atmospheric and oceanic excitation of earth...

26
Journées 2011, Vienna Session 3 Atmospheric and oceanic excitation of Earth rotation Earth rotation d h Sigrid hm Tobias Nilsson Michael Schindelegger Harald Schuh Harald Schuh

Upload: tranbao

Post on 07-Feb-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Atmospheric and oceanic excitation of Earth rotationinfo.tuwien.ac.at/hg/meetings/journees11/Pres/S3/S3_01_Boehm.pdf · Atmospheric and oceanic excitation of Earth rotation Sigrid

Journées 2011, ViennaSession 3 

Atmospheric and oceanic excitation of 

Earth rotationEarth rotation

d hSigrid BöhmTobias Nilsson

Michael Schindelegger

Harald SchuhHarald Schuh

Page 2: Atmospheric and oceanic excitation of Earth rotationinfo.tuwien.ac.at/hg/meetings/journees11/Pres/S3/S3_01_Boehm.pdf · Atmospheric and oceanic excitation of Earth rotation Sigrid

Earth rotation – fundamental terms 2

Direction of rotation axisPolar motion (PM)

Spin variationsUniversal time (UT1) Polar motion (PM)

(Precession/Nutation)

Universal time (UT1)

Length of day (LOD)

f lConservation of angular momentum

Page 3: Atmospheric and oceanic excitation of Earth rotationinfo.tuwien.ac.at/hg/meetings/journees11/Pres/S3/S3_01_Boehm.pdf · Atmospheric and oceanic excitation of Earth rotation Sigrid

Angular momentum approach 3

Mass displacementaffects inertia tensor

Relative motionCauses relative angularaffects inertia tensor

mass/pressure term

Causes relative angular momentum

motion/wind term/

Page 4: Atmospheric and oceanic excitation of Earth rotationinfo.tuwien.ac.at/hg/meetings/journees11/Pres/S3/S3_01_Boehm.pdf · Atmospheric and oceanic excitation of Earth rotation Sigrid

Periodic LOD – composition 4

ocean tidesocean tides librationlibration

ocean non‐tidalocean non‐tidal

librationlibration

h id lh id l

atmosphere tidesatmosphere tides

body tidesbody tides

atmosphere non‐tidalatmosphere non‐tidal

core mantle couplingcore mantle coupling

body tidesbody tides

core‐mantle couplingcore‐mantle coupling

Page 5: Atmospheric and oceanic excitation of Earth rotationinfo.tuwien.ac.at/hg/meetings/journees11/Pres/S3/S3_01_Boehm.pdf · Atmospheric and oceanic excitation of Earth rotation Sigrid

Periodic polar motion – composition 5

ocean tidesocean tideslibrationlibration

ocean non‐tidalocean non‐tidal

t h tidt h tid

decadal variationsdecadal variations

atmosphere non‐tidalatmosphere non‐tidal

atmosphere tidesatmosphere tides

pp

Chandler wobbleChandler wobble

Page 6: Atmospheric and oceanic excitation of Earth rotationinfo.tuwien.ac.at/hg/meetings/journees11/Pres/S3/S3_01_Boehm.pdf · Atmospheric and oceanic excitation of Earth rotation Sigrid

Observation of Earth rotation variations 6

Earth orientation parameters (EOP)Pole coordinates (terrestrial coordinates of CIP)U i l ti (UT1) L th f D (LOD)Universal time (UT1), Length of Day (LOD)Nutation (celestial coordinates of CIP)

(Space) geodetic techniques:VLBI

GPSGLONASSGALILEO

Ringlaser

DORIS

SLRSatellite Laser Ranging

LLRLunar Laser Ranging

Page 7: Atmospheric and oceanic excitation of Earth rotationinfo.tuwien.ac.at/hg/meetings/journees11/Pres/S3/S3_01_Boehm.pdf · Atmospheric and oceanic excitation of Earth rotation Sigrid

Observation/modelling of atmospheric excitation 7

Numerical weather modelsPressure, surface and different levels

Wind, east and north velocities,

t h i

∫∫∫

atmospheric excitation

atmospheric angular ∫∫∫ momentum (functions)AAM(F)

Page 8: Atmospheric and oceanic excitation of Earth rotationinfo.tuwien.ac.at/hg/meetings/journees11/Pres/S3/S3_01_Boehm.pdf · Atmospheric and oceanic excitation of Earth rotation Sigrid

Observation/modelling of oceanic excitation 8

Circulation modelsOcean bottom pressure

Ocean tide modelsTidal heights

(+) p

Current velocities

g

Tidal current velocities

∫∫∫

oceanic excitation ocean tidal excitationoceanic excitation oceanic angular momentum

OAM

ocean tidal excitationocean tidal angular momentum

OTAM

Page 9: Atmospheric and oceanic excitation of Earth rotationinfo.tuwien.ac.at/hg/meetings/journees11/Pres/S3/S3_01_Boehm.pdf · Atmospheric and oceanic excitation of Earth rotation Sigrid

Observed vs. modeled Earth rotation variation / excitation 9

Earth rotation observationPolar motion of the CIP

Geophysical ExcitationEquatorial effective angular 

PM of the rotation pole

momentum function (EAMF)

( ) ( )motionmass

ACh

ACc χχχ ˆˆ

'

ˆ608.1'ˆ100.1ˆ +=

Ω⋅

+⋅

=

( ) ( ) ( )tptptp yx iˆ −=

Excess length of day

Axial EAMF

( ) ( )ACAC '' −⋅Ω−

h

( ) ( )dt

tpdtptmˆi)(ˆˆ

Ω−=

Excess length of day

Geophysical excitation in terms of 

motionmass

mm Ch

Cc

33333

3 998.0748.0 χχχ +=Ω

+=( )3

0)(1 mtdUT

dtd

LODtLOD

−=−=δ

Geodetic excitation ERP

( ) ( ) ( )dt

tpditptcw

ˆˆ

ˆˆσ

χ += ( ) ⎟⎠⎞

⎜⎝⎛ −= ∫

t tcw

t depetp cwcw

0

ˆi-ˆi )(ˆˆi)0(ˆˆ ττχσ σσ

cw

( ) ( ) 03 LODttLOD ⋅= χδ

⎠⎝ 0

( ) ( )0

3 LODtLODt δχ =

Page 10: Atmospheric and oceanic excitation of Earth rotationinfo.tuwien.ac.at/hg/meetings/journees11/Pres/S3/S3_01_Boehm.pdf · Atmospheric and oceanic excitation of Earth rotation Sigrid

Observed vs. modeled Earth rotation variation / excitation 10

ERP from convolution f AAMFof AAMF

observed polar motion 

Excitation

Page 11: Atmospheric and oceanic excitation of Earth rotationinfo.tuwien.ac.at/hg/meetings/journees11/Pres/S3/S3_01_Boehm.pdf · Atmospheric and oceanic excitation of Earth rotation Sigrid

Atmospheric and oceanic effects ‐ classification 11

Non‐tidalSeasonal: annual semiannual terannualSeasonal: annual, semiannual, terannualIntraseasonal: 4 days – 1 year, except seasonalInterannual: 1 year – 10 years except annualInterannual: 1 year – 10 years, except annual

TidalSh i d di l d bdi lShort period: diurnal and subdiurnal Long period: 5 days – 18.6 years

Free oscillations, special phenomenaChandler wobble, Free Core Nutation 

El Niño Southern Oscillation (ENSO)

Page 12: Atmospheric and oceanic excitation of Earth rotationinfo.tuwien.ac.at/hg/meetings/journees11/Pres/S3/S3_01_Boehm.pdf · Atmospheric and oceanic excitation of Earth rotation Sigrid

Effects of atmosphere and oceans on LOD 12

Seasonal

450

300350400

μs]

Observed

150200250

mplitu

de[

WindsSurface pressureCurrents

050100150a Currents

Ocean bottom pressureTotal atm. + ocean

0Annual Semiannual Terannual

Seasonal LOD variations during 1980‐2000 (Gross et al., 2004), [NCEP/ECCO]

Page 13: Atmospheric and oceanic excitation of Earth rotationinfo.tuwien.ac.at/hg/meetings/journees11/Pres/S3/S3_01_Boehm.pdf · Atmospheric and oceanic excitation of Earth rotation Sigrid

Effects of atmosphere and oceans on LOD 13

Intraseasonal

100100

89 1

80

10083,6

89,1

ned[%

]

Observed

40

60

nceexplain

WindsSurface pressureCurrents

20

40

4,2 3,4 2 2

Varia

n CurrentsOcean bottom pressureTotal atm. + ocean

0

, 2,2

Intraseasonal LOD variations during 1980‐2000 (Gross et al., 2004)

Page 14: Atmospheric and oceanic excitation of Earth rotationinfo.tuwien.ac.at/hg/meetings/journees11/Pres/S3/S3_01_Boehm.pdf · Atmospheric and oceanic excitation of Earth rotation Sigrid

Effects of atmosphere and oceans on LOD 14

Interannualwinds explain ~86% of obs. variance

surf. press., oceansurf. press., ocean currents and bottom press.        → i ifi t→ no significant correlation

El Niño: correlation SOI/zonal winds       ~ ‐0,72. No sign. corr with ocb and

InterannualLOD variationsduring 1980corr. with ocb and 

currentsduring 1980‐2000 (Gross et al., 2004)

Page 15: Atmospheric and oceanic excitation of Earth rotationinfo.tuwien.ac.at/hg/meetings/journees11/Pres/S3/S3_01_Boehm.pdf · Atmospheric and oceanic excitation of Earth rotation Sigrid

Effects of atmosphere and oceans on PM 15

Seasonal

15 Observedprograde

5

10 WindsSurface pressureCurrentsas

]

prograde

(Seitz & Schuh, 2010)

0Annual  Semiannual Terannual

Ocean bottom pressure

15ObservedWindspl

itude

 [ma

retrograde

0

5

10 Surface pressureCurrentsOcean bottom pressure

amp

Seasonal polar motion variations during 1980‐2000 (Gross et al., 2003), [NCEP/ECCO]

0Annual  Semiannual Terannual

Ocean bottom pressureTotal atm. + ocean

Page 16: Atmospheric and oceanic excitation of Earth rotationinfo.tuwien.ac.at/hg/meetings/journees11/Pres/S3/S3_01_Boehm.pdf · Atmospheric and oceanic excitation of Earth rotation Sigrid

Effects of atmosphere and oceans on PM 16

Intraseasonal

100

708090

61,366,9 65,3

ned[%

]

Observed

30405060

nceexplain

WindsSurface pressureCurrents

0102030

Varia

n CurrentsOcean bottom pressureTotal atm. + ocean

0X Y X+iY

Intraseasonal polar motion variations during 1980‐2000 (Gross et al., 2003)

Page 17: Atmospheric and oceanic excitation of Earth rotationinfo.tuwien.ac.at/hg/meetings/journees11/Pres/S3/S3_01_Boehm.pdf · Atmospheric and oceanic excitation of Earth rotation Sigrid

Effects of atmosphere and oceans on PM 17

Interannualatmospheric processes are not effective in exciting interannual wobblesinterannual wobbles

ocean bottom pressure variations are most effective in exciting especially Y‐component

total A+O cannot explain X

variance explained in X+iY b t t l A+O ~40%by total A+O. ~40%

Interannual PM variations during 1980‐2000 (Gross et al., 2003)

Page 18: Atmospheric and oceanic excitation of Earth rotationinfo.tuwien.ac.at/hg/meetings/journees11/Pres/S3/S3_01_Boehm.pdf · Atmospheric and oceanic excitation of Earth rotation Sigrid

Additional comments on seasonal PM  18

Brzezinski et al. (2009), [NCEP/ECCO]: inclusion of HAM (hydrologic angular momentum):inclusion of HAM (hydrologic angular momentum): controversial, estimates from hydrology models differ considerablyocean model with data assimilation improves closurecombination GRACE + AAM/OAM(motion) is better than A+O alone for annual terms and retrograde semiannual termalone for annual terms and retrograde semiannual term

Dobslaw et al. (2010), [ECMWF/OMCT/LSDM]contributions from individual subsystems differ, but thecontributions from individual subsystems differ, but the differences geodetic – geophysical excitation are similar to previous studies.

(relative angular momentum due to HAM motion terms (river flow) has been found negligible.

Page 19: Atmospheric and oceanic excitation of Earth rotationinfo.tuwien.ac.at/hg/meetings/journees11/Pres/S3/S3_01_Boehm.pdf · Atmospheric and oceanic excitation of Earth rotation Sigrid

Atmosphere and ocean tidal effects 19

Gravitational tides: caused by attraction of sun and moon (and planets)

d l/ h l dRadiational/thermal tides: caused by solar heating

Page 20: Atmospheric and oceanic excitation of Earth rotationinfo.tuwien.ac.at/hg/meetings/journees11/Pres/S3/S3_01_Boehm.pdf · Atmospheric and oceanic excitation of Earth rotation Sigrid

Diurnal and subdiurnal ocean tidal effects 20

Still discrepancies between models and observation in high‐frequency UT1 and PM (apart from atmospherehigh frequency UT1 and PM (apart from atmosphere tides)Currently no alternative to IERS Conventions modelStudy from EGU 2011

probing performance of new ocean tide models:compared tidal terms / time series from ...

IERS2010 conventions model, IERS2010

l l d f id d lTPXO7.2 calculated from TPXO7.2 ocean tide model

HAM11a calculated from HAMTIDE11a ocean tide model

VLBI time series (26 years) derived with Vienna VLBI software VieVS

GPS normal equations (13 years) derived with Bernese GPS software (provided by Natalia Panafidina, ETH Zürich)

Page 21: Atmospheric and oceanic excitation of Earth rotationinfo.tuwien.ac.at/hg/meetings/journees11/Pres/S3/S3_01_Boehm.pdf · Atmospheric and oceanic excitation of Earth rotation Sigrid

Residual amplitudes w.r.t. IERS2010 21

Page 22: Atmospheric and oceanic excitation of Earth rotationinfo.tuwien.ac.at/hg/meetings/journees11/Pres/S3/S3_01_Boehm.pdf · Atmospheric and oceanic excitation of Earth rotation Sigrid

Diurnal and subdiurnal ocean tidal effects 22

ERP variations based on TPXO7 2 fit best

RMS differences in terms of time seriesModell IERS2010 TPXO7.2 HAM11a GPS VLBI ERP on TPXO7.2 fit best 

to the GPS and VLBI values (except for GPS DUT1)

IERS2010 29,4 26,0 30,0 36,0

Δx(t)

TPXO7.2 34,2 20,6 24,3 34,2HAM11a 27,9 27,0 28,4 41,6GPS 33 4 25 3 34 6 35 4 GPS DUT1)

overall the resulting RMS differences do 

GPS 33,4 25,3 34,6 35,4VLBI 42,4 39,8 50,0 41,1

ERP Δy(t)

not differ notablyRMS differences in terms of time seriesModell IERS2010 TPXO7.2 HAM11a GPS VLBI ERP

IERS2010TPXO7 2 2 3TPXO7.2 2,3HAM11a 3,1 2,1GPS 2,7 2,9 3,8VLBI 3,1 2,8 3,1 3,2

Project proposal to

FWFERP ΔUT1(t) FWF

Page 23: Atmospheric and oceanic excitation of Earth rotationinfo.tuwien.ac.at/hg/meetings/journees11/Pres/S3/S3_01_Boehm.pdf · Atmospheric and oceanic excitation of Earth rotation Sigrid

Concluding remarks 23

Most recent ocean tide models should be used to derive high‐frequency ERP variations in combinationderive high frequency ERP variations, in combination with advanced modeling approaches.

Observed LOD variations can be explained considerably better with present geophysical modelsconsiderably better with present geophysical models than PM (at the time scales discussed here), but the excitation budget is closed in neither case.excitation budget is closed in neither case.Improvement can be expected from more sophisticated models for land hydrology and/or longersophisticated models for land hydrology and/or longer time series of mass variations from GRACE.

Page 24: Atmospheric and oceanic excitation of Earth rotationinfo.tuwien.ac.at/hg/meetings/journees11/Pres/S3/S3_01_Boehm.pdf · Atmospheric and oceanic excitation of Earth rotation Sigrid

sigrid boehmsigrid.boehm

@tuwien ac [email protected]

Page 25: Atmospheric and oceanic excitation of Earth rotationinfo.tuwien.ac.at/hg/meetings/journees11/Pres/S3/S3_01_Boehm.pdf · Atmospheric and oceanic excitation of Earth rotation Sigrid

Appendix

)obsvar()modelobsvar()obsvar(%100explained variance −−

×=)(

Page 26: Atmospheric and oceanic excitation of Earth rotationinfo.tuwien.ac.at/hg/meetings/journees11/Pres/S3/S3_01_Boehm.pdf · Atmospheric and oceanic excitation of Earth rotation Sigrid

Appendix

⎟⎞

⎜⎛ + 131211

BcccA

I⎟⎟⎟

⎠⎜⎜⎜

⎝ ++=

332313

232212cCcc

ccBcI⎠⎝ 332313

⎟⎞

⎜⎛ 1hh

h ⎟⎞

⎜⎛ 1m

⎟⎟⎟

⎠⎜⎜⎜

⎝=

3

2hhh

⎟⎟⎟

⎠⎜⎜⎜

⎝ +⋅Ω=

3

21 m

( ) ( ) LhIωωhIω =+×++∂

⎠⎝ 3 ⎠⎝ + 31 m

( ) ( )HH

∂ 4342143421t