athlete benefits in hydrating with alkaline antioxidant water · athlete benefits in hydrating with...

14
1 Athlete Benefits in Hydrating with Alkaline Antioxidant Water Water: The Muscle Bath How it builds muscle: Whether it's in your shins or your shoulders, muscle is approximately 80 percent water. "Even a change of as little as 1 percent in body water can impair exercise performance and adversely affect recovery," says Volek. For example, a 1997 German study found that protein synthesis occurs at a higher rate in muscle cells that are well hydrated, compared with dehydrated cells. English translation: The more parched you are, the slower your body uses protein to build muscle. Not sure how dry you are? "Weigh yourself before and after each exercise session. Then drink 24 ounces of water for every pound lost," says Larry Kenney, Ph.D., a physiology researcher at Pennsylvania State University. How it keeps you healthy: Researchers at Loma Linda University found that men who drank five or more 8ounce glasses of water a day were 54 percent less likely to suffer a fatal heart attack than those who drank two or fewer. Men’s Health.com Hydration Essentials: The Truth About Water Before the plethora of sportsrelated drinks and designer fluids flooded the market, there was simply water. Clear and caloriefree, water is basic and unpretentious and flows naturally into an active sport life with no packaging or gimmicks attached. Don’t take basic H2O for granted. Carbohydrates may be the premium fuel for your energy tank, but when you are about to train or compete in your sport, your fluid stores should be topped off as well. You can go a few weeks without food but will only survive a few days without water. Water plays an integral role in the optimal functioning of your body both during training and during rest and recovery. Wellhydrated muscles are high in fluid content— in fact, water makes up 70 to 75 percent of an athlete’s muscle tissue. Fat tissue is relatively low in water content, at about 10 percent. Even bones, though seemingly solid, are about 32 percent water. Consequently, muscular athletes will have high water content when adequately hydrated. Water is stored in many body compartments, and it moves freely among these various spaces. As the predominant component in our body, water performs many important functions: About twothirds of your body’s water is stored inside your cells, giving them their shape and form. The rest of the water in your body surrounds these cells and flows within your blood vessels. Water is the main component of your blood. Blood carries oxygen, hormones, and nutrients such as glucose to your cells. Water provides structure to body parts, protecting important tissues such as your brain and spinal cord and lubricating your joints. When fluids become depleted through sweating, both your cells and blood decrease in water content and volume. Muscle glycogen holds a considerable amount of water, and water removes lactic acid from exercising muscles, which can be an advantage to wellhydrated athletes. Water aids digestion through saliva and stomach secretions and eliminates waste products through urine and sweat. Water is essential for the proper functioning of all your senses, particularly hearing and sight. As the primary component of sweat, water plays a major role in body temperature regulation. It enables you to maintain a constant body temperature under various environmental conditions because it allows you to continually make adjustments to either gain or lose heat. Clearly the role water plays in maintaining your overall health is extremely important. That’s why you can’t live

Upload: others

Post on 20-May-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Athlete Benefits in Hydrating with Alkaline Antioxidant Water · Athlete Benefits in Hydrating with Alkaline Antioxidant Water ... 1

  1  

Athlete Benefits in Hydrating with Alkaline Antioxidant Water

Water: The Muscle Bath How  it  builds  muscle:  Whether  it's  in  your  shins  or  your  shoulders,  muscle  is  approximately  80  percent  water.  "Even  a  change  of  as  little  as  1  percent  in  body  water  can  impair  exercise  performance  and  adversely  affect  recovery,"  says  Volek.  For  example,  a  1997  German  study  found  that  protein  synthesis  occurs  at  a  higher  rate  in  muscle  cells  that  are  well  hydrated,  compared  with  dehydrated  cells.  English  translation:  The  more  parched  you  are,  the  slower  your  body  uses  protein  to  build  muscle.      Not  sure  how  dry  you  are?  "Weigh  yourself  before  and  after  each  exercise  session.  Then  drink  24  ounces  of  water  for  every  pound  lost,"  says  Larry  Kenney,  Ph.D.,  a  physiology  researcher  at  Pennsylvania  State  University.    How  it  keeps  you  healthy:  Researchers  at  Loma  Linda  University  found  that  men  who  drank  five  or  more  8-­‐ounce  glasses  of  water  a  day  were  54  percent  less  likely  to  suffer  a  fatal  heart  attack  than  those  who  drank  two  or  fewer.  Men’s  Health.com    

Hydration Essentials: The Truth About Water Before  the  plethora  of  sports-­‐related  drinks  and  designer  fluids  flooded  the  market,  there  was  simply  water.  Clear  and  calorie-­‐free,  water  is  basic  and  unpretentious  and  flows  naturally  into  an  active  sport  life  with  no  packaging  or  gimmicks  attached.  Don’t  take  basic  H2O  for  granted.  Carbohydrates  may  be  the  premium  fuel  for  your  energy  tank,  but  when  you  are  about  to  train  or  compete  in  your  sport,  your  fluid  stores  should  be  topped  off  as  well.  You  can  go  a  few  weeks  without  food  but  will  only  survive  a  few  days  without  water. Water  plays  an  integral  role  in  the  optimal  functioning  of  your  body  both  during  training  and  during  rest  and  recovery.  Well-­‐hydrated  muscles  are  high  in  fluid  content—  in  fact,  water  makes  up  70  to  75  percent  of  an  athlete’s  muscle  tissue.  Fat  tissue  is  relatively  low  in  water  content,  at  about  10  percent.  Even  bones,  though  seemingly  solid,  are  about  32  percent  water.  Consequently,  muscular  athletes  will  have  high  water  content  when  adequately  hydrated.  Water  is  stored  in  many  body  compartments,  and  it  moves  freely  among  these  various  spaces.  

As  the  predominant  component  in  our  body,  water  performs  many  important  functions:  

• About  two-­‐thirds  of  your  body’s  water  is  stored  inside  your  cells,  giving  them  their  shape  and  form.  The  rest  of  the  water  in  your  body  surrounds  these  cells  and  flows  within  your  blood  vessels.    

• Water  is  the  main  component  of  your  blood.  Blood  carries  oxygen,  hormones,  and  nutrients  such  as  glucose  to  your  cells.    

•  Water  provides  structure  to  body  parts,  protecting  important  tissues  such  as  your  brain  and  spinal  cord  and  lubricating  your  joints.  When  fluids  become  depleted  through  sweating,  both  your  cells  and  blood  decrease  in  water  content  and  volume.    

•  Muscle  glycogen  holds  a  considerable  amount  of  water,  and  water  removes  lactic  acid  from  exercising  muscles,  which  can  be  an  advantage  to  well-­‐hydrated  athletes.    

•  Water  aids  digestion  through  saliva  and  stomach  secretions  and  eliminates  waste  products  through  urine  and  sweat.    

•  Water  is  essential  for  the  proper  functioning  of  all  your  senses,  particularly  hearing  and  sight.    • As  the  primary  component  of  sweat,  water  plays  a  major  role  in  body  temperature  regulation.  It  

enables  you  to  maintain  a  constant  body  temperature  under  various  environmental  conditions  because  it  allows  you  to  continually  make  adjustments  to  either  gain  or  lose  heat.  Clearly  the  role  water  plays  in  maintaining  your  overall  health  is  extremely  important.  That’s  why  you  can’t  live  

Page 2: Athlete Benefits in Hydrating with Alkaline Antioxidant Water · Athlete Benefits in Hydrating with Alkaline Antioxidant Water ... 1

  2  

without  water  for  more  than  a  few  days.  But  the  role  that  water  plays  in  your  performance  is  equally  vital.  Being  even  slightly  under  hydrated  dramatically  impedes  top  athletic  performance.  

Your  fluid  balance  is  simply  the  result  of  your  intake  of  fluids  versus  your  output  of  fluids.  Intake  is  the  net  result  of  the  water  and  other  hydrating  fluids  we  consume,  the  water  in  some  of  the  foods  we  eat,  and  the  metabolic  water  produced  by  our  bodies.  When  you  are  not  training,  urine  output  represents  your  greatest  fluid  loss,  or  output,  but  sweating  during  exercise  can  result  in  significant  fluid  losses.  Fluid  is  also  lost  in  feces  and  in  the  air  you  exhale;  through  exposure  to  warm  or  humid  weather,  living  in  a  dry  climate,  or  living  and  training  at  altitude  all  increase  fluid  losses;  and  when  traveling,  especially  by  plane.  

How  much  water  do  you  need?  Most  people  have  heard  the  oft-­‐quoted  recommendation  to  consume  eight  8-­‐ounce  cups  of  fluid  (4  quarts,  or  about  1.9  L)  daily,  mainly  in  the  form  of  water.  In  2004,  when  much  public  attention  was  focused  on  dietary  water  requirements,  the  Food  and  Nutrition  Board  of  the  Institute  of  Medicine  (IOM)  released  Dietary  Reference  Intakes  (DRIs)  for  water  and  various  electrolytes.  Because  of  the  large  variations  in  water  needs  among  individuals,  the  IOM  panel  established  Adequate  Intake  (AI)  levels  of  130  ounces,  or  about  16  cups  (3.8  L),  daily  for  men  and  95  ounces,  or  about  12  cups  (2.9  L),  for  women.  

But  of  course  daily  fluid  losses  can  vary  greatly  depending  on  your  level  of  training,  whether  you  are  male  or  female,  and  your  individual  sweat  rate.  The  daily  fluid  needs  of  active  males  can  increase  to  4.75  quarts  (4.5  L),  but  requirements  for  male  endurance  athletes  can  often  be  in  excess  of  10.5  quarts  (10  L)  daily,  depending  on  sweat  losses  during  training,  and  perhaps  slightly  lower  for  women.  Estimating  fluid  requirements  beyond  the  basic  AI  recommendations  is  really  about  replacing  fluid  at  a  rate  close  or  equal  to  your  own  individual  sweat  rate  and  total  sweat  losses  for  a  particular  day  of  training.  Further  guidelines  for  replacing  training  sweat  losses  are  provided  in  Chapter  5.  

At  rest,  the  fluids  your  body  needs  can  be  slowly  replenished  throughout  the  day  as  you  make  a  conscious  effort  to  drink  enough  water  every  one  to  two  hours  to  replace  these  fluid  losses.  You  should  be  aware,  however,  that  climate,  clothing,  and  other  factors  can  affect  daily  water  requirements.  While  thirst  is  often  thought  of  as  the  primary  human  drive  that  pushes  us  to  drink,  it  is  important  for  athletes  not  to  rely  on  thirst  alone  but  to  develop  regular  drinking  habits  and  behaviors  to  maintain  a  good  level  of  daily  hydration  and  monitor  their  own  hydration  status.  By  the  time  someone  becomes  thirsty,  his  or  her  body  has  already  sensed  a  decrease  in  the  level  of  fluids  or  an  increase  in  sodium  concentration.  So  in  reality,  you  get  thirsty  only  when  you  have  already  experienced  some  fluid  loss  or  alterations  in  your  sodium  status,  both  of  which  are  affected  by  the  prolonged  periods  of  sweating  that  endurance  athletes  regularly  experience.  By  then,  an  athlete’s  performance  level  would  already  have  decreased.  So  for  an  endurance  athlete  in  training,  one  of  the  most  important  concepts  to  learn  is  that  it  is  unwise  to  rely  on  thirst  only  for  daily  hydration  needs.  Doing  so  may  result  in  falling  short  of  both  optimal  fluid  intake  and  optimal  performance  or  recovery.  

About  The  Author:  Monique,  Ryan,  MS,  RD,  CSSD,  LDN,  is  a  seasoned  and  trusted  sports  nutritionist  with  nearly  30  years  of  professional  experience  helping  elite  and  age-­‐group  endurance  athletes  and  major  league  sports  teams  to  optimize  their  nutrition.  She  is  also  the  founder  of  Personal  Nutrition  Designs,  based  in  the  Chicago  area.  

How Professional Athletes Benefit from Alkaline Water Competitive,  elite  athletes  and  sports  trainers  know  that  subtle  changes  in  pH  can  have  profound  effects  on  the  overall  health,  feeling  of  wellness,  level  of  fatigue,  pain,  weight,  ability  to  train  and  athletic  performance.  Muscles  work  best  in  a  narrow  range  of  Ph.  At  rest,  muscle  pH  is  about  6.9,  while  arterial  blood  is  about  7.4.  When  we  exercise,  the  increased  use  of  muscle  glycogen  for  energy  produces  lactic  acid,  pyruvic  acid,  and  CO2,  which  decreases  muscle  pH.  The  harder  you  exercise  the  quicker  your  muscles  become  acidic  which  leads  to  fatigue.  Accumulation  of  acid  also  limits  the  production  of  ATP,  the  energy  molecule,  and  disrupts  

Page 3: Athlete Benefits in Hydrating with Alkaline Antioxidant Water · Athlete Benefits in Hydrating with Alkaline Antioxidant Water ... 1

  3  

enzyme  activity  that  produces  energy.    For  example,  the  enzyme  phosphofructokinase  is  the  rate-­‐limiting  step  in  muscle  use  of  glycogen.  When  muscle  pH  falls  below  6.5  it  stops  working  altogether.  Acidity  also  reduces  muscle  power  directly  by  inhibiting  the  contractile  action  of  muscle  fibers.    “Endurance  and  elite  sports  athletes  should  be  concerned  about  maintaining  a  healthy  pH  balance,”  says  Robert  Burns,  PhD.  He  notes  that  lactic  acid  build-­‐up  or  hydrogen  ion  excess  is  of  most  concern.  As  the  body  metabolizes  food,  acid  waste  is  created  which  must  be  removed  or  neutralized  through  the  lungs,  kidneys  (urine)  and  skin.  “pH  balance  and  acid  buffering  are  crucial  to  human  health  and  slowing  the  aging  process,”  he  explains.  Athletes,  coaches  and  practitioners  of  holistic  and  traditional  medicine  are  paying  more  attention  to  this  area.  “We  may  be  able  to  buffer  or  slow  the  negative  effects  that  acidosis  has  on  athletes  as  well  as  the  many  disparate  maladies  that  share  acidosis  as  a  common  thread,”  he  concludes.  The  use  of  alkaline  water  is  proving  to  increase  competitiveness  and  overall  performance  in  world-­‐class  athletes.  Sports  nutritionists  also  recommend  a  diet  that  supports  alkalinity.  Consuming  alkaline  water  will  reduce  the  accumulation  of  acidity  in  exercising  muscles,  improving  workout  intensity  and  recovery  time.  Former  Denver  Bronco,  Bill  Romanowski,  was  introduced  to  the  power  of  ‘ionized’  water  late  in  his  career  doing  anything  legal  to  maintain  his  competitive  edge.    Competitive  bodybuilder,  Wade  McNutt,  credits  the  use  of  alkaline  water  for  motivating  him  to  come  out  of  retirement.  He  says  he  has  increased  his  training  volume  by  2.5  times  with  decreased  recovery  time  and  no  muscle  soreness.  In  his  opinion,  all  sports  teams  should  be  drinking  alkaline  water  because  it  will  reduce  injuries  and  allow  for  more  efficient  training.    In  her  book,  The  Chemistry  of  Success:  Secrets  of  Peak  Performance,  Susan  Lark,  MD,  talks  about  the  role  of  acid/alkaline  balance  in  peak  performance  and  health.  The  following  is  her  assessment  of  alkaline  water:  “The  benefits  of  the  alkaline  water  created  through  ionization  far  exceed  just  its  ability  to  gently  raise  the  pH  of  the  cells  and  tissues  of  the  body  and  to  neutralize  acids.  Because  the  alkaline  water  has  gained  a  significant  number  of  free  electrons  through  the  ionization  process,  it  is  able  to  donate  these  electrons  to  active  oxygen  free  radicals  in  the  body,  thereby  becoming  a  super  antioxidant.  By  donating  its  excess  free  electrons,  alkaline  water  is  able  to  block  the  oxidation  of  normal  tissue  by  free  oxygen  radicals.”  She  continues  by  noting  that  another  significant  benefit  of  the  ionization  process  is  that  the  cluster  size  of  the  alkaline  water  is  reduced  by  about  50%  from  the  cluster  size  of  tap  water.  “This  allows  ionized  alkaline  water  to  be  much  more  readily  absorbed  by  the  body,  thereby  increasing  the  water’s  hydrating  ability  and  its  ability  to  carry  its  negative  ions  and  alkalizing  effect  to  all  the  cells  and  tissues  of  the  body.”  “If  you  are  overly  acidic  an  alkaline  antioxidant  water  device  can  provide  a  safe,  gentle  and  effective  way  of  restoring  the  pH  balance  of  all  the  cells  in  your  body  as  well  as  providing  excess  free  electrons  to  act  as  super  antioxidants,”  Lark  recommends.    Most  people,  including  most  athletes,  do  not  consume  enough  alkaline  rich  foods,  such  as  nuts,  fruits,  and  vegetables.  Instead  their  diets  contain  high  amounts  of  acid  forming  foods,  such  as  meat,  fish,  poultry,  eggs  and  dairy.  Because  of  this  dietary  imbalance,  they  may  be  at  risk  for  increased  acidosis  that  affects  overall  health  and  sports  performance.  Since  proper  hydration  is  also  a  key  factor  in  preventing  exercise  fatigue,  consuming  alkaline  water  before,  during  and  after  exercise  can  help.    About  the  Authors:  Susan  Lark,  MD  is  considered  one  of  the  foremost  authorities  in  the  fields  of  clinical  nutrition  and  preventative  medicine.    She  holds  a  medical  degree  from  Northwestern  University  Medical  School  and  has  served  on  the  clinical  faculty  of  Stanford  Medical  School.    A  widely  published  author  on  the  subjects  of  health,  nutrition  and  preventative  medicine,  Dr.  Lark  advocates  the  use  of  alkaline,  ionized  water.  Robert  Burns  Ph.D.  served  as  Chief  Scientific  Officer  for  pH  Sciences  from  2003  to  2005.  He  has  directed  numerous  studies  on  pH  Sciences  analyzing  relationships  between  pH  balance,  health,  and  athletic  performance.    

Page 4: Athlete Benefits in Hydrating with Alkaline Antioxidant Water · Athlete Benefits in Hydrating with Alkaline Antioxidant Water ... 1

  4  

The Hydrogen Story ��� Browsing  the  ads  in  the  numerous  magazines  targeting  the  fitness  community  it  is  curious  to  note  the  vast  array  of  similar  symptoms  which  such  a  diversified  conglomerate  of  nutritional  formulas  are  designed  to  address.  Whether  you  want  to  build  mass,  increase  strength,  reduce  fat,  increase  energy  levels,  strengthen  your  immune  system,  renew  sexual  drive,  improve  performance,  stop  the  aging  process,  enhance  mental  alertness,  eliminate  soreness,  or  (my  favorite),  improve  your  over-­‐all  well-­‐being,  you  can  find  at  least  a  half-­‐dozen  formulations  which  can  help  you  accomplish  your  desired  goal.  

Interestingly  enough,  very  few  of  them  have  anything  in  common;  while  fewer  yet  are  based  upon  actual  science  and  none  of  them  contain  the  one  ingredient  that  your  body  requires  to  accomplish  all  of  these  tasks.  That  ingredient  is  H-­‐  (negatively  charged  hydrogen).  

This  little  known  nutrient  is,  in  fact,  the  smallest  element  known  to  exist  at  this  time.  In  spite  of  its  size,  it  is  indispensable  in  virtually  every  chemical  reaction  in  the  body.  

Nowhere  is  this  more  important  than  inside  the  cells  of  our  body  where  tiny  organisms,  called  mitochondria,  translate  the  free  electron  negative  charge  associated  with  the  H-­‐  molecule  into  the  ATP,  which  provides  the  energy  necessary  to  produce  growth,  repair,  and  regeneration  of  the  body.  In  the  latter  half  of  the  20th  century,  it  became  apparent  that  the  negative  hydrogen  ion  was  not  as  rare  and  short-­‐lived  in  nature  on  our  planet’s  surface  as  once  thought.  Indeed,  by  the  1990’s  it  became  apparent  the  H-­‐minus  ion  is  ubiquitous  in  the  biochemistry  of  life  forms  on  earth,  and  essential  to  certain  key  biochemical  reactions  related  to  the  citric  acid  cycle  (Krebs  cycle)  in  living  organisms.  

By  the  late  1990’s,  it  became  obvious  that  several  common  antioxidants  found  in  plants  and  animals  (Vitamin  E  among  them)  function  as  an  antioxidant  by  acting  as  a  transport  vessel  for  the  H-­‐  ion,  donating  it  at  the  right  time  within  living  systems  to  neutralize  any  of  several  species  of  oxygen  free  radicals  (oxidizing  radicals),  also  known  as  reactive  oxygen  species  (ROS)  occurring  in  tissues  or  fluids  in  or  around  the  cells.      It  also  became  generally  recognized  by  the  late  1990’s  that  the  likely  mechanism  by  which  certain  key  energy-­‐transport  molecules  in  living  systems  were  formed  and  subsequently  regenerated  after  “being  burned”  was  via  donation  of  H-­‐  to  the  molecule  by  a  donor  molecule,  the  origins  of  which  ultimately  traced  back  to  the  energy  liberated  from  sunlight  during  photosynthesis.            

Page 5: Athlete Benefits in Hydrating with Alkaline Antioxidant Water · Athlete Benefits in Hydrating with Alkaline Antioxidant Water ... 1

  5  

In the Absence of an Abundant Free Electron Pool Your Ability to Perform and Recover will be Substantially Limited, Regardless of What Other Nutrients are Present! The  bottom  line  here  is  that  the  free  electron  associated  with  the  H-­‐  complex  is  necessary  as  a  raw  material  for  the  mitochondria  to  produce  energy.  The  hydrogen  to  which  it  is  attached  is  utilized  to  combust  available  oxygen  to  allow  us  to  express  the  energy,  which  is  produced.  Therefore,  regardless  of  the  amount  of  cardio  you  perform,  or  the  amount  of  protein,  fats,  carbohydrates,  or  any  other  nutrient  you  take  to  enhance  your  performance  you  will  never  experience  your  full  potential  in  the  absence  of  a  rich  free  electron  pool  of  H-­‐  in  the  body.    For  the  athlete  this  translates  into  two  important  functions,  which  will  determine  their  ultimate  ability  to  excel  in  a  chosen  sport;  PERFORMANCE  and  RECOVERY.    

How Can I Know? In  the  absence  of  a  “Matrix  Assessment  Profile”  you  may  obtain  information  about  the  effectiveness  of  any  given  nutritional  program  by  using  an  ORP  (Oxidation  Reduction  Potential)  meter  to  measure  the  oxidation  or  reduction  power  of  a  substance,  usually  a  liquid.    It  is  measured  in  millivolts  (mv.)  on  a  scale  from  -­‐1,200  (most  strongly  reducing)  to  +1,200  (most  strongly  oxidizing).  A  reading  at  or  below  approximately  zero  (0)  strongly,  although  indirectly,  indicates  an  increasing  concentration  of  the  negative  hydrogen  ion  or  potential  for  creating  energy.    

Why is This Important? As  any  athlete  knows,  one  of  the  greatest  dangers  and  side  effects  of  heavy  training  is  the  production  of  excessive  free  radicals.  These  damage  the  ability  of  our  cells  to  perform  the  functions  required  for  repair  and  regeneration.  Biochemically,  free  radicals  are  simply  substances  which  steal  electrons.  Therefore,  if  you  are  training  heavy,  you  are  more  than  likely  creating  excessive  free  radicals  which  are  depriving  your  body  of  the  one  substance  required  to  achieve  the  purpose  for  which  your  training  was  designed.  

But it Takes Antioxidants Medical  science  has  well  documented  the  need  for  antioxidants  to  neutralize  the  unstable  free  radical  activity  produced  by  exercise.  If  you  are  a  seasoned  athlete,  you  are  probably  consuming  antioxidant  complexes  as  part  of  your  nutritional  support  program.  This  most  likely  consists  of  antioxidant  compounds  such  as  Vitamin  C,  Vitamin  E,  Betacarotene,  Selenium,  grape  seed  or  pine  bark  extracts,  etc.  

The Problem With Antioxidants is Twofold: ▪ No  matter  how  large  the  antioxidant  molecule  it  gives  up  only  one  electron  for  the  purposes  of  neutralizing  

free  radical  activity.  ▪ When  an  antioxidant  donates  an  electron  to  neutralize  free  radicals  it  becomes  a  free  radical.  Of  course  it  is  

weaker  and  less  harmful  than  that  which  it  neutralized  but,  nonetheless,  it  becomes  a  free  radical.  This  process  is  known  as  the  electron  cascade  and  is  the  reason  for  including  a  broad  spectrum  of  antioxidants  in  any  supplemental  nutritional  program.    

So What Can I Do? Albert  Szent-­‐Gyorgyi,  in  his  original  research  for  which  he  won  the  Nobel  Prize  for  his  work  on  Vitamin  C,  

Page 6: Athlete Benefits in Hydrating with Alkaline Antioxidant Water · Athlete Benefits in Hydrating with Alkaline Antioxidant Water ... 1

  6  

discussed  electron  flow  in  the  body.  Electrons  move  but  never  by  themselves.  There  needs  to  be  a  carrier.  That  carrier  is  the  hydrogen  atom  with  the  extra  electron  in  the  outer  shell.    Free  electrons  affect  the  body  in  a  very  positive  way  as  the  free  radicals  are  neutralized.  Since  free  radicals  normally  steal  electrons  from  cell  walls  and  DNA  structure  the  inevitable  result  is  abnormal  cell  function  and  eventually  disease.  Science  is  very  clear  that  free  radicals  are  the  basis  for  many  of  the  major  disease  processes  in  the  body  today.  The  hydrogen  also  feeds  into  the  energy  cycle  of  the  body  providing  healthy  energy  and  creating  less  fatigue.    

Stop Sickness before It Starts – Improve Your Biochemical Environment Getting  sick  requires  that  your  natural  resistance  break  down.  All  cells  live  in  the  biological  fluid.  It  is  the  environment  in  which  they  function  day-­‐to-­‐day.  A  balanced  biochemistry  means  balanced  fluid,  which  in  turn  means  healthy,  vibrant  cells.  When  cells  are  healthy,  sickness  can’t  get  a  foothold.  This  is  letting  the  body  and  your  natural  defense  system  do  the  job  it  is  designed  to  do  …  stay  healthy!    So,  if  you  are  an  athlete  who  has  hit  a  wall  in  your  training,  suffers  from  DOMS,  truly  wants  to  experience  more  energy,  less  fatigue,  or  improved  mental  clarity,  see  how  can  this  simple  hydrogen  atom  can  improve  your  performance  while:    ▪ Fighting  free  radical  damage  throughout  the  body  ▪ Balancing  the  body’s  chemistry  through  the  Biological  Terrain  ▪ Helping  to  resist  sickness  ▪ Reversing  the  disease  process  and  slow  down  aging  

 

Increase Your Resistance and Stay Healthy with intentional supplementation H-­‐minus  ions  in  foods    Some  folks  decide  to  eliminate  highly  processed  and  heated  foods  from  their  diets,  and  instead,  choose  to  incorporate  large  amounts  of  raw  foods  such  as  raw  vegetative  products  (fruits,  vegetables),  and  sometimes  raw  animal  products  (raw  eggs,  dairy,  fish  and  meats)  as  well.  Some  also  choose  to  start  drinking  unprocessed  and  unfiltered  water  from  natural  deep  aquifers.  The  very  act  of  switching  to  such  a  diet  of  raw,  unprocessed  foods  drastically  increases  the  availability  of  the  H-­‐minus  ion  in  the  daily  intake.  

Alkaline Antioxidant Water The  most  ubiquitous  supplemental  source  of  the  H-­‐minus  ion  for  the  past  45  years  in  Japan  and  past  15  years  in  the  USA  has  been  so-­‐called  “alkaline  ionized  water”,  also  known  as  “micro  water”,  from  kitchen  countertop  water  ionizers.  This  water  is  more  accurately  called  Alkaline  Antioxidant  Micro-­‐Clustered  Water;  which  is  the  naming  convention,  which  most  commonly  appears  in  articles  in  scientific  literature  to  denote  this  water.    This  water  is  often  called  “reduced  water”  due  to  its  reducing,  or  antioxidant  activity,  and  has  been  called  “micro  water”  by  some  commercial  vendors  due  to  the  fact  that  the  water  exhibits  a  smaller  cluster  size  than  “normal”  water.    There  exist  some  people  who  deliberately  ingest  H-­‐  as  a  nutritional  supplement  for  the  health  benefits,  primarily  its  advantages  as  a  primal  antioxidant  or  primeval  antioxidant,  and  one  with  extremely  low  molecular  weight  and  size,  allowing  it  access  to  many  and  varied  tissues  and  levels  of  biochemical  activity.  Regardless  of  the  methodology  you  choose  the  important  facts  to  remember  are  that  the  reproduction  of  

Page 7: Athlete Benefits in Hydrating with Alkaline Antioxidant Water · Athlete Benefits in Hydrating with Alkaline Antioxidant Water ... 1

  7  

negatively  ionized  hydrogen  brings  us  the  most  powerful  antioxidant,  a  natural  alkalizer,  an  anti-­‐microbial  agent,  and  a  way  to  restore  and  maintain  cellular  fluid  balance.    The  most  valuable  benefits  of  seeking  out  the  negative  hydrogen  substances  are  improving  health,  repairing  tissue,  reducing  pain,  increasing  energy  and  reversing  aging.  The  cells  and  the  body  as  a  whole  are  restored  to  and  kept  in  the  healthiest  possible  state.    About  the  Author:  Dr.  Richard  A.  DiCenso  is  a  published  author,  international  speaker,  and  complementary  care  expert.  Dr.  DiCenso  has  over  30  years  experience  in  treating  the  chronic  symptoms  of  Vicious  Cycle  disorders  (VCD).  With  his  extensive  experience  in  "Whole  Person  Therapy",  he  is  the  leading  authority  in  Biological  Fluid  Analysis.      

Athletes and Acid Why  aging,  elite,  and  high  performance  athletes  need  to  understand  and  avoid  excess  acid  build  up  in  their  muscles,  a  condition  called  Sport  Induced  Acidosis.    Elite  and  high  performance  sport  athletes  continually  push  at  the  boundaries  of  physics,  trying  to  compress  time  into  ever-­‐smaller  increments  or  beat  gravity  at  its  own  game.  In  the  process,  they  often  redefine  what  is  “humanly  possible,”  not  only  for  themselves  but,  in  some  cases,  for  all  of  us.    As  every  athlete  knows,  in  the  sports  world  a  millisecond  or  the  slightest  internal  or  external  physical  advantage  can  mean  the  difference  between  victory  and  defeat,  a  repeat  performance  or  a  new  world  record  or  personal  best.  And,  unfortunately,  sometimes  it  is  a  world  where  athletes  destroy  their  careers,  health  or  reputations  trying  to  dope  their  way  to  new  physical  feats.    

Life in the balance Currently,  athletes  competing  in  elite,  high  level,  individual  and  team  sports  are  breaking  performance  barriers  at  a  record  pace.  There  are  a  number  of  reasons  for  this:  advancements  in  training,  athletic  equipment,  sports  medicine  and  physical  therapy,  as  well  as  a  deeper  understanding  among  coaches  and  athletes  of  human  body  chemistry  and  the  role  nutrition  and  body  chemistry  plays  in  athletic  performance.  For  the  purpose  of  this  paper,  we  will  focus  on  one  particular—and  often  overlooked—physiological  and  nutritional  aspect  of  maintaining  health  and  athletic  performance:  control  of  sports  induced  acidosis  through  acid-­‐base  balance.    Athletes  who  are  committed  to  legal,  healthful  ways  of  increasing  performance,  reducing  fatigue,  and  compressing  recovery  time  need  to  understand  acid  balance  and  the  negative  impact  of  too  much  acid.  High  performance  and  elite  sport  athletes  should  be  particularly  concerned  with  maintaining  a  healthy  acid  level,  as  they  regularly  place  themselves  under  physical  and  dietary  stresses  that  can  lead  to  imbalances,  most  commonly  lactic  acid  which  indicates  excess  hydrogen  ion  (acid)  buildup.  Whatever  your  level  of  athletic  intensity,  a  healthy  acid  balance  can  mean  the  difference  between  greater  athletic  achievement  or  being  brought  up  short  by  muscle  “burn”  or  cramping.    

A pH primer ~ or ~ What Every Athlete Needs to Know About Acid Balance Proper  pH  balance  is  a  key  component  of  good  health  and  it  is  absolutely  essential  to  athletic  performance.  pH  is  measured  on  a  14-­‐point  scale,  with  7  being  neutral.  The  lower  the  pH  value,  the  higher  the  acidity;  the  higher  the  pH  value,  the  more  alkaline.  pH  values  vary  throughout  systems  in  the  human  body.  So,  as  you  might  imagine,  stomach  acid  has  a  very  low  pH  value,  ranging  from  1.0  to  3.0  while  digesting  food.  Pancreatic  excretions  are  very  high  in  pH  value,  ranging  from  8.0  to  8.3.  The  pH  value  of  arterial  blood  in  a  

Page 8: Athlete Benefits in Hydrating with Alkaline Antioxidant Water · Athlete Benefits in Hydrating with Alkaline Antioxidant Water ... 1

  8  

healthy  human  is  balanced  around  the  middle  of  the  14-­‐point  scale  at  a  narrow  range  of  7.35  to  7.45,  or  just  slightly  alkaline.    As  the  body  metabolizes  fuel  (i.e.  food),  acid  wastes  are  created.  To  sustain  a  healthy  blood  pH  balance,  acid  wastes  must  be  removed  from  the  body  or  neutralized.  The  body  has  numerous  ways  to  flush  acid  waste  out  of  the  system:  the  lungs  vent  carbon  dioxide;  our  kidneys  filter  blood  and  excrete  acids  through  urine  (urine  pH  value  can  be  as  low  as  4.5);  skin  sweats  acids  out  of  the  system.  In  addition  to  its  various  acid-­‐flushing  functions,  the  human  body  also  has  built-­‐in  chemical  buffers  that  help  to  neutralize  pH  imbalances,  including  calcium,  phosphorus,  bicarbonate,  hemoglobin,  and  phosphate  cycles  in  the  blood.  When,  because  of  diet,  intense  exercise,  and/or  aging,  we  exceed  the  body’s  ability  to  flush  out  or  neutralize  acid  wastes,  acid  buildup—sports  induced  acidosis—occurs.      

Crossing the threshold, managing the “burn” Most  serious  athletes  are  familiar  with  the  phenomenon  known  as  “muscle  burn.”  Muscle  burn  is  largely  the  result  of  lactic  acid,  which  indicates  hydrogen  ion  buildup  in  the  system  and  is  one  effect  of  excess  acid  in  the  blood  and  tissue.  Acid  concentration  increases  when  an  athlete  exceeds  what  is  called  the  “lactate  threshold,”  the  point  at  which  the  body  can  no  longer  flush  or  neutralize  acid  wastes  as  fast  as  they  are  being  produced.  When  an  athlete  crosses  the  lactate  threshold  for  a  sustained  time,  acid  accumulates  in  the  muscles  and  can  lead  to  cramping,  severely  compromising  their  performance.  Contrary  to  popular  belief,  lactic  acid  is  not,  in  and  of  itself,  the  cause  of  acidosis.  However,  elevated  levels  of  lactic  acid  in  the  system  are  an  indicator  of  excess  acidic  hydrogen  ion  buildup  in  the  muscles  and  blood.    Exercise  is  not  the  only  contributing  factor  to  acidosis.  Aging  and  diet  also  play  key  roles.  As  we  age,  our  systems  that  rid  the  body  of  acid  waste  don’t  work  as  efficiently.  Furthermore,  the  western  world’s  diet,  with  its  overemphasis  on  animal  protein,  fats,  processed  sugar  and  flour,  is  likely  a  contributing  factor  in  acidosis.  Because  elite  and  high  performance  athletes  often  burn  through  exponentially  more  calories  than  the  average  person  does  in  a  day  (a  175-­‐pound  athlete  can  burn  approximately  6,000-­‐8,000  calories  in  the  course  of  a  60-­‐mile  bike  race  alone),  they  should  be  particularly  concerned  with  acid  balance  and  dietary  health.  Also,  the  athlete’s  often-­‐accelerated  intake  of  protein  and  carbohydrates  can  produce  surplus  acid  from  their  metabolic  wastes.  

Prevention is the Best Medicine So,  how  can  athletes  protect  themselves  from  acid  imbalance?  A  healthy  diet  is  the  best  place  to  start.  Cutting  back  on  acid-­‐producing  foods  and  beverages  such  as  animal  protein,  coffee,  soft  drinks,  and  wine,  can  help.  But  remember:  just  because  a  food  is  chemically  acidic  doesn’t  automatically  mean  it’s  an  acid  producing  food.  (So,  for  example,  citrus  fruits  actually  have  an  alkalizing  effect  on  the  body,  as  do  most  acidic  fruits  and  vegetables.)  To  maintain  a  healthy  acid  balance,  many  natural  medicine  practitioners  recommend  a  diet  comprised  of  anywhere  from  a  60/40  to  as  much  as  an  80/20  ratio  in  favor  of  alkalizing  foods  over  acid-­‐producing  foods.  However,  that’s  not  always  easy  to  achieve—especially  for  people  who  don’t  want  to  pay  obsessive  attention  to  their  diet.  And,  as  we  discussed  earlier,  even  with  the  best  diet,  human  beings  naturally  become  more  acidic  as  we  age  and  our  metabolic  processes  slow.    Most  people,  including  most  athletes,  do  not  consume  enough  alkaline  rich  foods,  such  as  nuts,  fruits,  and  vegetables.  Instead  their  diets  contain  high  amounts  of  acid  forming  foods,  such  as  meat,  fish,  poultry,  eggs  and  dairy.  Because  of  this  dietary  imbalance,  they  may  be  at  risk  for  increased  acidosis  that  affects  overall  health  and  sports  performance.  Since  proper  hydration  is  also  a  key  factor  in  preventing  exercise  fatigue,  consuming  alkaline  antioxidant  water  before,  during  and  after  exercise  can  help.    About  the  Author:    Robert  Burns  Ph.D.  served  as  Chief  Scientific  Officer  for  pH  Sciences  from  2003  to  2005.  He  has  directed  numerous  studies  on  pH  Sciences  analyzing  relationships  between  pH  balance,  health,  and  athletic  performance  

Page 9: Athlete Benefits in Hydrating with Alkaline Antioxidant Water · Athlete Benefits in Hydrating with Alkaline Antioxidant Water ... 1

  9  

 

RESEARCH Open Access

Pilot study: Effects of drinking hydrogen-richwater on muscle fatigue caused by acute exercisein elite athletesKosuke Aoki1, Atsunori Nakao2*, Takako Adachi1, Yasushi Matsui1 and Shumpei Miyakawa1

Abstract

Background: Muscle contraction during short intervals of intense exercise causes oxidative stress, which can play arole in the development of overtraining symptoms, including increased fatigue, resulting in muscle microinjury orinflammation. Recently it has been said that hydrogen can function as antioxidant, so we investigated the effect ofhydrogen-rich water (HW) on oxidative stress and muscle fatigue in response to acute exercise.

Methods: Ten male soccer players aged 20.9 ± 1.3 years old were subjected to exercise tests and blood sampling.Each subject was examined twice in a crossover double-blind manner; they were given either HW or placebo water(PW) for one week intervals. Subjects were requested to use a cycle ergometer at a 75 % maximal oxygen uptake(VO2) for 30 min, followed by measurement of peak torque and muscle activity throughout 100 repetitions ofmaximal isokinetic knee extension. Oxidative stress markers and creatine kinase in the peripheral blood weresequentially measured.

Results: Although acute exercise resulted in an increase in blood lactate levels in the subjects given PW, oral intakeof HW prevented an elevation of blood lactate during heavy exercise. Peak torque of PW significantly decreasedduring maximal isokinetic knee extension, suggesting muscle fatigue, but peak torque of HW didn’t decrease atearly phase. There was no significant change in blood oxidative injury markers (d-ROMs and BAP) or creatinekinease after exercise.

Conclusion: Adequate hydration with hydrogen-rich water pre-exercise reduced blood lactate levels and improvedexercise-induced decline of muscle function. Although further studies to elucidate the exact mechanisms and thebenefits are needed to be confirmed in larger series of studies, these preliminary results may suggest that HW maybe suitable hydration for athletes.

IntroductionSince energy demands and oxygen consumption increaseduring supermaximal exercise, such as intermittent run-ning, sprints, and jumps, production of reactive oxygenspecies (ROS) and reactive nitrogen species (RNS) alsoincrease, threatening to disturb redox balance and causeoxidative stress. During normal conditions, ROS andRNS are generated at a low rate and subsequently elimi-nated by the antioxidant systems. However, a greatlyincreased rate of ROS production may exceed the cap-acity of the cellular defense system. Consequently,

substantial free radicals’ attack on cell membranes maylead to a loss of cell viability and to cell necrosis andcould initiate the skeletal muscle damage and inflamma-tion caused by exhaustive exercise [1-3]. Although well-trained athletes suffer from less oxidative stress reduc-tion because their antioxidant systems adapt, accumula-tion of intense exercise can provoke an increase inoxidative stress [4]. To mitigate oxidative stress-inducedadverse events during sports, antioxidant supplementa-tion among athletes has been well documented. Al-though results of these studies are often contradictorydepending on the antioxidant compounds and quantity,some studies demonstrate the beneficial effects of anti-oxidants on muscle fatigue or performance [5,6].

* Correspondence: [email protected] of Emergency and Critical Care Medicine, Hyogo College ofMedicine, 1-1, Mukogawa-cho, Nishinomiya, Hyogo 663-8501, JapanFull list of author information is available at the end of the article

© 2012 Aoki et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the CreativeCommons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, andreproduction in any medium, provided the original work is properly cited.

Aoki et al. Medical Gas Research 2012, 2:12MEDICAL GAS RESEARCH

http://www.medicalgasresearch.com/content/2/1/12

Page 10: Athlete Benefits in Hydrating with Alkaline Antioxidant Water · Athlete Benefits in Hydrating with Alkaline Antioxidant Water ... 1

  10  

 

Recently, the beneficial effects of hydrogen-rich water(HW) have been described in experimental and clinicaldisease conditions [7,8]. Although research on the healthbenefits of HW is limited and there is scant data onlong-term effects, pilot studies on humans suggest thatconsuming HW may help prevent metabolic syndrome[9], diabetes mellitus [10], and cancer patients’ sideeffects with radiotherapy [11]. Since hydrogen is knownto scavenge toxic ROS [12] and induce a number of anti-oxidant proteins [13,14], we hypothesized that drinkingHW may be beneficial for athletes in reducing oxidativestress-induced muscle fatigue following acute exercise.In this study, we evaluated the efficacy of hydrogen-richwater on healthy subjects by measuring muscle fatigueand blood lactate levels after exercise. Although furtherstudies are needed to elucidate the exact mechanismsand benefits, this report suggests that hydrogen-richwater might be an appropriate hydration fluid forathletes.

MethodsSubjectsTen male soccer players aged 20.9 ± 1.3 years old weresubjected to exercise tests and blood sampling. None ofthe subjects were smokers or were taking any supple-ments/medicines. Each subject provided writteninformed consent before participation in accordancewith the University of Tsukuba’s Human Research EthicsCommittee. Physical characteristics of the subjects areshown in Table 1. All the players were involved in dailytraining sessions except the day of experiment.

Generation of hydrogen-rich waterA plastic shelled product consisting of metallic magne-sium (99.9 % pure) and natural stones in polypropylenecontainers combined with ceramics (Doctor SUISOSUIW,Friendear, Tokyo, Japan) was used to produce hydrogen.The product was capable of generating hydrogen whenplaced in drinking water via the following chemical reac-tion: Mg+ 2H2O!Mg (OH)2 +H2. The magnesiumstick or a placebo (a casting-only stick without magne-sium) was immersed in mineral water (VolvicW, KirinInc., Tokyo) for 24 hours prior to drinking. The finalhydrogen concentrations of the placebo water (PW) and

hydrogen-rich water (HW) were 0 and 0.92 ~ 1.02 mM,respectively [9,11]. Each subject was examined twice in acrossover double-blind manner, given either HW or PWfor one week intervals.

Dose and mode of administration of hydrogen-rich waterSubjects were provided with three 500 ml bottles ofdrinking water and instructed to place two magnesiumsticks in each bottle 24 hours prior to drinking. Partici-pants were asked to drink one bottle at 10:00 PM of theday before the test, one at 5:00 AM, and one at 6:20 AMon the day of examination. In summary, subjects con-sumed 1,500 ml of HW or PW.

ProtocolThe research protocol started at 6:00 AM. Subjects weregiven meals between 9:00 PM and 10:00 PM the day be-fore experiments, and fasted overnight. No breakfast wasgiven on the day of the experiments. The subjects werefirst required to rest in a sitting position for 30 minutes.The exercise test consisted of the following: 1) Maximalprogressive exercise test to define maximal oxygen up-take (VO2max); 2) cycling an ergometer for 30 minutesat approximately 75 % VO2max (Exercise-1); and 3) Run-ning 100 maximal isokinetic knee extensions at 90 ° sec-1

(Exercise-2). Blood samples were collected from an ante-cubital vein just before Exercise-1 (6:30 AM), immedi-ately after Exercise-1 (7:15 AM), immediately afterExercise-2 (7:30 AM), 30 minutes after Exercise-2(8:00 AM) and 60 minutes after Exercise-2 (8:30 AM).

Maximal progressive exercise testFirst, to define maximal oxygen uptake (VO2max), thesubjects were subjected to a maximal progressive exer-cise test on a bicycle ergometer (232CL, Conbiwellness,Tokyo). The test consisted of a continuous step test be-ginning at a 30 W load, and increasing by 20 W everyminute until exhaustion. The subjects were instructed toride at 50 rpm/min. Pulmonary gas exchange values weremeasured using an exhaled gas sensor (AE280S, MinatoMedicalW, Osaka, Japan) via a breath-by-breath system,and the mean values were calculated every 30 secondsfor analysis. We determined that VO2max was reachedwhen the oxygen consumption reached its plateau [15].

Fixed-load cycling at 75 % (high intensity) of VO2 maxBefore the test started, the subjects rested for two min-utes. After warming up at a load of 50 W for one minute,the subjects were instructed to ride at submaximal levelsfor 30 minutes. Pulmonary gas exchange values weremonitored to maintain VO2max at approximately 75 %.During the experiments, the subjects were frequentlyverbally instructed to control the range of motion tomaintain VO2max at approximately 75 %.

Table 1 Subjects’ Physical Characteristics (n = 10)Variable Value

Age (year) 20.9 ± 1.3

Height (cm) 172.0 ± 3.8

Body weight (kg) 67.1 ± 5.2

BMI (kg/m2) 22.8 ± 1.4

VO2max (ml/kg/min) 53.2 ± 4.9

BMI: body mass index, VO2max: maximal oxygen uptake.

Aoki et al. Medical Gas Research 2012, 2:12 Page 2 of 6http://www.medicalgasresearch.com/content/2/1/12

Page 11: Athlete Benefits in Hydrating with Alkaline Antioxidant Water · Athlete Benefits in Hydrating with Alkaline Antioxidant Water ... 1

  11  

 

Maximal isokinetic knee extensionsA calibrated Biodex System 3 isokinetic device (BiodexMedical Systems, New York, USA) was used to measurepeak torque (PT) and knee-joint position throughout100 repetitions of maximal isokinetic knee extension.During testing, each subject was seated on the Biodexsystem 3 with 90° hip flexion, and restraining straps wereplaced across the waist and chest in addition to a rigidsternal stabilizer. The dynamometer was motor driven ata constant velocity of 90°/sec. Each subject performed aseries of 100 isokinetic contractions using the kneeextensors of the right leg from 90° of flexion to 0° (fullextension). As the arm of the dynamometer moved upfrom 90° to 0°, subjects were encouraged to performmaximally for each contraction throughout the full rangeof motion. Subjects relaxed as the dynamometer armmoved back to 90°. Each contraction and relaxationperiod lasted one second and the total length of the con-traction cycle was thus two seconds. All subjects wereable to complete the full 100 contractions.

Measurement of muscle fatigueTo measure muscle fatigue, the widely used First Fouriertransform technique (FFT) is utilized to analyze mean fre-quency of surface electromyogram (EMG) [16]. EMG sig-nals were obtained from the rectus femoris muscle viaelectrodes connected to a 4-channel frequency-modulationtransmitter (Nihon Kohden, Tokyo, Japan). All data werestored and analyzed using the FFT functions in Acknow-ledge 3.7.5 software (BIOPAC SYSTEM, Santa Barbara,USA). Mean power frequency (MPF) and median powerfrequency (MDF) were calculated as previously described[17]. MPF shift of the EMG signal toward lower frequencieshas been extensively used in static contractions to indicatethe development of peripheral fatigue.

Blood testBlood lactate levels were determined using a commerciallyavailable Lactate Pro LT17170 kit (Arkray, Inc., Kyoto,Japan). The concentrations of derivatives of reactive oxida-tive metabolites (dROMs) and biological antioxidant power(BAP) in the peripheral blood were assessed using a FreeRadical Analytical System (FRAS4; Wismerll, Tokyo,

Japan). Laboratory tests for creatine kinase (CK) were con-ducted using standardized procedures at Kotobiken Med-ical Laboratory Services (Tokyo, Japan).

Statistical analysisRepeated analysis of variance (ANOVA) tests were usedto compare pre- and post-exercise measurements. TheF-test with Bonferroni post hoc group comparisons wasperformed where appropriate. Probability values lessthan 0.05 were considered to be statistically significant.SPSS 18.0 was used to perform the statistical analysis.Since the experiment was planned to have a 90 % powerof achieving significance at the 5 % level, the sample sizein this model is calculated to be between 8.91 and 9.25(90 % power and 5 % significance level) in blood lactatelevels based on our previous experiences. Therefore, weassumed the sample size would be appropriate for accu-mulation of preliminary data.

ResultsBlood analysis for lactic acid, d-ROMs, BAP and CKAs shown in Table 2, blood d-ROMs BAP and CK levelsincreased after exercise in subjects in both groups treatedwith PW and HW. However, there was no statistical differ-ence between the groups. Eventhough the blood lactatelevel were significantly increased in both HW and PW at45 and 60 min after exercise, these levels were comparablyand significantly lower in the HW than in the PW group(Figure 1).

Maximal knee extension exerciseAt analysis for maximal knee extension exercise, wedivided into five frames of 100-repetition knee extensionat the peak torque of isokinetic knee extension exercise[18]. Each frame was corresponded to 20 repetitions;Frame 1 for the first 20 repetitions, Frame 2 for the fol-lowing 21-40 repetitions, Frame 3 for 41-60 repetitions,Frame 4 for 61-80 repetitions and Frame 5 for the last81-100 repetitions. Although the peak torque of subjectstreated with PW significantly decreased during the first40 repetitions (Frame 1-2), the reduction of peak torquein the subjects given HW did not reach statistical

Table 2 Changes in Blood Levels0 min 45 min 60 min 90 min 120 min

d-ROMs (U.CARR) PW 269.0 ± 50.8 285.7 ± 52.3* 287.0 ± 56.9* 274.2 ± 50.2 280.0 ± 47.6

HW 281.3 ± 61.8 303.5 ± 46.3* 308.6 ± 56.1* 296.1 ± 57.9 307.0 ± 45.8

BAP (μmol/L) PW 2347.3 ± 155.8 2648.9 ± 96.5* 2632.8 ± 146.4* 2349.6 ± 152.0 2321.8 ± 196.9

HW 2336.7 ± 123.1 2659.1 ± 102.1* 2664.6 ± 201.0* 2299.8 ± 104.6 2356.4 ± 143.7

CK (IU/L) PW 247.0 ± 105.1 296.5 ± 119.9* 300.9 ± 127.7* 264.7 ± 113.3* 256.3 ± 111.7

HW 407.4 ± 269.9 483.2 ± 314.0* 478.1 ± 314.5* 428.2 ± 282.0 353.7 ± 264.6

Data were shown as mean± standard deviation (SD). *p< 0.05 vs 0 min.

Aoki et al. Medical Gas Research 2012, 2:12 Page 3 of 6http://www.medicalgasresearch.com/content/2/1/12

Page 12: Athlete Benefits in Hydrating with Alkaline Antioxidant Water · Athlete Benefits in Hydrating with Alkaline Antioxidant Water ... 1

  12  

 

difference, suggesting that HW inhibited the early de-crease of peak torque of the subjects (Figure 2 A).

MDF and MPF from EMG analysisMDF and MPF in the subjects treated with PW or HWsignificantly decreased with time during exercise. Whilethese values significantly decreased at Frame 1-2, therewas no statistical difference between the subjects receiv-ing PW and those receiving HW (Figure 2 B, C).

DiscussionIn this preliminary study, we showed that hydration withHW attenuated increase of blood lactate levels and pre-vented post-exercise decrease of peak torque, an indica-tor of muscle fatigue. Muscle fatigue is caused by manydifferent mechanisms, including the accumulation ofmetabolites within muscle fibers and the generation ofan inadequate motor command in the motor cortex. Theaccumulations of potassium, lactate, and H+ have oftenbeen suggested as being responsible for the decrease inmuscle contractility [19]. In addition, aerobic, anaerobic,or mixed exercise causes enhanced ROS production,resulting in inflammation and cellular damage [20]. Shortbursts of heavy exercise may induce oxidative stressthrough various pathways such as electron leakagewithin mitochondria, auto-oxidation of the catechol-amine, NADPH activity, or ischemia/reperfusion [21].Although the mechanism involved in the efficacies ofHW remains unclear, our results show that hydrationwith HW could be feasible for acute exercise. Proper andadequate hydration is helpful for elite athletes to achieve

the best performance. HW can easily replace regulardrinking water on a routine basis and would potentiallyprevent adverse effects associated with heavy exercise.

0

2

4

lact

ate

(mm

ol/L

)

40 60 100 120

##

6

5

3

1

Time (minutes)

PW

HW

8020

Figure 1 Sequential changes of blood lactate levels duringexercise. Blood lactate levels in the athletes given PW significantlyincreased immediately after exercise compared to the levels atpre-exercise. HW significantly reduced blood lactate levels postexercise using bicycle ergometer. (*p< 0.05 vs. time 0. #p< 0.05 vsHW, N = 10).

80

90

100

60

70

65M

PF

(H

z)M

DF

(H

z)P

T (N

-M)

A

B

Frame 1 Frame 2 Frame 3 Frame 4 Frame 5

C

110

120

80

75

85

70

80

75

90

85

95

PW

HW

100

NS

PW

HW

PW

HW

Figure 2 (A) Changes in peak torque (PT) every 20 repetitions(rep =1 frame) during 100 maximum isokinetic kneeextensions. PT of the subjects treated with PW significantlydecreased during the initial 40-60 contractions by approximately20-25 % of the initial values, followed by a phase with little change.On the other hand, there was no statistical difference betweenFrame 1 and Frame 2 in HW, indicating that HW prevented thedecreasing the peak torque during the first 2 Frames. HW, Hydrogenrich water; PW, Placebo water. (*p< 0.05 vs Frame 1, N = 10). (B)Changes in median frequency (MDF) every 20 repetitions(rep =1 Frame) during 100 maximum isokinetic kneeextensions. Although exercise significantly reduced MDF valuesduring the first 2 Frames, there was no statistical difference betweenHW and PW in all Frames. HW, Hydrogen rich water; PW, Placebowater. (*p< 0.05 vs Frame 1, N = 10). (C) Changes in mean powerfrequency (MPF) every 20 repetitions (rep =1 Frame) during100 maximum isokinetic knee extensions. There was no statisticaldifference between HW and PW in all Frames. HW, Hydrogen richwater; PW, Placebo water. (*p< 0.05 vs Frame 1, N = 10).

Aoki et al. Medical Gas Research 2012, 2:12 Page 4 of 6http://www.medicalgasresearch.com/content/2/1/12

Page 13: Athlete Benefits in Hydrating with Alkaline Antioxidant Water · Athlete Benefits in Hydrating with Alkaline Antioxidant Water ... 1

  13  

 

Factors such as age, nutritional status, training level, andphysical activity category can influence the results [22,23].Although we had anticipated that hydrogen, a known anti-oxidant, would reduce oxidative stress following acute ex-ercise, the effects of oral intake of HW were marginal anddid not affect the level of oxidative markers after exercise.This can be explained by the facts that the athletes in ourstudy have routinely trained and their antioxidant defensesystems may be more active. Previous studies reported thatrepeated aerobic training increases antioxidant enzymeactivity and subsequently decreases oxidative stress[2,24-26]. Also, considering the short life-span of hydrogenin circulation [27], more frequent drinking of HW duringexercise might have additional effects. In a future study,the efficacy of HW on untrained subjects or recreationalexercisers, who may have poorly established antioxidantsystems to combat exercise-induced oxidative stress,should be tested. Furthermore, different drinking protocolsshould be investigated.We quantified muscle fatigue as a decline in the maximal

force or power capacity of muscle, which means that sub-maximal contractions can be sustained after the onset ofmuscle fatigue. Similarly, blood lactate concentration isone of the most often measured parameters during clinicalexercise testing, as well as during performance testing ofathletes. Lactate has often been considered one of themajor causes of both fatigue during exercise and post-exer-cise muscle soreness. Lactate generated from the anaerobicbreakdown of glycogen in the muscle occurs only duringshort bouts of relatively high intensity exercise and it isusually related to fatigue and muscle soreness. Previousevidence has shown that inorganic phosphate from creat-ine phosphate was the main cause of muscle fatigue [28].Dehydration in athletes may also lead to fatigue, poor

performance, decreased coordination, and muscle cramp-ing. Although further investigations will be warranted,drinking HW may be an appropriate hydration strategy[29]. In this study, we administered HW or PW to subjectsprior to exercise. Further investigation is required to deter-mine the best timing, dose, and hydrogen concentration ofdrinking water to optimize the effects of HW.In conclusion, our preliminary data demonstrated that

consumption of HW reduced blood lactate levels andimproved muscle fatigue after acute exercise. Althoughfurther studies are absolutely warranted, drinking HWwould be a novel and effective fluid hydration strategyfor athletes.

Competing interestsThe authors declare that they have no competing interests.

AcknowledgementsThis research was supported by a Daimaru Research Foundation grantawarded to SM.

Author details1Doctoral Program in Sports Medicine, Graduate School of ComprehensiveHuman Sciences, University of Tsukuba, Ibaraki, Japan. 2Department ofEmergency and Critical Care Medicine, Hyogo College of Medicine, 1-1,Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan.

Authors’ contributionsKA, TA and YM participated in the protocol design and the dataaccumulation. AN conceived the study and drafted the manuscript. SMparticipated in the study design and coordination. All authors read andapproved the final manuscript.

Received: 21 March 2012 Accepted: 20 April 2012Published: 20 April 2012

References1. Djordjevic D, Cubrilo D, Macura M, Barudzic N, Djuric D, Jakovljevic V: The

influence of training status on oxidative stress in young male handballplayers. Mol Cell Biochem 2011, 351(1–2):251–259.

2. Tanskanen M, Atalay M, Uusitalo A: Altered oxidative stress in overtrainedathletes. J Sports Sci 2010, 28(3):309–317.

3. Jackson MJ: Muscle damage during exercise: possible role of free radicalsand protective effect of vitamin E. Proc Nutr Soc 1987, 46(1):77–80.

4. Tiidus PM: Radical species in inflammation and overtraining. Can J PhysiolPharmacol 1998, 76(5):533–538.

5. Palazzetti S, Rousseau AS, Richard MJ, Favier A, Margaritis I: Antioxidantsupplementation preserves antioxidant response in physical training andlow antioxidant intake. Br J Nutr 2004, 91(1):91–100.

6. Margaritis I, Palazzetti S, Rousseau AS, Richard MJ, Favier A: Antioxidantsupplementation and tapering exercise improve exercise-inducedantioxidant response. J Am Coll Nutr 2003, 22(2):147–156.

7. Huang CS, Kawamura T, Toyoda Y, Nakao A: Recent advances in hydrogenresearch as a therapeutic medical gas. Free Radic Res 2010, 44(9):971–982.

8. Ohta S, Nakao A, Ohno K: The 2011 Medical Molecular HydrogenSymposium: An inaugural symposium of the journal Medical GasResearch. Med Gas Res 2011, 1(1):10.

9. Nakao A, Toyoda Y, Sharma P, Evans M, Guthrie N: Effectiveness ofhydrogen rich water on antioxidant status of subjects with potentialmetabolic syndrome-an open label pilot study. J Clin Biochem Nutr 2010,46(2):140–149.

10. Kajiyama S, Hasegawa G, Asano M, Hosoda H, Fukui M, Nakamura N, KitawakiJ, Imai S, Nakano K, Ohta M, et al: Supplementation of hydrogen-richwater improves lipid and glucose metabolism in patients with type2 diabetes or impaired glucose tolerance. Nutr Res 2008, 28(3):137–143.

11. Kang KM, Kang YN, Choi IB, Gu Y, Kawamura T, Toyoda Y, Nakao A: Effectsof drinking hydrogen-rich water on the quality of life of patients treatedwith radiotherapy for liver tumors. Med Gas Res 2011, 1(1):11.

12. Ohsawa I, Ishikawa M, Takahashi K, Watanabe M, Nishimaki K, Yamagata K,Katsura K, Katayama Y, Asoh S, Ohta S: Hydrogen acts as a therapeuticantioxidant by selectively reducing cytotoxic oxygen radicals. Nat Med2007, 13(6):688–694.

13. Kawamura T, Huang CS, Peng X, Masutani K, Shigemura N, Billiar TR,Okumura M, Toyoda Y, Nakao A: The effect of donor treatment withhydrogen on lung allograft function in rats. Surgery 2011, 150(2):240–249.

14. Buchholz BM, Masutani K, Kawamura T, Peng X, Toyoda Y, Billiar TR, BauerAJ, Nakao A: Hydrogen-enriched preservation protects the isogeneicintestinal graft and amends recipient gastric function duringtransplantation. Transplantation 2011, 92(9):985–992.

15. Howley ET, Bassett DR Jr, Welch HG: Criteria for maximal oxygen uptake:review and commentary. Med Sci Sports Exerc 1995, 27(9):1292–1301.

16. Larsson B, Karlsson S, Eriksson M, Gerdle B: Test-retest reliability of EMGand peak torque during repetitive maximum concentric knee extensions.J Electromyogr Kinesiol 2003, 13(3):281–287.

17. Gerdle B, Elert J: The temporal occurrence of the mean power frequencyshift of the electromyogram during maximum prolonged dynamic andstatic working cycles. Int J Sports Med 1994, 15(Suppl 1):S32–S37.

18. Sun G, Miyakawa S, Kinoshita H, Shiraki H, Mukai N, Takemura M, Kato H:Changes in Muscle Hardness and Electromyographic Response forQuadriceps Muscle during RepetitiveMaximal Isokinetic Knee ExtensionExercise. Football Science 2009, 6:17–23.

Aoki et al. Medical Gas Research 2012, 2:12 Page 5 of 6http://www.medicalgasresearch.com/content/2/1/12

Page 14: Athlete Benefits in Hydrating with Alkaline Antioxidant Water · Athlete Benefits in Hydrating with Alkaline Antioxidant Water ... 1

  14  

 

19. Horita T, Ishiko T: Relationships between muscle lactate accumulation andsurface EMG activities during isokinetic contractions in man. Eur J ApplPhysiol Occup Physiol 1987, 56(1):18–23.

20. Finaud J, Lac G, Filaire E: Oxidative stress: relationship with exercise andtraining. Sports Med 2006, 36(4):327–358.

21. Bloomer RJ: Effect of exercise on oxidative stress biomarkers. Adv ClinChem 2008, 46:1–50.

22. Goldfarb AH: Nutritional antioxidants as therapeutic and preventivemodalities in exercise-induced muscle damage. Can J Appl Physiol 1999,24(3):249–266.

23. Clarkson PM, Thompson HS: Antioxidants: what role do they play inphysical activity and health? Am J Clin Nutr 2000, 72(2 Suppl):637S–646S.

24. Brites FD, Evelson PA, Christiansen MG, Nicol MF, Basilico MJ, Wikinski RW,Llesuy SF: Soccer players under regular training show oxidative stress butan improved plasma antioxidant status. Clin Sci (Lond) 1999, 96(4):381–385.

25. Ortenblad N, Madsen K, Djurhuus MS: Antioxidant status and lipidperoxidation after short-term maximal exercise in trained and untrainedhumans. Am J Physiol 1997, 272(4 Pt 2):R1258–R1263.

26. Selamoglu S, Turgay F, Kayatekin BM, Gonenc S, Yslegen C: Aerobic andanaerobic training effects on the antioxidant enzymes of the blood. ActaPhysiol Hung 2000, 87(3):267–273.

27. Shimouchi A, Nose K, Yamaguchi M, Ishiguro H, Kondo T: Breath hydrogenproduced by ingestion of commercial hydrogen water and milk. BiomarkInsights 2009, 4:27–32.

28. Westerblad H, Allen DG, Lannergren J: Muscle fatigue: lactic acid orinorganic phosphate the major cause? News Physiol Sci 2002, 17:17–21.

29. Maughan RJ, Shirreffs SM: Development of hydration strategies tooptimize performance for athletes in high-intensity sports and in sportswith repeated intense efforts. Scand J Med Sci Sports 2010, 20(Suppl 2):59–69.

doi:10.1186/2045-9912-2-12Cite this article as: Aoki et al.: Pilot study: Effects of drinking hydrogen-rich water on muscle fatigue caused by acute exercise in elite athletes.Medical Gas Research 2012 2:12.

Submit your next manuscript to BioMed Centraland take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

Aoki et al. Medical Gas Research 2012, 2:12 Page 6 of 6http://www.medicalgasresearch.com/content/2/1/12