asymmetric*total*synthesis*of*(+)6danicalipin*accc.chem.pitt.edu/wipf/current...

13
Asymmetric Total Synthesis of (+)Danicalipin A Yoshimitsu, T.; Nakatani, R.; Kobayashi, A.; Tanaka, T. Org. Le<. ASAP Current literature Yongzhao Yan February 26 th 2011 C 6 H 13 OSO 3 - Cl OSO 3 - Cl Cl Cl Cl Cl C 6 H 13 OTBS Cl OTBS Cl Cl Cl O 2 N C 6 H 13 OSO 3 - Cl OSO 3 - Cl Cl Cl N O ( ) 7

Upload: others

Post on 02-Jan-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Asymmetric  Total  Synthesis  of  (+)-­‐Danicalipin  A  Yoshimitsu,  T.;  Nakatani,  R.;  Kobayashi,  A.;  Tanaka,  T.  Org.  Le<.  ASAP  

Current  literature  Yongzhao  Yan  February  26th  2011    

C6H13OSO3

-Cl OSO3

-

Cl ClCl

ClCl

C6H13 OTBS

Cl OTBS

Cl

ClClO2N

C6H13OSO3

-Cl OSO3

-

Cl

ClCl

NO

( )7

C6H13OSO3

-Cl

OSO3-

Cl ClCl

ClCl

2  

1  

C6H13OSO3

-Cl OSO3

-

Cl ClCl

ClCl

Chlorosulfolipids  

Chlorosulfolipids  was  first  reported  in  1969  and  ignored  by  syntheMc  chemists  for  the  ensuing  40  years.  

Danicalipin  A  (1)  was  isolated  by  Haines  and  Block  from  Ochromaonas  danica.  It  is  a  key  component  of  algal  membranes.1  

Malhamensilipin  A  (2)  is  isolated  in  1994    from  alga  O.  malhamensis.  It  displays  acMvity  in  kinase  assay.2  

Ciminiello  and  Fa<orusso  reported  isolaMon  of  3-­‐5  from  AdriaMc  mussels.  These  lipids  were  deemed  to  be  the  causaMve  agents  in  seafood  poisoning.3  

-­‐Heavily  chlorinated  linear  hydrocarbon  moMfs    -­‐Complicated  stereochemical  structures  -­‐Toxicity  mechanism  

1.  T.  H.  Haines,  M.  Pousada,  B.  Stern  and  G.  L.  Mayers,  Biochem.  J.,1969,  113,  565–566.  2.   J.  L.  Chen,  P.  J.  Proteau,  M.  A.  Roberts,  W.  H.  Gerwick,  D.  L.  Slateand  R.  H.  Lee,  J.  Nat.  Prod.,  1994,  57,  524–527.  3.   P.  Ciminiello,  C.  Dell’Aversano,  E.  Fa<orusso,  M.  Forino,  S.  Magno,M.  Di  Rosa,  A.  Ianaro  and  R.  Polec,  J.  Am.  Chem.  Soc.,  2002,  124,13114–13120.  

Danicalipin  A    

In  Ochromaonas  danica  cells,  the  total  sulfolipid  fracMon  consMtutes  about  15%  of  the  lipids  and  3%  of  dry  weight.  

The  structure  of  the  monochloride  diol  6  was  determined  by  mass-­‐spectroscopy.    

The  planar  structure  of  the  major  chlorosulfolipid  is  elucidated  by  a  strategy  using  36Cl-­‐labeled  chlorosulfolipid.1  

These  compounds  were  revisited  in  2009  by  Vanderwal  by  synthesis  and  J-­‐based  configuraMonal  analysis.2  

C6H13OSO3

-OSO3

-

ClC6H13

OSO3-

Cl OSO3-

Cl ClCl

ClCl

6  

1.  J.  Elovson  and  P.  R.  Vagelos,  Proc.  Natl.  Acad.  Soc.  USA,  1969,  62,957–963.  2.  T.  Kawahara,  Y.  Kumaki,  T.  Kamada,  T.  Ishii  and  T.  Okino,  J.  Org.Chem.,  2009,  74,  6016–6024.  

ElucidaMon  of  relaMve  configuraMon  of  chlorosulfolipid  

Carreira  et  al.,  applied  Murata’s  approach  for  the  configuraMonal  assignment  adjacent  of  hydroxy/alkoxy-­‐  subsMtuted  carbons  into  chlorosulflipid.1  

This  approach  also  provides  important  imformaMons  about  their  soluMon  structures.  

1.  C.  Nilewski,  R.  W.  Geisser,  M.-­‐O.  Ebert  and  E.  M.  Carreira,  J.  Am.  Chem.  Soc.,  2009,  131,  15866–15876.  

Biosynthesis  and  biological  relavance  

Haines  group  demonstrated  that  the  hydrocarbon  chain  is  first  constructed  via  the  normal  fa<y  acid  biosyntheMc  pathway,  and  later  funcMonalized  with  the  polar  subsMtuents.    

Enzyme-­‐mediated  transfer  of  the  sulfate  group  of  PAPS  to  the  diol  was  postulated  to  be  the  final  step  in  the  biosynthesis  of  sulfolipid  6.  

Few  details  is  known  about  the  chlorinaMon.  The  chlorinaMon  is  happened  in  step-­‐wise  fashion.    And  it  does  not  follow  a  linear  path.  A  new  class  of  non-­‐heme  iron  halogenases  is  found  to  be  able  to  halogenate  unacMvated  methyl  group  via  free-­‐radical  process.  

1.  G.  Thomas  and  E.  I.  Mercer,  Phytochemistry,  1974,  13,  797–805.  2.  J.  Elovson,  Biochemistry,  1974,  13,  3483–3487.  3.  F.  H.  Vaillancourt,  J.  Yin  and  C.  T.  Walsh,  Proc.  Natl.  Acad.  Soc.USA,  2005,  102,  10111–10116.  

Vanderwal’s  diastereoselecMve  dichlorinaMon  

3  groups  –  Vanderwal’s,  Carreira’s  and  Yoshimitsu/Tanaka’s  have  been  acMvely  engaged  in  the  development  of  methodologies  and  strategies  for  chlorosulfolipid  synthesis  in  the  past  few  years.  

DichlorinaMon  of  (Z)-­‐allylic  trichloroacetates  efficiently  and  stereoselecMvely  generates  the  syn-­‐syn  hydroxydichloride.  

H

O

Cl

1.2. H2, Pd/CaCO3/Pb3. (Cl3CO)2O

Li n-Bu

ca. 30:1 d.r.Cl

O Et4NCl3, DCM, -90°C76%, 10.5:1 d.r.

O

Cl3C

Cl

O

O

Cl3C

Cl

Cl

1.  G.  M.  Shibuya,  J.  S.  Kanady  and  C.  D.  Vanderwal,  J.  Am.  Chem.Soc.,  2008,  130,  12514–12518.  

Yoshimitsu/Tanaka  deoxydichlorinaMon  of  epoxide  

1.  T.  Yoshimitsu,  N.  Fukumoto  and  T.  Tanaka,  J.  Org.  Chem.,  2009,  74,696–702.  

OTBDPSO

NCS, PPh3,PhMe, 45°C

90% OTBDPS

Cl

Cl

OTBDPSBnOO O

NCS, PPh3,PhMe, 90°C

42%OTBDPSBnO

Cl

Cl Cl

Cl

The  Yoshimitsu  group  expanded  the  use  of  NCS/PPh3  system  to  acyclic  system.  

Their  methodology  included  outstanding  examples  of  stereospecific  diepoxide  to  tetrachloride  conversions.  

The  combinaMon  of  this  reacMon  with  the  Sharpless  asymmetric  epoxidaMon  of  allylic  alcohols  presents  a  valuable  entry  into  enanFoenriched  polychlorides.  

These  two  methodologies  provide  important  tools  to  approach  the  chlorosulfolipid.  

Carreira’s  synthesis  of  (±)-­‐hexachlorosulfolipid  

Cl

Cl

O

OTBS( )64 steps from the starting ester, 2%

TMSClCl

Cl OTBS( )6

OH

Cl43%

Et4NCl310:1 d.r. 93%

Cl

Cl

OTBS( )6

OH

Cl

Cl

Cl

4 steps46%

Cl

Cl( )6

OSO3-

Cl

Cl

Cl

Cl

(±)-hexachlorosulfolipid

1.  C.  Nilewski,  R.  W.  Geisser  and  E.  M.  Carreira,  Nature,  2009,  457,573–577.  

CO2EtEt4NCl3 CO2Et

Cl

Cl68%

1. DIBAL-H2. TBSCl3. OsO4, NMO

Cl

ClOTBS63%, 3 steps

5.6:1 d.r. OH

OH 1. Tf2O, DABCO2. CSA, MeOH

91%, 2 steps

Cl

Cl

O

OH

Ph3P OTBSBr- ( )6

2. n-BuLi1. Swern Ox.

Cl

Cl

O

OTBS( )6

TMSClCl

Cl

OTMSR

Cl

Cl OTMSR+H H

Cl

Cl OTBS( )6

OH

Cl

39%, 4% epimer, 10% SN2 mixture, 31% SM.62%, 2 steps

Yoshimitsu/Tanaka’s  synthesis  of  (+)-­‐hexachlorosulfolipid  

PivO OTBDPSO

1. NCS, PPh32. DIBAH-H81%, 2 steps

HO OTBDPS

Cl

Cl

( )6 ( )6

1. DMP, NaHCO32. BF3 etherate TMS

72%, 2 steps, 3.8:1 d.r OH

OTBDPS

Cl

Cl

( )6

1. NaH2. PPh3, NCS OTBDPS

Cl

Cl

( )6Cl

SeO2, t-BuOOH OTBDPS

Cl

Cl

( )6Cl

OH

49%, 3:5 syn:anti68%, 2 steps

1. DMP2. NaBH4, CeCl381%, 2 steps

OTBDPS

Cl

Cl

( )6Cl

OHGrubbs' 2nd

58%KMnO4, BnEt3NCl, TMSCl

38%, 36% diastereomersOTBDPS

Cl

Cl

( )6Cl

OH

Cl

Cl 6 steps50%

Cl

Cl( )6

OSO3-

Cl

Cl

Cl

Cl

(+)-hexachlorosulfolipid

1.  T.  Yoshimitsu,  N.  Fujumoto,  R.  Nakatani,  N.  Kojima  and  T.  Tanaka,  J.  Org.  Chem.,  2010,  75,  5425–5437.  

Vanderwal’s  total  synthesis  of  chlorosulfolipid  

1.  D.  K.  Bedke,  G.  M.  Shibuya,  A.  Pereira,  W.  H.  Gerwick,  T.  H.Haines  and  C.  D.  Vanderwal,  J.  Am.  Chem.  Soc.,  2009,  131,  7570–7572.  2.  D.  K.  Bedke,  G.  M.  Shibuya,  A.  R.  Pereira,  W.  H.  Gerwick  and  C.  D.  Vanderwal,  J.  Am.  Chem.  Soc.,  2010,  132,  2542–2543.  

CO2MeC6H13

1. Et4NCl32. OsO4, NMO47%, 2 steps

CO2MeC6H13

OH

OH

Cl

Cl

1. NsCl, py2. K2CO3, MeOH3. DIBAL-H

48%, 3 stepsCHO

C6H13

OCl

Cl 63%, 2.5:1 Z:E

PPh3ClCl

TBSO ( )7

C6H13

OCl

ClClCl

OTBS( )7

BF3 etherateEt4NCl

48% from Z/E mixture

C6H13

OHCl

ClClCl

OTBS( )7Cl

1. ICl 2.Bu3SnH, Et3B, O2

30%, 2 steps1.8:1 d.r.

C6H13

OHCl

Cl

ClClOTBS( )7

Cl Cl

1. Et3N 3HF2. ClSO3H; NaHCO3

57%, 2 stepsC6H13

OSO3-Cl

Cl

ClClOSO3

-( )7

Cl Cl(±)-danicalipin A

CO2MeC6H13 Et4NCl3, DCM CO2MeC6H13

Cl

Cl83%, 10:1 d.r.

4 steps, 25% C6H13

OHCl

ClClCl

OTBS( )7Cl

1. Et4NCl32. ClSO3H; NaHCO3

C6H13

OSO3-

Cl

Cl

Cl

OSO3-

( )7Cl Cl

Cl

OH

ONs ONs

OH

(+)-malhamensilipin A

72%, 2 steps 8:1 d.r.

LDA, THF, 26%

Title  paper:  total  synthesis  of  (+)-­‐danicalipin  A  

OMe( )8

1. NCS2. TFA3. t-BuNH2, NCS

( )8Nt-Bu

Cl Cl 1. 3 N HCl2. NaBH4

63% ( )8OH

Cl Cl

1. TBSOTf, 2,6-lutidine2. O3, PPh33. NaBH4, MeOH

80%, 3 steps HO ( )8OTBS

Cl Cl 1. I2, PPh32. NaNO2, DMF

O2N ( )8OTBS

Cl Cl

59%

C6H13

OPiv

O 1. NCS, PPh32. DIBAL-H

C6H13 OH

Cl

Cl82%, 2 steps

1. DMP, NaHCO32. MgBranti:syn = 1.7:167%, 2 steps

C6H13

OHCl

Cl80% ee

Lipase PS IM Amano

99% ee

TBSOTf, 2,6-lutidine

98% C6H13

OTBSCl

Cl

1.  Yoshimitsu,  T.;  Nakatani,  R.;  Kobayashi,  A.;  Tanaka,  T.  Org.  Le<.  ASAP    

Title  paper:  total  synthesis  of  (+)-­‐danicalipin  A  

1.  Yoshimitsu,  T.;  Nakatani,  R.;  Kobayashi,  A.;  Tanaka,  T.  Org.  Le<.  ASAP    

O2N ( )8OTBS

Cl Cl PhNCO, Et3N, PhMe, 90°CC6H13

OTBSCl

Cl

+ C6H13OTBS

Cl OTBS

Cl

ClCl

NO60%, 7.3:1 d.r

1. Mo(CO)6, MeCN/H2O 81%

2. Me4NHB(OAc)384%, 6:1 d.r.

C6H13OTBS

Cl OTBS

Cl

ClCl

OHOH

NCS, Ph3P

38%C6H13OTBS

Cl OTBS

Cl

ClCl

ClCl

1. AcCl, MeOH2. SO3, Py, DMF

91% C6H13OSO3

-Cl OSO3

-

Cl ClCl

ClCl

(+)-danicalipin A

3 steps, 42%

OTBSH ClCl

OBnHO

HH

O

C6H13

Unanswered  quesMons  

1.  D.  K.  Bedke,  C.  D.  Vanderwall,  Nat.  Prod.  Rep.,  2011,  28,  15  

The  mechanism  of  toxicity  of  the  mussel-­‐derived  lipid  is  unknown.  

In  O.  danica,  chlorosulfolipid  is  90  mol%  of  its  polar  lipid  and  appeared  to  be  very  important  component    of    membrane.  

The  mechanism  of  chlorinaFon  is  poorly  understand.