atmospheric organic aerosols - asr · 2019-08-21 · van krevelen diagram ‐h:c vs. o:c for...

44
Atmospheric Organic Aerosols Atmospheric System Research (ASR) March 13, 2012 John H. Seinfeld California Institute of Technology

Upload: others

Post on 17-Jun-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Atmospheric Organic Aerosols - ASR · 2019-08-21 · Van Krevelen Diagram ‐H:C vs. O:C for Organic Aerosol Heald et al., GRL, 2010 showed a slope of -1 for ambient and laboratory

Atmospheric Organic Aerosols

Atmospheric System Research (ASR)March 13, 2012

John H. SeinfeldCalifornia Institute of Technology

Page 2: Atmospheric Organic Aerosols - ASR · 2019-08-21 · Van Krevelen Diagram ‐H:C vs. O:C for Organic Aerosol Heald et al., GRL, 2010 showed a slope of -1 for ambient and laboratory

ASR Science and Program Plan

Measurements downwind of urban sources of aerosol particles and precursor gases have shown that the mass concentration of secondary organic aerosol (SOA) can be several‐fold greater than can be explained on the basis of current model calculations using observed precursor concentrations. ASR will continue conducting laboratory experiments on both gas‐phase and aqueous‐phase SOA formation to characterize the particle formation and the organic gases that react to form new organic aerosol material on aerosol seeds. ASR will use these experiments to guide the development of comprehensive chemical mechanisms… to guide the development of parameterizations that are simple enough to be applied to aerosol life cycle models.

Page 3: Atmospheric Organic Aerosols - ASR · 2019-08-21 · Van Krevelen Diagram ‐H:C vs. O:C for Organic Aerosol Heald et al., GRL, 2010 showed a slope of -1 for ambient and laboratory

Global Aerosol Chemical Composition

Organic MassSulfate MassAmmonium MassNitrate MassChloride Mass

Organics Contribute Significantly toMass of Fine Aerosol

Zhang et al., GRL [2007]

Organic Sources = Primary + SECONDARY~ 70–90%

Page 4: Atmospheric Organic Aerosols - ASR · 2019-08-21 · Van Krevelen Diagram ‐H:C vs. O:C for Organic Aerosol Heald et al., GRL, 2010 showed a slope of -1 for ambient and laboratory

Global Organic Aerosol Mass

Total Flux of Non‐Methane Hydrocarbons to the atmosphere  ~ 1350 Tg/y

Percent that condenses into particles directly  ~ 1%

Percent of the global NMHC flux to organic aerosol  ~ 10%

Conclusion:  ~ 90% of organic aerosol comes from oxidation of NMHC(Secondary Organic Aerosol)

Of total global aerosol mass  ~ 50% is organic

Goldstein and Galbally, ES&T (2007); Donahue et al., AE (2009)

Page 5: Atmospheric Organic Aerosols - ASR · 2019-08-21 · Van Krevelen Diagram ‐H:C vs. O:C for Organic Aerosol Heald et al., GRL, 2010 showed a slope of -1 for ambient and laboratory

Secondary Organic Aerosol (SOA) Formation 

SOA Yield = Mo/VOCMo= organic mass produced (g/m)VOC = mass of reacted VOC (g/m3)

This Process is Studied in Laboratory Chambers

(VOCs)

Mo

VOC Examples:Aromatics (e.g., Toluene)

Monterpenes (C10H16)

Sesquiterpenes (C15H24)

‐pinene

‐caryophyllene

Page 6: Atmospheric Organic Aerosols - ASR · 2019-08-21 · Van Krevelen Diagram ‐H:C vs. O:C for Organic Aerosol Heald et al., GRL, 2010 showed a slope of -1 for ambient and laboratory

Primary vs. Secondary Organic Aerosol

• Primary (POA): – Directly emitted– Traditionally 

considered non‐volatile and– Non‐reactive

• Secondary (SOA)

condensableproducts

atmospheric oxidation

Page 7: Atmospheric Organic Aerosols - ASR · 2019-08-21 · Van Krevelen Diagram ‐H:C vs. O:C for Organic Aerosol Heald et al., GRL, 2010 showed a slope of -1 for ambient and laboratory

Semivolatile Emissions

Shrivastava et al., JGR [2008] Robinson et al., Science [2007]

Page 8: Atmospheric Organic Aerosols - ASR · 2019-08-21 · Van Krevelen Diagram ‐H:C vs. O:C for Organic Aerosol Heald et al., GRL, 2010 showed a slope of -1 for ambient and laboratory

There is a large potential for low‐volatility organics ( C* < 106 μg/m3 ) to form organic aerosol

SVOC

POA+ Ox

O-SVOCSOASOA

IVOC

+ Ox

O-IVOC

log10(C* [μg/m3])

Station fire from Roof Lab, Caltech 2009

SVOCs: Semivolatile

Organic Compounds

(C* < 104)

IVOCs: Intermediate Volatility Organic Compounds (104 < C* < 106 μg/m3)

Low-Volatility Organics

Page 9: Atmospheric Organic Aerosols - ASR · 2019-08-21 · Van Krevelen Diagram ‐H:C vs. O:C for Organic Aerosol Heald et al., GRL, 2010 showed a slope of -1 for ambient and laboratory

SVOC and IVOC Emissions

9

66%

25%

9%

39%

22%

39%

Page 10: Atmospheric Organic Aerosols - ASR · 2019-08-21 · Van Krevelen Diagram ‐H:C vs. O:C for Organic Aerosol Heald et al., GRL, 2010 showed a slope of -1 for ambient and laboratory

Isoprene (C5H8)

• Highest emissions among all non‐methane hydrocarbons (~600 Tg/year) [Guenther et al., 2006]

• Photooxidation of isoprene leads to SOA formation, with complex behavior depending on the NOx level and NO2/NO ratio

Page 11: Atmospheric Organic Aerosols - ASR · 2019-08-21 · Van Krevelen Diagram ‐H:C vs. O:C for Organic Aerosol Heald et al., GRL, 2010 showed a slope of -1 for ambient and laboratory
Page 12: Atmospheric Organic Aerosols - ASR · 2019-08-21 · Van Krevelen Diagram ‐H:C vs. O:C for Organic Aerosol Heald et al., GRL, 2010 showed a slope of -1 for ambient and laboratory
Page 13: Atmospheric Organic Aerosols - ASR · 2019-08-21 · Van Krevelen Diagram ‐H:C vs. O:C for Organic Aerosol Heald et al., GRL, 2010 showed a slope of -1 for ambient and laboratory
Page 14: Atmospheric Organic Aerosols - ASR · 2019-08-21 · Van Krevelen Diagram ‐H:C vs. O:C for Organic Aerosol Heald et al., GRL, 2010 showed a slope of -1 for ambient and laboratory
Page 15: Atmospheric Organic Aerosols - ASR · 2019-08-21 · Van Krevelen Diagram ‐H:C vs. O:C for Organic Aerosol Heald et al., GRL, 2010 showed a slope of -1 for ambient and laboratory

General Mechanism of SOA Formation and Evolution

Si g : ith‐generation semi‐volatile products in the gas phaseSi p : ith‐generation semi‐volatile products in the particle phaseNi

p : ith‐generation non‐volatile products in the particle phase (e.g. semi‐solid) 

Page 16: Atmospheric Organic Aerosols - ASR · 2019-08-21 · Van Krevelen Diagram ‐H:C vs. O:C for Organic Aerosol Heald et al., GRL, 2010 showed a slope of -1 for ambient and laboratory

Peroxy radical chemistry

VOC

OH/O3/NO3

RO2

RO + NO2 RONO2

NO NO

HO2 ROOH + O2

Fragments/

Carbonyls

RO

RO2RO/ROH/R’=O

High-NOx

• Small alkoxy radical easily fragmented

• Organic nitrates relatively volatile

Low-NOx

• Peroxides: important SOA components

R2R1

O

R2R1

OH

Less volatile products

Reverse NOx effect:

Page 17: Atmospheric Organic Aerosols - ASR · 2019-08-21 · Van Krevelen Diagram ‐H:C vs. O:C for Organic Aerosol Heald et al., GRL, 2010 showed a slope of -1 for ambient and laboratory

Photooxidation of C12 Alkanes

• Compounds studied:

cyclododecane hexylclohexane dodecane 2-methylundecaneC12H24 C12H24 C12H26 C12H26

• Experimental conditions:

Ammonium sulfate seed; T~25oC, RH<5%Low-NOx experiments: H2O2 + h→ 2OH High-NOx experiments: HONO + h→ OH + NO

Page 18: Atmospheric Organic Aerosols - ASR · 2019-08-21 · Van Krevelen Diagram ‐H:C vs. O:C for Organic Aerosol Heald et al., GRL, 2010 showed a slope of -1 for ambient and laboratory

SOA Formation from C12 Alkanes as an Illustration of the Nature of Multi‐generation Oxidation

1st-generation products [Functional groups from MasterChemical Mechanism (MCM) University of Leeds]

The upper limit of nC should be the same as parent VOC.

The lower limit of nC lies in the domain of semi‐volatile compounds.

The possible carbon number after multi‐generation oxidation lies in the range between upper and lower limits.

3 products in 1st generation(10 ≤ nC ≤ 12)

Semi-volatile

Page 19: Atmospheric Organic Aerosols - ASR · 2019-08-21 · Van Krevelen Diagram ‐H:C vs. O:C for Organic Aerosol Heald et al., GRL, 2010 showed a slope of -1 for ambient and laboratory

C12 Alkanes – 2nd Generation

7 products in 2nd generation(8 ≤ nC ≤ 12)

The upper limit of nC should be the same as parent VOC.

The lower limit of nC lies in the domain of semi‐volatile compounds.

The possible carbon number after multi‐generation oxidation lies in the range between upper and lower limits.

Semi-volatile

Page 20: Atmospheric Organic Aerosols - ASR · 2019-08-21 · Van Krevelen Diagram ‐H:C vs. O:C for Organic Aerosol Heald et al., GRL, 2010 showed a slope of -1 for ambient and laboratory

C12 Alkanes – 3rd Generation

9 products in 3rd generation(6≤ nC ≤ 12)

The upper limit of nC should be the same as parent VOC.

The lower limit of nC lies in the domain of semi‐volatile compounds.

The possible carbon number after multi‐generation oxidation lies in the range between upper and lower limits.

Semi-volatile

Page 21: Atmospheric Organic Aerosols - ASR · 2019-08-21 · Van Krevelen Diagram ‐H:C vs. O:C for Organic Aerosol Heald et al., GRL, 2010 showed a slope of -1 for ambient and laboratory

Carbon Number Range

M0(0) = 1 μg/m3

Particle-phase accretion allowed

Page 22: Atmospheric Organic Aerosols - ASR · 2019-08-21 · Van Krevelen Diagram ‐H:C vs. O:C for Organic Aerosol Heald et al., GRL, 2010 showed a slope of -1 for ambient and laboratory

2‐D mapping of SOA:  Oxidation state vs. volatility

IVOC VOCSVOCLVOCELVOC“volatility class”

Oligomerization

Donahue et al., ACP, 2011

Page 23: Atmospheric Organic Aerosols - ASR · 2019-08-21 · Van Krevelen Diagram ‐H:C vs. O:C for Organic Aerosol Heald et al., GRL, 2010 showed a slope of -1 for ambient and laboratory

Caltech Laboratory Chambers

• 2 Teflon chambers, 28 m3 each

• Scanning differential mobility analyzer (DMA): particle size distribution, volume

• GC-FID: hydrocarbon and NOx, O3, RH, T

• CIMS and GC-TOFMS: gas-phase organics

• Aerodyne Aerosol Mass Spectrometer (AMS): on-line particle mass, composition

• Particle into Liquid Sampler coupled to IC (PILS/IC): organic and inorganic ions

• Teflon filters: off-line chemical analysis- UPLC/ESI-high resolution-TOFMS:

mass resolution ~ 12 000

accurate mass measurements (elemental compositions)

- HPLC/ESI-Linear Ion Trap MS:

tandem MS measurements

structural elucidation & confirmation

- GC/Ion Trap MS with prior derivatization

Page 24: Atmospheric Organic Aerosols - ASR · 2019-08-21 · Van Krevelen Diagram ‐H:C vs. O:C for Organic Aerosol Heald et al., GRL, 2010 showed a slope of -1 for ambient and laboratory

Dodecane Low‐NOx Oxidation

Channel 1

Channel 2a

Channel 2b

Channel 3

OH

Page 25: Atmospheric Organic Aerosols - ASR · 2019-08-21 · Van Krevelen Diagram ‐H:C vs. O:C for Organic Aerosol Heald et al., GRL, 2010 showed a slope of -1 for ambient and laboratory

Mechanism and CIMS measurement: Carbonyl formation

Page 26: Atmospheric Organic Aerosols - ASR · 2019-08-21 · Van Krevelen Diagram ‐H:C vs. O:C for Organic Aerosol Heald et al., GRL, 2010 showed a slope of -1 for ambient and laboratory

Mechanism and CIMS measurement: Carbonyl hydroperoxide

Page 27: Atmospheric Organic Aerosols - ASR · 2019-08-21 · Van Krevelen Diagram ‐H:C vs. O:C for Organic Aerosol Heald et al., GRL, 2010 showed a slope of -1 for ambient and laboratory

Mechanism and CIMS measurement: Acid formation

Page 28: Atmospheric Organic Aerosols - ASR · 2019-08-21 · Van Krevelen Diagram ‐H:C vs. O:C for Organic Aerosol Heald et al., GRL, 2010 showed a slope of -1 for ambient and laboratory

Carbon Balance

Majority of initial carbon ends up as ≥ 4th generation compounds.

Page 29: Atmospheric Organic Aerosols - ASR · 2019-08-21 · Van Krevelen Diagram ‐H:C vs. O:C for Organic Aerosol Heald et al., GRL, 2010 showed a slope of -1 for ambient and laboratory

Van Krevelen Diagram ‐ H:C vs. O:Cfor Organic Aerosol

Heald et al., GRL, 2010 showed a slope of -1 for ambient and laboratory data

Ng et al., ACP 2011 showed a slope of -0.5 for ambient aerosol

Chhabra et al., ACP 2011 showed how atmospherically relevant SOA chamber studies, when averaged, show similar slope on VK diagram as ambient aerosol

Lambe et al., ACP 2011 present how PAM flow tube data has slope that is consistent with chamber and ambient data, and then extends the range for very high H:C/lowO:C to lower H:C/highO:C.

Page 30: Atmospheric Organic Aerosols - ASR · 2019-08-21 · Van Krevelen Diagram ‐H:C vs. O:C for Organic Aerosol Heald et al., GRL, 2010 showed a slope of -1 for ambient and laboratory

Low‐NOx Alkane SOA

Cumulative OH exposure for Low NOX: 70-100 x106 molec. cm-3 min

-1

-2

Page 31: Atmospheric Organic Aerosols - ASR · 2019-08-21 · Van Krevelen Diagram ‐H:C vs. O:C for Organic Aerosol Heald et al., GRL, 2010 showed a slope of -1 for ambient and laboratory

0.30

0.25

0.20

0.15

0.10

0.05

0.00

f44

0.200.150.100.050.00 f43

OOA LV-OOA SV-OOA

Mexico City (flight) LV-OOA Mexico City (flight) SV-OOA Mexico City (flight) T0 Mexico City (flight) T1 Mexico City (flight) T2

Mexico City (ground T0) OOA

HULIS Fulvic acid

Component wtih biogenic influence

Pho

toch

emic

al a

ge

O/C

ratio

• SV-OOA has larger variability in f43; Increasing photochemical age collapses variability,OOA components become increasing similar to each other

• f44 of the LV-OOA components similar to those from HULIS collected in filter samples • Increasing photochemical age: increasing O/C, 44/43 ratio

Triangle plot

Ng et al., ACP (2010)

Page 32: Atmospheric Organic Aerosols - ASR · 2019-08-21 · Van Krevelen Diagram ‐H:C vs. O:C for Organic Aerosol Heald et al., GRL, 2010 showed a slope of -1 for ambient and laboratory

Degree of oxidation obtained in chamber studies

0.30

0.25

0.20

0.15

0.10

0.05

0.00

f44

0.300.250.200.150.100.050.00f43

PHOTOOXIDATION Caltech m-xylene (NOx/propene) Caltech m-xylene (HONO) Caltech m-xylene (H2O2)

Caltech toluene (HONO) Caltech toluene (H2O2)

Caltech benzene (HONO)

CMU toluene (HONO) CMU toluene (H2O2+NO) CMU toluene (H2O2)

PSI 1,3,5-TMB (Alfarra et al., 2006)

0.30

0.25

0.20

0.15

0.10

0.05

0.00

f44

0.300.250.200.150.100.050.00f43

CMU diesel (Sage et al., 2008) CMU aged wood smoke (Grieshop et al., 2009) CMU n-heptadecane (high NOx) (Presto et al., 2009) U of Toronto BES (George et al., 2007) LBNL squalane (Kroll et al., 2009; Smith et al., 2009)

Aromatic hydrocarbons Photooxidation/heterogeneous oxidation of POA

Ng et al., ACP (2010)

Page 33: Atmospheric Organic Aerosols - ASR · 2019-08-21 · Van Krevelen Diagram ‐H:C vs. O:C for Organic Aerosol Heald et al., GRL, 2010 showed a slope of -1 for ambient and laboratory

SOA: Explicit Chemical Modeling

Comprehensive Gas‐PhaseChemical Mechanism (e.g. 

MCM and GECKO)

NOx, NOy, HOx, OVOC,O3  Chemistry

Semi‐volatile SOAPrecursor Compounds

Particle‐Phase Thermodynamic and 

Kinetic Model

Inorganic Species

Gas‐Particle Partitioning Model

This degree of chemical specificity is not possible in atmospheric models(even if all the reactions were known)

Page 34: Atmospheric Organic Aerosols - ASR · 2019-08-21 · Van Krevelen Diagram ‐H:C vs. O:C for Organic Aerosol Heald et al., GRL, 2010 showed a slope of -1 for ambient and laboratory

Cappa and Wilson Statistical Oxidation Model

• Oxidation kinetics in a multi‐dimensional space defined by nCand nO

• Tunable parameters: (1) Avg # of O atoms added/reaction (2) Decrease in volatility/O added (3) Probability that a given product fragments

Pfrag (per reaction) =  cfrag NO

orPfrag (per reaction) = (NO/NC)m

Random probability for location of C‐C bond scission or only C1 species

Cappa and Wilson, ACPD (2012)

Page 35: Atmospheric Organic Aerosols - ASR · 2019-08-21 · Van Krevelen Diagram ‐H:C vs. O:C for Organic Aerosol Heald et al., GRL, 2010 showed a slope of -1 for ambient and laboratory

11

10

9

8

7

6

5

4

3

2

1

0

Num

ber o

f Oxy

gen

Ato

ms

10 9 8 7 6 5 4 3 2 1Number of Carbon Atoms

oxid

atio

n

fragmentation

A

B

A B

A

B

Statistical Oxidation Model

CnHm + OH products + OH more products

Cappa and Wilson, ACPD (2012)

Three tunable parameters:1. # of oxygen atoms added per reaction: {1O, 2O, 3O, 4O}2. Mean decrease in log C* per oxygen added3. Probability of fragmentation (w/ random fragments)

“Lump” products by atomic composition (C & O atoms)

Page 36: Atmospheric Organic Aerosols - ASR · 2019-08-21 · Van Krevelen Diagram ‐H:C vs. O:C for Organic Aerosol Heald et al., GRL, 2010 showed a slope of -1 for ambient and laboratory

Equilibrium Partitioning Theory

Statistical Oxidation Model: No Fragmentation (1-D)

1.5

1.0

0.5

0.01.00.80.60.40.20.0

HC Reacted (% of initial)

Cappa and Wilson, Submitted to ACP

Increasing Oxidation

Page 37: Atmospheric Organic Aerosols - ASR · 2019-08-21 · Van Krevelen Diagram ‐H:C vs. O:C for Organic Aerosol Heald et al., GRL, 2010 showed a slope of -1 for ambient and laboratory

Increasing Oxidation

2-D distributions of “molecules” in particle phase

Statistical Oxidation Model: With Fragmentation

Actual distribution depends on tunable parameters

Page 38: Atmospheric Organic Aerosols - ASR · 2019-08-21 · Van Krevelen Diagram ‐H:C vs. O:C for Organic Aerosol Heald et al., GRL, 2010 showed a slope of -1 for ambient and laboratory

0.01

0.1

1

2001501005000.01

0.1

1

2000150010005000

14

12

10

8

6

4

2

0200150100500

0.50

0.45

0.40

0.35

0.30

0.25

0.20

0.40

0.35

0.30

0.25

0.20

0.15

0.102000150010005000

40

30

20

10

0

CO

A (

g m

-3)

CO

A (

g m

-3)

O:C

Atom

ic Ratio

O:C

Atom

ic Ratio

Low NOx High NOx

COA (observed) O:C (observed) Model #1 Model #2

Time (minutes) Time (minutes)

[HC

]/[H

C] 0

[HC

]/[H

C] 0

Model vs. Measurement: COA and O:C

Dodecane + OH

Page 39: Atmospheric Organic Aerosols - ASR · 2019-08-21 · Van Krevelen Diagram ‐H:C vs. O:C for Organic Aerosol Heald et al., GRL, 2010 showed a slope of -1 for ambient and laboratory

3.0

2.5

2.0

1.5

1.0

0.5

0.0

lV

P

dodecane 2-methylundecane hexylcyclohexane cyclododecane0.8

0.6

0.4

0.2

0.0

Frag

men

tatio

n E

ffici

ency

(cfra

g)

dodecane 2-methylundecane hexylcyclohexane cyclododecane

Low NOx High NOx

Model Results: Volatility and Fragmentation

ketones

alcohols

nitrate

carboxylic acids

more

less

Page 40: Atmospheric Organic Aerosols - ASR · 2019-08-21 · Van Krevelen Diagram ‐H:C vs. O:C for Organic Aerosol Heald et al., GRL, 2010 showed a slope of -1 for ambient and laboratory

1.0

0.8

0.6

0.4

0.2

0.0

Pro

babi

lity

1 2 3 4Number of Oxygens Added per Reaction

Low NOx High NOx

Dodecane 2-methylundecane hexylcyclohexane cyclododecane

Model Results: Oxygen Addition

High NOx adds more oxygens per reaction than low NOx

Page 41: Atmospheric Organic Aerosols - ASR · 2019-08-21 · Van Krevelen Diagram ‐H:C vs. O:C for Organic Aerosol Heald et al., GRL, 2010 showed a slope of -1 for ambient and laboratory

Secondary Organic Aerosol (SOA) Formation:Phase State of Particles 

Recent evidence for semi‐solid behavior of SOA

Virtanen et al., Nature  (2010) Terpene SOA Particle bounce in an impactor           glassy solid 

Vaden et al., PNAS (2010, 2011) ‐pinene SOA ambient SOA

Delayed evaporation upon dilution          coated SOA, non‐liquid like behavior

Shiraiwa et al., PNAS (2011) uptake by amorphous protein and oxidative aging in flow tube

Kinetically limited by bulk diffusion

O3

Page 42: Atmospheric Organic Aerosols - ASR · 2019-08-21 · Van Krevelen Diagram ‐H:C vs. O:C for Organic Aerosol Heald et al., GRL, 2010 showed a slope of -1 for ambient and laboratory

Secondary Organic Aerosol Formation and Aging

• SOA formation is characterized by multi‐generational chemistry that involves both functionalization and fragmentation reactions, leading to higher oxidation state and lower volatility. NOx level is key.

• The relative importance of gas‐phase oxidation vs. particle‐phase reactions is not well established for most SOA‐forming organic compounds.

• Laboratory chamber experiments remain the “gold standard” for studying SOA formation; both gas and particle phase mass spectrometry is crucial.  Chamber SOA tends not to be as oxidized as ambient (loading effect, OH exposure?).

• A new frontier in SOA research involves understanding the importance of the particle phase state, e.g. multiple liquid phases in equilibrium, liquid‐solid equilibrium, and the formation of semi‐solid phases.

• Apply the new generation of SOA models to chamber data and implement into atmospheric models.

Page 43: Atmospheric Organic Aerosols - ASR · 2019-08-21 · Van Krevelen Diagram ‐H:C vs. O:C for Organic Aerosol Heald et al., GRL, 2010 showed a slope of -1 for ambient and laboratory

Alkane Photooxidation Chemistry

Page 44: Atmospheric Organic Aerosols - ASR · 2019-08-21 · Van Krevelen Diagram ‐H:C vs. O:C for Organic Aerosol Heald et al., GRL, 2010 showed a slope of -1 for ambient and laboratory

Lumped Chemical Mechanism (e.g. SAPRC‐

07 and CBM‐05) 

NOx, NOy, HOx, O3, OVOC SOA Parent Dynamics

Kinetic Model of SOA Formation, tuned to 

chamber data, volatility and aging chemistry

SOA mass concentrationnC, oxidation state

O:C     H:C

Semi-Explicit Chemical Modeling