atmospheric windows to image the surface from … · atmospheric windows to image the surface from...

14
ATMOSPHERIC WINDOWS TO IMAGE THE SURFACE FROM BENEATH THE CLOUD DECK ON THE NIGHT SIDE OF VENUS J. J. Knicely, R.R. Herrick University of Alaska Fairbanks VEXAG 2018, Laurel Maryland Acknowledgements Giada Arney Lori Glaze Franz Meyer Sebastian Lebonnois

Upload: others

Post on 29-May-2020

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ATMOSPHERIC WINDOWS TO IMAGE THE SURFACE FROM … · ATMOSPHERIC WINDOWS TO IMAGE THE SURFACE FROM BENEATH THE CLOUD DECK ON THE NIGHT SIDE OF VENUS J. J. Knicely, R.R. Herrick University

ATMOSPHERIC WINDOWS TO IMAGE THE SURFACE FROM BENEATH THE CLOUD DECK ON THE NIGHT SIDE OF VENUS

J. J. Knicely, R.R. HerrickUniversity of Alaska FairbanksVEXAG 2018, Laurel Maryland

Acknowledgements• Giada Arney• Lori Glaze• Franz Meyer• Sebastian Lebonnois

Page 2: ATMOSPHERIC WINDOWS TO IMAGE THE SURFACE FROM … · ATMOSPHERIC WINDOWS TO IMAGE THE SURFACE FROM BENEATH THE CLOUD DECK ON THE NIGHT SIDE OF VENUS J. J. Knicely, R.R. Herrick University

Introduction• Study the surface of Venus• Searched for surface viewing

atmospheric windows▫ Beneath the cloud deck ▫ Emission only – night side

• Explored 4 variables▫ Sensor altitude▫ Surface emissivity▫ Surface elevation▫ Regional temperature variations

Page 3: ATMOSPHERIC WINDOWS TO IMAGE THE SURFACE FROM … · ATMOSPHERIC WINDOWS TO IMAGE THE SURFACE FROM BENEATH THE CLOUD DECK ON THE NIGHT SIDE OF VENUS J. J. Knicely, R.R. Herrick University

Methods• 1D radiative transfer problem

!" # = !%&' exp −,-

./" #0 1#′ +

,-

./" #0 4" 5 #0 exp −,

.6

./" #00 1#′′ 1#′

Surface signal Decay through atmo

Atmo signal

Page 4: ATMOSPHERIC WINDOWS TO IMAGE THE SURFACE FROM … · ATMOSPHERIC WINDOWS TO IMAGE THE SURFACE FROM BENEATH THE CLOUD DECK ON THE NIGHT SIDE OF VENUS J. J. Knicely, R.R. Herrick University

Methods (2)• Surface viewing atmospheric

window▫ !"#$ ≥ &

' !()(*+• Assumptions▫ 1D radiative transfer problem▫ Constant surface emissivities▫ Thermo-dynamic equilibrium▫ Lambertian surface▫ Plane-parallel and homogenous

slab layers

• Emission

!"#$ = - ."#$ /, 1 = - 2ℎ4'

/51

exp ℎ4/:;1 − 1

• Parameters▫ Sensor altitude – 10 to 100 km, ∆ℎ=10 km▫ Emissivity – 1.0, 0.95, 0.86, 0.7▫ Surface elevation – 0 & 11 km▫ Regional temperature - +20 K

Page 5: ATMOSPHERIC WINDOWS TO IMAGE THE SURFACE FROM … · ATMOSPHERIC WINDOWS TO IMAGE THE SURFACE FROM BENEATH THE CLOUD DECK ON THE NIGHT SIDE OF VENUS J. J. Knicely, R.R. Herrick University

Data• Total extinction coefficients▫ Lebonnois et al. [2015]� HITRAN2008 & HITEMP2010▫ Underprediction of opacity from

1.10-1.18 microns• Temperature profile of Seiff et al.

[1985]▫ Pioneer Probes/Oribter▫ Venera 10, 12, & 13 landers

Figure ALPHA. Adapted from Lebonnois et al. [2015]. Total extinction coefficients as a function of altitude in linear scale and wavelength in log scale.

Page 6: ATMOSPHERIC WINDOWS TO IMAGE THE SURFACE FROM … · ATMOSPHERIC WINDOWS TO IMAGE THE SURFACE FROM BENEATH THE CLOUD DECK ON THE NIGHT SIDE OF VENUS J. J. Knicely, R.R. Herrick University

Results• Atmospheric window - !"#$ ≥ &

' !()(*+

Page 7: ATMOSPHERIC WINDOWS TO IMAGE THE SURFACE FROM … · ATMOSPHERIC WINDOWS TO IMAGE THE SURFACE FROM BENEATH THE CLOUD DECK ON THE NIGHT SIDE OF VENUS J. J. Knicely, R.R. Herrick University

Results (2)

Page 8: ATMOSPHERIC WINDOWS TO IMAGE THE SURFACE FROM … · ATMOSPHERIC WINDOWS TO IMAGE THE SURFACE FROM BENEATH THE CLOUD DECK ON THE NIGHT SIDE OF VENUS J. J. Knicely, R.R. Herrick University

Results (3)

Page 9: ATMOSPHERIC WINDOWS TO IMAGE THE SURFACE FROM … · ATMOSPHERIC WINDOWS TO IMAGE THE SURFACE FROM BENEATH THE CLOUD DECK ON THE NIGHT SIDE OF VENUS J. J. Knicely, R.R. Herrick University

Discussion• Identified Windows▫ Expanded satellite windows

• Parameter effects▫ Sensor altitude - weak▫ Surface emissivity – strong▫ Surface elevation – strong▫ Regional temperature – weak

• Basic rock segmentation• Redox state of Venus

Figure 5. Emissivity for various rock types at known Venus atmospheric windows and surface temperatures. Taken from Helbert et al. [2018].

Page 10: ATMOSPHERIC WINDOWS TO IMAGE THE SURFACE FROM … · ATMOSPHERIC WINDOWS TO IMAGE THE SURFACE FROM BENEATH THE CLOUD DECK ON THE NIGHT SIDE OF VENUS J. J. Knicely, R.R. Herrick University

Discussion (2)• Very simple modeling• HITEMP 2010 underpredicts CO2 opacity from 1.10-1.18

microns• Low data quality▫ Total extinction coefficients

Page 11: ATMOSPHERIC WINDOWS TO IMAGE THE SURFACE FROM … · ATMOSPHERIC WINDOWS TO IMAGE THE SURFACE FROM BENEATH THE CLOUD DECK ON THE NIGHT SIDE OF VENUS J. J. Knicely, R.R. Herrick University

Conclusions• Expanded spectroscopic

abilities beneath cloud deck• 0.9-1.2 !" & 1.27 !"▫ Possible error from 1.1-1.18 !"

• Potential uses▫ Basic rock segmentation▫ Redox state▫ Search for active volcanism

• Need improved ancillary data

Page 12: ATMOSPHERIC WINDOWS TO IMAGE THE SURFACE FROM … · ATMOSPHERIC WINDOWS TO IMAGE THE SURFACE FROM BENEATH THE CLOUD DECK ON THE NIGHT SIDE OF VENUS J. J. Knicely, R.R. Herrick University

References• Allen, D. A., & J. W. Crawford. (1984). “Cloud structure on the dark

side of Venus.” Nature. Vol 307. doi:10.1038/307222a0• Arney, G., V. Meadows, D. Crisp, S. J. Schmidt, J. Bailey, & T.

Robinson. (2014). “Spatially resolved measurements of H2O, HCl, CO, OCS, SO2, cloud opacity, and acid concentration in the Venus near-infrared spectral windows.” J. Geophys. Res. Planets. Vol 119. doi:10.1002/2014JE004662

• Bezard, B., & C. de Bergh. (2007). “Composition of the atmosphere of Venus below the clouds.” Journal of Geophysical Research. Vol. 112. doi:10.1029/2006JE002794

• Carlson, R. W., K. H. Baines, Th. Encrenaz, F. W. Taylor, P. Drossart, L. W. Kamp, J. B. Pollack, E. Lellouch, A. D. Collard, S. B. Calcutt, D. Grinspoon, P. R. Weissman, W. D. Smythe, A. C. Ocampo, G. E. Danielson, F. P. Fanale, T. V. Johnson, H. H. Kieffer, D. L. Matson, T. B. McCord, & L. A. Soderblom. (1991). “Galileo infrared imaging spectroscopy measurements at Venus.” Science. Vol 253. pp. 1541-1548.

• Crisp, D., D. A. Allen, D. H. Grinspoon, & J. B. Pollack. (1991). “The dark side of Venus: Near-infrared images and spectra from the Anglo-Australain Observatory.” Science. Vol 253. pp 1263-1266.

• Crisp, D., & D. Titov. (1997). “The thermal balance of the Venus atmosphere.” In: Bougher, S. W., Hunten, D. M., Philips, R. J. (Eds.), Venus II: Geology, Geophysics, Atmosphere, and Solar Wind Environment. University of Arizona Press, Tucson AZ, pp. 353-384.

• D’Incecco, P., N. Muller, J. Helbert, & M. D’Amore. (2017). “Idunn Mons on Venus: Location and extent of recently active lava flows.” Planetary and Space Science. Vol 136. http://dx.doi.org/10.1016/j.pss.2016.12.002

• Dyar, M. D., J. Helbert, T. Boucher, D. Wendler, I. Walter, T. Widemann, E. Marcq, A. Maturilli, S. Ferrari, M. D’Amore, N. Muller, & S. Smrekar. (2017). “Mapping Venus mineralogy and chemistry in situ from orbit with six-window VNIR spectroscopy.” 15th VEXAG. Abstract # 8004.

• Ford, J. P., J. J. Plaut, C. M. Weitz, T. G. Farr, D. A. Senske, E. R. Stofan, G. Michaels, & T. J. Parker. (1993). “Guide to Magellan Image Interpretation.” JPL Publication 93-24.

• Gilmore, M. S., N. Mueller, & J. Helbert. (2015). “VIRTIS emissivity of Alpha Regio, Venus, with implications for tessera composition.” Icarus. http://dx.doi.org/10.1016/j.icarus.2015.04.008

• Haus, R., & G. Arnold. (2010). “Radiative transfer in the atmosphere of Venus and application to surface emissivity retrieval from VIRTIS/VEX measurements.” Planetary and Space Science. Vol 58.

• Helbert, J., A. Maturilli, M. D. Dyar, S. Ferrari, N. Muller, & S. Smrekar. (2017). “First set of laboratory Venus analog spectra for all atmospheric windows.” 48th LPSC. Abstract #1512.

• Helbert, J., A. Maturilli, M. D. Dyar, S. Ferrari, N. Muller, & S. Smrekar. (2018). “Orbital spectroscopy of the surface of Venus.” 49th

LPSC. Abstract #1219.• Herrick, R. R., D. L. Stahlke, & V. L. Sharpton. (2012). “Fine-scale

Venusian topography from Magellan stereo data.” Eos. Vol 93.• Jensen, J. R. (2007). Remote Sensing of the Environment: An Earth

Resource Perspective. 2nd Edition. Prentice Hall, New Jersey.• Lebonnois, S., V. Eymet, C. Lee, & J. V. d’Ollone. (2015). “Analysis of

the radiative budget of the Venusian atmosphere based on infrared Net Exchange Rate formalism.” Journal of Geophysical Research: Planets. Vol 120. doi:10.1002/2015JE004794

• Lillesand, T. M., R. W. Kiefer, & J. W. Chipman. (2015). Remote Sensing And Image Interpretation. Wiley, New Jersey.

Page 13: ATMOSPHERIC WINDOWS TO IMAGE THE SURFACE FROM … · ATMOSPHERIC WINDOWS TO IMAGE THE SURFACE FROM BENEATH THE CLOUD DECK ON THE NIGHT SIDE OF VENUS J. J. Knicely, R.R. Herrick University

References (2)• McGouldrick, K., T. W. Momary, K. H. Baines, & D. H. Grinspoon.

(2012). “Quantification of middle and lower cloud variability and mesoscale dynamics from Venus Express/VIRTIS observations at 1.74 !m.” Icarus. Vol 217. doi: 10.1016/j.icarus.2011.07.009

• Moroz, V. I. (2002). “Estimates of visibility of the surface of Venus from descent probes and balloons.” Planetary and Space Science. Vol50.

• Peralta, J., Y. J. Lee, K. McGouldrick, H. Sagawa, A. Sanchez-Lavega, T. Imamura, T. Widemann, & M. Nakamura. (2017). “Overview of useful spectral regions for Venus: An update to encourage observations complementary to the Akatsuki mission.” Icarus. Vol288. http://dx.doi.org/10.1016/j.icarus.2017.01.027

• Pieters, C. M., J. W. Head, W. Patterson, S. Pratt, J. Garvin, V. L. Barsukov, A. T. Basilevsky, I. L. Khodakovsky, A. S. Selivanov, A. S. Panfilov, Yu. M. Gektin, & Y. M. Narayeva. (1986). “The color of the surface of Venus.” Science. Vol 234.

• Seiff, A., J. T. Schofield, A. J. Kliore, F. W. Taylor, S. S. Limaye, H. E. Revercomb, L. A. Sromovsky, V. V. Kerzhanovich, V. I. Moroz, & M. Ya. Marov. (1985). “Models of the structure of the atmosphere of Venus from the surface to 100 kilometers altitude.” Adv. Space Res.Vol 5.

• Shalygin, E. V., W. J. Markiewicz, A. T. Basilevsky, D. V. Titov, N. I. Ignatiev, & J. W. Head. (2015). “Active volcanism on Venus in the Ganiki Chasma rift zone.” Geophysical Research Letters. Vol 42. doi: 10.1002/2015GL064088

• Smrekar, S. E., E. R. Stofan, N. Mueller, A. Treiman, L. Elkins-Tanton, J. Helbert, G. Piccioni, & P. Drossart. (2010). “Recent hotspot volcanism on Venus from VIRTIS emissivity data.” Science. Vol 328. doi: 10.1126/science.1186785

• Taylor, F. W., D. Crisp, & B. Bezard. (1997). “Near-Infrared sounding of the lower atmosphere of Venus.” In: Bougher, S. W., Hunten, D. M., Philips, R. J. (Eds.), Venus II: Geology, Geophysics, Atmosphere, and Solar Wind Environment. University of Arizona Press, Tucson AZ, pp. 325-351.

• Treiman, A. H. (2007). “Geochemistry of Venus’ Surface: Current Limitations as Future Opportunities.” In: Esposito, L. W., Stofan, E. R., Cravens, T. E. (Eds.). Exploring Venus as a Terrestrial Planet, American Geophysical Union, Washington, D.C., pp. 7–22. doi: 10.1029/176GM01.

• Wood, J. A. (1997). “Rock weathering on the surface of Venus.” In: Bougher, S. W., Hunten, D. M., Philips, R. J. (Eds.), Venus II: Geology, Geophysics, Atmosphere, and Solar Wind Environment. University of Arizona Press, Tucson AZ, pp. 325-351.

Page 14: ATMOSPHERIC WINDOWS TO IMAGE THE SURFACE FROM … · ATMOSPHERIC WINDOWS TO IMAGE THE SURFACE FROM BENEATH THE CLOUD DECK ON THE NIGHT SIDE OF VENUS J. J. Knicely, R.R. Herrick University

TEMPLATE SLIDE• TEXT