem. 2003, 42, 420—427.

PhPEt

ClPhP

EtNEt2

HClPh

PEt

Cl

EtP

PhCl

EtP

PhCl

racemic

MeP

MeCl 58.3 kcal/mol

PMeMe

PMeMeCl

Cl58.3 kcal/mol

P PMeMe

Cl

Cl MeMe

29.4 kcal/mol

P HMeMe

Cl

Cl10.4 kcal/mol

Transition State Energies*:

Calculated Intermediates:

*B3LYP/6-311++G(2d,p)//B3LYP/6-31+G(2d)

+10.4

—2.7

0.0

P HMeMe

Cl

Cl

—1.2

Me PMe Cl

ClHMe P

Me Cl

ClH

Me PMe Cl

Cl

HMe PMe Cl

Cl

H

Me PMe Cl

ClHMe P

Me Cl

ClH

Page 26: Asymmetric Synthesis of Phosphorous Stereocenters · 2020. 10. 8. · i-Pr Me iii) PCl 5 iv) (—)-menthol Ph P Me O O i-Pr Me Me P Ph O O i-Pr Me mixture of diastereomers crystallization

Dynamic Kinetic Resolution of Chlorophosphonium Salts

Rajendran, K. V.; Nikitin, K. V.; Gilheany, D. G. J. Am. Chem. Soc. 2015, 137, 9375—9381.Jennnings, E. V.; Nikitin, K. V.; Ortin, Y.; Gilheany, D. G. J. Am. Chem. Soc. 2014, 136, 16217—16226.

Rajendran, K. V.; Gilheany, D. G. Chem. Comm. 2012, 48, 10040—10042.

OP

AlkAr

Ph

racemic

PAlk

ArPh

ClCl

PAlk

ArPh

Cl Cl

(COCl)2

fast

slow

PAlk

ArPh

OR*Cl

PAlk

ArPh

OR*Cl

OHi-PrMe

OHi-PrMe

PAlk

ArPh

PAlk

ArPh

O

PAlk

ArPh

O

PAlk

ArPh

BH3

Arbusov

—R*Cl (slow)

—OH

LAH

NaBH4

retention

inversion

inversion

inversion

major

minor

Page 27: Asymmetric Synthesis of Phosphorous Stereocenters · 2020. 10. 8. · i-Pr Me iii) PCl 5 iv) (—)-menthol Ph P Me O O i-Pr Me Me P Ph O O i-Pr Me mixture of diastereomers crystallization

Allylic Alkylation of Phosphinic Acids

Rajendran, K. V.; Nikitin, K. V.; Gilheany, D. G. J. Am. Chem. Soc. 2015, 137, 9375—9381.

PROH

OBr

2.5 mol% Pd2(dba)3•CH3Cl6 mol% ligand

1 equiv Cs2CO3

THF, rt, 30—95 minPRO

O

+

racemicracemic

NH

HN

O O

PPh2 Ph2P

ligand

PROH

O

racemic

Br

racemic

PRO

O

PdL*

Base

PdL*

PRO

O

PRO

O

PRO

O

PRO

O

fastest

fast

slow

slowest

PMe

O

O

96% yield, 7:1 d.r.97% ee

Pt-Bu

O

O

82% yield, 1.5:1d.r.91% ee

Pt-Bu

O

O

83% yield, 26:1 d.r.98% ee

Pt-Bu

O

O

73% yield20% ee

Ph

Me

Me

Substrate Scope Kinetic Selectivity

Page 28: Asymmetric Synthesis of Phosphorous Stereocenters · 2020. 10. 8. · i-Pr Me iii) PCl 5 iv) (—)-menthol Ph P Me O O i-Pr Me Me P Ph O O i-Pr Me mixture of diastereomers crystallization

DKR vs DyKAT

SubSkS (fast)

ProdS

SubRkR (slow)

ProdR

Int

kSI

kRI

Dynamic Kinetic ResolutionSubS

kS (fast)ProdS

SubRkR (slow)

ProdR

krac

SubS

kSCat* (fast)

ProdS

SubR

kRCat* (slow)

ProdR

kSCat*

kRCat*

Cat*Sub

Cat*SubSkS’’Cat* (fast)

ProdS

Cat*SubR

Cat*

kR’’Cat* (slow)ProdR

Cat*

Cat*

SubS

SubR

kSCat*

kRCat*

Cat*

• Racemization of substrate occurs via an achiral intermediate or transition state

• Resolving agent can be a chiral catalyst or reagent

Dynamic Asymmetric Transformation (#1)

• Single catalyst-substrate is formed from both enantiomers, followed by diastereomeric reaction pathways

• Selectivity determined by relative rates of product formation

• Selectivity determined by relative reaction rates of product forming steps

Dynamic Asymmetric Transformation (#2)

• Catalyst binds substrate to form two diastereomeric pairs

• Selectivity is determined by relative concentrations of Cat*Sub adducts & rates of product formation (kR’’Cat*/kS’’Cat*)

• Epimerization of substrate occurs on the chiral catalyst

krac

Page 29: Asymmetric Synthesis of Phosphorous Stereocenters · 2020. 10. 8. · i-Pr Me iii) PCl 5 iv) (—)-menthol Ph P Me O O i-Pr Me Me P Ph O O i-Pr Me mixture of diastereomers crystallization

kS

M(L*)

kR

base

base

M(L*)

kRS

Metal-Catalyzed Phosphination via DyKAT

Glueck, D. S. Synlett 2007, 17, 2627—2634.

HPR1R2

HPR1

R2

(*L)MPR1R2

M(L*)PR1

R2

EPR1R2

EPR1

R2

kSR

Electrophile

Electrophile

Curtin-Hammmett Kinetics

If P-inversion is much faster than P—C bond formation (kRS/kSR >> kR/kS)

then product ratio:

SS

R R

[S][R]

= KeqkSkR

HPR1

R2

EWG

X

Ar X

PR1

R2

PR1

R2

PR1

R2

EWG

Ar

racemic

Hydrophosphination

Phosphine Arylation

Phosphine Alkylation

M(L*)

Page 30: Asymmetric Synthesis of Phosphorous Stereocenters · 2020. 10. 8. · i-Pr Me iii) PCl 5 iv) (—)-menthol Ph P Me O O i-Pr Me Me P Ph O O i-Pr Me mixture of diastereomers crystallization

MR

P RR

MR

RP M R

R

Phosphine Phosphido Phosphenium

• Lone pair coordinated to metal• Psuedotetrahedral

• Lone pair localized on P• Pyramidal about P

• Long M—P bond length

• Multiple M—P bond (dπ—pπ)• Planar about P

• Short M—P bond length

Metal-Assisted Pyramidal Inversion

Glueck, D. S. Synlett 2007, 17, 2627—2634.Rogers, J. R.; Wagner, T. P. S.; Marynick, D. S. Inorg. Chem. 1994, 33, 3104—3110.

TiClPMe2

Calculated Inversion Barrier: 2.6 kcal/mol

Early Transition Metalsstabilize planar form through

metal—ligand π bonding

FeCPMe2C

O

O

Middle/Late Transition Metalsinductively destabilize pyramidal

ground state

Calculated Inversion Barrier: 20.5 kcal/mol

P

PPt

Me Me

Me MeX

PMe(TRIP)

Inversion Barrier: 10—13 kcal/mol

Platinum(DuPhos)Phosphido

P

Page 31: Asymmetric Synthesis of Phosphorous Stereocenters · 2020. 10. 8. · i-Pr Me iii) PCl 5 iv) (—)-menthol Ph P Me O O i-Pr Me Me P Ph O O i-Pr Me mixture of diastereomers crystallization

Asymmmetric Hydrophosphination of Alkenes

Glueck, D. S. Synlett 2007, 17, 2627—2634.Kovacik, I.; Wicht, D.; Grewal, N. S.; Glueck, D. S. Organometallics 2000, 19, 950—953.

Huang, Y.; Pullarkat, S. A.; Li, Y.; Leung, P.-H. Inorg. Chem. 2012, 51, 2533—2540.

HPPh CO2t-Bu

PPh

t-BuO2C5 mol% Pt[(R,R)-MeDuPhos](trans-stilbene)

THF, rt+

17% ee

i-Pr

i-Pr i-Pr

i-Pr

i-Pri-Pr

HPPh

Me

10 mol% catalyst1 equiv Et3N

THF, —80 ºC+

O

Ar

Ar Ar

O

Ar

PPh

Me PdP

Me PhPh

NCMe

NCMe

ClO4

1.2 equivcatalyst

O

Ph

PPh

Me

MeO

99% yield, 91:9 d.r.82% ee

O

Ph

PPh

Me

Cl

98% yield, 87:13d.r.62% ee

O

Ph

PPh

Me

O2N

95% yield, 82:18 d.r.42% ee

Ph

OPPh

Me

97% yield, 78:22 d.r.61% ee

Br

Ph

OPPh

Me

96% yield, 87:13d.r.72% ee

F

Page 32: Asymmetric Synthesis of Phosphorous Stereocenters · 2020. 10. 8. · i-Pr Me iii) PCl 5 iv) (—)-menthol Ph P Me O O i-Pr Me Me P Ph O O i-Pr Me mixture of diastereomers crystallization

Asymmmetric Arylation & Alkylation of Phosphines

Glueck, D. S. Synlett 2007, 17, 2627—2634.Moncarz, J. R.; Laritcheva, N. F.; Glueck, D. S. J. Am. Chem. Soc. 2002, 124, 13356—13357.

Scriban, C.; Glueck, D. S. J. Am. Chem. Soc. 2006, 128, 2788—2789.

PH

Me

i-Pr

i-Pri-Pr

5 mol% Pd[(R,R)-MeDuPhos](Ph)(I)1 equiv PhI

NaOSiMe3PhMe, 4 ºC

PPh

Me

i-Pr

i-Pri-Pr

84% yield, 78% ee

kS1.4 x 10—4 s—1

kR4.7 x 10—4 s—1

kSR

*LPdPArMe

PdL*P

ArMe

PhPArMe

PhP

ArMe

kRS

Red. Elim.

Red. Elim.

Sprod (major)

RprodSint

Rint (major)

≈ 102 s—1

PH

Me

Ph

PhPh

5 mol% Pd[(R,R)-MeDuPhos](Ph)(Cl)1 equiv BnBr

NaOSiMe3PhMe, 4 ºC

PBn

Me

Ph

PhPh

86% yield, 81% ee

Pd-Catalyzed Arylation

Pt-Catalyzed Alkylation

• Major intermediate gave major product

• Minor intermediate undergoes reductive elimination three times faster

• Key challenge: finding a catalyst where the major intermediate undergoes faster

reductive elimination

Basis for Selectivity

Page 33: Asymmetric Synthesis of Phosphorous Stereocenters · 2020. 10. 8. · i-Pr Me iii) PCl 5 iv) (—)-menthol Ph P Me O O i-Pr Me Me P Ph O O i-Pr Me mixture of diastereomers crystallization

Asymmmetric Arylation & Alkylation of Phosphines (cont)

Chan, V. S.; Bergman, R. G.; Toste, F. D. J. Am. Chem. Soc. 2007, 129, 15122—15123.Chan, V. S.; Stewart, I. C.; Bergman, R. G.; Toste, F. D. J. Am. Chem. Soc. 2006, 128, 2786—2787.

Huang, Y.; Li, Y.; Leung, P.-H.; Hayashi, T. J. Am. Chem. Soc. 2014, 136, 4865—4868.

PhPMe

Si(i-Pr)3

I

N(i-Pr)2

O

PhPMe

O N(i-Pr)2

5 mol% ((R,R)-Et-FerroTANE)PdCl2

DMPU, 60 ºCthen BH3•THF

BH3

+

53% yield, 98% ee

Pd-Catalyzed Arylation

PhPMe

HPh

PMe

10 mol% [(R)-i-Pr-PHOX)Ru(H)]BPh4

NaOt-amyl, THF, —30 ºCthen BH3•THF

BH3+

85% yield, 85% ee

Ru-Catalyzed Arylation

ClOMe

MeO

PhPMes

HPh

PMes

O

5 mol% catalyst

Et3N, CHCl3, —45 ºCthen S8

+

96% yield, 98% ee

Pd-Catalyzed Oxidation

OHS

O

OPh

Ph

Ph

Ph

PdP

Me PhPh

NCMe

NCMe

ClO4

catalyst

Page 34: Asymmetric Synthesis of Phosphorous Stereocenters · 2020. 10. 8. · i-Pr Me iii) PCl 5 iv) (—)-menthol Ph P Me O O i-Pr Me Me P Ph O O i-Pr Me mixture of diastereomers crystallization

Assembly of ProTide via DyKAT

DiRocco, D. A. et al. Science 2017, 356, 426—430.

O

HO Cl

N

Uprifosbivir

Me

HNO

O

kS

cat*

kR

cat*

kRS kSR

O

O

HO Cl

N

Me

HNO

OHO

PO

OPhNH

Mei-PrO

O

O

HO Cl

N

Me

HNO

OOPO

OPhNH

Mei-PrO

O

epi-Uprifosbivir

cat*PO

OPhNH

Mei-PrO

O

cat*PO

OPhNH

Mei-PrO

O

pro-R

pro-S

ClPO

OPhNH

Mei-PrO

O

ClPO

OPhNH

Mei-PrO

O

O

HO Cl

N

Me

HNO

OHO

Page 35: Asymmetric Synthesis of Phosphorous Stereocenters · 2020. 10. 8. · i-Pr Me iii) PCl 5 iv) (—)-menthol Ph P Me O O i-Pr Me Me P Ph O O i-Pr Me mixture of diastereomers crystallization

Catalyst Development for ProTide DyKAT

DiRocco, D. A. et al. Science 2017, 356, 426—430.

O

HO Cl

N

Me

HNO

OOO

HO Cl

N

Me

HNO

OHO PO

OPhNH

Mei-PrO

OClP

O

OPhNH

Mei-PrO

O

catalyst

1.2–1.5 equiv 2,6-lutidinesolvent, —10 ºC

+

entry mol% cat 5’:3’ % yield P(R):P(S)

none

solvent

1 CH2Cl2 ND 3 55:4520 mol% NMI2 CH2Cl2 96:4 49 52:4820 mol% cat A3 CH2Cl2 94:6 60 79:2120 mol% cat B4 CH2Cl2 98:2 62 89:11

20 mol% cat B5 1,3-dioxalane 98.3:1.7 81.6 92:8

2 mol% cat C6 1,3-dioxalane 99.1:0.9 86.0 98:2

2 mol% cat D7 1,3-dioxalane 98.8:1.2 92.1 99:1

NN

O

O

NH

t-Bu

NMI

cat A(1st order)

cat B(2nd order)

NN

OTBS

NN Me

NN

O

O

NH N

HO

O

NN N

N

O

O

NH N

HO

O

NNcat C

(1st order)catD

(1st order)

Page 36: Asymmetric Synthesis of Phosphorous Stereocenters · 2020. 10. 8. · i-Pr Me iii) PCl 5 iv) (—)-menthol Ph P Me O O i-Pr Me Me P Ph O O i-Pr Me mixture of diastereomers crystallization

Conclusions & Future Outlook

Synthesis Structure Functionality

Asymmetric Catalysis

COVID-19 Treatment?Organocatalytic DyKAT

NH

O

O

NN

O

O

NN

NH X

Me

SP

O

Me

HS

SC6F5

Phosphorus-Sulfur Incorporation (PSI Reagent, ψ)

PhP

Me

O

Oi-Pr

Me

(—)-Menthol Chiral Pool

NucleosidePO

ONH

Mei-PrO

O Ph

O Base

RO

OPO

OHS

O

Base

RO

Phosphoramidate

Phosphorothioate

PMeOMe

Phosphine

(R)3*P Rh P*(R)3Cl

P*(R)3

Spinal Muscular Atrophy Treatment

T

G

T

C

AC

T

T

T C

AT

AA

C

TGG

5’

3’

OPO

ONH

Mei-PrO

O Ph

O

HO OH

CN

NN

N

NH2