atomic gyroscope: present status and prospective

42
Atomic gyroscope: present status and prospective Arnaud Landragin Walid Chaibi Alexandre Gauguet Thomas Lévêque Franck Michaud

Upload: vuongphuc

Post on 03-Jan-2017

231 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: Atomic gyroscope: present status and prospective

Atomic gyroscope: present status and prospective

Arnaud Landragin Walid Chaibi Alexandre Gauguet Thomas Lévêque Franck Michaud

Page 2: Atomic gyroscope: present status and prospective

SYRTE-Observatoire de Paris

Introduction

Page 3: Atomic gyroscope: present status and prospective

SYRTE-Observatoire de Paris

Optical gyroscope

Two waves formula

Mach-Zehnder interferometer

Page 4: Atomic gyroscope: present status and prospective

SYRTE-Observatoire de Paris

Optical gyroscope

Two waves formula

Mach-Zehnder interferometer

Page 5: Atomic gyroscope: present status and prospective

SYRTE-Observatoire de Paris

Optical gyroscope

Two waves formula

Mach-Zehnder interferometer

Rotating the interferometer : Sagnac effect

ΔΦSAGNAC =4πλc

r Ω .

r A

Page 6: Atomic gyroscope: present status and prospective

SYRTE-Observatoire de Paris

Optical gyroscope

Ring laser gyro used in aircraft

Increase the area !...?

« Giant » laser gyro

Optical fibre gyro : FOG

Page 7: Atomic gyroscope: present status and prospective

SYRTE-Observatoire de Paris

Optical gyroscope

Ring laser gyro used in aircraft

Increase the area !...?

« Giant » laser gyro

orThe energy E

Optical fibre gyro : FOG

Page 8: Atomic gyroscope: present status and prospective

SYRTE-Observatoire de Paris

Atomic gyroscope

Matter waves : E ≈ mc2

Feasibility to realised high sensitive gyroscope !

ECs

Evisible

=mc 2

hω≈1011

Page 9: Atomic gyroscope: present status and prospective

SYRTE-Observatoire de Paris

Atomic gyroscope

Matter waves : E ≈ mc2

Feasibility to realised high sensitive gyroscope !

ECs

Evisible

=mc 2

hω≈1011

Interferometer with atomic wave packets

Atomic waves manipulating with lasers

ΔΦSAGNAC =2E

r A ⋅

r Ω

hc 2

Page 10: Atomic gyroscope: present status and prospective

SYRTE-Observatoire de Paris

Atomic gyroscope

Matter waves : E ≈ mc2

Feasibility to realised high sensitive gyroscope !

ECs

Evisible

=mc 2

hω≈1011

Interferometer with atomic wave packets

Atomic waves manipulating with lasers

ΔΦSAGNAC =2E

r A ⋅

r Ω

hc 2

Three parameters: AreaEnergy of the particleFlux (signal to noise)

Page 11: Atomic gyroscope: present status and prospective

SYRTE-Observatoire de Paris

Stimulated Raman transitions

6S1/2 9,2 GHz

6P3/2

852 nm

Raman transitions

D2 line for Cs

Transition between 2 momentum states

Coherent superimposition of the two momentum states

Page 12: Atomic gyroscope: present status and prospective

SYRTE-Observatoire de Paris

Wave packet manipulation

Rabi oscillations between

Tran

sitio

n pr

obab

ility

ΩRabiτ

π/2 π

and

π pulseAtomic mirror

π/2 pulseAtomic beam splitter

12

f , p + e, p + hkeff eiφ( )

Page 13: Atomic gyroscope: present status and prospective

SYRTE-Observatoire de Paris

Double interferometer

(Sagnac effect)

π/2 π/2π

Page 14: Atomic gyroscope: present status and prospective

SYRTE-Observatoire de Paris

Double interferometer

Rotation phase shift:Direction of atoms

π/2 π/2π

Page 15: Atomic gyroscope: present status and prospective

SYRTE-Observatoire de Paris

Double interferometer

Rotation phase shift:Direction of atoms

Source B Source A

Two atomic sources of opposite directions

∆ΦA ∆ΦB

Sum: acceleration

Difference: rotation

Page 16: Atomic gyroscope: present status and prospective

SYRTE-Observatoire de Paris

Out-line

Atomic beam gyroscope

Page 17: Atomic gyroscope: present status and prospective

SYRTE-Observatoire de Paris

Sensitivity

6.10-10 rad.s-1 in 1 seconde

( ~ 8.10-6 ΩΩE)

Atomic beam gyroscope (laboratoire Stanford/Yale)

Magnetic shield

Oven of Cs

Manipulationof the atomic wavepackets

Atomic beams

Statepréparation

LaserCooling

Detection

Rotation rate (x10-5) rad/s-10 -5 0 5 10 15 20

Nor

mal

ized

sign

al

-1

0

1

Interference pattern

2 m

high velocity: 300 m.s-1

high flux ~ 1011 at.s-1

Area: 20 mm2

T L Gustavson, A. Landagin and M. Kasevich, Class. Quantum Grav. 17 (2000) 1–14.

Page 18: Atomic gyroscope: present status and prospective

SYRTE-Observatoire de Paris

Stanford/Yale laboratory gyroscopeRotation signal

Page 19: Atomic gyroscope: present status and prospective

SYRTE-Observatoire de Paris

Stanford/Yale laboratory gyroscopeRotation signal

Impoved long term stabilitybut compromise with short term:

6.10-8 rad.s-1.Hz-1/2

at 1000s: 2.5 10-9 rad.s-1 (not compensated)

at 10 000s: 6 10-10 rad.s-1 (temperature-compensated by optimal Kalman filter)

D.S. Durfee, Y.K. Shaham, M. Kasevich 2006

Page 20: Atomic gyroscope: present status and prospective

SYRTE-Observatoire de Paris

Out-line

Cold Atom experiment

Page 21: Atomic gyroscope: present status and prospective

MOT A MOT B

Z

X

Y

SYRTE-Observatoire de Paris

PARAMETERS

2 MOT of Cs Tatoms~1 µK

Launch velocity 2,4 m/sAngle 8° Vl=0,33 m.s-1

Tc = 0,58 sFlux ~ 106 at.s-1

Cold atoms gyroscope

Page 22: Atomic gyroscope: present status and prospective

MOT A MOT B

Z

X

Y

SYRTE-Observatoire de Paris

Cold atoms gyroscope

3 cm

Area: 4 mm2

Page 23: Atomic gyroscope: present status and prospective

MOT A MOT B

Z

X

Y

SYRTE-Observatoire de Paris

Cold atoms gyroscope

probe 3 cm

Area: 4 mm2

Page 24: Atomic gyroscope: present status and prospective

MOT A MOT B

Z

X

Y

SYRTE-Observatoire de Paris

Cold atoms gyroscope

probe 3 cm

Area: 4 mm2

Unique laser beam modulated on timeLong term stability and knowledge of the scaling factor

Cold atomsGood control of the mean velocitySmall velocity dispersion

Page 25: Atomic gyroscope: present status and prospective

SYRTE-Observatoire de Paris

6 axes of inertia

B. Canuel et al., PRL 97, 010402 (2006)

Page 26: Atomic gyroscope: present status and prospective

SYRTE-Observatoire de Paris

6 axes of inertia

B. Canuel et al., PRL 97, 010402 (2006)

Page 27: Atomic gyroscope: present status and prospective

SYRTE-Observatoire de Paris

Interference fringes2T = 80 ms and Contrast 30 %

P = O + Ccosr k eff ⋅

r g T 2 ±

r k eff

r V ΩT 2 + ΔΦlaser( )

Page 28: Atomic gyroscope: present status and prospective

SYRTE-Observatoire de Paris

Continuous measurements

36 hours

5.10-8 g

Time (s) Time (s)

Rotation Acceleration

Page 29: Atomic gyroscope: present status and prospective

SYRTE-Observatoire de Paris

Rotation & acceleration stability

Rotation limited by Quantum Projection Noisedue to reduced atomic flux

Acceleration limited by vibrations

5,5 10-7 m.s-2 at 1 second

≈ 10-8 m.s-2

2,4 10-7 rad.s-1 at 1 second

≈ 10-8 rad.s-1

Time (s)

Alla

n va

rianc

e de

viat

ion

of ro

tatio

n (r

ad.s

-1)

Time (s)A

llan

varia

nce

devi

atio

nof

acc

eler

atio

n (m

.s-2

) 2.4 10-7 rad.s-1/√τ

5.5 10-7 m.s-2/√τ

Page 30: Atomic gyroscope: present status and prospective

SYRTE-Observatoire de Paris

Rotation & acceleration stability

Rotation limited by Quantum Projection Noisedue to reduced atomic flux

Acceleration limited by vibrations

5,5 10-7 m.s-2 at 1 second

≈ 10-8 m.s-2

2,4 10-7 rad.s-1 at 1 second

≈ 10-8 rad.s-1

Time (s)

Alla

n va

rianc

e de

viat

ion

of ro

tatio

n (r

ad.s

-1)

Time (s)A

llan

varia

nce

devi

atio

nof

acc

eler

atio

n (m

.s-2

)

room temperature fluctuationsImperfection in Raman laser wavefront and control of the trajectories of the atoms

2.4 10-7 rad.s-1/√τ

5.5 10-7 m.s-2/√τ

Page 31: Atomic gyroscope: present status and prospective

SYRTE-Observatoire de Paris

Test the linearity

NS

O

Changing the orientation of the experiment - modulate the projection of the Earth rotation- changes the rotation rate in controlled way

a Z

XY

π/π/

Ω

π

bias : 28.3 mrad ± 0.7 mrad

ΔΦ = ΔΦBias +K sin θ −θ0( )Fit by the equation :

Gyroscope linearity : quadratic term <10-5

The scale factor: 15124 ± 12 rad /(rad.s-1)

Page 32: Atomic gyroscope: present status and prospective

SYRTE-Observatoire de Paris

Cold atom gyroscope summery

Access to the six components of inertia (may be interesting for earthquake-induced rotational ground motions)

Sensitivity to rotation: short term: quantum projection noise (limited flux) long term: wave front imperfections and fluctuations of the sources

gyroscope accuracy: bias : => wave front errors scaling factor (quadratic term < 10-5 study limited by long term stability)

Performances similar to best commercial optical gyroscope and closed to beam gyroscope (factor 4) (D. Durfee et al. PRL 97, 240801 (2006))

Page 33: Atomic gyroscope: present status and prospective

SYRTE-Observatoire de Paris

Cold atom gyroscope summery

Access to the six components of inertia (may be interesting for earthquake-induced rotational ground motions)

Sensitivity to rotation: short term: quantum projection noise (limited flux) long term: wave front imperfections and fluctuations of the sources

gyroscope accuracy: bias : => wave front errors scaling factor (quadratic term < 10-5 study limited by long term stability)

No fundamental limits

Performances similar to best commercial optical gyroscope and closed to beam gyroscope (factor 4) (D. Durfee et al. PRL 97, 240801 (2006))

Page 34: Atomic gyroscope: present status and prospective

SYRTE-Observatoire de Paris

ProspectsHigher flux (2D MOT) x 100Change of geometry with cold atoms => increase of the area

Atomic beam experiment: 20 mm2

This first cold atom experiment: 4 mm2

Page 35: Atomic gyroscope: present status and prospective

SYRTE-Observatoire de Paris

ProspectsHigher flux (2D MOT) x 100Change of geometry with cold atoms => increase of the area

Atomic beam experiment: 20 mm2

This first cold atom experiment: 4 mm2

interferometer

cold atom source 1

preparationdetection

15 3

π/2

ππ/2

cold atom source 2

A

Split the Raman laser 3 pulses straight trajectories (E. Rasel University of Hannover) (34 mm2)

Page 36: Atomic gyroscope: present status and prospective

SYRTE-Observatoire de Paris

ProspectsHigher flux (2D MOT) x 100Change of geometry with cold atoms => increase of the area

Atomic beam experiment: 20 mm2

This first cold atom experiment: 4 mm2

4 pulses sequences (under development) (up to 11 cm2)expect 10-9 rad.s-1 in 1 s

in the range of 10-10-10-11 rad.s-1 in 1 less than 1h

interferometer

cold atom source 1

preparationdetection

15 3

π/2

ππ/2

cold atom source 2

A

Split the Raman laser 3 pulses straight trajectories (E. Rasel University of Hannover) (34 mm2)

Page 37: Atomic gyroscope: present status and prospective
Page 38: Atomic gyroscope: present status and prospective

S. Merlet, et al., Metrologia 46, 87–94, (2009) arXiv:0806.0164

Acquisition without isolation

Earthquake in China 2 Mars 20th 2008 (magnitude 7,7)

Page 39: Atomic gyroscope: present status and prospective

Wave front distortions

Flat wave front: φ1 = φ2 = φ3

φ1 − 2φ2 + φ3 = 0

Page 40: Atomic gyroscope: present status and prospective

Wave front distortions

Flat wave front: φ1 = φ2 = φ3

φ1 − 2φ2 + φ3 = 0

Distortions of wave front : φ1 ≠ φ2 ≠ φ302 321 ≠+− φφφ

Page 41: Atomic gyroscope: present status and prospective

Wave front distortions

Flat wave front: φ1 = φ2 = φ3

Double interferometer :superposition : δφ1-2δφ2+δφ3=0 Bias cancel on the rotation signal

φ1 − 2φ2 + φ3 = 0

Distortions of wave front : φ1 ≠ φ2 ≠ φ302 321 ≠+− φφφ

Page 42: Atomic gyroscope: present status and prospective

Wave front distortions

Flat wave front: φ1 = φ2 = φ3

Double interferometer :superposition : δφ1-2δφ2+δφ3=0

non superposition : δφ1-2δφ2+δφ3≠0

Bias cancel on the rotation signal

φ1 − 2φ2 + φ3 = 0

Distortions of wave front : φ1 ≠ φ2 ≠ φ302 321 ≠+− φφφ